1
|
Barroso M, Puchwein-Schwepcke A, Buettner L, Goebel I, Küchler K, Muntau AC, Delgado A, Garcia-Collazo AM, Martinell M, Barril X, Cubero E, Gersting SW. Use of the Novel Site-Directed Enzyme Enhancement Therapy (SEE-Tx) Drug Discovery Platform to Identify Pharmacological Chaperones for Glutaric Acidemia Type 1. J Med Chem 2024; 67:17087-17100. [PMID: 39312412 PMCID: PMC11472340 DOI: 10.1021/acs.jmedchem.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Allosteric regulators acting as pharmacological chaperones hold promise for innovative therapeutics since they target noncatalytic sites and stabilize the folded protein without competing with the natural substrate, resulting in a net gain of function. Exogenous allosteric regulators are typically more selective than active site inhibitors and can be more potent than competitive inhibitors when the natural substrate levels are high. To identify novel structure-targeted allosteric regulators (STARs) that bind to and stabilize the mitochondrial enzyme glutaryl-CoA dehydrogenase (GCDH), the computational site-directed enzyme enhancement therapy (SEE-Tx) technology was applied. SEE-Tx is an innovative drug discovery platform with the potential to identify drugs for treating protein misfolding disorders, such as glutaric acidemia type 1 (GA1) disease. Putative allosteric regulators were discovered using structure- and ligand-based virtual screening methods and validated using orthogonal biophysical and biochemical assays. The computational approach presented here could be used to discover allosteric regulators of other protein misfolding disorders.
Collapse
Affiliation(s)
- Madalena Barroso
- University
Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Alexandra Puchwein-Schwepcke
- Department
of Molecular Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, Munich 80337, Germany
- Department
of Pediatric Neurology and Developmental Medicine, University Children’s Hospital Basel, UKBB, Basel 4031, Switzerland
| | - Lars Buettner
- Pharmaceutical
Development Biologicals, Boehringer Ingelheim
Pharma GmbH & Co. KG, Biberach
an der Riss 88397, Germany
| | - Ingrid Goebel
- University
Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Katrin Küchler
- University
Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ania C. Muntau
- University
Children’s Hospital, University Medical
Center Hamburg-Eppendorf, Hamburg 20246, Germany
- German
Center
for Child and Adolescent Health (DZKJ), Partner Site Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Aida Delgado
- Gain
Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Ana M. Garcia-Collazo
- Gain
Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Marc Martinell
- Minoryx
Therapeutics S.L., Tecno
Campus Mataró-Maresme, Mataró, Barcelona 08302, Spain
| | - Xavier Barril
- Gain
Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Elena Cubero
- Gain
Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona 08028, Spain
| | - Søren W. Gersting
- University
Children’s Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- German
Center
for Child and Adolescent Health (DZKJ), Partner Site Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
2
|
Barzi M, Johnson CG, Chen T, Rodriguiz RM, Hemmingsen M, Gonzalez TJ, Rosales A, Beasley J, Peck CK, Ma Y, Stiles AR, Wood TC, Maeso-Diaz R, Diehl AM, Young SP, Everitt JI, Wetsel WC, Lagor WR, Bissig-Choisat B, Asokan A, El-Gharbawy A, Bissig KD. Rescue of glutaric aciduria type I in mice by liver-directed therapies. Sci Transl Med 2023; 15:eadf4086. [PMID: 37075130 PMCID: PMC10676743 DOI: 10.1126/scitranslmed.adf4086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/01/2023] [Indexed: 04/21/2023]
Abstract
Glutaric aciduria type I (GA-1) is an inborn error of metabolism with a severe neurological phenotype caused by the deficiency of glutaryl-coenzyme A dehydrogenase (GCDH), the last enzyme of lysine catabolism. Current literature suggests that toxic catabolites in the brain are produced locally and do not cross the blood-brain barrier. In a series of experiments using knockout mice of the lysine catabolic pathway and liver cell transplantation, we uncovered that toxic GA-1 catabolites in the brain originated from the liver. Moreover, the characteristic brain and lethal phenotype of the GA-1 mouse model was rescued by two different liver-directed gene therapy approaches: Using an adeno-associated virus, we replaced the defective Gcdh gene or we prevented flux through the lysine degradation pathway by CRISPR deletion of the aminoadipate-semialdehyde synthase (Aass) gene. Our findings question the current pathophysiological understanding of GA-1 and reveal a targeted therapy for this devastating disorder.
Collapse
Affiliation(s)
- Mercedes Barzi
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Collin G Johnson
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tong Chen
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Cell Biology and Neurobiology, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | - Madeline Hemmingsen
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Trevor J Gonzalez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Alan Rosales
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - James Beasley
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Cheryl K Peck
- Biochemical Genetics Laboratory, Children's Hospital Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yunhan Ma
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Ashlee R Stiles
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy C Wood
- Biochemical Genetics Laboratory, Children's Hospital Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Raquel Maeso-Diaz
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC 27710, USA
| | - Anna Mae Diehl
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sarah P Young
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey I Everitt
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - William C Wetsel
- Department of Psychiatry and Behavioral Sciences, Cell Biology and Neurobiology, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | - William R Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Beatrice Bissig-Choisat
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Aravind Asokan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biomedical Engineering (BME) at the Duke University Pratt School of Engineering, Duke University Medical Center, Durham, NC 27710, USA
- Duke Cancer Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Areeg El-Gharbawy
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Karl-Dimiter Bissig
- Y.T. and Alice Chen Center for Genetics and Genomics, Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biomedical Engineering (BME) at the Duke University Pratt School of Engineering, Duke University Medical Center, Durham, NC 27710, USA
- Duke Cancer Center, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
3
|
Seminotti B, Grings M, Tucci P, Leipnitz G, Saso L. Nuclear Factor Erythroid-2-Related Factor 2 Signaling in the Neuropathophysiology of Inherited Metabolic Disorders. Front Cell Neurosci 2021; 15:785057. [PMID: 34955754 PMCID: PMC8693715 DOI: 10.3389/fncel.2021.785057] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/05/2021] [Indexed: 01/14/2023] Open
Abstract
Inherited metabolic disorders (IMDs) are rare genetic conditions that affect multiple organs, predominantly the central nervous system. Since treatment for a large number of IMDs is limited, there is an urgent need to find novel therapeutical targets. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor that has a key role in controlling the intracellular redox environment by regulating the expression of antioxidant enzymes and several important genes related to redox homeostasis. Considering that oxidative stress along with antioxidant system alterations is a mechanism involved in the neuropathophysiology of many IMDs, this review focuses on the current knowledge about Nrf2 signaling dysregulation observed in this group of disorders characterized by neurological dysfunction. We review here Nrf2 signaling alterations observed in X-linked adrenoleukodystrophy, glutaric acidemia type I, hyperhomocysteinemia, and Friedreich’s ataxia. Additionally, beneficial effects of different Nrf2 activators are shown, identifying a promising target for treatment of patients with these disorders. We expect that this article stimulates research into the investigation of Nrf2 pathway involvement in IMDs and the use of potential pharmacological modulators of this transcription factor to counteract oxidative stress and exert neuroprotection.
Collapse
Affiliation(s)
- Bianca Seminotti
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mateus Grings
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Guilhian Leipnitz
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Gonzalez Melo M, Fontana AO, Viertl D, Allenbach G, Prior JO, Rotman S, Feichtinger RG, Mayr JA, Costanzo M, Caterino M, Ruoppolo M, Braissant O, Barbey F, Ballhausen D. A knock-in rat model unravels acute and chronic renal toxicity in glutaric aciduria type I. Mol Genet Metab 2021; 134:287-300. [PMID: 34799272 DOI: 10.1016/j.ymgme.2021.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/14/2023]
Abstract
Glutaric aciduria type I (GA-I, OMIM # 231670) is an autosomal recessive inborn error of metabolism caused by deficiency of the mitochondrial enzyme glutaryl-CoA dehydrogenase (GCDH). The principal clinical manifestation in GA-I patients is striatal injury most often triggered by catabolic stress. Early diagnosis by newborn screening programs improved survival and reduced striatal damage in GA-I patients. However, the clinical phenotype is still evolving in the aging patient population. Evaluation of long-term outcome in GA-I patients recently identified glomerular filtration rate (GFR) decline with increasing age. We recently created the first knock-in rat model for GA-I harboring the mutation p.R411W (c.1231 C>T), corresponding to the most frequent GCDH human mutation p.R402W. In this study, we evaluated the effect of an acute metabolic stress in form of high lysine diet (HLD) on young Gcdhki/ki rats. We further studied the chronic effect of GCDH deficiency on kidney function in a longitudinal study on a cohort of Gcdhki/ki rats by repetitive 68Ga-EDTA positron emission tomography (PET) renography, biochemical and histological analyses. In young Gcdhki/ki rats exposed to HLD, we observed a GFR decline and biochemical signs of a tubulopathy. Histological analyses revealed lipophilic vacuoles, thinning of apical brush border membranes and increased numbers of mitochondria in proximal tubular (PT) cells. HLD also altered OXPHOS activities and proteome in kidneys of Gcdhki/ki rats. In the longitudinal cohort, we showed a progressive GFR decline in Gcdhki/ki rats starting at young adult age and a decline of renal clearance. Histopathological analyses in aged Gcdhki/ki rats revealed tubular dilatation, protein accumulation in PT cells and mononuclear infiltrations. These observations confirm that GA-I leads to acute and chronic renal damage. This raises questions on indication for follow-up on kidney function in GA-I patients and possible therapeutic interventions to avoid renal damage.
Collapse
Affiliation(s)
- Mary Gonzalez Melo
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Andrea Orlando Fontana
- Department of Nuclear Medicine and Molecular Imaging, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland.
| | - David Viertl
- Department of Nuclear Medicine and Molecular Imaging, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland.
| | - Gilles Allenbach
- Department of Nuclear Medicine and Molecular Imaging, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland.
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland.
| | - Samuel Rotman
- Service of Clinical Pathology, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - René Günther Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Johannes Adalbert Mayr
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie, Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie, Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie, Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Olivier Braissant
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Frederic Barbey
- Department of Immunology, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Diana Ballhausen
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland.
| |
Collapse
|
5
|
Guerreiro G, Faverzani J, Moura AP, Volfart V, Gome Dos Reis B, Sitta A, Gonzalez EA, de Lima Rosa G, Coitinho AS, Baldo G, Wajner M, Vargas CR. Protective effects of L-carnitine on behavioral alterations and neuroinflammation in striatum of glutaryl-COA dehydrogenase deficient mice. Arch Biochem Biophys 2021; 709:108970. [PMID: 34181873 DOI: 10.1016/j.abb.2021.108970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/06/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022]
Abstract
Glutaric acidemia type 1 (GA1) is caused by glutaryl-CoA dehydrogenase deficiency that leads to a blockage in the metabolic route of the amino acids lysine and tryptophan and subsequent accumulation of glutaric acid (GA), 3-hydroxyglutaric acids and glutarylcarnitine (C5DC). Patients predominantly manifest neurological symptoms, associated with acute striatal degeneration, as well as progressive cortical and striatum injury whose pathogenesis is not yet fully established. Current treatment includes protein/lysine restriction and l-carnitine supplementation of (L-car). The aim of this work was to evaluate behavior parameters and pro-inflammatory factors (cytokines IL-1β, TNF-α and cathepsin-D levels), as well as the anti-inflammatory cytokine IL10 in striatum of knockout mice (Gcdh-/-) and wild type (WT) mice submitted to a normal or a high Lys diet. The potential protective effects of L-car treatment on these parameters were also evaluated. Gcdh-/- mice showed behavioral changes, including lower motor activity (decreased number of crossings) and exploratory activity (reduced number of rearings). Also, Gcdh-/- mice had significantly higher concentrations of glutarylcarnitine (C5DC) in blood and cathepsin-D (CATD), interleukin IL-1β and tumor factor necrosis alpha (TNF-α) in striatum than WT mice. Noteworthy, L-car treatment prevented most behavioral alterations, normalized CATD levels and attenuated IL-1β levels in striatum of Gcdh-/- mice. Finally, IL-1β was positively correlated with CATD and C5DC levels and L-car was negatively correlated with CATD. Our results demonstrate behavioral changes and a pro-inflammatory status in striatum of the animal model of GA1 and, most importantly, L-car showed important protective effects on these alterations.
