1
|
Neeman B, Sudhakar S, Biswas A, Rosenblum J, Sidpra J, D’Arco F, Löbel U, Gómez-Chiari M, Serrano M, Bolasell M, Reddy K, Ben-Sira L, Zakzouk R, Al-Hashem A, Mirsky DM, Patel R, Radhakrishnan R, Shekdar K, Whitehead MT, Mankad K. Sotos Syndrome: Deep Neuroimaging Phenotyping Reveals a High Prevalence of Malformations of Cortical Development. AJNR Am J Neuroradiol 2024; 45:1570-1577. [PMID: 39147584 PMCID: PMC11448971 DOI: 10.3174/ajnr.a8364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/16/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND AND PURPOSE Sotos syndrome is a rare autosomal dominant condition caused by pathogenic mutations in the NSD1 gene that presents with craniofacial dysmorphism, overgrowth, seizures, and neurodevelopmental delay. Macrocephaly, ventriculomegaly, and corpus callosal dysmorphism are typical neuroimaging features that have been described in the medical literature. The purpose of this study was to expand on the neuroimaging phenotype by detailed analysis of a large cohort of patients with genetically proved Sotos syndrome. MATERIALS AND METHODS This multicenter, multinational, retrospective observational cohort study systematically analyzed the clinical characteristics and neuroimaging features of 77 individuals with genetically diagnosed Sotos syndrome, via central consensus review with 3 pediatric neuroradiologists. RESULTS In addition to previously described features, malformations of cortical development were identified in most patients (95.0%), typically dysgyria (92.2%) and polymicrogyria (22.1%), varying in location and distribution. Incomplete rotation of the hippocampus was observed in 50.6% of patients and was associated with other imaging findings, in particular with dysgyria (100% versus 84.2%, P = .012). CONCLUSIONS Our findings show a link between the genetic-biochemical basis and the neuroimaging features and aid in better understanding the underlying clinical manifestations and possible treatment options. These findings have yet to be described to this extent and correspond with recent studies that show that NSD1 participates in brain development and has interactions with other known relevant genetic pathways.
Collapse
Affiliation(s)
- Bar Neeman
- From the Department of Radiology (B.N., L.B.-S.), Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Faculty of Medicine (B.N., L.B.-S.), Tel-Aviv University, Tel-Aviv, Israel
| | - Sniya Sudhakar
- Department of Radiology (S.S., A.B., F.D., U.L., K.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Asthik Biswas
- Department of Radiology (S.S., A.B., F.D., U.L., K.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jessica Rosenblum
- Center of Medical Genetics (J.R.), Antwerp University Hospital/University of Antwerp, Antwerp, Belgium
| | - Jai Sidpra
- Developmental Biology and Cancer Section (J.S., K.M.), University College London Great Ormond Street Institute of Child Health, London, UK
| | - Felice D’Arco
- Department of Radiology (S.S., A.B., F.D., U.L., K.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ulrike Löbel
- Department of Radiology (S.S., A.B., F.D., U.L., K.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marta Gómez-Chiari
- Diagnostic Imaging Department (M.G.-C.), Hospital Sant Joan de Déu, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu,(M.G.-C., M.S., M.B.), Barcelona, Spain
| | - Mercedes Serrano
- Institut de Recerca Sant Joan de Déu,(M.G.-C., M.S., M.B.), Barcelona, Spain
- Neuropediatric Department (M.S.), Hospital Sant Joan de Déu, U-703 Centre for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Mercè Bolasell
- Institut de Recerca Sant Joan de Déu,(M.G.-C., M.S., M.B.), Barcelona, Spain
- Department of Genetic and Molecular Medicine/IPER (M.B.), Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Kartik Reddy
- Department of Radiology and Imaging Sciences (K.R.), Emory University School of Medicine, Atlanta, Georgia
| | - Liat Ben-Sira
- From the Department of Radiology (B.N., L.B.-S.), Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Faculty of Medicine (B.N., L.B.-S.), Tel-Aviv University, Tel-Aviv, Israel
| | - Reem Zakzouk
- Division of Neuroradiology (R.Z.), Department of Radiology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Amal Al-Hashem
- Division of Genetics (A.A.-H.), Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - David M. Mirsky
- Department of Radiology (D.M.M.), Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Rajan Patel
- Texas Children's Hospital (R.P.), Baylor College of Medicine, Houston, Texas
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences (R.R.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Karuna Shekdar
- Department of Radiology (K.S., M.T.W.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew T. Whitehead
- Department of Radiology (K.S., M.T.W.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine (M.T.W.), University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kshitij Mankad
- Department of Radiology (S.S., A.B., F.D., U.L., K.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Developmental Biology and Cancer Section (J.S., K.M.), University College London Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
2
|
Ma Q, Chen G, Li Y, Guo Z, Zhang X. The molecular genetics of PI3K/PTEN/AKT/mTOR pathway in the malformations of cortical development. Genes Dis 2024; 11:101021. [PMID: 39006182 PMCID: PMC11245990 DOI: 10.1016/j.gendis.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/07/2023] [Accepted: 04/30/2023] [Indexed: 07/16/2024] Open
Abstract
Malformations of cortical development (MCD) are a group of developmental disorders characterized by abnormal cortical structures caused by genetic or harmful environmental factors. Many kinds of MCD are caused by genetic variation. MCD is the common cause of intellectual disability and intractable epilepsy. With rapid advances in imaging and sequencing technologies, the diagnostic rate of MCD has been increasing, and many potential genes causing MCD have been successively identified. However, the high genetic heterogeneity of MCD makes it challenging to understand the molecular pathogenesis of MCD and to identify effective targeted drugs. Thus, in this review, we outline important events of cortical development. Then we illustrate the progress of molecular genetic studies about MCD focusing on the PI3K/PTEN/AKT/mTOR pathway. Finally, we briefly discuss the diagnostic methods, disease models, and therapeutic strategies for MCD. The information will facilitate further research on MCD. Understanding the role of the PI3K/PTEN/AKT/mTOR pathway in MCD could lead to a novel strategy for treating MCD-related diseases.
Collapse
Affiliation(s)
- Qing Ma
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Guang Chen
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Ying Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Zhenming Guo
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Xue Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| |
Collapse
|
3
|
Xu Y, Lu R, Li H, Feng W, Zhao R. A spectrum of AKT3 activating mutations cause focal malformations of cortical development (FMCDs) in cortical organoids. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167232. [PMID: 38759814 DOI: 10.1016/j.bbadis.2024.167232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Focal malformations of cortical development (FMCDs) are brain disorders mainly caused by hyperactive mTOR signaling due to both inactivating and activating mutations of genes in the PI3K-AKT-mTOR pathway. Among them, mosaic and somatic activating mutations of the mTOR pathway activators are more frequently linked to severe form of FMCDs. A human stem cell-based FMCDs model to study these activating mutations is still lacking. Herein, we genetically engineer human embryonic stem cell lines carrying these activating mutations to generate cortical organoids. Mosaic and somatic expression of AKT3 activating mutations in cortical organoids mimicking the disease presentation with overproliferation and the formation of dysmorphic neurons. In parallel comparison of various AKT3 activating mutations reveals that stronger mutation is associated with more severe neuronal migratory and overgrowth defects. Together, we have established a feasible human stem cell-based model for FMCDs that could help to better understand pathogenic mechanism and develop novel therapeutic strategy.
Collapse
Affiliation(s)
- Ying Xu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Rongrong Lu
- Department of Neurosurgery, Children's Hospital of Fudan University, Fudan University, Shanghai 201102, China
| | - Hao Li
- Department of Neurosurgery, Children's Hospital of Fudan University, Fudan University, Shanghai 201102, China; Department of Neurosurgery, Xiamen Children's Hospital, Children's Hospital of Fudan University at Xiamen, Xiamen 361006, China
| | - Weijun Feng
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Fujian Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital, Children's Hospital of Fudan University at Xiamen, Xiamen 361006, China.
| | - Rui Zhao
- Department of Neurosurgery, Shanghai Children's Hospital, Shanghai 200333, China.
| |
Collapse
|
4
|
Rijckmans E, Stouffs K, Jansen AC. Diagnostic work-up in malformations of cortical development. Dev Med Child Neurol 2024; 66:974-989. [PMID: 38394064 DOI: 10.1111/dmcn.15882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024]
Abstract
Malformations of cortical development (MCDs) represent a heterogeneous spectrum of disorders characterized by atypical development of the cerebral cortex. MCDs are most often diagnosed on the basis of imaging, although subtle lesions, such as focal cortical dysplasia, may only be revealed on neuropathology. Different subtypes have been defined, including lissencephaly, heterotopia, cobblestone malformation, polymicrogyria, and dysgyria. Many MCDs are of genetic origin, although acquired factors, such as congenital cytomegalovirus infections and twinning sequence, can lead to similar phenotypes. In this narrative review, we provide an overview of the diagnostic approach to MCDs, which is illustrated with clinical vignettes, on diagnostic pitfalls such as somatic mosaicism and consanguinity, and recognizable phenotypes on imaging, such as tubulinopathies, the lissencephaly spectrum, tuberous sclerosis complex, and FLNA-related periventricular nodular heterotopia.
Collapse
Affiliation(s)
- Ellen Rijckmans
- Pediatric Neurology Unit, Department of Pediatrics, KidZ Health Castle, UZ Brussel, Brussels, Belgium
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katrien Stouffs
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Anna C Jansen
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Pediatric Neurology Unit, Department of Pediatrics, Antwerp University Hospital, Antwerp, Belgium
- Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Luca M, Piglionica M, Bagnulo R, Cardaropoli S, Carli D, Turchiano A, Coppo P, Pantaleo A, Iacoviello M, Ferrero GB, Mussa A, Resta N. The somatic p.T81dup variant in AKT3 gene underlies a mild cerebral phenotype and expands the spectrum including capillary malformation and lateralized overgrowth. Genes Chromosomes Cancer 2023; 62:703-709. [PMID: 37395289 DOI: 10.1002/gcc.23188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023] Open
Abstract
Heterozygous germline or somatic variants in AKT3 gene can cause isolated malformations of cortical development (MCDs) such as focal cortical dysplasia, megalencephaly (MEG), Hemimegalencephaly (HME), dysplastic megalencephaly, and syndromic forms like megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome, and megalencephaly-capillary malformation syndrome. This report describes a new case of HME and capillary malformation caused by a somatic AKT3 variant that differs from the common p.E17K variant described in literature. The patient's skin biopsy from the angiomatous region revealed an heterozygous likely pathogenic variant AKT3:c.241_243dup, p.(T81dup) that may affect the binding domain and downstream pathways. Compared to previously reported cases with a common E17K mosaic variant, the phenotype is milder and patients showed segmental overgrowth, an uncommon characteristic in AKT3 variant cases. These findings suggest that the severity of the disease may be influenced not only by the level of mosaicism but also by the type of variant. This report expands the phenotypic spectrum associated with AKT3 variants and highlights the importance of genomic analysis in patients with capillary malformation and MCDs.
Collapse
Affiliation(s)
- Maria Luca
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Marilidia Piglionica
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Rosanna Bagnulo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Simona Cardaropoli
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Diana Carli
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Antonella Turchiano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Coppo
- Pediatric Dermatology Unit, Regina Margherita Children's Hospital, Torino, Italy
| | - Antonino Pantaleo
- National Institute of Gastroenterology-IRCCS "Saverio de Bellis", Bari, Italy
| | - Matteo Iacoviello
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | | | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
- Pediatric Clinical Genetics, Regina Margherita Children Hospital, Torino, Italy
| | - Nicoletta Resta
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
6
|
Shinar S, Chitayat D, Shannon P, Blaser S. Fetal macrocephaly: Pathophysiology, prenatal diagnosis and management. Prenat Diagn 2023; 43:1650-1661. [PMID: 38009873 DOI: 10.1002/pd.6473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
Macrocephaly means a large head and is defined as a head circumference (HC) above the 98th percentile or greater than +2SD above the mean for gestational age. Macrocephaly can be primary and due to increased brain tissue (megalocephaly), which in most cases is familial and benign or secondary. The latter may be due to various causes, including but not limited to communicating or non-communicating hydrocephalus, cerebral edema, focal and pericerebral increased fluid collections, thickened calvarium and brain tumors. Megalocephaly can be syndromic or non-syndromic. In the former, gyral and structural CNS anomalies are common. It is important to exercise caution when considering a diagnosis of megalocephaly due to limitations in the accuracy of HC measurement, lack of nomograms for specific populations, inconsistencies between prenatal and postnatal HC growth curves and progression over time. The degree of macrocephaly is important, with mild macrocephaly ≤2.5SD carrying a good prognosis, especially when one of the parents has macrocephaly and normal development. Cases in which the patient history and/or physical exam are positive or when parental HC are normal are more worrisome and warrant a neurosonogram, fetal MRI and genetic testing to better delineate the underlying etiology and provide appropriate counseling.