Collapse
Affiliation(s)
- Gilian Guerreiro
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035- 903, Porto Alegre, RS, Brazil.
| | - Jéssica Faverzani
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação Em Ciências Farmacêuticas, UFRGS, Av. Ipiranga, 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Alana Pimentel Moura
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035- 903, Porto Alegre, RS, Brazil
| | - Vitoria Volfart
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Bianca Gome Dos Reis
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Angela Sitta
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035- 903, Porto Alegre, RS, Brazil
| | - Esteban Alberto Gonzalez
- Programa de Pós-Graduação Em Fisiologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Gabriel de Lima Rosa
- Programa de Pós-Graduação Em Fisiologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Adriana Simon Coitinho
- Programa de Pós-Graduação Em Fisiologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Programa de Pós-Graduação Em Fisiologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035- 903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, 90035 000, Porto Alegre, RS, Brazil
| | - Carmen Regla Vargas
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035- 903, Porto Alegre, RS, Brazil; Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, 90035 000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação Em Ciências Farmacêuticas, UFRGS, Av. Ipiranga, 2752, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Ntorkou AA, Daire J, Renaldo F, Doummar D, Alison M, Schiff M, Elmaleh-Bergès M. Enlargement of the Optic Chiasm: A Novel Imaging Finding in Glutaric Aciduria Type 1. AJNR Am J Neuroradiol 2021; 42:1722-1726. [PMID: 34244130 DOI: 10.3174/ajnr.a7199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/19/2021] [Indexed: 11/07/2022]
Abstract
Patients with glutaric aciduria type 1, without early diagnosis and initiation of preventive treatment, often develop movement disorders and various degrees of motor disability due to striatal area-specific damage induced by an acute episode of metabolic decompensation. The neuroimaging phenotype of patients with glutaric aciduria type 1 includes characteristic cyst-like bilateral enlargement of the Sylvian fissures and anterior subarachnoid spaces and signal abnormalities including supratentorial white matter and deep gray matter structure T2 hyperintensities, frequently associated with restricted diffusion. In this retrospective study, we add to the neuroimaging spectrum of glutaric aciduria type 1, a novel imaging finding present regardless of a previous metabolic crisis: the enlargement of the optic chiasm associated with signal abnormalities in the anterior intracranial visual structures observed in 6 of 10 patients. These optic pathway abnormalities are suggested as useful diagnostic clues for glutaric aciduria type 1, and possible pathophysiologic mechanisms are discussed.
Collapse
Affiliation(s)
- A A Ntorkou
- From the Departments of Pediatric Radiology (A.A.N., M.A., M.E.-B.)
| | - J Daire
- Pediatric Neurology (J.D., F.R., M.S.), Robert Debré University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - F Renaldo
- Pediatric Neurology (J.D., F.R., M.S.), Robert Debré University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - D Doummar
- Department of Pediatric Neurology (D.D.), Trousseau University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - M Alison
- From the Departments of Pediatric Radiology (A.A.N., M.A., M.E.-B.)
| | - M Schiff
- Pediatric Neurology (J.D., F.R., M.S.), Robert Debré University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - M Elmaleh-Bergès
- From the Departments of Pediatric Radiology (A.A.N., M.A., M.E.-B.)
| |
Collapse
|
7
|
Xie L, Xiao Y, Meng F, Li Y, Shi Z, Qian K. Functions and Mechanisms of Lysine Glutarylation in Eukaryotes. Front Cell Dev Biol 2021; 9:667684. [PMID: 34249920 PMCID: PMC8264553 DOI: 10.3389/fcell.2021.667684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/01/2021] [Indexed: 01/22/2023] Open
Abstract
Lysine glutarylation (Kglu) is a newly discovered post-translational modification (PTM), which is considered to be reversible, dynamic, and conserved in prokaryotes and eukaryotes. Recent developments in the identification of Kglu by mass spectrometry have shown that Kglu is mainly involved in the regulation of metabolism, oxidative damage, chromatin dynamics and is associated with various diseases. In this review, we firstly summarize the development history of glutarylation, the biochemical processes of glutarylation and deglutarylation. Then we focus on the pathophysiological functions such as glutaric acidemia 1, asthenospermia, etc. Finally, the current computational tools for predicting glutarylation sites are discussed. These emerging findings point to new functions for lysine glutarylation and related enzymes, and also highlight the mechanisms by which glutarylation regulates diverse cellular processes.
Collapse
Affiliation(s)
- Longxiang Xie
- Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yafei Xiao
- Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Huaihe Hospital, Henan University, Kaifeng, China
| | - Fucheng Meng
- Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yongqiang Li
- Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Huaihe Hospital, Henan University, Kaifeng, China
| | - Zhenyu Shi
- Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Huaihe Hospital, Henan University, Kaifeng, China
| | - Keli Qian
- Infection Control Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Dias MS, Thamburaj K. Neuroradiologic timing of intracranial hemorrhage in abusive head trauma. Pediatr Radiol 2021; 51:911-917. [PMID: 33999236 DOI: 10.1007/s00247-020-04824-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/22/2020] [Accepted: 08/20/2020] [Indexed: 11/26/2022]
Abstract
Determining the timing of intracranial injuries in general, and abusive head trauma (AHT) in particular, is important to the care of children with traumatic brain injury. Additionally, identifying the time of the injury provides important information as to who might have, and who did not, inflict the trauma. Understanding the appearance and evolution of intracranial findings on neuroimaging has been an important factor in assessing the time of the injury. However, a number of studies in the last two decades have both suggested greater uncertainty about the reliability of this process and advanced our knowledge in this area. In this review, the authors consider the biophysical factors that contribute to the appearance and evolution of intracranial hemorrhage and, in particular, subdural hemorrhage (SDH). The traditional view of SDH is predicated largely on prior studies of intracerebral hemorrhage, although a number of variables make this comparison untenable. Moreover, more recent studies have suggested a number of factors that could alter the density (CT) or signal intensity (MRI) and produce mixed density/intensity SDH. These factors need to be considered in interpreting neuroimaging studies. A number of these recent studies evaluating serial neuroimaging in children with AHT have modified our understanding of intracranial hemorrhage and its evolution in this context. Taken together, the studies to date, having important limitations, provide only broad ranges over which to time injuries. The authors conclude that neuroimaging studies at this time are not likely, in isolation, to be able to accurately pinpoint a specific time of injury; rather, neuroimaging can only provide a range of possible times and should instead be used as a means to supplement or corroborate timing based on clinical presentation and other imaging findings.
Collapse
Affiliation(s)
- Mark S Dias
- Department of Neurosurgery, Penn State Health College of Medicine, 30 Hope Drive, Suite 2750, Hershey, PA, 17033, USA.
- Department of Pediatrics, Penn State Health College of Medicine, Hershey, PA, USA.
| | | |
Collapse
|
9
|
Sitta A, Guerreiro G, de Moura Coelho D, da Rocha VV, Dos Reis BG, Sousa C, Vilarinho L, Wajner M, Vargas CR. Clinical, biochemical and molecular findings of 24 Brazilian patients with glutaric acidemia type 1: 4 novel mutations in the GCDH gene. Metab Brain Dis 2021; 36:205-212. [PMID: 33064266 DOI: 10.1007/s11011-020-00632-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/11/2020] [Indexed: 11/25/2022]
Abstract
Glutaric aciduria type 1 (GA-1) is a rare but treatable inherited disease caused by deficiency of glutaryl-CoA dehydrogenase activity due to GCDH gene mutations. In this study, we report 24 symptomatic GA-1 Brazilian patients, and present their clinical, biochemical, and molecular findings. Patients were diagnosed by high levels of glutaric and/or 3-hydroxyglutaric and glutarylcarnitine. Diagnosis was confirmed by genetic analysis. Most patients had the early-onset severe form of the disease and the main features were neurological deterioration, seizures and dystonia, usually following an episode of metabolic decompensation. Despite the early symptomatology, diagnosis took a long time for most patients. We identified 13 variants in the GCDH gene, four of them were novel: c.91 + 5G > A, c.167T > G, c.257C > T, and c.10A > T. The most common mutation was c.1204C > T (p.R402W). Surprisingly, the second most frequent mutation was the new mutation c.91 + 5G > A (IVS1 ds G-A + 5). Our results allowed a complete characterization of the GA-1 Brazilian patients. Besides, they expand the mutational spectrum of GA-1, with the description of four new mutations. This work reinforces the importance of awareness of GA-1 among doctors in order to allow early diagnosis and treatment in countries like Brazil where the disease has not been included in newborn screening programs.
Collapse
Affiliation(s)
- Angela Sitta
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90035-003, Porto Alegre, RS, Brazil.
| | - Gilian Guerreiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Ipiranga, 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Daniella de Moura Coelho
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90035-003, Porto Alegre, RS, Brazil
| | - Vitoria Volfart da Rocha
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90035-003, Porto Alegre, RS, Brazil
| | - Bianca Gomes Dos Reis
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90035-003, Porto Alegre, RS, Brazil
| | - Carmen Sousa
- Newborn Screening, Metabolism & Genetics Unit, Human Genetics Department, National Institute of Health Dr Ricardo Jorge, Alexandre Herculano, 321, 4000-055, Porto, Portugal
| | - Laura Vilarinho
- Newborn Screening, Metabolism & Genetics Unit, Human Genetics Department, National Institute of Health Dr Ricardo Jorge, Alexandre Herculano, 321, 4000-055, Porto, Portugal
| | - Moacir Wajner
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90035-003, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Carmen Regla Vargas
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90035-003, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Ipiranga, 2752, 90610-000, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
10
|
Rodrigues FS, França AP, Broetto N, Furian AF, Oliveira MS, Santos ARS, Royes LFF, Fighera MR. Sustained glial reactivity induced by glutaric acid may be the trigger to learning delay in early and late phases of development: Involvement of p75 NTR receptor and protection by N-acetylcysteine. Brain Res 2020; 1749:147145. [PMID: 33035499 DOI: 10.1016/j.brainres.2020.147145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022]
Abstract
Degeneration of striatal neurons and cortical atrophy are pathological characteristics of glutaric acidemia type I (GA-I), a disease characterized by accumulation of glutaric acid (GA). The mechanisms that lead to neuronal loss and cognitive impairment are still unclear. The purpose of this study was to verify if acute exposure to GA during the neonatal period is sufficient to trigger apoptotic processes and lead to learning delay in early and late period. Besides, whether N-acetylcysteine (NAC) would protect against impairment induced by GA. Pups mice received a dose of GA (2.5 μmol/ g) or saline, 12 hs after birth, and were treated with NAC (250 mg/kg) or saline, up to 21th day of life. Although GA exhibited deficits in the procedural and working memories in 21 and 40-day-old mice, NAC protected against cognitive impairment. In striatum and cortex, NAC prevented glial cells activation (GFAP and Iba-1), decreased NGF, Bcl-2 and NeuN, the increase of lipid peroxidation and PARP induced by GA in both ages. NAC protected against increased p75NTR induced by GA, but not in cortex of 21-day-old mice. Thus, we showed that the integrity of striatal and cortical pathways has an important role for learning and suggested that sustained glial reactivity in neonatal period can be an initial trigger for delay of cognitive development. Furthermore, NAC protected against cognitive impairment induced by GA. This work shows that early identification of the alterations induced by GA is important to avoid future clinical complications and suggest that NAC could be an adjuvant treatment for this acidemia.