Collapse
Affiliation(s)
- Shiri Shinar
- Department of Obstetrics and Gynaecology, Division of Maternal Fetal Medicine, Ontario Fetal Centre, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David Chitayat
- Department of Obstetrics and Gynecology, Prenatal Diagnosis and Medical Genetics Program, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Susan Blaser
- Department of Diagnostic Imaging, Department of Medical Imaging, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Yavuz BR, Arici MK, Demirel HC, Tsai CJ, Jang H, Nussinov R, Tuncbag N. Neurodevelopmental disorders and cancer networks share pathways, but differ in mechanisms, signaling strength, and outcome. NPJ Genom Med 2023; 8:37. [PMID: 37925498 PMCID: PMC10625621 DOI: 10.1038/s41525-023-00377-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/02/2023] [Indexed: 11/06/2023] Open
Abstract
Epidemiological studies suggest that individuals with neurodevelopmental disorders (NDDs) are more prone to develop certain types of cancer. Notably, however, the case statistics can be impacted by late discovery of cancer in individuals afflicted with NDDs, such as intellectual disorders, autism, and schizophrenia, which may bias the numbers. As to NDD-associated mutations, in most cases, they are germline while cancer mutations are sporadic, emerging during life. However, somatic mosaicism can spur NDDs, and cancer-related mutations can be germline. NDDs and cancer share proteins, pathways, and mutations. Here we ask (i) exactly which features they share, and (ii) how, despite their commonalities, they differ in clinical outcomes. To tackle these questions, we employed a statistical framework followed by network analysis. Our thorough exploration of the mutations, reconstructed disease-specific networks, pathways, and transcriptome levels and profiles of autism spectrum disorder (ASD) and cancers, point to signaling strength as the key factor: strong signaling promotes cell proliferation in cancer, and weaker (moderate) signaling impacts differentiation in ASD. Thus, we suggest that signaling strength, not activating mutations, can decide clinical outcome.
Collapse
Affiliation(s)
- Bengi Ruken Yavuz
- Graduate School of Informatics, Middle East Technical University, Ankara, 06800, Turkey
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - M Kaan Arici
- Graduate School of Informatics, Middle East Technical University, Ankara, 06800, Turkey
| | - Habibe Cansu Demirel
- Graduate School of Sciences and Engineering, Koc University, Istanbul, 34450, Turkey
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Nurcan Tuncbag
- Chemical and Biological Engineering, College of Engineering, Koc University, Istanbul, Turkey.
- School of Medicine, Koc University, Istanbul, 34450, Turkey.
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
| |
Collapse
|
8
|
Shelkowitz E, Stence NV, Neuberger I, Park KL, Saenz MS, Pao E, Oyama N, Friedman SD, Shaw DWW, Mirzaa GM. Variants in PTEN Are Associated With a Diverse Spectrum of Cortical Dysplasia. Pediatr Neurol 2023; 147:154-162. [PMID: 37619436 DOI: 10.1016/j.pediatrneurol.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/12/2023] [Accepted: 06/16/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Inactivating mutations in PTEN are among the most common causes of megalencephaly. Activating mutations in other nodes of the PI3K/AKT/MTOR signaling pathway are recognized as a frequent cause of cortical brain malformations. Only recently has PTEN been associated with cortical malformations, and analyses of their prognostic significance have been limited. METHODS Retrospective neuroimaging analysis and detailed chart review were conducted on 20 participants identified with pathogenic or likely pathogenic mutations in PTEN and a cortical brain malformation present on brain magnetic resonance imaging. RESULTS Neuroimaging analysis revealed four main cerebral phenotypes-hemimegalencephaly, focal cortical dysplasia, polymicrogyria (PMG), and a less severe category, termed "macrocephaly with complicated gyral pattern" (MCG). Although a high proportion of participants (90%) had neurodevelopmental findings on presentation, outcomes varied and were favorable in over half of participants. Consistent with prior work, 39% of participants had autism spectrum disorder and 19% of participants with either pure-PMG or pure-MCG phenotypes had epilepsy. Megalencephaly and systemic overgrowth were common, but other systemic features of PTEN-hamartoma tumor syndrome were absent in over one-third of participants. CONCLUSIONS A spectrum of cortical dysplasias is present in individuals with inactivating mutations in PTEN. Future studies are needed to clarify the prognostic significance of each cerebral phenotype, but overall, we conclude that despite a high burden of neurodevelopmental disease, long-term outcomes may be favorable. Germline testing for PTEN mutations should be considered in cases of megalencephaly and cortical brain malformations even in the absence of other findings, including cognitive impairment.
Collapse
Affiliation(s)
- Emily Shelkowitz
- Department of Pediatrics, University of Washington, Seattle, Washington.
| | | | - Ilana Neuberger
- Department of Radiology, University of Colorado, Aurora, Colorado
| | - Kristen L Park
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | | | - Emily Pao
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Nora Oyama
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Seth D Friedman
- Department of Radiology, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Dennis W W Shaw
- Department of Radiology, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Ghayda M Mirzaa
- Department of Pediatrics, University of Washington, Seattle, Washington; Brotman Baty Institute for Precision Medicine, Seattle, Washington.
| |
Collapse
|
9
|
Reijnders MRF, Seibt A, Brugger M, Lamers IJC, Ott T, Klaas O, Horváth J, Rose AMS, Craghill IM, Brunet T, Graf E, Mayerhanser K, Hellebrekers D, Pauck D, Neuen-Jacob E, Rodenburg RJT, Wieczorek D, Klee D, Mayatepek E, Driessen G, Bindermann R, Averdunk L, Lohmeier K, Sinnema M, Stegmann APA, Roepman R, Poulter JA, Distelmaier F. De novo missense variants in RRAGC lead to a fatal mTORopathy of early childhood. Genet Med 2023; 25:100838. [PMID: 37057673 DOI: 10.1016/j.gim.2023.100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
PURPOSE Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) regulates cell growth in response to nutritional status. Central to the mTORC1 function is the Rag-GTPase heterodimer. One component of the Rag heterodimer is RagC (Ras-related GTP-binding protein C), which is encoded by the RRAGC gene. METHODS Genetic testing via trio exome sequencing was applied to identify the underlying disease cause in 3 infants with dilated cardiomyopathy, hepatopathy, and brain abnormalities, including pachygyria, polymicrogyria, and septo-optic dysplasia. Studies in patient-derived skin fibroblasts and in a HEK293 cell model were performed to investigate the cellular consequences. RESULTS We identified 3 de novo missense variants in RRAGC (NM_022157.4: c.269C>A, p.(Thr90Asn), c.353C>T, p.(Pro118Leu), and c.343T>C, p.(Trp115Arg)), which were previously reported as occurring somatically in follicular lymphoma. Studies of patient-derived fibroblasts carrying the p.(Thr90Asn) variant revealed increased cell size, as well as dysregulation of mTOR-related p70S6K (ribosomal protein S6 kinase 1) and transcription factor EB signaling. Moreover, subcellular localization of mTOR was decoupled from metabolic state. We confirmed the key findings for all RRAGC variants described in this study in a HEK293 cell model. CONCLUSION The above results are in line with a constitutive overactivation of the mTORC1 pathway. Our study establishes de novo missense variants in RRAGC as cause of an early-onset mTORopathy with unfavorable prognosis.
Collapse
Affiliation(s)
- Margot R F Reijnders
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Annette Seibt
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Melanie Brugger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ideke J C Lamers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Torsten Ott
- University Children's Hospital, University Hospital Muenster, Münster, Germany
| | - Oliver Klaas
- Institute for Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Judit Horváth
- Institute for Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Ailsa M S Rose
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Isabel M Craghill
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Department of Paediatric Neurology and Developmental Medicine, Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katharina Mayerhanser
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Debby Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - David Pauck
- Institute of Neuropathology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eva Neuen-Jacob
- Institute of Neuropathology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Richard J T Rodenburg
- Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dirk Klee
- Department of Diagnostic and Interventional Radiology, University Hospital, Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gertjan Driessen
- Department of Paediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Robert Bindermann
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Luisa Averdunk
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Klaus Lohmeier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - James A Poulter
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
10
|
Gerasimenko A, Baldassari S, Baulac S. mTOR pathway: Insights into an established pathway for brain mosaicism in epilepsy. Neurobiol Dis 2023; 182:106144. [PMID: 37149062 DOI: 10.1016/j.nbd.2023.106144] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) signaling pathway is an essential regulator of numerous cellular activities such as metabolism, growth, proliferation, and survival. The mTOR cascade recently emerged as a critical player in the pathogenesis of focal epilepsies and cortical malformations. The 'mTORopathies' comprise a spectrum of cortical malformations that range from whole brain (megalencephaly) and hemispheric (hemimegalencephaly) abnormalities to focal abnormalities, such as focal cortical dysplasia type II (FCDII), which manifest with drug-resistant epilepsies. The spectrum of cortical dysplasia results from somatic brain mutations in the mTOR pathway activators AKT3, MTOR, PIK3CA, and RHEB and from germline and somatic mutations in mTOR pathway repressors, DEPDC5, NPRL2, NPRL3, TSC1 and TSC2. The mTORopathies are characterized by excessive mTOR pathway activation, leading to a broad range of structural and functional impairments. Here, we provide a comprehensive literature review of somatic mTOR-activating mutations linked to epilepsy and cortical malformations in 292 patients and discuss the perspectives of targeted therapeutics for personalized medicine.
Collapse
Affiliation(s)
- Anna Gerasimenko
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; APHP Sorbonne Université, GH Pitié Salpêtrière et Trousseau, Département de Génétique, Centre de référence "déficiences intellectuelles de causes rares", Paris, France
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.
| |
Collapse
|
11
|
Günay Ç, Kurul SH, Yiş U. Bilateral Sensorineural Hearing Loss in AKT3 Mutation: A Case Report and Brief Review of the Literature. Ann Indian Acad Neurol 2023; 26:293-296. [PMID: 37538424 PMCID: PMC10394454 DOI: 10.4103/aian.aian_92_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 08/05/2023] Open
Affiliation(s)
- Çağatay Günay
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, İzmir, Turkey
| | - Semra H. Kurul
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, İzmir, Turkey
| | - Uluç Yiş
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, İzmir, Turkey
| |
Collapse
|
12
|
Bolli A, Nriagu B, Britt AD, Toole AD, Treat J, Srinivasan A, Sheppard SE. Mosaic pathogenic variants in AKT3 cause capillary malformation and undergrowth. Am J Med Genet A 2023; 191:1442-1446. [PMID: 36695285 PMCID: PMC10081949 DOI: 10.1002/ajmg.a.63121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
Capillary malformations are slow-flow vascular malformations that affect the microcirculation including capillaries and post capillary venules and can be associated with growth differences. Specifically, the association of capillary malformations with undergrowth is a vastly understudied vascular syndrome with few reports of genetic causes including PIK3CA, GNAQ, and GNA11. Recently, a somatic pathogenic variant in AKT3 was identified in one child with a cutaneous vascular syndrome similar to cutis marmorata telangiectatica congenita, undergrowth, and no neurodevelopmental features. Here, we present a male patient with a capillary malformation and undergrowth due to a somatic pathogenic variant in AKT3 to confirm this association. It is essential to consider that mosaic pathogenic variants in AKT3 can cause a wide spectrum of disease. There is a need for future studies focusing on capillary malformations with undergrowth to understand the underlying mechanism.