Collapse
Affiliation(s)
- Fernanda Silva Rodrigues
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil; Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Centro de Ciências Biológicas, Laboratório de Neurobiologia da Dor e Inflamação, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Angela Patrícia França
- Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Núbia Broetto
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil; Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Ana Flávia Furian
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Mauro Schneider Oliveira
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Adair Roberto Soares Santos
- Centro de Ciências Biológicas, Laboratório de Neurobiologia da Dor e Inflamação, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Luiz Fernando Freire Royes
- Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil; Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Michele Rechia Fighera
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil; Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil; Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil; Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
11
|
Strauss KA, Williams KB, Carson VJ, Poskitt L, Bowser LE, Young M, Robinson DL, Hendrickson C, Beiler K, Taylor CM, Haas-Givler B, Hailey J, Chopko S, Puffenberger EG, Brigatti KW, Miller F, Morton DH. Glutaric acidemia type 1: Treatment and outcome of 168 patients over three decades. Mol Genet Metab 2020; 131:325-340. [PMID: 33069577 DOI: 10.1016/j.ymgme.2020.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 01/19/2023]
Abstract
Glutaric acidemia type 1 (GA1) is a disorder of cerebral organic acid metabolism resulting from biallelic mutations of GCDH. Without treatment, GA1 causes striatal degeneration in >80% of affected children before two years of age. We analyzed clinical, biochemical, and developmental outcomes for 168 genotypically diverse GA1 patients managed at a single center over 31 years, here separated into three treatment cohorts: children in Cohort I (n = 60; DOB 2006-2019) were identified by newborn screening (NBS) and treated prospectively using a standardized protocol that included a lysine-free, arginine-enriched metabolic formula, enteral l-carnitine (100 mg/kg•day), and emergency intravenous (IV) infusions of dextrose, saline, and l-carnitine during illnesses; children in Cohort II (n = 57; DOB 1989-2018) were identified by NBS and treated with natural protein restriction (1.0-1.3 g/kg•day) and emergency IV infusions; children in Cohort III (n = 51; DOB 1973-2016) did not receive NBS or special diet. The incidence of striatal degeneration in Cohorts I, II, and III was 7%, 47%, and 90%, respectively (p < .0001). No neurologic injuries occurred after 19 months of age. Among uninjured children followed prospectively from birth (Cohort I), measures of growth, nutritional sufficiency, motor development, and cognitive function were normal. Adherence to metabolic formula and l-carnitine supplementation in Cohort I declined to 12% and 32%, respectively, by age 7 years. Cessation of strict dietary therapy altered plasma amino acid and carnitine concentrations but resulted in no serious adverse outcomes. In conclusion, neonatal diagnosis of GA1 coupled to management with lysine-free, arginine-enriched metabolic formula and emergency IV infusions during the first two years of life is safe and effective, preventing more than 90% of striatal injuries while supporting normal growth and psychomotor development. The need for dietary interventions and emergency IV therapies beyond early childhood is uncertain.
Collapse
MESH Headings
- Amino Acid Metabolism, Inborn Errors/diet therapy
- Amino Acid Metabolism, Inborn Errors/epidemiology
- Amino Acid Metabolism, Inborn Errors/genetics
- Amino Acid Metabolism, Inborn Errors/metabolism
- Brain/metabolism
- Brain/pathology
- Brain Diseases, Metabolic/diet therapy
- Brain Diseases, Metabolic/epidemiology
- Brain Diseases, Metabolic/genetics
- Brain Diseases, Metabolic/metabolism
- Carnitine/metabolism
- Child
- Child, Preschool
- Corpus Striatum/metabolism
- Corpus Striatum/pathology
- Diet
- Female
- Glutaryl-CoA Dehydrogenase/deficiency
- Glutaryl-CoA Dehydrogenase/genetics
- Glutaryl-CoA Dehydrogenase/metabolism
- Humans
- Infant
- Infant, Newborn
- Lysine/metabolism
- Male
Collapse
Affiliation(s)
- Kevin A Strauss
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA; Departments of Pediatrics and Molecular, Cell & Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA, USA.
| | | | - Vincent J Carson
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA
| | - Laura Poskitt
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA
| | | | | | | | | | | | - Cora M Taylor
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA, USA
| | | | | | - Stephanie Chopko
- Department of Pediatrics, Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | | | | | - Freeman Miller
- Department of Orthopedic Surgery, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - D Holmes Morton
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA; Central Pennsylvania Clinic, Belleville, PA, USA
| |
Collapse
|
12
|
Imerci A, Strauss KA, Oleas-Santillan GF, Miller F. Orthopaedic manifestations of glutaric acidemia Type 1. J Child Orthop 2020; 14:473-479. [PMID: 33204356 PMCID: PMC7666789 DOI: 10.1302/1863-2548.14.200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Glutaric acidemia type 1 (GA1), a rare hereditary metabolic disease caused by biallelic mutations of GCDH, can result in acute or insidious striatal degeneration within the first few years of life. We reviewed the orthopaedic sequelae and management of 114 neurologically injured patients with a confirmed molecular diagnosis of GA1. METHODS We performed a retrospective chart review spanning 28 years identifying 114 GA1 patients, most from the Old Order Amish population of Lancaster County, Pennsylvania, who were homozygous for a pathogenic founder variant of GCDH (c.1262C>T). We collected demographics, medical comorbidities, muscle tone patterns, Gross Motor Function Classification System level, gastrostomy tube status, seizure history, inpatient events, orthopaedic diagnoses and operative characteristics. RESULTS Over an average follow-up of 4.7 ± 3.4 years, 24 (21%) of 114 patients had musculoskeletal problems requiring orthopaedic consultation. Scoliosis (n = 14), hip dislocation (n = 8/15 hips), hip subluxation (n = 2/three hips), and windswept hip deformity (n = 2) in the spine and hip joint were most common. In total, 35 orthopaedic surgeries were performed in 17 (71%) patients. The most common primary operations were one-stage procedures with proximal femoral varus derotation osteotomy and/or pelvic osteotomy (n = 8/14 hips) for subluxation or dislocation. In all, 11 patients had posterior spinal fusion for severe scoliosis. With the recommended metabolic management, there were no disease-specific complications in this cohort. CONCLUSIONS Children with GA1 who have static striatal lesions are at risk for musculoskeletal complications, especially scoliosis and hip dislocation, and appropriate operative management requires consultation with a metabolic specialist with specific considerations for fluid management and nutrition. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Ahmet Imerci
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | | | | | - Freeman Miller
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA,Correspondence should be sent to Freeman Miller, Department of Orthopaedics, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19803, USA. E-mail:
| |
Collapse
|
13
|
Bouchereau J, Schiff M. Inherited Disorders of Lysine Metabolism: A Review. J Nutr 2020; 150:2556S-2560S. [PMID: 33000154 DOI: 10.1093/jn/nxaa112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 11/13/2022] Open
Abstract
Lysine is an essential amino acid, and inherited diseases of its metabolism therefore represent defects of lysine catabolism. Although some of these enzyme defects are not well described yet, glutaric aciduria type I (GA1) and antiquitin (2-aminoadipic-6-semialdehyde dehydrogenase) deficiency represent the most well-characterized diseases. GA1 is an autosomal recessive disorder due to a deficiency of glutaryl-CoA dehydrogenase. Untreated patients exhibit early onset macrocephaly and may present a neurological deterioration with regression and movement disorder at the time of a presumably "benign" infection most often during the first year of life. This is associated with a characteristic neuroimaging pattern with frontotemporal atrophy and striatal injuries. Diagnosis relies on the identification of glutaric and 3-hydroxyglutaric acid in urine along with plasma glutarylcarnitine. Treatment consists of a low-lysine diet aiming at reducing the putatively neurotoxic glutaric and 3-hydroxyglutaric acids. Additional therapeutic measures include administration of l-carnitine associated with emergency measures at the time of intercurrent illnesses aiming at preventing brain injury. Early treated (ideally through newborn screening) patients exhibit a favorable long-term neurocognitive outcome, whereas late-treated or untreated patients may present severe neurocognitive irreversible disabilities. Antiquitin deficiency is the most common form of pyridoxine-dependent epilepsy. α-Aminoadipic acid semialdehyde (AASA) and Δ-1-piperideine-6-carboxylate (P6C) accumulate proximal to the enzymatic block. P6C forms a complex with pyridoxal phosphate (PLP), a key vitamer of pyridoxine, thereby reducing PLP bioavailability and subsequently causing epilepsy. Urinary AASA is a biomarker of antiquitin deficiency. Despite seizure control, only 25% of the pyridoxine-treated patients show normal neurodevelopment. Low-lysine diet and arginine supplementation are proposed in some patients with decrease of AASA, but the impact on neurodevelopment is unclear. In summary, GA1 and antiquitin deficiency are the 2 main human defects of lysine catabolism. Both include neurological impairment. Lysine dietary restriction is a key therapy for GA1, whereas its benefits in antiquitin deficiency appear less clear.
Collapse
Affiliation(s)
- Juliette Bouchereau
- Reference Center for Inborn Errors of Metabolism, Necker University Hospital, Assistance-Publique Hôpitaux de Paris, University of Paris, Medical School Paris-Descartes, Paris, France
| | - Manuel Schiff
- Reference Center for Inborn Errors of Metabolism, Necker University Hospital, Assistance-Publique Hôpitaux de Paris, University of Paris, Medical School Paris-Descartes, Paris, France.,Imagine Institute, INSERM (National Institute for Health and Medical Research) U1163, Paris, France
| |
Collapse
|
14
|
Pathogenesis of brain damage in glutaric acidemia type I: Lessons from the genetic mice model. Int J Dev Neurosci 2019; 78:215-221. [DOI: 10.1016/j.ijdevneu.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/18/2019] [Accepted: 05/18/2019] [Indexed: 11/22/2022] Open
|
15
|
Isasi E, Korte N, Abudara V, Attwell D, Olivera-Bravo S. Glutaric Acid Affects Pericyte Contractility and Migration: Possible Implications for GA-I Pathogenesis. Mol Neurobiol 2019; 56:7694-7707. [DOI: 10.1007/s12035-019-1620-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/23/2019] [Indexed: 01/23/2023]
|
16
|
Cudré-Cung HP, Remacle N, do Vale-Pereira S, Gonzalez M, Henry H, Ivanisevic J, Schmiesing J, Mühlhausen C, Braissant O, Ballhausen D. Ammonium accumulation and chemokine decrease in culture media of Gcdh -/- 3D reaggregated brain cell cultures. Mol Genet Metab 2019; 126:416-428. [PMID: 30686684 DOI: 10.1016/j.ymgme.2019.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 01/05/2023]
Abstract
Glutaric Aciduria type I (GA-I) is caused by mutations in the GCDH gene. Its deficiency results in accumulation of the key metabolites glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA) in body tissues and fluids. Present knowledge on the neuropathogenesis of GA-I suggests that GA and 3-OHGA have toxic properties on the developing brain. We analyzed morphological and biochemical features of 3D brain cell aggregates issued from Gcdh-/- mice at two different developmental stages, day-in-vitro (DIV) 8 and 14, corresponding to the neonatal period and early childhood. We also induced a metabolic stress by exposing the aggregates to 10 mM l-lysine (Lys). Significant amounts of GA and 3-OHGA were detected in Gcdh-/- aggregates and their culture media. Ammonium was significantly increased in culture media of Gcdh-/- aggregates at the early developmental stage. Concentrations of GA, 3-OHGA and ammonium increased significantly after exposure to Lys. Gcdh-/- aggregates manifested morphological alterations of all brain cell types at DIV 8 while at DIV 14 they were only visible after exposure to Lys. Several chemokine levels were significantly decreased in culture media of Gcdh-/- aggregates at DIV 14 and after exposure to Lys at DIV 8. This new in vitro model for brain damage in GA-I mimics well in vivo conditions. As seen previously in WT aggregates exposed to 3-OHGA, we confirmed a significant ammonium production by immature Gcdh-/- brain cells. We described for the first time a decrease of chemokines in Gcdh-/- culture media which might contribute to brain cell injury in GA-I.
Collapse
Affiliation(s)
- Hong-Phuc Cudré-Cung
- Pediatric Metabolic Disease Unit, Department of Pediatrics, Lausanne University Hospital, Chemin de Mont-Paisible 18, 1011 Lausanne, Switzerland.
| | - Noémie Remacle
- Pediatric Metabolic Disease Unit, Department of Pediatrics, Lausanne University Hospital, Chemin de Mont-Paisible 18, 1011 Lausanne, Switzerland.
| | - Sonia do Vale-Pereira
- Pediatric Metabolic Disease Unit, Department of Pediatrics, Lausanne University Hospital, Chemin de Mont-Paisible 18, 1011 Lausanne, Switzerland
| | - Mary Gonzalez
- Pediatric Metabolic Disease Unit, Department of Pediatrics, Lausanne University Hospital, Chemin de Mont-Paisible 18, 1011 Lausanne, Switzerland.
| | - Hugues Henry
- Service of Clinical Chemistry, Lausanne University Hospital, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 19, 1005 Lausanne, Switzerland.
| | - Jessica Schmiesing
- Department of Biochemistry, University Medical Center Hamburg-Eppendorf, University Children's Hospital, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Chris Mühlhausen
- Department of Biochemistry, University Medical Center Hamburg-Eppendorf, University Children's Hospital, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Olivier Braissant
- Service of Clinical Chemistry, Lausanne University Hospital, Rue du Bugnon 46, 1011 Lausanne, Switzerland.
| | - Diana Ballhausen
- Pediatric Metabolic Disease Unit, Department of Pediatrics, Lausanne University Hospital, Chemin de Mont-Paisible 18, 1011 Lausanne, Switzerland.
| |
Collapse
|
17
|
Demailly D, Vianey-Saban C, Acquaviva C, Gonzalez V, Rubio IDA, Cyprien F, Roujeau T, Masoliver A, Leboucq N, Coubes P, Cif L. Atypical Glutaric Aciduria Type I with Hemidystonia and Asymmetric Radiological Findings Misdiagnosed as an Ischemic Stroke. Mov Disord Clin Pract 2019; 5:436-438. [PMID: 30838298 DOI: 10.1002/mdc3.12633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/06/2018] [Accepted: 04/04/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Diane Demailly
- Department of Neurosurgery Gui de Chauliac University Hospital Montpellier France.,Unité de Recherche sur les Comportements et Mouvements Anormaux (URCMA) Montpellier France
| | - Christine Vianey-Saban
- Department of Inborn Errors of Metabolism and Neonatal Screening, Center of Biology and Pathology Est CHU Lyon Bron France
| | - Cécile Acquaviva
- Department of Inborn Errors of Metabolism and Neonatal Screening, Center of Biology and Pathology Est CHU Lyon Bron France
| | - Victoria Gonzalez
- Department of Neurosurgery Gui de Chauliac University Hospital Montpellier France.,Unité de Recherche sur les Comportements et Mouvements Anormaux (URCMA) Montpellier France
| | - Isabel De Antonio Rubio
- Department of Neurosurgery Gui de Chauliac University Hospital Montpellier France.,Unité de Recherche sur les Comportements et Mouvements Anormaux (URCMA) Montpellier France
| | - Fabienne Cyprien
- Department of Neurosurgery Gui de Chauliac University Hospital Montpellier France.,Unité de Recherche sur les Comportements et Mouvements Anormaux (URCMA) Montpellier France
| | - Thomas Roujeau
- Department of Neurosurgery Gui de Chauliac University Hospital Montpellier France
| | - Adria Masoliver
- Department of Neurosurgery Gui de Chauliac University Hospital Montpellier France
| | - Nicolas Leboucq
- Department of Neuroradiology Gui de Chauliac University Hospital Montpellier France
| | - Philippe Coubes
- Department of Neurosurgery Gui de Chauliac University Hospital Montpellier France.,Unité de Recherche sur les Comportements et Mouvements Anormaux (URCMA) Montpellier France
| | - Laura Cif
- Department of Neurosurgery Gui de Chauliac University Hospital Montpellier France.,Unité de Recherche sur les Comportements et Mouvements Anormaux (URCMA) Montpellier France
| |
Collapse
|
18
|
Boy N, Garbade SF, Heringer J, Seitz A, Kölker S, Harting I. Patterns, evolution, and severity of striatal injury in insidious- vs acute-onset glutaric aciduria type 1. J Inherit Metab Dis 2019; 42:117-127. [PMID: 30740735 DOI: 10.1002/jimd.12033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Striatal injury in patients with glutaric aciduria type 1 (GA1) results in a complex, predominantly dystonic, movement disorder. Onset may be acute following acute encephalopathic crisis (AEC) or insidious without apparent acute event. METHODS We analyzed clinical and striatal magnetic resonance imaging (MRI) findings in 21 symptomatic GA1 patients to investigate if insidious- and acute-onset patients differed in timing, pattern of striatal injury, and outcome. RESULTS Eleven patients had acute and ten had insidious onset, two with later AEC (acute-on-insidious). The median onset of dystonia was 10 months in both groups, and severity was greater in patients after AEC (n = 8 severe, n = 5 moderate) than in insidious onset (n = 4 mild, n = 3 moderate, n = 1 severe). Deviations from guideline-recommended basic metabolic treatment were identified in six insidious-onset patients. Striatal lesions were extensive in all acute-onset patients and restricted to the dorsolateral putamen in eight of ten insidious-onset patients. After AEC, the two acute-on-insidious patients had extensive striatal changes superimposed on pre-existing dorsolateral putaminal lesions. Two insidious-onset patients with progressive dystonia without overt AEC also had extensive striatal changes, one with sequential striatal injury revealed by diffusion-weighted imaging. Insidious-onset patients had a latency phase of 3.5 months to 6.5 years between detection and clinical manifestation of dorsolateral putaminal lesions. CONCLUSIONS Insidious-onset type GA1 is characterized by dorsolateral putaminal lesions, less severe dystonia, and an asymptomatic latency phase, despite already existing lesions. Initially normal MRI during the first months and deviations from guideline-recommended treatment in a large proportion of insidious-onset patients substantiate the protective effect of neonatally initiated treatment.
Collapse
Affiliation(s)
- Nikolas Boy
- Centre for Child and Adolescent Medicine, Clinic I, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Sven F Garbade
- Centre for Child and Adolescent Medicine, Clinic I, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Jana Heringer
- Centre for Child and Adolescent Medicine, Clinic I, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Angelika Seitz
- Department of Neuroradiology, University of Heidelberg Medical Center, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Stefan Kölker
- Centre for Child and Adolescent Medicine, Clinic I, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Inga Harting
- Department of Neuroradiology, University of Heidelberg Medical Center, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Rodrigues FS, de Zorzi VN, Funghetto MP, Haupental F, Cardoso AS, Marchesan S, Cardoso AM, Schinger MRC, Machado AK, da Cruz IBM, Duarte MMMF, Xavier LL, Furian AF, Oliveira MS, Santos ARS, Royes LFF, Fighera MR. Involvement of the Cholinergic Parameters and Glial Cells in Learning Delay Induced by Glutaric Acid: Protection by N-Acetylcysteine. Mol Neurobiol 2018; 56:4945-4959. [PMID: 30421167 DOI: 10.1007/s12035-018-1395-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/11/2018] [Indexed: 12/18/2022]
Abstract
Dysfunction of basal ganglia neurons is a characteristic of glutaric acidemia type I (GA-I), an autosomal recessive inherited neurometabolic disease characterized by deficiency of glutaryl-CoA dehydrogenase (GCDH) and accumulation of glutaric acid (GA). The affected patients present clinical manifestations such as motor dysfunction and memory impairment followed by extensive striatal neurodegeneration. Knowing that there is relevant striatal dysfunction in GA-I, the purpose of the present study was to verify the performance of young rats chronically injected with GA in working and procedural memory test, and whether N-acetylcysteine (NAC) would protect against impairment induced by GA. Rat pups were injected with GA (5 μmol g body weight-1, subcutaneously; twice per day; from the 5th to the 28th day of life) and were supplemented with NAC (150 mg/kg/day; intragastric gavage; for the same period). We found that GA injection caused delay procedural learning; increase of cytokine concentration, oxidative markers, and caspase levels; decrease of antioxidant defenses; and alteration of acetylcholinesterase (AChE) activity. Interestingly, we found an increase in glial cell immunoreactivity and decrease in the immunoreactivity of nuclear factor-erythroid 2-related factor 2 (Nrf2), nicotinic acetylcholine receptor subunit alpha 7 (α7nAChR), and neuronal nuclei (NeuN) in the striatum. Indeed, NAC administration improved the cognitive performance, ROS production, neuroinflammation, and caspase activation induced by GA. NAC did not prevent neuronal death, however protected against alterations induced by GA on Iba-1 and GFAP immunoreactivities and AChE activity. Then, this study suggests possible therapeutic strategies that could help in GA-I treatment and the importance of the striatum in the learning tasks.
Collapse
Affiliation(s)
- Fernanda Silva Rodrigues
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Centro de Ciências Biológicas, Laboratório de Neurobiologia da Dor e Inflamação, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Viviane Nogueira de Zorzi
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Marla Parizzi Funghetto
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda Haupental
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alexandra Seide Cardoso
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan
- Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Andréia M Cardoso
- Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Maria Rosa C Schinger
- Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Alencar Kolinski Machado
- Centro de Ciências da Saúde Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Ivana Beatrice Mânica da Cruz
- Centro de Ciências da Saúde Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Marta Maria Medeiros Frescura Duarte
- Centro de Ciências da Saúde Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Léder L Xavier
- Faculdade de Biociências, Laboratório Central de Microscopia e Microanálise, Departamento de Ciências Fisiológica, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| | - Ana Flavia Furian
- Centro de Ciências da Saúde Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Mauro Schneider Oliveira
- Centro de Ciências da Saúde Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Adair Roberto Soares Santos
- Centro de Ciências Biológicas, Laboratório de Neurobiologia da Dor e Inflamação, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Luiz Fernando Freire Royes
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Centro de Ciências da Saúde Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Michele Rechia Fighera
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
- Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.
- Centro de Ciências da Saúde Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
20
|
Olivera-Bravo S, Seminotti B, Isasi E, Ribeiro CA, Leipnitz G, Woontner M, Goodman SI, Souza D, Barbeito L, Wajner M. Long Lasting High Lysine Diet Aggravates White Matter Injury in Glutaryl-CoA Dehydrogenase Deficient (Gcdh−/−) Mice. Mol Neurobiol 2018; 56:648-657. [DOI: 10.1007/s12035-018-1077-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/10/2018] [Indexed: 01/09/2023]
|
21
|
Boy N, Garbade SF, Heringer J, Seitz A, Kölker S, Harting I. Patterns, evolution, and severity of striatal injury in insidious- versus acute-onset glutaric aciduria type 1. J Inherit Metab Dis 2018:10.1007/s10545-018-0187-y. [PMID: 29721918 DOI: 10.1007/s10545-018-0187-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/23/2018] [Accepted: 04/11/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Striatal injury in patients with glutaric aciduria type 1 (GA1) results in a complex, predominantly dystonic, movement disorder. Onset may be acute following acute encephalopathic crisis (AEC) or insidious without apparent acute event. METHODS We analyzed clinical and striatal magnetic resonance imaging (MRI) findings in 21 symptomatic GA1 patients to investigate if insidious- and acute-onset patients differed in timing, pattern of striatal injury, and outcome. RESULTS Eleven patients had acute and ten had insidious onset, two with later AEC (acute-on-insidious). The median onset of dystonia was 10 months in both groups, and severity was greater in patients after AEC (n = 8 severe, n = 5 moderate) than in insidious onset (n = 4 mild, n = 3 moderate, n = 1 severe). Deviations from guideline-recommended basic metabolic treatment were identified in six insidious-onset patients. Striatal lesions were extensive in all acute-onset patients and restricted to the dorsolateral putamen in eight of ten insidious-onset patients. After AEC, the two acute-on-insidious patients had extensive striatal changes superimposed on pre-existing dorsolateral putaminal lesions. Two insidious-onset patients with progressive dystonia without overt AEC also had extensive striatal changes, one with sequential striatal injury revealed by diffusion-weighted imaging. Insidious-onset patients had a latency phase of 3.5 months to 6.5 years between detection and clinical manifestation of dorsolateral putaminal lesions. CONCLUSIONS Insidious-onset type GA1 is characterized by dorsolateral putaminal lesions, less severe dystonia, and an asymptomatic latency phase, despite already existing lesions. Initially normal MRI during the first months and deviations from guideline-recommended treatment in a large proportion of insidious-onset patients substantiate the protective effect of neonatally initiated treatment.