Collapse
Affiliation(s)
- Amber Bolli
- Comprehensive Vascular Anomaly Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Bede Nriagu
- Comprehensive Vascular Anomaly Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Allison D. Britt
- Comprehensive Vascular Anomaly Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anjali D. Toole
- Department of Physical Therapy, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - James Treat
- Comprehensive Vascular Anomaly Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Section of Dermatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Abhay Srinivasan
- Comprehensive Vascular Anomaly Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sarah E. Sheppard
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Günay Ç, Aykol D, Özsoy Ö, Sönmezler E, Hanci YS, Kara B, Akkoyunlu Sünnetçi D, Cine N, Deniz A, Özer T, Ölçülü CB, Yilmaz Ö, Kanmaz S, Yilmaz S, Tekgül H, Yildiz N, Acar Arslan E, Cansu A, Olgaç Dündar N, Kusgoz F, Didinmez E, Gençpinar P, Aksu Uzunhan T, Ertürk B, Gezdirici A, Ayaz A, Ölmez A, Ayanoğlu M, Tosun A, Topçu Y, Kiliç B, Aydin K, Çağlar E, Ersoy Kosvali Ö, Okuyaz Ç, Besen Ş, Tekin Orgun L, Erol İ, Yüksel D, Sezer A, Atasoy E, Toprak Ü, Güngör S, Ozgor B, Karadağ M, Dilber C, Şahinoğlu B, Uyur Yalçin E, Eldes Hacifazlioglu N, Yaramiş A, Edem P, Gezici Tekin H, Yilmaz Ü, Ünalp A, Turay S, Biçer D, Gül Mert G, Dokurel Çetin İ, Kirik S, Öztürk G, Karal Y, Sanri A, Aksoy A, Polat M, Özgün N, Soydemir D, Sarikaya Uzan G, Ülker Üstebay D, Gök A, Yeşilmen MC, Yiş U, Karakülah G, Bursali A, Oktay Y, Hiz Kurul S. Shared Biological Pathways and Processes in Patients with Intellectual Disability: A Multicenter Study. Neuropediatrics 2023. [PMID: 36787800 DOI: 10.1055/a-2034-8528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
BACKGROUND Although the underlying genetic causes of intellectual disability (ID) continue to be rapidly identified, the biological pathways and processes that could be targets for a potential molecular therapy are not yet known. This study aimed to identify ID-related shared pathways and processes utilizing enrichment analyses. METHOD In this multicenter study, causative genes of patients with ID were used as input for Disease Ontology (DO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. RESULTS Genetic test results of 720 patients from 27 centers were obtained. Patients with chromosomal deletion/duplication, non-ID genes, novel genes, and results with changes in more than one gene were excluded. A total of 558 patients with 341 different causative genes were included in the study. Pathway-based enrichment analysis of the ID-related genes via ClusterProfiler revealed 18 shared pathways, with lysine degradation and nicotine addiction being the most common. The most common of the 25 overrepresented DO terms was ID. The most frequently overrepresented GO biological process, cellular component, and molecular function terms were regulation of membrane potential, ion channel complex, and voltage-gated ion channel activity/voltage-gated channel activity, respectively. CONCLUSION Lysine degradation, nicotine addiction, and thyroid hormone signaling pathways are well-suited to be research areas for the discovery of new targeted therapies in ID patients.
Collapse
Affiliation(s)
- Çağatay Günay
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Duygu Aykol
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Özlem Özsoy
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Ece Sönmezler
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Yaren Sena Hanci
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Bülent Kara
- Department of Pediatric Neurology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | | | - Naci Cine
- Department of Medical Genetics, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Adnan Deniz
- Department of Pediatric Neurology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Tolgahan Özer
- Department of Medical Genetics, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Cemile Büşra Ölçülü
- Department of Child Neurology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Özlem Yilmaz
- Department of Child Neurology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Seda Kanmaz
- Department of Child Neurology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Sanem Yilmaz
- Department of Child Neurology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Hasan Tekgül
- Department of Child Neurology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Nihal Yildiz
- Department of Pediatric Neurology, Karadeniz Technical University, Faculty of Medicine, Farabi Hospital, Trabzon, Turkey
| | - Elif Acar Arslan
- Department of Pediatric Neurology, Karadeniz Technical University, Faculty of Medicine, Farabi Hospital, Trabzon, Turkey
| | - Ali Cansu
- Department of Pediatric Neurology, Karadeniz Technical University, Faculty of Medicine, Farabi Hospital, Trabzon, Turkey
| | - Nihal Olgaç Dündar
- Department of Pediatric Neurology, İzmir Katip Çelebi University, Izmir, Turkey
| | - Fatma Kusgoz
- Department of Pediatric Neurology, Tepecik Research and Training Hospital, Izmir, Turkey
| | - Elif Didinmez
- Department of Pediatric Neurology, Tepecik Research and Training Hospital, Izmir, Turkey
| | - Pınar Gençpinar
- Department of Pediatric Neurology, İzmir Katip Çelebi University, Izmir, Turkey
| | - Tuğçe Aksu Uzunhan
- Department of Pediatric Neurology, Prof Dr Cemil Tascioglu City Hospital, Istanbul, Turkey
| | - Biray Ertürk
- Department of Pediatric Neurology, Prof Dr Cemil Tascioglu City Hospital, Istanbul, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey
| | - Akif Ayaz
- Department of Medical Genetics, Istanbul Medipol University School of Medicine, Istanbul, Turkey
| | - Akgün Ölmez
- Denizli Pediatric Neurology Clinic, Denizli, Turkey
| | - Müge Ayanoğlu
- Department of Child Neurology, Adnan Menderes University School of Medicine, Aydın, Turkey
| | - Ayşe Tosun
- Department of Child Neurology, Adnan Menderes University School of Medicine, Aydın, Turkey
| | - Yasemin Topçu
- Department of Pediatric Neurology, Istanbul Medipol University Faculty of Medicine, Istanbul, Turkey
| | - Betül Kiliç
- Department of Pediatric Neurology, Istanbul Medipol University Faculty of Medicine, Istanbul, Turkey
| | - Kürşad Aydin
- Department of Pediatric Neurology, Istanbul Medipol University Faculty of Medicine, Istanbul, Turkey
| | - Ezgi Çağlar
- Departments of Pediatric Neurology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Özlem Ersoy Kosvali
- Departments of Pediatric Neurology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Çetin Okuyaz
- Departments of Pediatric Neurology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Şeyda Besen
- Division of Pediatric Neurology, Başkent University Adana Medical and Research Center Faculty of Medicine, Adana, Turkey
| | - Leman Tekin Orgun
- Division of Pediatric Neurology, Başkent University Adana Medical and Research Center Faculty of Medicine, Adana, Turkey
| | - İlknur Erol
- Division of Pediatric Neurology, Başkent University Adana Medical and Research Center Faculty of Medicine, Adana, Turkey
| | - Deniz Yüksel
- Department of Pediatric Neurology, University of Health Sciences Faculty of Medicine, Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Abdullah Sezer
- Department of Genetics, University of Health Sciences Faculty of Medicine, Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Ergin Atasoy
- Department of Pediatric Neurology, University of Health Sciences Faculty of Medicine, Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Ülkühan Toprak
- Department of Pediatric Neurology, University of Health Sciences Faculty of Medicine, Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Serdal Güngör
- Department of Paediatric Neurology, Inonu University Faculty of Medicine, Turgut Ozal Research Center, Malatya, Turkey
| | - Bilge Ozgor
- Department of Paediatric Neurology, Inonu University Faculty of Medicine, Turgut Ozal Research Center, Malatya, Turkey
| | - Meral Karadağ
- Department of Paediatric Neurology, Inonu University Faculty of Medicine, Turgut Ozal Research Center, Malatya, Turkey
| | - Cengiz Dilber
- Department of Pediatric Neurology, Kahramanmaras Sutcu Imam University Faculty of Medicine, Kahramanmaraş, Turkey
| | - Bahtiyar Şahinoğlu
- Deparment of Genetics, Dr Ersin Arslan Traning and Research Hospital, Gaziantep, Turkey
| | - Emek Uyur Yalçin
- Departments of Pediatrics and Pediatric Neurology, University of Health Sciences, Zeynep Kamil Maternity and Children's Diseases Hospital, Istanbul, Turkey
| | - Nilüfer Eldes Hacifazlioglu
- Departments of Pediatrics and Pediatric Neurology, University of Health Sciences, Zeynep Kamil Maternity and Children's Diseases Hospital, Istanbul, Turkey
| | - Ahmet Yaramiş
- Diyarbakır Pediatric Neurology Clinic, Diyarbakır, Turkey
| | - Pınar Edem
- Department of Pediatric Neurology, Bakırcay University, Cigli District Training Hospital, Izmir, Turkey
| | - Hande Gezici Tekin
- Department of Pediatric Neurology, Bakırcay University, Cigli District Training Hospital, Izmir, Turkey
| | - Ünsal Yilmaz
- Department of Pediatric Neurology, Dr. Behcet Uz Children's Hospital, Izmir, Turkey
| | - Aycan Ünalp
- Department of Pediatric Neurology, Dr. Behcet Uz Children's Hospital, Izmir, Turkey
| | - Sevim Turay
- Department of Pediatric Neurology, Duzce University Faculty of Medicine, Düzce, Turkey
| | - Didem Biçer
- Department of Pediatric Neurology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Gülen Gül Mert
- Department of Pediatric Neurology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - İpek Dokurel Çetin
- Department of Pediatric Neurology, Balıkesir Atatürk Training and Research Hospital, Balıkesir, Turkey
| | - Serkan Kirik
- Fırat University School of Medicine, Pediatric Neurology, Elazığ, Turkey
| | - Gülten Öztürk
- Department of Pediatric Neurology, Marmara University School of Medicine, Istanbul, Turkey
| | - Yasemin Karal
- Department of Pediatric Neurology, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Aslıhan Sanri
- Department of Pediatric Genetics, University of Health Sciences, Samsun Training and Research Hospital, Samsun, Turkey
| | - Ayşe Aksoy
- Department of Pediatric Neurology, Ondokuz Mayıs University, Samsun, Turkey
| | - Muzaffer Polat
- Department of Pediatric Neurology, Celal Bayar University School of Medicine, Manisa, Turkey
| | - Nezir Özgün
- Department of Pediatric Neurology, Mardin Artuklu University, Faculty of Health Sciences, Mardin, Turkey
| | - Didem Soydemir
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Gamze Sarikaya Uzan
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Döndü Ülker Üstebay
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Ayşen Gök
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Mehmet Can Yeşilmen
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Uluç Yiş
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Ahmet Bursali
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Yavuz Oktay
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Semra Hiz Kurul
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| |
Collapse
|
14
|
Mussa A, Leoni C, Iacoviello M, Carli D, Ranieri C, Pantaleo A, Buonuomo PS, Bagnulo R, Ferrero GB, Bartuli A, Melis D, Maitz S, Loconte DC, Turchiano A, Piglionica M, De Luisi A, Susca FC, Bukvic N, Forleo C, Selicorni A, Zampino G, Onesimo R, Cappuccio G, Garavelli L, Novelli C, Memo L, Morando C, Della Monica M, Accadia M, Capurso M, Piscopo C, Cereda A, Di Giacomo MC, Saletti V, Spinelli AM, Lastella P, Tenconi R, Dvorakova V, Irvine AD, Resta N. Genotypes and phenotypes heterogeneity in PIK3CA-related overgrowth spectrum and overlapping conditions: 150 novel patients and systematic review of 1007 patients with PIK3CA pathogenetic variants. J Med Genet 2023; 60:163-173. [PMID: 35256403 DOI: 10.1136/jmedgenet-2021-108093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 02/18/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Postzygotic activating PIK3CA variants cause several phenotypes within the PIK3CA-related overgrowth spectrum (PROS). Variant strength, mosaicism level, specific tissue involvement and overlapping disorders are responsible for disease heterogeneity. We explored these factors in 150 novel patients and in an expanded cohort of 1007 PIK3CA-mutated patients, analysing our new data with previous literature to give a comprehensive picture. METHODS We performed ultradeep targeted next-generation sequencing (NGS) on DNA from skin biopsy, buccal swab or blood using a panel including phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway genes and GNAQ, GNA11, RASA1 and TEK. Additionally, 914 patients previously reported were systematically reviewed. RESULTS 93 of our 150 patients had PIK3CA pathogenetic variants. The merged PROS cohort showed that PIK3CA variants span thorough all gene domains, some were exclusively associated with specific PROS phenotypes: weakly activating variants were associated with central nervous system (CNS) involvement, and strongly activating variants with extra-CNS phenotypes. Among the 57 with a wild-type PIK3CA allele, 11 patients with overgrowth and vascular malformations overlapping PROS had variants in GNAQ, GNA11, RASA1 or TEK. CONCLUSION We confirm that (1) molecular diagnostic yield increases when multiple tissues are tested and by enriching NGS panels with genes of overlapping 'vascular' phenotypes; (2) strongly activating PIK3CA variants are found in affected tissue, rarely in blood: conversely, weakly activating mutations more common in blood; (3) weakly activating variants correlate with CNS involvement, strong variants are more common in cases without; (4) patients with vascular malformations overlapping those of PROS can harbour variants in genes other than PIK3CA.
Collapse
Affiliation(s)
- Alessandro Mussa
- Department of Public Health and Pediatric Sciences, Università degli Studi di Torino, Torino, Italy.,Pediatric Clinical Genetics, Regina Margherita Children's Hospital, Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Matteo Iacoviello
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Diana Carli
- Department of Public Health and Pediatric Sciences, Università degli Studi di Torino, Torino, Italy.,Pediatric Onco-Hematology, Stem Cell Transplantation and Cell Therapy Division, Regina Margherita Children's Hospital, Città Della Salute e Della Scienza di Torino, Torino, Italy
| | - Carlotta Ranieri
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Antonino Pantaleo
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Paola Sabrina Buonuomo
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital IRCCS, Roma, Italy
| | - Rosanna Bagnulo
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | | | - Andrea Bartuli
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital IRCCS, Roma, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Fisciano, Italy
| | - Silvia Maitz
- Clinical Pediatric Genetics Unit, MBBM Foundation, San Gerardo Hospital, Monza, Italy
| | - Daria Carmela Loconte
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Antonella Turchiano
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Marilidia Piglionica
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Annunziata De Luisi
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Francesco Claudio Susca
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Nenad Bukvic
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Cinzia Forleo
- Cardiology Unit, Department of Emergency and Organ Transplantation, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | | | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Roberta Onesimo
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University Hospital, Napoli, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Mother and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Chiara Novelli
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milano, Italy
| | - Luigi Memo
- Department of Pediatrics, Neonatal Intensive Care Unit, San Bortolo Hospital of Vicenza, Vicenza, Italy
| | - Carla Morando
- Department of Pediatrics, Neonatal Intensive Care Unit, San Bortolo Hospital of Vicenza, Vicenza, Italy
| | | | - Maria Accadia
- Medical Genetics Unit, Hospital "Cardinale G. Panico", Tricase, Italy
| | - Martina Capurso
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Carmelo Piscopo
- Medical Genetics Unit, Cardarelli Hospital, Napoli, Italy, Italy
| | - Anna Cereda
- Pediatric Department, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | - Veronica Saletti
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Patrizia Lastella
- Centro Sovraziendale di Assistenza e Ricerca per le Malattie Rare, Internal Medicine Unit 'C. Frugoni', Ospedale Consorziale Policlinico di Bari, Bari, Italy
| | - Romano Tenconi
- Department of Pediatrics, Clinical Genetics, Universita degli Studi di Padova, Padova, Italy
| | - Veronika Dvorakova
- Dermatology Clinic, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Alan D Irvine
- Dermatology Clinic, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Nicoletta Resta
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
15
|
Iourov IY, Gerasimov AP, Zelenova MA, Ivanova NE, Kurinnaia OS, Zabrodskaya YM, Demidova IA, Barantsevich ER, Vasin KS, Kolotii AD, Ushanov VV, Sitovskaya DA, Lobzhanidze TBA, Iuditskaia ME, Iakushev NS, Zhumatov MM, Vorsanova SG, Samochernyh KA. Cytogenomic epileptology. Mol Cytogenet 2023; 16:1. [PMID: 36600272 PMCID: PMC9814426 DOI: 10.1186/s13039-022-00634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Molecular cytogenetic and cytogenomic studies have made a contribution to genetics of epilepsy. However, current genomic research of this devastative condition is generally focused on the molecular genetic aspects (i.e. gene hunting, detecting mutations in known epilepsy-associated genes, searching monogenic causes of epilepsy). Nonetheless, chromosomal abnormalities and copy number variants (CNVs) represent an important part of genetic defects causing epilepsy. Moreover, somatic chromosomal mosaicism and genome/chromosome instability seem to be a possible mechanism for a wide spectrum of epileptic conditions. This idea becomes even more attracting taking into account the potential of molecular neurocytogenetic (neurocytogenomic) studies of the epileptic brain. Unfortunately, analyses of chromosome numbers and structure in the affected brain or epileptogenic brain foci are rarely performed. Therefore, one may conclude that cytogenomic area of genomic epileptology is poorly researched. Accordingly, molecular cytogenetic and cytogenomic studies of the clinical cohorts and molecular neurocytogenetic analyses of the epileptic brain appear to be required. Here, we have performed a theoretical analysis to define the targets of the aforementioned studies and to highlight future directions for molecular cytogenetic and cytogenomic research of epileptic disorders in the widest sense. To succeed, we have formed a consortium, which is planned to perform at least a part of suggested research. Taking into account the nature of the communication, "cytogenomic epileptology" has been introduced to cover the research efforts in this field of medical genomics and epileptology. Additionally, initial results of studying cytogenomic variations in the Russian neurodevelopmental cohort are reviewed with special attention to epilepsy. In total, we have concluded that (i) epilepsy-associated cytogenomic variations require more profound research; (ii) ontological analyses of epilepsy genes affected by chromosomal rearrangements and/or CNVs with unraveling pathways implicating epilepsy-associated genes are beneficial for epileptology; (iii) molecular neurocytogenetic (neurocytogenomic) analysis of postoperative samples are warranted in patients suffering from epileptic disorders.
Collapse
Affiliation(s)
- Ivan Y. Iourov
- grid.466467.10000 0004 0627 319XYurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia ,grid.78028.350000 0000 9559 0613Vorsanova’s Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia ,grid.445984.00000 0001 2224 0652Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
| | - Alexandr P. Gerasimov
- grid.452417.1Research Laboratory of Pediatric Neurosurgery, Polenov Neurosurgical Institute, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Maria A. Zelenova
- grid.466467.10000 0004 0627 319XYurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia ,grid.78028.350000 0000 9559 0613Vorsanova’s Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Natalya E. Ivanova
- grid.452417.1Scientific Department of Polenov Neurosurgical Institute, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Oksana S. Kurinnaia
- grid.466467.10000 0004 0627 319XYurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia ,grid.78028.350000 0000 9559 0613Vorsanova’s Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Yulia M. Zabrodskaya
- grid.452417.1Research Laboratory of Pathomorphology of the Nervous System, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Irina A. Demidova
- grid.466467.10000 0004 0627 319XYurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia ,grid.78028.350000 0000 9559 0613Vorsanova’s Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Evgeny R. Barantsevich
- grid.412460.5Postgraduate Neurology and Manual Medicine Department, Pavlov First Saint-Petersburg State Medical University, Saint Petersburg, Russia
| | - Kirill S. Vasin
- grid.466467.10000 0004 0627 319XYurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia ,grid.78028.350000 0000 9559 0613Vorsanova’s Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Alexey D. Kolotii
- grid.466467.10000 0004 0627 319XYurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia ,grid.78028.350000 0000 9559 0613Vorsanova’s Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Vseslav V. Ushanov
- grid.452417.1Department of Neurosurgery, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Darya A. Sitovskaya
- grid.452417.1Research Laboratory of Pathomorphology of the Nervous System, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Timur B.-A. Lobzhanidze
- grid.445931.e0000 0004 0471 4078Saint Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - Maria E. Iuditskaia
- grid.466467.10000 0004 0627 319XYurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia ,grid.78028.350000 0000 9559 0613Vorsanova’s Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Nikita S. Iakushev
- grid.466467.10000 0004 0627 319XYurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia ,grid.78028.350000 0000 9559 0613Vorsanova’s Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Muslim M. Zhumatov
- grid.445931.e0000 0004 0471 4078Saint Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - Svetlana G. Vorsanova
- grid.466467.10000 0004 0627 319XYurov’s Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia ,grid.78028.350000 0000 9559 0613Vorsanova’s Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Konstantin A. Samochernyh
- grid.452417.1Polenov Neurosurgical Institute, Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
16
|
Pepi C, De Benedictis A, Rossi-Espagnet MC, Cappelletti S, Da Rold M, Falcicchio G, Vigevano F, Marras CE, Specchio N, De Palma L. Hemispherotomy in Infants with Hemimegalencephaly: Long-Term Seizure and Developmental Outcome in Early Treated Patients. Brain Sci 2022; 13:brainsci13010073. [PMID: 36672056 PMCID: PMC9856354 DOI: 10.3390/brainsci13010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
Hemimegalencephaly (HME) is a rare brain congenital malformation, consisting in altered neuronal migration and proliferation within one hemisphere, which is responsible for early onset drug-resistant epilepsy. Hemispherotomy is an effective treatment option for patients with HME and drug-resistant epilepsy. Surgical outcome may be variable among different surgical series, and the long-term neuropsychological trajectory has been rarely defined using a standardized neurocognitive test. We report the epileptological and neuropsychological long-term outcomes of four consecutive HME patients, operated on before the age of three years. All patients were seizure-free and drug-free, and the minimum follow-up duration was of five years. Despite the excellent post-surgical seizure outcome, the long-term developmental outcome is quite variable between patients, ranging from mild to severe intellectual disabilities. Patients showed improvement mainly in communication skills, while visuo-perceptive and coordination abilities were more impaired. Epileptological outcome seems to be improved in early treated patients; however, neuropsychological outcome in HME patients may be highly variable despite early surgery.
Collapse
Affiliation(s)
- Chiara Pepi
- Rare and Complex Epilepsies Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy
| | | | | | - Simona Cappelletti
- Unit of Clinical Psychology, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Martina Da Rold
- Scientific Institute, IRCCS “E. Medea”, Association “La Nostra Famiglia”, 31015 Conegliano, Italy
| | - Giovanni Falcicchio
- Department of Basic Medical Sciences, Neurosciences and Sense Organs—University of Bari Aldo Moro, 70121 Bari, Italy
| | - Federico Vigevano
- Rare and Complex Epilepsies Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy
| | - Carlo Efisio Marras
- Neurosurgery Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Nicola Specchio
- Rare and Complex Epilepsies Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy
- Correspondence: ; Tel.: +39-06-68592645; Fax: +39-06-68592463
| | - Luca De Palma
- Rare and Complex Epilepsies Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy
| |
Collapse
|
17
|
Romano F, Madia F, De Marco P, Ognibene M, Guerrisi S, Scala M, Iacomino M, Baldassari S, Vercellino N, Manunza F, Tallone R, Pavanello M, Piatelli G, Garaventa A, Zara F, Capra V. Clinical and genetic analysis of patients with segmental overgrowth features and somatic mammalian target of rapamycin (mTOR) pathway disruption: Possible novel clinical issues. Birth Defects Res 2022; 114:1440-1448. [DOI: 10.1002/bdr2.2113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ferruccio Romano
- Medical Genetics Unit IRCCS Istituto Giannina Gaslini Genoa Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health University of Genoa Genoa Italy
| | - Francesca Madia
- Medical Genetics Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| | | | - Marzia Ognibene
- Medical Genetics Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| | - Sara Guerrisi
- Medical Genetics Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| | - Marcello Scala
- Medical Genetics Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| | - Michele Iacomino
- Medical Genetics Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| | | | | | | | - Ramona Tallone
- D.O.P.O. Ambulatory for Oncologic Follow‐up IRCCS Istituto Giannina Gaslini Genoa Italy
| | - Marco Pavanello
- Neurosurgery Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| | | | | | - Federico Zara
- Medical Genetics Unit IRCCS Istituto Giannina Gaslini Genoa Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health University of Genoa Genoa Italy
| | - Valeria Capra
- Medical Genetics Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| |
Collapse
|
18
|
Itoh K, Pooh R, Shimokawa O, Fushiki S. Somatic mosaicism of the
PI3K‐AKT‐MTOR
pathway is associated with hemimegalencephaly in fetal brains. Neuropathology 2022; 43:190-196. [PMID: 36325654 DOI: 10.1111/neup.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
It is known that somatic activation of PI3K-AKT-MTOR signaling causes malformations of cortical development varying from hemimegalencephaly to focal cortical dysplasia. However, there have been few reports of fetal cases. Here we report two fetal cases of hemimegalencephaly, one associated with mosaic mutations in PIK3CA and another in AKT1. Both brains showed polymicrogyria, multiple subarachnoidal, subcortical, and subventricular heterotopia resulting from abnormal proliferation of neural stem/progenitor cells, cell differentiation, and migration of neuroblasts. Scattered cell nests immunoreactive for phosphorylated-S6 ribosomal protein (P-RPS6) (Ser240/244) were observed in the polymicrogyria-like cortical plate, intermediate zone, and arachnoid space, suggesting that the PI3K-AKT-MTOR pathway was actually activated in these cells. Pathological analyses could shed light on the mechanisms involved in disrupted brain development in the somatic mosaicism of the PI3K-AKT-MTOR pathway.