Collapse
Affiliation(s)
- Nikolas Boy
- Centre for Child and Adolescent Medicine, Clinic I, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Sven F Garbade
- Centre for Child and Adolescent Medicine, Clinic I, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Jana Heringer
- Centre for Child and Adolescent Medicine, Clinic I, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Angelika Seitz
- Department of Neuroradiology, University of Heidelberg Medical Center, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Stefan Kölker
- Centre for Child and Adolescent Medicine, Clinic I, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Inga Harting
- Department of Neuroradiology, University of Heidelberg Medical Center, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
22
|
Braissant O, Jafari P, Remacle N, Cudré-Cung HP, Do Vale Pereira S, Ballhausen D. Immunolocalization of glutaryl-CoA dehydrogenase (GCDH) in adult and embryonic rat brain and peripheral tissues. Neuroscience 2017; 343:355-363. [DOI: 10.1016/j.neuroscience.2016.10.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 01/23/2023]
|
23
|
Goldstein A, Vockley J. Clinical trials examining treatments for inborn errors of amino acid metabolism. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2017.1275565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amy Goldstein
- Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jerry Vockley
- Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Schillaci LAP, Greene CL, Strovel E, Rispoli-Joines J, Spector E, Woontner M, Scharer G, Enns GM, Gallagher R, Zinn AB, McCandless SE, Hoppel CL, Goodman SI, Bedoyan JK. The M405V allele of the glutaryl-CoA dehydrogenase gene is an important marker for glutaric aciduria type I (GA-I) low excretors. Mol Genet Metab 2016; 119:50-6. [PMID: 27397597 DOI: 10.1016/j.ymgme.2016.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 11/28/2022]
Abstract
Glutaric aciduria type I (GA-I) is an autosomal recessive organic aciduria resulting from a functional deficiency of glutaryl-CoA dehydrogenase, encoded by GCDH. Two clinically indistinguishable diagnostic subgroups of GA-I are known; low and high excretors (LEs and HEs, respectively). Early medical and dietary interventions can result in significantly better outcomes and improved quality of life for patients with GA-I. We report on nine cases of GA-I LE patients all sharing the M405V allele with two cases missed by newborn screening (NBS) using tandem mass spectrometry (MS/MS). We describe a novel case with the known pathogenic M405V variant and a novel V133L variant, and present updated and previously unreported clinical, biochemical, functional and molecular data on eight other patients all sharing the M405V allele. Three of the nine patients are of African American ancestry, with two as siblings. GCDH activity was assayed in six of the nine patients and varied from 4 to 25% of the control mean. We support the use of urine glutarylcarnitine as a biochemical marker of GA-I by demonstrating that glutarylcarnitine is efficiently cleared by the kidney (50-90%) and that plasma and urine glutarylcarnitine follow a linear relationship. We report the allele frequencies for three known GA-I LE GCDH variants (M405V, V400M and R227P) and note that both the M405V and V400M variants are significantly more common in the population of African ancestry compared to the general population. This report highlights the M405V allele as another important molecular marker in patients with the GA-I LE phenotype. Therefore, the incorporation into newborn screening of molecular screening for the M405V and V400M variants in conjunction with MS/MS could help identify asymptomatic at-risk GA-I LE patients that could potentially be missed by current NBS programs.
Collapse
Affiliation(s)
- Lori-Anne P Schillaci
- Center for Human Genetics, University Hospitals Case Medical Center, Cleveland, OH, United States
| | - Carol L Greene
- Department of Pediatrics, University of Maryland, Baltimore, MD, United States
| | - Erin Strovel
- Department of Pediatrics, University of Maryland, Baltimore, MD, United States
| | | | - Elaine Spector
- Department of Pediatrics, University of Colorado School of Medicine, Denver, CO, United States
| | - Michael Woontner
- Department of Pediatrics, University of Colorado School of Medicine, Denver, CO, United States
| | - Gunter Scharer
- Department of Pediatrics, University of Colorado School of Medicine, Denver, CO, United States
| | - Gregory M Enns
- Department of Pediatrics, Division of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Renata Gallagher
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States
| | - Arthur B Zinn
- Center for Human Genetics, University Hospitals Case Medical Center, Cleveland, OH, United States; Center for Inherited Disorders of Energy Metabolism (CIDEM), University Hospitals Case Medical Center, Cleveland, OH, United States
| | - Shawn E McCandless
- Center for Human Genetics, University Hospitals Case Medical Center, Cleveland, OH, United States; Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States; Center for Inherited Disorders of Energy Metabolism (CIDEM), University Hospitals Case Medical Center, Cleveland, OH, United States
| | - Charles L Hoppel
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States; Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Stephen I Goodman
- Department of Pediatrics, University of Colorado School of Medicine, Denver, CO, United States
| | - Jirair K Bedoyan
- Center for Human Genetics, University Hospitals Case Medical Center, Cleveland, OH, United States; Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States; Center for Inherited Disorders of Energy Metabolism (CIDEM), University Hospitals Case Medical Center, Cleveland, OH, United States.
| |
Collapse
|
25
|
Rodrigues MDN, Seminotti B, Zanatta Â, de Mello Gonçalves A, Bellaver B, Amaral AU, Quincozes-Santos A, Goodman SI, Woontner M, Souza DO, Wajner M. Higher Vulnerability of Menadione-Exposed Cortical Astrocytes of Glutaryl-CoA Dehydrogenase Deficient Mice to Oxidative Stress, Mitochondrial Dysfunction, and Cell Death: Implications for the Neurodegeneration in Glutaric Aciduria Type I. Mol Neurobiol 2016; 54:4795-4805. [PMID: 27510504 DOI: 10.1007/s12035-016-0023-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/01/2016] [Indexed: 11/27/2022]
Abstract
Patients affected by glutaric aciduria type I (GA-I) show progressive cortical leukoencephalopathy whose pathogenesis is poorly known. In the present work, we exposed cortical astrocytes of wild-type (Gcdh +/+ ) and glutaryl-CoA dehydrogenase knockout (Gcdh -/- ) mice to the oxidative stress inducer menadione and measured mitochondrial bioenergetics, redox homeostasis, and cell viability. Mitochondrial function (MTT and JC1-mitochondrial membrane potential assays), redox homeostasis (DCFH oxidation, nitrate and nitrite production, GSH concentrations and activities of the antioxidant enzymes SOD and GPx), and cell death (propidium iodide incorporation) were evaluated in primary cortical astrocyte cultures of Gcdh +/+ and Gcdh -/- mice unstimulated and stimulated by menadione. We also measured the pro-inflammatory response (TNFα levels, IL1-β and NF-ƙB) in unstimulated astrocytes obtained from these mice. Gcdh -/- mice astrocytes were more vulnerable to menadione-induced oxidative stress (decreased GSH concentrations and altered activities of the antioxidant enzymes), mitochondrial dysfunction (decrease of MTT reduction and JC1 values), and cell death as compared with Gcdh +/+ astrocytes. A higher inflammatory response (TNFα, IL1-β and NF-ƙB) was also observed in Gcdh -/- mice astrocytes. These data indicate a higher susceptibility of Gcdh -/- cortical astrocytes to oxidative stress and mitochondrial dysfunction, probably leading to cell death. It is presumed that these pathomechanisms may contribute to the cortical leukodystrophy observed in GA-I patients.
Collapse
Affiliation(s)
- Marília Danyelle Nunes Rodrigues
- Departamento e PPG Bioquímica, ICBS/Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos N° 2600, Anexo, Porto Alegre, RS, CEP90035-003, Brazil
| | - Bianca Seminotti
- Departamento e PPG Bioquímica, ICBS/Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos N° 2600, Anexo, Porto Alegre, RS, CEP90035-003, Brazil
| | - Ângela Zanatta
- Departamento e PPG Bioquímica, ICBS/Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos N° 2600, Anexo, Porto Alegre, RS, CEP90035-003, Brazil
| | - Aline de Mello Gonçalves
- Departamento e PPG Bioquímica, ICBS/Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos N° 2600, Anexo, Porto Alegre, RS, CEP90035-003, Brazil
| | - Bruna Bellaver
- Departamento e PPG Bioquímica, ICBS/Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos N° 2600, Anexo, Porto Alegre, RS, CEP90035-003, Brazil
| | - Alexandre Umpierrez Amaral
- Departamento e PPG Bioquímica, ICBS/Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos N° 2600, Anexo, Porto Alegre, RS, CEP90035-003, Brazil
| | - André Quincozes-Santos
- Departamento e PPG Bioquímica, ICBS/Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos N° 2600, Anexo, Porto Alegre, RS, CEP90035-003, Brazil
| | | | - Michael Woontner
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | - Diogo Onofre Souza
- Departamento e PPG Bioquímica, ICBS/Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos N° 2600, Anexo, Porto Alegre, RS, CEP90035-003, Brazil
| | - Moacir Wajner
- Departamento e PPG Bioquímica, ICBS/Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos N° 2600, Anexo, Porto Alegre, RS, CEP90035-003, Brazil.
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
26
|
Dahmoush HM, Melhem ER, Vossough A. Metabolic, endocrine, and other genetic disorders. HANDBOOK OF CLINICAL NEUROLOGY 2016; 136:1221-1259. [PMID: 27430466 DOI: 10.1016/b978-0-444-53486-6.00063-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Metabolic, endocrine, and genetic diseases of the brain include a very large array of disorders caused by a wide range of underlying abnormalities and involving a variety of brain structures. Often these disorders manifest as recognizable, though sometimes overlapping, patterns on neuroimaging studies that may enable a diagnosis based on imaging or may alternatively provide enough clues to direct further diagnostic evaluation. The diagnostic workup can include various biochemical laboratory or genetic studies. In this chapter, after a brief review of normal white-matter development, we will describe a variety of leukodystrophies resulting from metabolic disorders involving the brain, including mitochondrial and respiratory chain diseases. We will then describe various acidurias, urea cycle disorders, disorders related to copper and iron metabolism, and disorders of ganglioside and mucopolysaccharide metabolism. Lastly, various other hypomyelinating and dysmyelinating leukodystrophies, including vanishing white-matter disease, megalencephalic leukoencephalopathy with subcortical cysts, and oculocerebrorenal syndrome will be presented. In the following section on endocrine disorders, we will examine various disorders of the hypothalamic-pituitary axis, including developmental, inflammatory, and neoplastic diseases. Neonatal hypoglycemia will also be briefly reviewed. In the final section, we will review a few of the common genetic phakomatoses. Throughout the text, both imaging and brief clinical features of the various disorders will be discussed.
Collapse
Affiliation(s)
- Hisham M Dahmoush
- Department of Radiology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Elias R Melhem
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Arastoo Vossough
- Department of Radiology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Vasikarla M, Pandita A, Sharma D, Pratap OT, Murki S. Diagnosis and Genetic Analysis of Glutaric Acidaemia Type I: Very rarely seen inborn error of metabolism. Sultan Qaboos Univ Med J 2015; 15:e572-3. [PMID: 26629393 DOI: 10.18295/squmj.2015.15.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/14/2015] [Accepted: 07/26/2015] [Indexed: 11/16/2022] Open
|
28
|
Experimental evidence that overexpression of NR2B glutamate receptor subunit is associated with brain vacuolation in adult glutaryl-CoA dehydrogenase deficient mice: A potential role for glutamatergic-induced excitotoxicity in GA I neuropathology. J Neurol Sci 2015; 359:133-40. [PMID: 26671102 DOI: 10.1016/j.jns.2015.10.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 12/13/2022]
Abstract
Glutaric aciduria type I (GA I) is biochemically characterized by accumulation of glutaric and 3-hydroxyglutaric acids in body fluids and tissues, particularly in the brain. Affected patients show progressive cortical leukoencephalopathy and chronic degeneration of the basal ganglia whose pathogenesis is still unclear. In the present work we investigated parameters of bioenergetics and redox homeostasis in various cerebral structures (cerebral cortex, striatum and hippocampus) and heart of adult wild type (Gcdh(+/+)) and glutaryl-CoA dehydrogenase deficient knockout (Gcdh(-/-)) mice fed a baseline chow. Oxidative stress parameters were also measured after acute lysine overload. Finally, mRNA expression of NMDA subunits and GLT1 transporter was determined in cerebral cortex and striatum of these animals fed a baseline or high lysine (4.7%) chow. No significant alterations of bioenergetics or redox status were observed in these mice. In contrast, mRNA expression of the NR2B glutamate receptor subunit and of the GLT1 glutamate transporter was higher in cerebral cortex of Gcdh(-/-) mice. Furthermore, NR2B expression was markedly elevated in striatum of Gcdh(-/-) animals receiving chronic Lys overload. These data indicate higher susceptibility of Gcdh(-/-) mice to excitotoxic damage, implying that this pathomechanism may contribute to the cortical and striatum alterations observed in GA I patients.