Collapse
Affiliation(s)
- Kyoko Itoh
- Department of Pathology and Applied Neurobiology Kyoto Prefectural University of Medicine, Graduate School of Medical Science Kyoto Japan
| | - Ritsuko Pooh
- CRIFM Prenatal Medical Clinic, Fetal Diagnostic Center Fetal Brain Center Osaka Japan
- Clinical laboratory Ritz Medical Co., Ltd. Osaka Japan
| | | | - Shinji Fushiki
- Department of Pathology and Applied Neurobiology Kyoto Prefectural University of Medicine, Graduate School of Medical Science Kyoto Japan
| |
Collapse
|
19
|
Wang Y, Zhang R, Li J, Han X, Lu H, Su J, Liu Y, Tian X, Wang M, Xiong Y, Lan T, Zhang G, Liu Z. MiR-22-3p and miR-29a-3p synergistically inhibit hepatic stellate cell activation by targeting AKT3. Exp Biol Med (Maywood) 2022; 247:1712-1731. [PMID: 35833537 PMCID: PMC9638961 DOI: 10.1177/15353702221108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hepatic fibrosis (HF) is a worldwide health problem for which there is no medically effective drug treatment at present, and which is characterized by activation of hepatic stellate cells (HSCs) and excessive extracellular matrix (ECM) deposition. The HF model in cholestatic rats by ligating the common bile duct was induced and the differentially expressed miRNAs in the liver tissues were analyzed by microarray, which showed that miR-22-3p and miR-29a-3p were significantly downregulated in bile-duct ligation (BDL) rat liver compared with the sham control. The synergistic anti-HF activity and molecular mechanism of miR-22-3p and miR-29a-3p by targeting AKT serine/threonine kinase 3 (AKT3) in HSCs were explored. The expression levels of miR-22-3p and miR-29a-3p were downregulated in activated LX-2 and human primary normal hepatic fibroblasts (NFs), whereas AKT3 was found to be upregulated in BDL rat liver and activated LX-2 cells. The proliferation, colony-forming, and migration ability of LX-2 were inhibited synergistically by miR-22-3p and miR-29a-3p. In addition, cellular senescence was induced and the expressions of the LX-2 fibrosis markers COL1A1 and α-SMA were inhibited by miR-22-3p and miR-29a-3p synergistically. Subsequently, these two miRNAs binding to the 3'UTR of AKT3 mRNA was predicted and evidenced by the luciferase reporter assay. Furthermore, the proliferation, migration, colony-forming ability, and the expression levels of COL1A1 and α-SMA were promoted and cellular senescence was inhibited by AKT3 in LX-2 cells. Thus, miR-22-3p/miR-29a-3p/AKT3 regulates the activation of HSCs, providing a new avenue in the study and treatment of HF.
Collapse
Affiliation(s)
- Yitong Wang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Ronghua Zhang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Jingwu Li
- The Cancer Institute, Hebei Key Laboratory of Molecular Oncology, Tangshan People’s Hospital, Tangshan 063001, China
| | - Xiangyang Han
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Hongjian Lu
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Jinghui Su
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yutan Liu
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Xiaoli Tian
- Paraplegia Sanatorium of Tangshan, Tangshan 063000, China
| | - Meimei Wang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yanan Xiong
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Tao Lan
- Hepatobiliary Pancreatic Surgery Department, Cangzhou People’s Hospital, Cangzhou 061000, China
| | - Guangling Zhang
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, School of Clinical Medicine, North China University of Science and Technology, Tangshan 063210, China,Guangling Zhang.
| | - Zhiyong Liu
- Health Science Center, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
20
|
Ververi A, Zagaglia S, Menzies L, Baptista J, Caswell R, Baulac S, Ellard S, Lynch S, Jacques TS, Chawla MS, Heier M, Kulseth MA, Mero IL, Våtevik AK, Kraoua I, Ben Rhouma H, Ben Younes T, Miladi Z, Ben Youssef Turki I, Jones WD, Clement E, Eltze C, Mankad K, Merve A, Parker J, Hoskins B, Pressler R, Sudhakar S, DeVile C, Homfray T, Kaliakatsos M, Robinson R, Keim SMB, Habibi I, Reymond A, Sisodiya SM, Hurst JA. Germline homozygous missense DEPDC5 variants cause severe refractory early-onset epilepsy, macrocephaly and bilateral polymicrogyria. Hum Mol Genet 2022; 32:580-594. [PMID: 36067010 PMCID: PMC9896472 DOI: 10.1093/hmg/ddac225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 02/07/2023] Open
Abstract
DEPDC5 (DEP Domain-Containing Protein 5) encodes an inhibitory component of the mammalian target of rapamycin (mTOR) pathway and is commonly implicated in sporadic and familial focal epilepsies, both non-lesional and in association with focal cortical dysplasia. Germline pathogenic variants are typically heterozygous and inactivating. We describe a novel phenotype caused by germline biallelic missense variants in DEPDC5. Cases were identified clinically. Available records, including magnetic resonance imaging and electroencephalography, were reviewed. Genetic testing was performed by whole exome and whole-genome sequencing and cascade screening. In addition, immunohistochemistry was performed on skin biopsy. The phenotype was identified in nine children, eight of which are described in detail herein. Six of the children were of Irish Traveller, two of Tunisian and one of Lebanese origin. The Irish Traveller children shared the same DEPDC5 germline homozygous missense variant (p.Thr337Arg), whereas the Lebanese and Tunisian children shared a different germline homozygous variant (p.Arg806Cys). Consistent phenotypic features included extensive bilateral polymicrogyria, congenital macrocephaly and early-onset refractory epilepsy, in keeping with other mTOR-opathies. Eye and cardiac involvement and severe neutropenia were also observed in one or more patients. Five of the children died in infancy or childhood; the other four are currently aged between 5 months and 6 years. Skin biopsy immunohistochemistry was supportive of hyperactivation of the mTOR pathway. The clinical, histopathological and genetic evidence supports a causal role for the homozygous DEPDC5 variants, expanding our understanding of the biology of this gene.
Collapse
Affiliation(s)
| | | | | | | | - Richard Caswell
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Stephanie Baulac
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, F-75013 Paris, France
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Sally Lynch
- Academic Centre on Rare Diseases, University College Dublin School of Medicine and Medical Science, Dublin, Ireland,Department of Clinical Genetics, Children's Health Ireland (CHI) at Crumlin, Dublin, Ireland
| | | | - Thomas S Jacques
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK,Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Martin Heier
- Department of Clinical Neuroscience for Children, Oslo University Hospital, Oslo, Norway
| | - Mari Ann Kulseth
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Ichraf Kraoua
- Research Laboratory LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia. Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hanene Ben Rhouma
- Research Laboratory LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia. Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Thouraya Ben Younes
- Research Laboratory LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia. Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Zouhour Miladi
- Research Laboratory LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia. Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ilhem Ben Youssef Turki
- Research Laboratory LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia. Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Wendy D Jones
- Department of Clinical Genetics & Genomic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Emma Clement
- Department of Clinical Genetics & Genomic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Christin Eltze
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ashirwad Merve
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jennifer Parker
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Bethan Hoskins
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ronit Pressler
- Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sniya Sudhakar
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Catherine DeVile
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Tessa Homfray
- SW Thames Regional Genetics Service, St George's Hospital, St George's University of London, London, UK
| | - Marios Kaliakatsos
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ponnudas (Prab) Prabhakar
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Robert Robinson
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Imen Habibi
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Sanjay M Sisodiya
- To whom correspondence should be addressed at: Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | | |
Collapse
|
21
|
Watson KD, Kim KR, Blatt J. How we approach complex vascular anomalies and overgrowth syndromes. Pediatr Blood Cancer 2022; 69 Suppl 3:e29273. [PMID: 36070209 DOI: 10.1002/pbc.29273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/19/2023]
Abstract
Vascular anomalies, both vascular tumors and vascular malformations, can occur in isolation or as part of syndromes including those which feature phenotypic overgrowth. To update what is known about vascular anomalies associated with overgrowth, PubMed was searched for "overgrowth syndromes and vascular anomalies or malformations." PubMed, OMIM, and the Rare Disease Database also were searched for specific diagnoses. We review individual overgrowth syndromes, provide a case-based approach to the clinical, radiographic, pathologic, and genetic basis for diagnosis, to complications of both the vascular anomalies and the overgrowth, and emphasize the need for a multidisciplinary approach to care.
Collapse
Affiliation(s)
- Katherine D Watson
- Division of Pediatric Hematology/Oncology, Children's Cancer and Blood Disorders Center, Children's Hospital of the King's Daughters, Norfolk, Virginia, USA
| | - Kyung R Kim
- Division of Vascular & Interventional Radiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Julie Blatt
- Division of Pediatric Hematology Oncology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
22
|
Zuffardi O, Fichera M, Bonaglia MC. The embryo battle against adverse genomes: Are de novo terminal deletions the rescue of unfavorable zygotic imbalances? Eur J Med Genet 2022; 65:104532. [PMID: 35724817 DOI: 10.1016/j.ejmg.2022.104532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 04/02/2022] [Accepted: 05/21/2022] [Indexed: 11/03/2022]
Abstract
De novo distal deletions are structural variants considered to be already present in the zygote. However, investigations especially in the prenatal setting have documented that they are often in mosaic with cell lines in which the same deleted chromosome shows different types of aberrations such as: 1) neutral copy variants with loss of heterozygosity that replace the deleted region with equivalent portions of the homologous chromosome and create distal uniparental disomy (UPD); 2) derivative chromosomes where the deleted one ends with the distal region of another chromosome or has the shape of a ring; 3) U-type mirror dicentric or inv-dup del rearrangements. Unstable dicentrics had already been entailed as causative of terminal deletions even when no trace of the reciprocal inv-dup del had been detected. To clarify the mechanism of origin of distal deletions, we examined PubMed using as keywords: complex/mosaic chromosomal deletions, distal UPD, U-type dicentrics, inv-dup del chromosomes, excluding the recurrent inv-dup del(8p)s which are known to originate by NAHR at the maternal meiosis. The literature has shown that U-type dicentrics leading to nearly complete trisomy and therefore incompatible with zygotic survival underlie many types of de novo unbalanced rearrangements, including terminal deletions. In the early embryo, the position of the postzygotic breaks of the dicentric, the different ways of acquiring telomeres by the broken portions and the selection of the most favorable cell lines in the different tissues determine the prevalence of one or the other rearrangement. Multiple lines with simple terminal deletions, inv-dup dels, unbalanced translocations and segmental UPDs can coexist in various mosaic combinations although it is rare to identify them all in the blood. Regarding the origin of the dicentric, among the 30 cases of non-recurrent inv-dup del with sufficient genotyping information, paternal origin was markedly prevalent with consistently identical polymorphisms within the duplication region, regardless of parental origin. The non-random parental origin made any postzygotic origin unlikely and suggested the occurrence of these dicentrics mainly in spermatogenesis. This study strengthens the evidence that non-recurrent de novo structural rearrangements are often secondary to the rescue of a zygotic genome incompatible with embryo survival.
Collapse
Affiliation(s)
- Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| | - Marco Fichera
- Department of Biomedical and Biotechnological Sciences, Medical Genetics, University of Catania, Catania, Italy; Oasi Research Institute-IRCCS, Troina, Italy.
| | - Maria Clara Bonaglia
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy.
| |
Collapse
|
23
|
Rotunno R, Diociaiuti A, Pisaneschi E, Carnevale C, Dentici M, El Hachem M. PIK3CA-related overgrowth with an uncommon phenotype: case report. Ital J Pediatr 2022; 48:71. [PMID: 35551640 PMCID: PMC9097398 DOI: 10.1186/s13052-022-01268-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/02/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Megalencephaly-capillary malformation syndrome is a rare multiple-malformation syndrome secondary to somatic activating mutations in the PI3K-AKT-MTOR pathway. This is included in a heterogeneous group of disorders, now defined "PIK3CA-related overgrowth spectrum". CASE PRESENTATION We report a 22-months-old female presenting an uncommon phenotype associated with a genetic mosaicism in the PIK3CA gene, detected on DNA extracted from blood peripheral and tissue biopsy. CONCLUSIONS NGS is the preferred method for molecular diagnosis of PROS on affected skin and overgrown tissues as primary samples. The wide phenotypic variability is based on the distribution of mosaicism, in fact the same mutation can cause different PIK3CA related disorders. Continuous understanding of the clinical spectrum and of molecular basis of PROS and their overlap will lead to improve diagnosis, management and new treatment strategies.
Collapse
Affiliation(s)
- Roberta Rotunno
- Dermatology Unit, Bambino Gesù Children's Hospital-IRCCS, P.zza St. Onofrio 4, 00165, Rome, Italy.
- VASCERN VASCA and ERN-Skin European Reference Centre, Rome, Italy.
| | - Andrea Diociaiuti
- Dermatology Unit, Bambino Gesù Children's Hospital-IRCCS, P.zza St. Onofrio 4, 00165, Rome, Italy
- VASCERN VASCA and ERN-Skin European Reference Centre, Rome, Italy
| | - Elisa Pisaneschi
- Medical Genetics Laboratory, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - Claudia Carnevale
- Dermatology Unit, Bambino Gesù Children's Hospital-IRCCS, P.zza St. Onofrio 4, 00165, Rome, Italy
- VASCERN VASCA and ERN-Skin European Reference Centre, Rome, Italy
| | - Marialisa Dentici
- Unit of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - May El Hachem
- Dermatology Unit, Bambino Gesù Children's Hospital-IRCCS, P.zza St. Onofrio 4, 00165, Rome, Italy
- VASCERN VASCA and ERN-Skin European Reference Centre, Rome, Italy
| |
Collapse
|
24
|
Zhang Y, Zhang Y, Liang J, Kuang HX, Xia YG. Exploring the effects of different processing techniques on the composition and biological activity of Platycodon grandiflorus (Jacq.) A.DC. by metabonomics and pharmacologic design. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:114991. [PMID: 35038566 DOI: 10.1016/j.jep.2022.114991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/03/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Platycodon grandiflorus (Jacq.) A.DC. (PG) is a common natural medicine with a history of thousands of years. The processing products were mainly recorded as raw, honey-processed, wine-fried, yellow-fried, and bran-fried PG, which were respectively used for different clinical purposes. Therefore, it is necessary to study the chemical composition and pharmacological activity of PG after processing. AIM OF THE STUDY To explore the effects of different processing methods on the composition and biological activity of PG using metabonomics and pharmacologic design. MATERIALS AND METHODS UPLC-QTOF-MS combined with multivariate statistical analysis was used to identify different metabolites before and after the processing of PG. Network pharmacology was used to construct the metabolite-target-disease network. CCK-8 assay, flow cytometry, and western blotting were used to detect cell viability, apoptosis, and the expression of related proteins, respectively. RESULT A total of 43 differentially expressed metabolites (VIP >10) were detected and identified in the analyzed groups. Based on their chemical nature, these metabolites were divided into five categories, namely, saccharolipids, flavonoid glycosides, alkynes, saponins, and lipids (including fatty acids, phospholipids, fatty aldehydes, and sterols). The content of lipids in the five processed groups (CH, FC, JZ, MZI, and MZG) was found to be higher than that in raw PG. In particular, the processing approaches explored herein increased the contents of many phospholipids, such as, glycerophosphoinositols, phosphatidic acids, and lysophosphatidyle·thanolamines. The 8 metabolites were found by venn diagram to distinguish different processed products (metabolites 2, 6, 19, 20, 21, 26, 28, and 38). The results of network pharmacology analysis showed that the primary anti-cancer targets of 43 metabolites of PG processing products are PIK3CA, Akt, and STAT3, and based on CCK-8 assay, MZI has a significant killing effect on A549 cells, compared to other processing techniques. Moreover, flow cytometry analysis showed that the cells treated with MZI exhibit significantly increased cell apoptosis, and that the effect is dose-dependent. Finally, the western blots performed herein demonstrated that the MZI effectively inhibits the expression of p-Akt and p-STAT3, which is consistent with the network pharmacology results. CONCLUSION Depending on the processing technique, the contents of 43 different metabolites in PG were varied significantly. Specifically, the contents of phospholipids and fatty acids increase, whereas the contents of large Mw saponins decrease. Compared to the other investigated processing methods, MZI increases the potential of PG in inducing cell apoptosis and inhibiting cell proliferation by affecting the Akt and STAT3 signaling pathways. The increased levels of 3-O-β-glucopyranosyl polygalacic acid and platycoside F after honey-frying confirm these results.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Yi Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China.
| |
Collapse
|
25
|
Pirozzi F, Berkseth M, Shear R, Gonzalez L, Timms AE, Sulc J, Pao E, Oyama N, Forzano F, Conti V, Guerrini R, Doherty ES, Saitta SC, Lockwood CM, Pritchard CC, Dobyns WB, Novotny E, Wright JNN, Saneto RP, Friedman S, Hauptman J, Ojemann J, Kapur RP, Mirzaa GM. Profiling PI3K-AKT-MTOR variants in focal brain malformations reveals new insights for diagnostic care. Brain 2022; 145:925-938. [PMID: 35355055 PMCID: PMC9630661 DOI: 10.1093/brain/awab376] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
Focal malformations of cortical development including focal cortical dysplasia, hemimegalencephaly and megalencephaly, are a spectrum of neurodevelopmental disorders associated with brain overgrowth, cellular and architectural dysplasia, intractable epilepsy, autism and intellectual disability. Importantly, focal cortical dysplasia is the most common cause of focal intractable paediatric epilepsy. Gain and loss of function variants in the PI3K-AKT-MTOR pathway have been identified in this spectrum, with variable levels of mosaicism and tissue distribution. In this study, we performed deep molecular profiling of common PI3K-AKT-MTOR pathway variants in surgically resected tissues using droplet digital polymerase chain reaction (ddPCR), combined with analysis of key phenotype data. A total of 159 samples, including 124 brain tissue samples, were collected from 58 children with focal malformations of cortical development. We designed an ultra-sensitive and highly targeted molecular diagnostic panel using ddPCR for six mutational hotspots in three PI3K-AKT-MTOR pathway genes, namely PIK3CA (p.E542K, p.E545K, p.H1047R), AKT3 (p.E17K) and MTOR (p.S2215F, p.S2215Y). We quantified the level of mosaicism across all samples and correlated genotypes with key clinical, neuroimaging and histopathological data. Pathogenic variants were identified in 17 individuals, with an overall molecular solve rate of 29.31%. Variant allele fractions ranged from 0.14 to 22.67% across all mutation-positive samples. Our data show that pathogenic MTOR variants are mostly associated with focal cortical dysplasia, whereas pathogenic PIK3CA variants are more frequent in hemimegalencephaly. Further, the presence of one of these hotspot mutations correlated with earlier onset of epilepsy. However, levels of mosaicism did not correlate with the severity of the cortical malformation by neuroimaging or histopathology. Importantly, we could not identify these mutational hotspots in other types of surgically resected epileptic lesions (e.g. polymicrogyria or mesial temporal sclerosis) suggesting that PI3K-AKT-MTOR mutations are specifically causal in the focal cortical dysplasia-hemimegalencephaly spectrum. Finally, our data suggest that ultra-sensitive molecular profiling of the most common PI3K-AKT-MTOR mutations by targeted sequencing droplet digital polymerase chain reaction is an effective molecular approach for these disorders with a good diagnostic yield when paired with neuroimaging and histopathology.
Collapse
Affiliation(s)
- Filomena Pirozzi
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Matthew Berkseth
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Rylee Shear
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Andrew E Timms
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Josef Sulc
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Emily Pao
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nora Oyama
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Francesca Forzano
- Department of Clinical Genetics, Guy's and St Thomas NHS Foundation Trust and King's College London, London, UK
| | - Valerio Conti
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Italy
| | - Emily S Doherty
- Section of Clinical Genetics, Carilion Clinic Children's Hospital, Roanoke, VA, USA
| | - Sulagna C Saitta
- Division of Medical Genetics, Department of Obstetrics and Gynecology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Christina M Lockwood
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Brotman-Baty Institute for Precision Medicine, University of Minnesota, Seattle, WA, USA
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Brotman-Baty Institute for Precision Medicine, University of Minnesota, Seattle, WA, USA
| | - William B Dobyns
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Edward Novotny
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Division of Pediatric Neurology, Department of Neurology, Seattle Children's Hospital, Seattle, WA, USA.,Department of Neurology, University of Washington, Seattle, WA, USA
| | - Jason N N Wright
- Department of Radiology, Seattle Children's Hospital, Seattle, WA, USA
| | - Russell P Saneto
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Division of Pediatric Neurology, Department of Neurology, Seattle Children's Hospital, Seattle, WA, USA
| | - Seth Friedman
- Center for Clinical and Translational Research, Seattle Children's Hospital, Seattle, WA, USA
| | - Jason Hauptman
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Jeffrey Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Raj P Kapur
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA, USA
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Brotman-Baty Institute for Precision Medicine, University of Minnesota, Seattle, WA, USA.,Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
26
|
Shao E, Chang CW, Li Z, Yu X, Ho K, Zhang M, Wang X, Simms J, Lo I, Speckart J, Holtzman J, Yu GQ, Roberson ED, Mucke L. TAU ablation in excitatory neurons and postnatal TAU knockdown reduce epilepsy, SUDEP, and autism behaviors in a Dravet syndrome model. Sci Transl Med 2022; 14:eabm5527. [PMID: 35476595 DOI: 10.1126/scitranslmed.abm5527] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular accumulation of TAU aggregates is a hallmark of several neurodegenerative diseases. However, global genetic reduction of TAU is beneficial also in models of other brain disorders that lack such TAU pathology, suggesting a pathogenic role of nonaggregated TAU. Here, conditional ablation of TAU in excitatory, but not inhibitory, neurons reduced epilepsy, sudden unexpected death in epilepsy, overactivation of the phosphoinositide 3-kinase-AKT-mammalian target of rapamycin pathway, brain overgrowth (megalencephaly), and autism-like behaviors in a mouse model of Dravet syndrome, a severe epileptic encephalopathy of early childhood. Furthermore, treatment with a TAU-lowering antisense oligonucleotide, initiated on postnatal day 10, had similar therapeutic effects in this mouse model. Our findings suggest that excitatory neurons are the critical cell type in which TAU has to be reduced to counteract brain dysfunctions associated with Dravet syndrome and that overall cerebral TAU reduction could have similar benefits, even when initiated postnatally.
Collapse
Affiliation(s)
- Eric Shao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Che-Wei Chang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Zhiyong Li
- Alzheimer's Disease Center, Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xinxing Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Michelle Zhang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Xin Wang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jeffrey Simms
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jessica Speckart
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julia Holtzman
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Erik D Roberson
- Alzheimer's Disease Center, Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA.,Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
27
|
Chen WL, Pao E, Owens J, Glass I, Pritchard C, Shirts BH, Lockwood C, Mirzaa GM. The utility of cerebrospinal fluid-derived cell-free DNA in molecular diagnostics for the PIK3CA-related megalencephaly-capillary malformation (MCAP) syndrome: a case report. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006188. [PMID: 35483878 PMCID: PMC9059787 DOI: 10.1101/mcs.a006188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
The megalencephaly-capillary malformation (MCAP) syndrome is an overgrowth disorder caused by mosaic gain-of-function variants in PIK3CA It is characterized by megalencephaly or hemimegalencephaly, vascular malformations, somatic overgrowth, among other features. Epilepsy is commonly associated with MCAP, and a subset of individuals have cortical malformations requiring resective epilepsy surgery. Like other mosaic disorders, establishing a molecular diagnosis is largely achieved by screening lesional tissues (such as brain or skin), with a low diagnostic yield from peripheral tissues (such as blood). Therefore, in individuals with MCAP in whom lesional tissues are scarce or unavailable or those ineligible for epilepsy surgery, establishing a molecular diagnosis can be challenging. Here we report on the utility of cerebrospinal fluid (CSF)-derived cfDNA for the molecular diagnosis of an individual with MCAP syndrome harboring a mosaic PIK3CA variant (c.3139C > T, p.His1047Tyr). The proband presented with asymmetric megalencephaly without significant dysgyria. He did not have refractory epilepsy and was therefore not a candidate for epilepsy surgery. However, he developed diffuse large B-cell lymphoma (DLBCL) in late childhood, with four CSF samples obtained via lumbar puncture for cancer staging during which one sample was collected for cfDNA extraction and sequencing. PIK3CA variant allele fractions in CSF cell-free DNA (cfDNA), skin fibroblasts, and peripheral blood were 3.08%, 37.31%, and 2.04%, respectively. This report illustrates the utility of CSF-derived cfDNA in MCAP syndrome. Minimally invasive-based molecular diagnostic approaches utilizing cfDNA not only facilitate accurate genetic diagnosis but also have important therapeutic implications for individuals with refractory epilepsy as repurposed PI3K-AKT-MTOR pathway-inhibitors become more widely available.