Collapse
|
29
|
Amaral AU, Cecatto C, Seminotti B, Ribeiro CA, Lagranha VL, Pereira CC, de Oliveira FH, de Souza DG, Goodman S, Woontner M, Wajner M. Experimental evidence that bioenergetics disruption is not mainly involved in the brain injury of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload. Brain Res 2015; 1620:116-29. [DOI: 10.1016/j.brainres.2015.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 11/29/2022]
|
30
|
Olivera-Bravo S, Ribeiro CAJ, Isasi E, Trías E, Leipnitz G, Díaz-Amarilla P, Woontner M, Beck C, Goodman SI, Souza D, Wajner M, Barbeito L. Striatal neuronal death mediated by astrocytes from the Gcdh−/− mouse model of glutaric acidemia type I. Hum Mol Genet 2015; 24:4504-15. [DOI: 10.1093/hmg/ddv175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/05/2015] [Indexed: 11/12/2022] Open
|
31
|
Brown A, Crowe L, Beauchamp MH, Anderson V, Boneh A. Neurodevelopmental profiles of children with glutaric aciduria type I diagnosed by newborn screening: a follow-up case series. JIMD Rep 2014; 18:125-34. [PMID: 25503300 PMCID: PMC4361926 DOI: 10.1007/8904_2014_360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/18/2014] [Accepted: 08/28/2014] [Indexed: 01/20/2023] Open
Abstract
Glutaric aciduria type I (GA-I) is an inherited metabolic disorder that may lead to severe motor disorder and cognitive impairment. GA-I is now included in the newborn screening programme in many countries as early detection allows for prompt treatment and effectively reduces the risk of poor developmental outcome. Information regarding the long-term neurodevelopmental outcome of children with GA-I treated early is sparse.We recruited children with a confirmed diagnosis of GA-I diagnosed via newborn screening, treated in our centre and >3 years of age (n = 6). Children were assessed at two time points using a comprehensive neuropsychological test battery. Four of these had been the subject of a previous report. All participants were male, 3-6 years at the initial assessment and 6-12 years of age at the follow-up assessment.Fine motor skills were below average in all patients. Speech, which was affected in all four patients reported previously, improved following speech therapy. IQ scores remained generally stable within the normal range. Executive functioning was average to high average in four patients. Behaviour, as assessed through parental questionnaires, was problematic in two patients. Compounding factors included child neglect, family history of autism and multiple admissions to hospital (n = 1 in each).GA-I affects fine motor skills and speech, regardless of early treatment, but not IQ scores. Patients with GA-I should be referred for assessment and appropriate early intervention. Further research is needed to correlate specific neuropsychological deficits with neuroimaging.
Collapse
Affiliation(s)
- Amy Brown
- Department of Child Neuropsychology, Murdoch Childrens Research Institute, Australian Centre for Child Neuropsychological Studies, Royal Children's Hospital, Flemington Road, Parkville, Melbourne, VIC, 3052, Australia,
| | | | | | | | | |
Collapse
|
32
|
Fu X, Gao H, Tian F, Gao J, Lou L, Liang Y, Ning Q, Luo X. Mechanistic effects of amino acids and glucose in a novel glutaric aciduria type 1 cell model. PLoS One 2014; 9:e110181. [PMID: 25333616 PMCID: PMC4198201 DOI: 10.1371/journal.pone.0110181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 09/05/2014] [Indexed: 11/19/2022] Open
Abstract
Acute neurological crises involving striatal degeneration induced by a deficiency of glutaryl-CoA dehydrogenase (GCDH) and the accumulation of glutaric (GA) and 3-hydroxyglutaric acid (3-OHGA) are considered to be the most striking features of glutaric aciduria type I (GA1). In the present study, we investigated the mechanisms of apoptosis and energy metabolism impairment in our novel GA1 neuronal model. We also explored the effects of appropriate amounts of amino acids (2 mM arginine, 2 mM homoarginine, 0.45 g/L tyrosine and 10 mM leucine) and 2 g/L glucose on these cells. Our results revealed that the novel GA1 neuronal model effectively simulates the hypermetabolic state of GA1. We found that leucine, tyrosine, arginine, homoarginine or glucose treatment of the GA1 model cells reduced the gene expression of caspase-3, caspase-8, caspase-9, bax, fos, and jun and restored the intracellular NADH and ATP levels. Tyrosine, arginine or homoarginine treatment in particular showed anti-apoptotic effects; increased α-ketoglutarate dehydrogenase complex (OGDC), fumarase (FH), and citrate synthase (CS) expression; and relieved the observed impairment in energy metabolism. To the best of our knowledge, this study is the first to investigate the protective mechanisms of amino acids and glucose in GA1 at the cellular level from the point of view of apoptosis and energy metabolism. Our data support the results of previous studies, indicating that supplementation of arginine and homoarginine as a dietary control strategy can have a therapeutic effect on GA1. All of these findings facilitate the understanding of cell apoptosis and energy metabolism impairment in GA1 and reveal new therapeutic perspectives for this disease.
Collapse
Affiliation(s)
- Xi Fu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjie Gao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengyan Tian
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinzhi Gao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Lou
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
33
|
Seminotti B, Ribeiro RT, Amaral AU, da Rosa MS, Pereira CC, Leipnitz G, Koeller DM, Goodman S, Woontner M, Wajner M. Acute lysine overload provokes protein oxidative damage and reduction of antioxidant defenses in the brain of infant glutaryl-CoA dehydrogenase deficient mice: A role for oxidative stress in GA I neuropathology. J Neurol Sci 2014; 344:105-13. [DOI: 10.1016/j.jns.2014.06.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 05/23/2014] [Accepted: 06/12/2014] [Indexed: 01/04/2023]
|
34
|
da Rosa M, Seminotti B, Amaral A, Parmeggiani B, de Oliveira F, Leipnitz G, Wajner M. Disruption of redox homeostasis and histopathological alterations caused by in vivo intrastriatal administration of D-2-hydroxyglutaric acid to young rats. Neuroscience 2014; 277:281-93. [DOI: 10.1016/j.neuroscience.2014.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/26/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
|
35
|
Lagranha VL, Matte U, de Carvalho TG, Seminotti B, Pereira CC, Koeller DM, Woontner M, Goodman SI, de Souza DOG, Wajner M. Increased glutamate receptor and transporter expression in the cerebral cortex and striatum of gcdh-/- mice: possible implications for the neuropathology of glutaric acidemia type I. PLoS One 2014; 9:e90477. [PMID: 24594605 PMCID: PMC3942441 DOI: 10.1371/journal.pone.0090477] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 01/31/2014] [Indexed: 01/06/2023] Open
Abstract
We determined mRNA expression of the ionotropic glutamate receptors NMDA (NR1, NR2A and NR2B subunits), AMPA (GluR2 subunit) and kainate (GluR6 subunit), as well as of the glutamate transporters GLAST and GLT1 in cerebral cortex and striatum of wild type (WT) and glutaryl-CoA dehydrogenase deficient (Gchh-/-) mice aged 7, 30 and 60 days. The protein expression levels of some of these membrane proteins were also measured. Overexpression of NR2A and NR2B in striatum and of GluR2 and GluR6 in cerebral cortex was observed in 7-day-old Gcdh-/-. There was also an increase of mRNA expression of all NMDA subunits in cerebral cortex and of NR2A and NR2B in striatum of 30-day-old Gcdh-/- mice. At 60 days of life, all ionotropic receptors were overexpressed in cerebral cortex and striatum of Gcdh-/- mice. Higher expression of GLAST and GLT1 transporters was also verified in cerebral cortex and striatum of Gcdh-/- mice aged 30 and 60 days, whereas at 7 days of life GLAST was overexpressed only in striatum from this mutant mice. Furthermore, high lysine intake induced mRNA overexpression of NR2A, NR2B and GLAST transcripts in striatum, as well as of GluR2 and GluR6 in both striatum and cerebral cortex of Gcdh-/- mice. Finally, we found that the protein expression of NR2A, NR2B, GLT1 and GLAST were significantly greater in cerebral cortex of Gcdh-/- mice, whereas NR2B and GLT1 was similarly enhanced in striatum, implying that these transcripts were translated into their products. These results provide evidence that glutamate receptor and transporter expression is higher in Gcdh-/- mice and that these alterations may be involved in the pathophysiology of GA I and possibly explain, at least in part, the vulnerability of striatum and cerebral cortex to injury in patients affected by GA I.
Collapse
Affiliation(s)
- Valeska Lizzi Lagranha
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ursula Matte
- Centro de Terapia Gênica, Centro de Pesquisas Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Talita Giacomet de Carvalho
- Centro de Terapia Gênica, Centro de Pesquisas Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bianca Seminotti
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carolina Coffi Pereira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - David M. Koeller
- Departments of Pediatrics, Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michael Woontner
- School of Medicine, University of Colorado at Denver, Aurora, Colorado, United States of America
| | - Stephen I. Goodman
- School of Medicine, University of Colorado at Denver, Aurora, Colorado, United States of America
| | - Diogo Onofre Gomes de Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
36
|
Zinnanti WJ, Lazovic J, Housman C, Antonetti DA, Koeller DM, Connor JR, Steinman L. Mechanism of metabolic stroke and spontaneous cerebral hemorrhage in glutaric aciduria type I. Acta Neuropathol Commun 2014; 2:13. [PMID: 24468193 PMCID: PMC3940023 DOI: 10.1186/2051-5960-2-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/18/2014] [Indexed: 12/28/2022] Open
Abstract
Background Metabolic stroke is the rapid onset of lasting central neurological deficit associated with decompensation of an underlying metabolic disorder. Glutaric aciduria type I (GA1) is an inherited disorder of lysine and tryptophan metabolism presenting with metabolic stroke in infancy. The clinical presentation includes bilateral striatal necrosis and spontaneous subdural and retinal hemorrhages, which has been frequently misdiagnosed as non-accidental head trauma. The mechanisms underlying metabolic stroke and spontaneous hemorrhage are poorly understood. Results Using a mouse model of GA1, we show that metabolic stroke progresses in the opposite sequence of ischemic stroke, with initial neuronal swelling and vacuole formation leading to cerebral capillary occlusion. Focal regions of cortical followed by striatal capillaries are occluded with shunting to larger non-exchange vessels leading to early filling and dilation of deep cerebral veins. Blood–brain barrier breakdown was associated with displacement of tight-junction protein Occludin. Conclusion Together the current findings illuminate the pathophysiology of metabolic stroke and vascular compromise in GA1, which may translate to other neurometabolic disorders presenting with stroke.