Collapse
Affiliation(s)
- Wei-Liang Chen
- School of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington 98195, USA
| | - Emily Pao
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101, USA
| | - James Owens
- Department of Neurology, University of Washington, Seattle, Washington 98195, USA
| | - Ian Glass
- Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | - Colin Pritchard
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Brain H. Shirts
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Christina Lockwood
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Ghayda M. Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101, USA;,Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA;,The Brotman Baty Institute for Precision Medicine, Seattle, Washington 98195, USA
| |
Collapse
|
28
|
Bourgon N, Carmignac V, Sorlin A, Duffourd Y, Philippe C, Thauvin-Robinet C, Guibaud L, Faivre L, Vabres P, Kuentz P. Clinical and molecular data in cases of prenatal localized overgrowth disorder: major implication of genetic variants in PI3K-AKT-mTOR signaling pathway. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 59:532-542. [PMID: 34170046 DOI: 10.1002/uog.23715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES To describe clinical and molecular findings in a French multicenter cohort of fetuses with prenatal diagnosis of congenital abnormality and suspicion of a localized overgrowth disorder (LOD) suggestive of genetic variants in the PI3K-AKT-mTOR signaling pathway. METHODS We analyzed retrospectively data obtained between 1 January 2013 and 1 May 2020 from fetuses with brain and/or limb overgrowth referred for molecular diagnosis of PI3K-AKT-mTOR pathway genes by next-generation sequencing (NGS) using pathological tissue obtained by fetal autopsy. We also assessed the diagnostic yield of amniotic fluid. RESULTS During the study period, 21 subjects with LOD suspected of being secondary to a genetic variant of the PI3K-AKT-mTOR pathway were referred for analysis. Of these, 17 fetuses had brain overgrowth, including six with isolated megalencephaly (MEG) and 11 with hemimegalencephaly (HMEG). Of the six with MEG, germline variants were identified in four cases, in either PIK3R2, AKT3 or MTOR, and a postzygotic PIK3R2 variant was found in the other two cases. Of the 11 with HMEG, a postzygotic PIK3CA variant was found in three fetuses with extracerebral features of PIK3CA-related overgrowth spectrum, and in seven fetuses with isolated HMEG. No pathogenic variant was identified in the 11th case with HMEG. Four fetuses with limb overgrowth also had one or more lymphatic malformations (LM) and harbored a postzygotic PIK3CA variant. NGS on cultured amniocytes performed in 10 cases, of which nine had been found positive on analysis of pathological fetal tissue, showed variants in four, in either PIK3CA, PIK3R2 or AKT3. CONCLUSIONS Isolated MEG or HMEG may lead to identification of genetic variants in the PI3K-AKT-mTOR signaling pathway. Cases of limb overgrowth and LM or isolated HMEG are likely associated with PIK3CA variants. © 2021 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- N Bourgon
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Service d'Obstétrique-Maternité, Chirurgie Médecine et Imagerie Fœtale, Hôpital Necker Enfants Malades, AP-HP, Paris, France
| | - V Carmignac
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Centre de Référence des Maladies Rares de la Peau et des Muqueuses d'Origine Génétique (MAGEC), Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
| | - A Sorlin
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Centre de Référence des Maladies Rares de la Peau et des Muqueuses d'Origine Génétique (MAGEC), Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Centre de Génétique et Centre de Référence 'Anomalies du Développement et Syndromes Malformatifs de l'Inter-région Est', Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
| | - Y Duffourd
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
| | - C Philippe
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
| | - C Thauvin-Robinet
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Centre de Génétique et Centre de Référence 'Anomalies du Développement et Syndromes Malformatifs de l'Inter-région Est', Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
| | - L Guibaud
- Service d'Imagerie Médicale, Hôpital Femme-Mère-Enfants, Hospices Civils de Lyon, Bron, France
| | - L Faivre
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Centre de Génétique et Centre de Référence 'Anomalies du Développement et Syndromes Malformatifs de l'Inter-région Est', Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
| | - P Vabres
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Centre de Référence des Maladies Rares de la Peau et des Muqueuses d'Origine Génétique (MAGEC), Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Service de Dermatologie, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
| | - P Kuentz
- INSERM UMR 1231, Equipe 'Génétique des Anomalies du Développement', Université de Bourgogne Franche-Comté, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Centre de Référence des Maladies Rares de la Peau et des Muqueuses d'Origine Génétique (MAGEC), Centre Hospitalier Universitaire de Dijon Bourgogne, Dijon, France
- Oncobiologie Génétique Bioinformatique, PCBio, Centre Hospitalier Universitaire de Besançon, Besançon, France
| |
Collapse
|
29
|
Practical Genetics for the Neuroradiologist: Adding Value in Neurogenetic Disease. Acad Radiol 2022; 29 Suppl 3:S1-S27. [PMID: 33495073 DOI: 10.1016/j.acra.2020.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/19/2020] [Accepted: 12/27/2020] [Indexed: 11/23/2022]
Abstract
Genetic discoveries have transformed our understanding of many neurologic diseases. Identification of specific causal pathogenic variants has improved understanding of pathophysiology and enabled replacement of many confusing eponyms and acronyms with more meaningful and clinically relevant genetics-based terminology. In this era of rapid scientific advancement, multidisciplinary collaboration among pediatricians, neurologists, geneticists, radiologists, and other members of the health care team is increasingly important in the care of patients with genetic neurologic diseases. Radiologists familiar with neurogenetic disease add value by (1) recognizing constellations of characteristic imaging findings that are associated with a genetic disease before one is clinically suspected; (2) predicting the most likely genotypes for a given imaging phenotype in clinically suspected genetic disease; and (3) providing detailed and accurate descriptions of the imaging phenotype in challenging cases with unknown or uncertain genotypes. This review aims to increase awareness and understanding of pathogenic variants relating to neurologic disease by (1) briefly reviewing foundational knowledge of chromosomes, inheritance patterns, and mutagenesis; (2) providing concrete examples of and detailed information about specific neurologic diseases resulting from pathogenic variants; and (3) highlighting clinical and imaging features that are of greatest relevance for the radiologist.
Collapse
|
30
|
Ossola C, Kalebic N. Roots of the Malformations of Cortical Development in the Cell Biology of Neural Progenitor Cells. Front Neurosci 2022; 15:817218. [PMID: 35069108 PMCID: PMC8766818 DOI: 10.3389/fnins.2021.817218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
The cerebral cortex is a structure that underlies various brain functions, including cognition and language. Mammalian cerebral cortex starts developing during the embryonic period with the neural progenitor cells generating neurons. Newborn neurons migrate along progenitors’ radial processes from the site of their origin in the germinal zones to the cortical plate, where they mature and integrate in the forming circuitry. Cell biological features of neural progenitors, such as the location and timing of their mitoses, together with their characteristic morphologies, can directly or indirectly regulate the abundance and the identity of their neuronal progeny. Alterations in the complex and delicate process of cerebral cortex development can lead to malformations of cortical development (MCDs). They include various structural abnormalities that affect the size, thickness and/or folding pattern of the developing cortex. Their clinical manifestations can entail a neurodevelopmental disorder, such as epilepsy, developmental delay, intellectual disability, or autism spectrum disorder. The recent advancements of molecular and neuroimaging techniques, along with the development of appropriate in vitro and in vivo model systems, have enabled the assessment of the genetic and environmental causes of MCDs. Here we broadly review the cell biological characteristics of neural progenitor cells and focus on those features whose perturbations have been linked to MCDs.
Collapse
|
31
|
Endosomal trafficking defects alter neural progenitor proliferation and cause microcephaly. Nat Commun 2022; 13:16. [PMID: 35013230 PMCID: PMC8748540 DOI: 10.1038/s41467-021-27705-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
Primary microcephaly and megalencephaly are severe brain malformations defined by reduced and increased brain size, respectively. Whether these two pathologies arise from related alterations at the molecular level is unclear. Microcephaly has been largely associated with centrosomal defects, leading to cell death. Here, we investigate the consequences of WDR81 loss of function, which causes severe microcephaly in patients. We show that WDR81 regulates endosomal trafficking of EGFR and that loss of function leads to reduced MAP kinase pathway activation. Mouse radial glial progenitor cells knocked-out for WDR81 exhibit reduced proliferation rate, subsequently leading to reduced brain size. These proliferation defects are rescued in vivo by expressing a megalencephaly-causing mutant form of Cyclin D2. Our results identify the endosomal machinery as an important regulator of proliferation rates and brain growth, demonstrating that microcephaly and megalencephaly can be caused by opposite effects on the proliferation rate of radial glial progenitors. Mutations in the human WDR81 gene result in severe microcephaly. Carpentieri et al. show that mutation of WDR81, a gene coding for an endosomal regulator, alters intracellular processing of the EGF receptor, leading to reduced proliferation rates of neuronal progenitors and to microcephaly.
Collapse
|
32
|
Hart AR, Vasudevan C, Griffiths PD, Foulds N, Piercy H, de Lacy P, Boxall S, Howe D, Vollmer B. Antenatal counselling for prospective parents whose fetus has a neurological anomaly: part 2, risks of adverse outcome in common anomalies. Dev Med Child Neurol 2022; 64:23-39. [PMID: 34482539 DOI: 10.1111/dmcn.15043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022]
Abstract
After diagnosis of a fetal neurological anomaly, prospective parents want to know the best and worst-case scenarios and an estimation of the risk to their infant of having an atypical developmental outcome. The literature on developmental outcomes for fetal neurological anomalies is poor: studies are characterized by retrospective design, small sample size, often no standardized assessment of development, and differing definitions of anomalies. This review provides an aide-memoir on the risks of adverse neurodevelopmental outcome for ventriculomegaly, cortical anomalies, microcephaly, macrocephaly, agenesis of the corpus callosum, posterior fossa anomalies, and myelomeningocele, to assist healthcare professionals in counselling. The data in this review should be used alongside recommendations on counselling and service design described in part 1 to provide antenatal counselling.
Collapse
Affiliation(s)
- Anthony R Hart
- Department of Perinatal and Paediatric Neurology, Sheffield Children's NHS Foundation Trust, Ryegate Children's Centre, Sheffield, UK
| | - Chakra Vasudevan
- Department of Neonatology, Bradford Royal Infirmary, Bradford, UK
| | - Paul D Griffiths
- Academic Unit of Radiology, Royal Hallamshire Hospital, University of Sheffield, Sheffield, UK
| | - Nicola Foulds
- Department of Clinical Genetics, Princess Anne Hospital, University Southampton NHS Foundation Trust, Southampton, UK
| | - Hilary Piercy
- The Centre for Health and Social Care, Sheffield Hallam University, Sheffield, UK
| | - Patricia de Lacy
- Department of Paediatric Neuosurgery, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Sally Boxall
- Wessex Fetal Medicine Unit, Princess Anne Hospital, Southampton, UK
| | - David Howe
- Wessex Fetal Medicine Unit, Princess Anne Hospital, Southampton, UK
| | - Brigitte Vollmer
- Clinical and Experimental Sciences, Faculty of Medicine, Paediatric and Neonatal Neurology, Southampton Children's Hospital, University Hospital Southampton NHS Foundation Trust, University of Southampton, Southampton, UK
| |
Collapse
|
33
|
Campion TJ, Sheikh IS, Smit RD, Iffland PH, Chen J, Junker IP, Krynska B, Crino PB, Smith GM. Viral expression of constitutively active AKT3 induces CST axonal sprouting and regeneration, but also promotes seizures. Exp Neurol 2021; 349:113961. [PMID: 34953897 DOI: 10.1016/j.expneurol.2021.113961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/01/2022]
Abstract
Increasing the intrinsic growth potential of neurons after injury has repeatedly been shown to promote some level of axonal regeneration in rodent models. One of the most studied pathways involves the activation of the PI3K/AKT/mTOR pathways, primarily by reducing the levels of PTEN, a negative regulator of PI3K. Likewise, activation of signal transducer and activator of transcription 3 (STAT3) has previously been shown to boost axonal regeneration and sprouting within the injured nervous system. Here, we examined the regeneration of the corticospinal tract (CST) after cortical expression of constitutively active (ca) Akt3 and STAT3, both separately and in combination. Overexpression of caAkt3 induced regeneration of CST axons past the injury site independent of caSTAT3 overexpression. STAT3 demonstrated improved axon sprouting compared to controls and contributed to a synergistic improvement in effects when combined with Akt3 but failed to promote axonal regeneration as an individual therapy. Despite showing impressive axonal regeneration, animals expressing Akt3 failed to show any functional improvement and deteriorated with time. During this period, we observed progressive Akt3 dose-dependent increase in behavioral seizures. Histology revealed increased phosphorylation of ribosomal S6 protein within the unilateral cortex, increased neuronal size, microglia activation and hemispheric enlargement (hemimegalencephaly).