Collapse
|
37
|
Rodrigues FS, Souza MA, Magni DV, Ferreira APO, Mota BC, Cardoso AM, Paim M, Xavier LL, Ferreira J, Schetinger MRC, Da Costa JC, Royes LFF, Fighera MR. N-acetylcysteine prevents spatial memory impairment induced by chronic early postnatal glutaric acid and lipopolysaccharide in rat pups. PLoS One 2013; 8:e78332. [PMID: 24205200 PMCID: PMC3813430 DOI: 10.1371/journal.pone.0078332] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/11/2013] [Indexed: 12/18/2022] Open
Abstract
Background and Aims Glutaric aciduria type I (GA-I) is characterized by accumulation of glutaric acid (GA) and neurological symptoms, such as cognitive impairment. Although this disease is related to oxidative stress and inflammation, it is not known whether these processes facilitate the memory impairment. Our objective was to investigate the performance of rat pups chronically injected with GA and lipopolysaccharide (LPS) in spatial memory test, antioxidant defenses, cytokines levels, Na+, K+-ATPase activity, and hippocampal volume. We also evaluated the effect of N-acetylcysteine (NAC) on theses markers. Methods Rat pups were injected with GA (5umol g of body weight-1, subcutaneously; twice per day; from 5th to 28th day of life), and were supplemented with NAC (150mg/kg/day; intragastric gavage; for the same period). LPS (2mg/kg; E.coli 055 B5) or vehicle (saline 0.9%) was injected intraperitoneally, once per day, from 25th to 28th day of life. Oxidative stress and inflammatory biomarkers as well as hippocampal volume were assessed. Results GA caused spatial learning deficit in the Barnes maze and LPS potentiated this effect. GA and LPS increased TNF-α and IL-1β levels. The co-administration of these compounds potentiated the increase of IL-1β levels but not TNF-α levels in the hippocampus. GA and LPS increased TBARS (thiobarbituric acid-reactive substance) content, reduced antioxidant defenses and inhibited Na+, K+-ATPase activity. GA and LPS co-administration did not have additive effect on oxidative stress markers and Na+, K+ pump. The hippocampal volume did not change after GA or LPS administration. NAC protected against impairment of spatial learning and increase of cytokines levels. NAC Also protected against inhibition of Na+,K+-ATPase activity and oxidative markers. Conclusions These results suggest that inflammatory and oxidative markers may underlie at least in part of the neuropathology of GA-I in this model. Thus, NAC could represent a possible adjuvant therapy in treatment of children with GA-I.
Collapse
Affiliation(s)
- Fernanda S Rodrigues
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brasil ; Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brasil ; Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brasil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ituk US, Allen TK, Habib AS. The peripartum management of a patient with glutaric aciduria type 1. J Clin Anesth 2013; 25:141-5. [PMID: 23352788 DOI: 10.1016/j.jclinane.2012.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 06/22/2012] [Accepted: 06/26/2012] [Indexed: 11/28/2022]
Abstract
The management of cesarean delivery for a parturient with placenta previa at 36 weeks' gestation and glutaric aciduria type 1 is presented. The management goal was to prevent encephalopathic crisis by ensuring adequate caloric intake with dextrose infusion and to provide carnitine supplementation and adequate anesthesia.
Collapse
Affiliation(s)
- Unyime S Ituk
- Department of Anesthesiology, Duke University Health System, Durham, NC 27710, USA.
| | | | | |
Collapse
|
39
|
Jafari P, Braissant O, Zavadakova P, Henry H, Bonafé L, Ballhausen D. Ammonium accumulation and cell death in a rat 3D brain cell model of glutaric aciduria type I. PLoS One 2013; 8:e53735. [PMID: 23326493 PMCID: PMC3542363 DOI: 10.1371/journal.pone.0053735] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022] Open
Abstract
Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I.
Collapse
Affiliation(s)
- Paris Jafari
- Inborn Errors of Metabolism, Molecular Pediatrics, Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Braissant
- Inborn Errors of Metabolism, Biomedicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Petra Zavadakova
- Inborn Errors of Metabolism, Molecular Pediatrics, Lausanne University Hospital, Lausanne, Switzerland
| | - Hugues Henry
- Inborn Errors of Metabolism, Biomedicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Luisa Bonafé
- Inborn Errors of Metabolism, Molecular Pediatrics, Lausanne University Hospital, Lausanne, Switzerland
| | - Diana Ballhausen
- Inborn Errors of Metabolism, Molecular Pediatrics, Lausanne University Hospital, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
40
|
Seminotti B, Amaral AU, da Rosa MS, Fernandes CG, Leipnitz G, Olivera-Bravo S, Barbeito L, Ribeiro CAJ, de Souza DOG, Woontner M, Goodman SI, Koeller DM, Wajner M. Disruption of brain redox homeostasis in glutaryl-CoA dehydrogenase deficient mice treated with high dietary lysine supplementation. Mol Genet Metab 2013; 108:30-9. [PMID: 23218171 DOI: 10.1016/j.ymgme.2012.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/01/2012] [Accepted: 11/01/2012] [Indexed: 10/27/2022]
Abstract
Deficiency of glutaryl-CoA dehydrogenase (GCDH) activity or glutaric aciduria type I (GA I) is an inherited neurometabolic disorder biochemically characterized by predominant accumulation of glutaric acid and 3-hydroxyglutaric acid in the brain and other tissues. Affected patients usually present acute striatum necrosis during encephalopathic crises triggered by metabolic stress situations, as well as chronic leukodystrophy and delayed myelination. Considering that the mechanisms underlying the brain injury in this disease are not yet fully established, in the present study we investigated important parameters of oxidative stress in the brain (cerebral cortex, striatum and hippocampus), liver and heart of 30-day-old GCDH deficient knockout (Gcdh(-/-)) and wild type (WT) mice submitted to a normal lysine (Lys) (0.9% Lys), or high Lys diets (2.8% or 4.7% Lys) for 60 h. It was observed that the dietary supplementation of 2.8% and 4.7% Lys elicited noticeable oxidative stress, as verified by an increase of malondialdehyde concentrations (lipid oxidative damage) and 2-7-dihydrodichlorofluorescein (DCFH) oxidation (free radical production), as well as a decrease of reduced glutathione levels and alteration of various antioxidant enzyme activities (antioxidant defenses) in the cerebral cortex and the striatum, but not in the hippocampus, the liver and the heart of Gcdh(-/-) mice, as compared to WT mice receiving the same diets. Furthermore, alterations of oxidative stress parameters in the cerebral cortex and striatum were more accentuated in symptomatic, as compared to asymptomatic Gcdh(-/-) mice exposed to 4.7% Lys overload. Histopathological studies performed in the cerebral cortex and striatum of these animals exposed to high dietary Lys revealed increased expression of oxidative stress markers despite the absence of significant structural damage. The results indicate that a disruption of redox homeostasis in the cerebral cortex and striatum of young Gcdh(-/-) mice exposed to increased Lys diet may possibly represent an important pathomechanism of brain injury in GA I patients under metabolic stress.
Collapse
Affiliation(s)
- Bianca Seminotti
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Amaral AU, Seminotti B, Cecatto C, Fernandes CG, Busanello ENB, Zanatta Â, Kist LW, Bogo MR, de Souza DOG, Woontner M, Goodman S, Koeller DM, Wajner M. Reduction of Na+, K+-ATPase activity and expression in cerebral cortex of glutaryl-CoA dehydrogenase deficient mice: a possible mechanism for brain injury in glutaric aciduria type I. Mol Genet Metab 2012; 107:375-82. [PMID: 22999741 DOI: 10.1016/j.ymgme.2012.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 10/27/2022]
Abstract
Mitochondrial dysfunction has been proposed to play an important role in the neuropathology of glutaric acidemia type I (GA I). However, the relevance of bioenergetics disruption and the exact mechanisms responsible for the cortical leukodystrophy and the striatum degeneration presented by GA I patients are not yet fully understood. Therefore, in the present work we measured the respiratory chain complexes activities I-IV, mitochondrial respiratory parameters state 3, state 4, the respiratory control ratio and dinitrophenol (DNP)-stimulated respiration (uncoupled state), as well as the activities of α-ketoglutarate dehydrogenase (α-KGDH), creatine kinase (CK) and Na+, K+-ATPase in cerebral cortex, striatum and hippocampus from 30-day-old Gcdh-/- and wild type (WT) mice fed with a normal or a high Lys (4.7%) diet. When a baseline (0.9% Lys) diet was given, we verified mild alterations of the activities of some respiratory chain complexes in cerebral cortex and hippocampus, but not in striatum from Gcdh-/- mice as compared to WT animals. Furthermore, the mitochondrial respiratory parameters and the activities of α-KGDH and CK were not modified in all brain structures from Gcdh-/- mice. In contrast, we found a significant reduction of Na(+), K(+)-ATPase activity associated with a lower degree of its expression in cerebral cortex from Gcdh-/- mice. Furthermore, a high Lys (4.7%) diet did not accentuate the biochemical alterations observed in Gcdh-/- mice fed with a normal diet. Since Na(+), K(+)-ATPase activity is required for cell volume regulation and to maintain the membrane potential necessary for a normal neurotransmission, it is presumed that reduction of this enzyme activity may represent a potential underlying mechanism involved in the brain swelling and cortical abnormalities (cortical atrophy with leukodystrophy) observed in patients affected by GA I.
Collapse
Affiliation(s)
- Alexandre Umpierrez Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sen A, Pillay RS. Striatal necrosis in type 1 glutaric aciduria: Different stages in two siblings. J Pediatr Neurosci 2012; 6:146-8. [PMID: 22408669 PMCID: PMC3296414 DOI: 10.4103/1817-1745.92845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Two siblings born of a consanguineous marriage with history of neurologic deterioration were imaged. Imaging features are classical of glutaric aciduria type 1 (GA-1), acute (striatal necrosis) stage in younger sibling, and chronic stage in older sibling. GA-1 is an autosomal recessive disease with typical imaging features. Greater awareness about this condition among clinicians and radiologists is essential for early diagnosis and prevention of its catastrophic consequences. Striatal necrosis with stroke-like signal intensity on imaging correlates with clinical stage of patients.
Collapse
Affiliation(s)
- Anitha Sen
- Department of Radiodiagnosis, Devi Scans, Medical College PO, Thiruvananthapuram, Kerala, India
| | | |
Collapse
|
43
|
Amaral AU, Cecatto C, Seminotti B, Zanatta Â, Fernandes CG, Busanello ENB, Braga LM, Ribeiro CAJ, de Souza DOG, Woontner M, Koeller DM, Goodman S, Wajner M. Marked reduction of Na(+), K(+)-ATPase and creatine kinase activities induced by acute lysine administration in glutaryl-CoA dehydrogenase deficient mice. Mol Genet Metab 2012; 107:81-6. [PMID: 22578804 DOI: 10.1016/j.ymgme.2012.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 04/17/2012] [Accepted: 04/17/2012] [Indexed: 12/23/2022]
Abstract
Glutaric acidemia type I (GA I) is an inherited neurometabolic disorder caused by a severe deficiency of the mitochondrial glutaryl-CoA dehydrogenase activity leading to accumulation of predominantly glutaric (GA) and 3-hydroxyglutaric (3HGA) acids in the brain and other tissues. Affected patients usually present with hypotonia and brain damage and acute encephalopathic episodes whose pathophysiology is not yet fully established. In this study we investigated important parameters of cellular bioenergetics in brain, heart and skeletal muscle from 15-day-old glutaryl-CoA dehydrogenase deficient mice (Gcdh(-/-)) submitted to a single intra-peritoneal injection of saline (Sal) or lysine (Lys - 8 μmol/g) as compared to wild type (WT) mice. We evaluated the activities of the respiratory chain complexes II, II-III and IV, α-ketoglutarate dehydrogenase (α-KGDH), creatine kinase (CK) and synaptic Na(+), K(+)-ATPase. No differences of all evaluated parameters were detected in the Gcdh(-/-) relatively to the WT mice injected at baseline (Sal). Furthermore, mild increases of the activities of some respiratory chain complexes (II-III and IV) were observed in heart and skeletal muscle of Gcdh(-/-) and WT mice after Lys administration. However, the most marked effects provoked by Lys administration were marked decreases of the activities of Na(+), K(+)-ATPase in brain and CK in brain and skeletal muscle of Gcdh(-/-) mice. In contrast, brain α-KGDH activity was not altered in WT and Gcdh(-/-) injected with Sal or Lys. Our results demonstrate that reduction of Na(+), K(+)-ATPase and CK activities may play an important role in the pathogenesis of the neurodegenerative changes in GA I.
Collapse
Affiliation(s)
- Alexandre Umpierrez Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Moore T, Le A, Cowan TM. An improved LC-MS/MS method for the detection of classic and low excretor glutaric acidemia type 1. J Inherit Metab Dis 2012; 35:431-5. [PMID: 22005781 DOI: 10.1007/s10545-011-9405-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 11/26/2022]
Abstract
Glutaric acidemia type I (GA1) is associated with elevated glutarylcarnitine (C5DC), typically measured as its butylester by acylcarnitine profile analysis using tandem mass spectrometry (MS/MS) and the precursor-product ion pair of m/z 388-85. This method neither distinguishes between C5DC and its isomer 3-hydroxydecanoylcarnitine (C10-OH) nor reliably detects the low-excretor variant of GA1, leading to both false-positive and false-negative results when testing for GA1. To overcome these limitations, we developed an LC-MS/MS method that discriminates C5DC from C10-OH by the use of precursor-product ion pairs specific for butylated C5DC (m/z 388-115) and underivatized C10-OH (m/z 332-85). The C5DC method was validated over the linearity range of 0.025-20 μM with a lower limit of quantification (LOQ) of 0.025 μM. Excellent precision and accuracy were also observed. We tested plasma samples from 10 patients with confirmed GA1 (including 3 with the low-excretor variant), 21 patients with mild elevations of C5DC or C10-OH by routine acylcarnitine analysis for which GA1 ultimately was excluded, and 29 normal controls. By using the m/z 388-115 ion pair, all cases of GA1, including the low-excretor variant, were reliably distinguished from normal controls. By using the m/z 388-85 pair, patients with ambiguous elevations of C5DC or C10-OH demonstrated clearly elevated levels of C10-OH (m/z 332-85) but normal C5DC (m/z 388-115), confirming that the apparent elevation of C5DC is due to interference by C10-OH. Our method results in excellent detection of GA1, including the low-excretor variant, and also provides a means to discriminate C5DC and C10-OH in follow-up testing and routine acylcarnitine studies.
Collapse
Affiliation(s)
- Tereza Moore
- Department of Pathology, Stanford University, 3375 Hillview Avenue, Palo Alto, CA 94303, USA
| | | | | |
Collapse
|
45
|
Pena L, Franks J, Chapman KA, Gropman A, Ah Mew N, Chakrapani A, Island E, MacLeod E, Matern D, Smith B, Stagni K, Sutton VR, Ueda K, Urv T, Venditti C, Enns GM, Summar ML. Natural history of propionic acidemia. Mol Genet Metab 2012; 105:5-9. [PMID: 21986446 DOI: 10.1016/j.ymgme.2011.09.022] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/16/2011] [Accepted: 09/17/2011] [Indexed: 12/30/2022]
Abstract
Propionic acidemia is an organic acidemia that can lead to metabolic acidosis, coma and death, if not treated appropriately in the acute setting. Recent advancements in treatment have allowed patients with propionic acidemia to live beyond the neonatal period and acute presentation. The natural history of the disease is just beginning to be elucidated as individuals reach older ages. Recent studies have identified the genomic mutations in the genes PCCA and PCCB. However, as of yet no clear genotype-phenotype correlations are known. As patients age, the natural progression of propionic acidemia illuminates intellectual difficulties, increased risk for neurological complications, including stroke-like episodes, cardiac complications, and gastrointestinal difficulties, as well as a number of other complications. This article reviews the available literature for the natural history of propionic acidemia.
Collapse
Affiliation(s)
- Loren Pena
- University of Illinois College of Medicine at Chicago, Chicago, IL, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Atypical imaging findings in the setting of methylmalonic acidemia in an infant. Radiol Case Rep 2012; 7:749. [PMID: 27330598 PMCID: PMC4899564 DOI: 10.2484/rcr.v7i4.749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Classically, methylmalonic acidemia (MMA) is characterized on imaging by abnormalities in the basal ganglia, specifically the globus pallidi, as well as occasional signs of delayed maturation. We report a case of MMA in which abnormal signal and diffusion restriction occurred in the subcortical white matter, sparing the classically involved globus pallidi, a situation that has not been previously reported in the literature. This report demonstrates that diffusion abnormality can be seen in the white matter in MMA, in the absence of basal ganglia involvement, and that MMA may be considered when the diagnosis of metabolic acidemias is raised.
Collapse
|
47
|
Jafari P, Braissant O, Bonafé L, Ballhausen D. The unsolved puzzle of neuropathogenesis in glutaric aciduria type I. Mol Genet Metab 2011; 104:425-37. [PMID: 21944461 DOI: 10.1016/j.ymgme.2011.08.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 12/22/2022]
Abstract
Glutaric aciduria type I (GA-I) is a cerebral organic aciduria caused by deficiency of glutaryl-Co-A dehydrogenase (GCDH). GCDH deficiency leads to accumulation of glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA), two metabolites that are believed to be neurotoxic, in brain and body fluids. The disorder usually becomes clinically manifest during a catabolic state (e.g. intercurrent illness) with an acute encephalopathic crisis that results in striatal necrosis and in a permanent dystonic-dyskinetic movement disorder. The results of numerous in vitro and in vivo studies have pointed to three main mechanisms involved in the metabolite-mediated neuronal damage: excitotoxicity, impairment of energy metabolism and oxidative stress. There is evidence that during a metabolic crisis GA and its metabolites are produced endogenously in the CNS and accumulate because of limiting transport mechanisms across the blood-brain barrier. Despite extensive experimental work, the relative contribution of the proposed pathogenic mechanisms remains unclear and specific therapeutic approaches have yet to be developed. Here, we review the experimental evidence and try to delineate possible pathogenetic models and approaches for future studies.
Collapse
Affiliation(s)
- Paris Jafari
- Inborn Errors of Metabolism, Molecular Pediatrics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland
| | | | | | | |
Collapse
|
48
|
Prust MJ, Gropman AL, Hauser N. New frontiers in neuroimaging applications to inborn errors of metabolism. Mol Genet Metab 2011; 104:195-205. [PMID: 21778100 PMCID: PMC3758691 DOI: 10.1016/j.ymgme.2011.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 06/25/2011] [Accepted: 06/26/2011] [Indexed: 12/21/2022]
Abstract
Most inborn errors of metabolism (IEMs) are associated with potential for injury to the developing central nervous system resulting in chronic encephalopathy, though the etiopathophysiology of neurological injury have not been fully established in many disorders. Shared mechanisms can be envisioned such as oxidative injury due to over-activation of N-Methyl-d-Aspartate (NMDA) receptors with subsequent glutamatergic damage, but other causes such as energy depletion or inflammation are possible. Neuroimaging has emerged as a powerful clinical and research tool for studying the brain in a noninvasive manner. Several platforms exist to study neural networks underlying cognitive processes, white matter/myelin microstructure, and cerebral metabolism in vivo. The scope and limitations of these methods will be discussed in the context of valuable information they provide in the study and management of selected inborn errors of metabolism. This review is not meant to be an exhaustive coverage of diagnostic findings on MRI in multiple IEMs, but rather to illustrate how neuroimaging modalities beyond T1 and T2 images, can add depth to an understanding of the underlying brain changes evoked by the selected IEMs. Emphasis will be placed on techniques that are available in the clinical setting. Though technically complex, many of these modalities have moved - or soon will - to the clinical arena.
Collapse
Affiliation(s)
- Morgan J. Prust
- Department of Neurology, Children’s National Medical Center, Washington, D.C., USA
| | - Andrea L. Gropman
- Department of Neurology, Children’s National Medical Center, Washington, D.C., USA
- Medical Genetics Branch, National Human Genome Research Institute, USA
- Corresponding author at: Department of Neurology, Children’s National Medical Center, 111 Michigan Avenue, N.W., Washington, D.C. 20010, USA. Fax: +1 202 476 5226. (A.L. Gropman)
| | - Natalie Hauser
- Medical Genetics Branch, National Human Genome Research Institute, USA
| |
Collapse
|
49
|
Begley DW, Davies DR, Hartley RC, Hewitt SN, Rychel AL, Myler PJ, Van Voorhis WC, Staker BL, Stewart LJ. Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1060-9. [PMID: 21904051 PMCID: PMC3169403 DOI: 10.1107/s1744309111014436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 04/17/2011] [Indexed: 11/10/2022]
Abstract
Glutaric acidemia type 1 is an inherited metabolic disorder which can cause macrocephaly, muscular rigidity, spastic paralysis and other progressive movement disorders in humans. The defects in glutaryl-CoA dehydrogenase (GCDH) associated with this disease are thought to increase holoenzyme instability and reduce cofactor binding. Here, the first structural analysis of a GCDH enzyme in the absence of the cofactor flavin adenine dinucleotide (FAD) is reported. The apo structure of GCDH from Burkholderia pseudomallei reveals a loss of secondary structure and increased disorder in the FAD-binding pocket relative to the ternary complex of the highly homologous human GCDH. After conducting a fragment-based screen, four small molecules were identified which bind to GCDH from B. pseudomallei. Complex structures were determined for these fragments, which cause backbone and side-chain perturbations to key active-site residues. Structural insights from this investigation highlight differences from apo GCDH and the utility of small-molecular fragments as chemical probes for capturing alternative conformational states of preformed protein crystals.
Collapse
Affiliation(s)
- Darren W Begley
- Seattle Structural Genomics Center for Infectious Disease (http://www.ssgcid.org), USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Strauss KA, Brumbaugh J, Duffy A, Wardley B, Robinson D, Hendrickson C, Tortorelli S, Moser AB, Puffenberger EG, Rider NL, Morton DH. Safety, efficacy and physiological actions of a lysine-free, arginine-rich formula to treat glutaryl-CoA dehydrogenase deficiency: focus on cerebral amino acid influx. Mol Genet Metab 2011; 104:93-106. [PMID: 21820344 DOI: 10.1016/j.ymgme.2011.07.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 07/03/2011] [Indexed: 02/03/2023]
Abstract
Striatal degeneration from glutaryl-CoA dehydrogenase deficiency (glutaric aciduria type 1, GA1) is associated with cerebral formation and entrapment of glutaryl-CoA and its derivatives that depend on cerebral lysine influx. In 2006 we designed a lysine-free study formula enriched with arginine to selectively block lysine transport across cerebral endothelia and thereby limit glutaryl-CoA production by brain. Between 2006 and present, we treated twelve consecutive children with study formula (LYSx group) while holding all other treatment practices constant. Clinical and biochemical outcomes were compared to 25 GA1 patients (PROx group) treated between 1995 and 2005 with natural protein restriction (dietary lysine/arginine ratio of 1.7±0.3 mg:mg). We used published kinetic parameters of the y+and LAT1 blood-brain barrier transporters to model the influx of amino acids into the brain. Arginine fortification to achieve a mean dietary lysine/arginine ratio of 0.7±0.2 mg:mg was neuroprotective. All 12 LYSx patients are physically and neurologically healthy after 28 aggregate patient-years of follow up (current ages 28±21 months) and there were no adverse events related to formula use. This represents a 36% reduction of neurological risk (95% confidence interval 14-52%, p=0.018) that we can directly attribute to altered amino acid intake. During the first year of life, 20% lower lysine intake and two-fold higher arginine intake by LYSx patients were associated with 50% lower plasma lysine, 3-fold lower plasma lysine/arginine concentration ratio, 42% lower mean calculated cerebral lysine influx, 54% higher calculated cerebral arginine influx, 15-26% higher calculated cerebral influx of several anaplerotic precursors (isoleucine, threonine, methionine, and leucine), 50% less 3-hydroxyglutarate excretion, and a 3-fold lower hospitalization rate (0.8 versus 2.3 hospitalizations per patient per year). The relationship between arginine fortification and plasma lysine indicates that transport competition exists at both cerebrovascular and gastrointestinal barriers, suggesting their co-administration is key to efficacy. Monitoring the ratio between lysine and arginine in diet and plasma may prove a useful strategy for treating children with GA1.
Collapse
|