Collapse
Affiliation(s)
- Thomas J Campion
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America; Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Imran S Sheikh
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Rupert D Smit
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America; Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Philip H Iffland
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jie Chen
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America; Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Ian P Junker
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Barbara Krynska
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America; Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - George M Smith
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America; Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America.
| |
Collapse
|
34
|
Roy A, Han VZ, Bard AM, Wehle DT, Smith SEP, Ramirez JM, Kalume F, Millen KJ. Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy. Front Mol Neurosci 2021; 14:772847. [PMID: 34899181 PMCID: PMC8662737 DOI: 10.3389/fnmol.2021.772847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022] Open
Abstract
Patients harboring mutations in the PI3K-AKT-MTOR pathway-encoding genes often develop a spectrum of neurodevelopmental disorders including epilepsy. A significant proportion remains unresponsive to conventional anti-seizure medications. Understanding mutation-specific pathophysiology is thus critical for molecularly targeted therapies. We previously determined that mouse models expressing a patient-related activating mutation in PIK3CA, encoding the p110α catalytic subunit of phosphoinositide-3-kinase (PI3K), are epileptic and acutely treatable by PI3K inhibition, irrespective of dysmorphology. Here we report the physiological mechanisms underlying this dysregulated neuronal excitability. In vivo, we demonstrate epileptiform events in the Pik3ca mutant hippocampus. By ex vivo analyses, we show that Pik3ca-driven hyperactivation of hippocampal pyramidal neurons is mediated by changes in multiple non-synaptic, cell-intrinsic properties. Finally, we report that acute inhibition of PI3K or AKT, but not MTOR activity, suppresses the intrinsic hyperactivity of the mutant neurons. These acute mechanisms are distinct from those causing neuronal hyperactivity in other AKT-MTOR epileptic models and define parameters to facilitate the development of new molecularly rational therapeutic interventions for intractable epilepsy.
Collapse
Affiliation(s)
- Achira Roy
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Victor Z Han
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Biology, University of Washington, Seattle, WA, United States
| | - Angela M Bard
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Devin T Wehle
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States.,Department of Neurological Surgery, University of Washington, Seattle, WA, United States.,Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Franck Kalume
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Neurological Surgery, University of Washington, Seattle, WA, United States.,Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
35
|
Mussa A, Carli D, Cardaropoli S, Ferrero GB, Resta N. Lateralized and Segmental Overgrowth in Children. Cancers (Basel) 2021; 13:cancers13246166. [PMID: 34944785 PMCID: PMC8699773 DOI: 10.3390/cancers13246166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 01/19/2023] Open
Abstract
Congenital disorders of lateralized or segmental overgrowth (LO) are heterogeneous conditions with increased tissue growth in a body region. LO can affect every region, be localized or extensive, involve one or several embryonic tissues, showing variable severity, from mild forms with minor body asymmetry to severe ones with progressive tissue growth and related relevant complications. Recently, next-generation sequencing approaches have increased the knowledge on the molecular defects in LO, allowing classifying them based on the deranged cellular signaling pathway. LO is caused by either genetic or epigenetic somatic anomalies affecting cell proliferation. Most LOs are classifiable in the Beckwith-Wiedemann spectrum (BWSp), PI3KCA/AKT-related overgrowth spectrum (PROS/AROS), mosaic RASopathies, PTEN Hamartoma Tumor Syndrome, mosaic activating variants in angiogenesis pathways, and isolated LO (ILO). These disorders overlap over common phenotypes, making their appraisal and distinction challenging. The latter is crucial, as specific management strategies are key: some LO is associated with increased cancer risk making imperative tumor screening since childhood. Interestingly, some LO shares molecular mechanisms with cancer: recent advances in tumor biological pathway druggability and growth downregulation offer new avenues for the treatment of the most severe and complicated LO.
Collapse
Affiliation(s)
- Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Torino, Italy; (D.C.); (S.C.)
- Pediatric Clinical Genetics Unit, Regina Margherita Children’s Hospital, Città della Salute e della Scienza di Torino, 10126 Torino, Italy
- Correspondence: ; Tel.: +39-0113135372
| | - Diana Carli
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Torino, Italy; (D.C.); (S.C.)
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cell Therapy Division, Regina Margherita Children’s Hospital, Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Simona Cardaropoli
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Torino, Italy; (D.C.); (S.C.)
| | | | - Nicoletta Resta
- Department of Biomedical Sciences and Human Oncology (DIMO), Medical Genetics, University of Bari “Aldo Moro”, 70121 Bari, Italy;
| |
Collapse
|
36
|
Specchio N, Di Micco V, Trivisano M, Ferretti A, Curatolo P. The epilepsy-autism spectrum disorder phenotype in the era of molecular genetics and precision therapy. Epilepsia 2021; 63:6-21. [PMID: 34741464 DOI: 10.1111/epi.17115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
Autism spectrum disorder (ASD) is frequently associated with infants with epileptic encephalopathy, and early interventions targeting social and cognitive deficits can have positive effects on developmental outcome. However, early diagnosis of ASD among infants with epilepsy is complicated by variability in clinical phenotypes. Commonality in both biological and molecular mechanisms have been suggested between ASD and epilepsy, such as occurs with tuberous sclerosis complex. This review summarizes the current understanding of causal mechanisms between epilepsy and ASD, with a particularly genetic focus. Hypothetical explanations to support the conjugation of the two conditions include abnormalities in synaptic growth, imbalance in neuronal excitation/inhibition, and abnormal synaptic plasticity. Investigation of the probable genetic basis has implemented many genes, although the main risk supports existing hypotheses in that these cluster to abnormalities in ion channels, synaptic function and structure, and transcription regulators, with the mammalian target of rapamycin (mTOR) pathway and "mTORpathies" having been a notable research focus. Experimental models not only have a crucial role in determining gene functions but are also useful instruments for tracing disease trajectory. Precision medicine from gene therapy remains a theoretical possibility, but more contemporary developments continue in molecular tests to aid earlier diagnoses and better therapeutic targeting.
Collapse
Affiliation(s)
- Nicola Specchio
- Rare and Complex Epilepsy Unit, Division of Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Valentina Di Micco
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Division of Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Alessandro Ferretti
- Rare and Complex Epilepsy Unit, Division of Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| |
Collapse
|
37
|
Mancini GMS, Smits DJ, Dekker J, Schot R, de Wit MCY, Lequin MH, Dremmen M, Brooks AS, van Ham T, Verheijen FW, Fornerod M, Dobyns WB, Wilke M. Multidisciplinary interaction and MCD gene discovery. The perspective of the clinical geneticist. Eur J Paediatr Neurol 2021; 35:27-34. [PMID: 34592643 DOI: 10.1016/j.ejpn.2021.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
The increasing pace of gene discovery in the last decade has brought a major change in the way the genetic causes of brain malformations are being diagnosed. Unbiased genomic screening has gained the first place in the diagnostic protocol of a child with congenital (brain) anomalies and the detected variants are matched with the phenotypic presentation afterwards. This process is defined as "reverse phenotyping". Screening of DNA, through copy number variant analysis of microarrays and analysis of exome data on different platforms, obtained from the index patient and both parents has become a routine approach in many centers worldwide. Clinicians are used to multidisciplinary team interaction in patient care and disease management and this explains why the majority of research that has led to the discovery of new genetic disorders nowadays proceeds from clinical observations to genomic analysis and to data exchange facilitated by open access sharing databases. However, the relevance of multidisciplinary team interaction has not been object of systematic research in the field of brain malformations. This review will illustrate some examples of how diagnostically driven questions through multidisciplinary interaction, among clinical and preclinical disciplines, can be successful in the discovery of new genes related to brain malformations. The first example illustrates the setting of interaction among neurologists, geneticists and neuro-radiologists. The second illustrates the importance of interaction among clinical dysmorphologists for pattern recognition of syndromes with multiple congenital anomalies. The third example shows how fruitful it can be to step out of the "clinical comfort zone", and interact with basic scientists in applying emerging technologies to solve the diagnostic puzzles.
Collapse
Affiliation(s)
- Grazia M S Mancini
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands; ENCORE Expertise Center for Genetic Neurocognitive Developmental Disorders, Erasmus, MC, Rotterdam.
| | - Daphne J Smits
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Jordy Dekker
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Rachel Schot
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands; ENCORE Expertise Center for Genetic Neurocognitive Developmental Disorders, Erasmus, MC, Rotterdam
| | - Marie Claire Y de Wit
- Department of Child Neurology, Sophia Children's Hospital, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, Rotterdam, NL, the Netherlands; ENCORE Expertise Center for Genetic Neurocognitive Developmental Disorders, Erasmus, MC, Rotterdam
| | - Maarten H Lequin
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marjolein Dremmen
- Department of Radiology, Sophia Children's Hospital, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands; ENCORE Expertise Center for Genetic Neurocognitive Developmental Disorders, Erasmus, MC, Rotterdam
| | - Alice S Brooks
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Tjakko van Ham
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Frans W Verheijen
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands; ENCORE Expertise Center for Genetic Neurocognitive Developmental Disorders, Erasmus, MC, Rotterdam
| | - Maarten Fornerod
- Department of Cell Biology, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - William B Dobyns
- Department of Pediatrics (Genetics), University of Minnesota, 420 Delaware Street SE, MMC75, Minneapolis, MN, 55454, USA
| | - Martina Wilke
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands; ENCORE Expertise Center for Genetic Neurocognitive Developmental Disorders, Erasmus, MC, Rotterdam
| |
Collapse
|
38
|
Abstract
Congenital pigmentary anomalies may be evident at birth or soon after, with some birthmarks becoming apparent later in infancy or early childhood. It is important to recognize various pigmentary anomalies in the neonate, most of which are benign but a subset of which are associated with cutaneous morbidity or systemic ramifications and require further evaluation. This review will focus on pigmentary mosaicism, congenital melanocytic nevi, nevus spilus, dermal melanocytosis, and pigmentary anomalies associated with neurofibromatosis type 1 (café au lait spots, freckling, plexiform neurofibromas, nevus anemicus), tuberous sclerosis (hypomelanotic macules), and incontinentia pigmenti.
Collapse
|
39
|
Tang X, Chen Y, Luo H, Bian Q, Weng B, Yang A, Chu D, Ran M, Chen B. miR-126 Controls the Apoptosis and Proliferation of Immature Porcine Sertoli Cells by Targeting the PIK3R2 Gene through the PI3K/AKT Signaling Pathway. Animals (Basel) 2021; 11:ani11082260. [PMID: 34438716 PMCID: PMC8388524 DOI: 10.3390/ani11082260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary MicroRNAs (miRNAs) have been reported with potential regulatory roles in spermatogenesis. In the present study, we demonstrated that miR-126 can stimulate cell proliferation and restrain the apoptosis of immature porcine Sertoli cells by targeting the PIK3R2 gene. Through this process, miR-126 further activates the PI3K/AKT signaling pathway. These results indicated that miR-126, PIK3R2, and the PI3K/AKT signaling pathway might play pivotal regulatory roles in porcine spermatogenesis by deciding the destiny of immature Sertoli cells. Abstract The quantity of Sertoli cells in the adult testis decides the daily gamete formation, and accumulating evidence indicates that epigenetic factors regulate the proliferation of Sertoli cells. Research on the function and regulatory mechanism of microRNAs (miRNAs) in Sertoli cells has not been comprehensive yet, especially on domestic animals. In this article, we report that miR-126 controls the proliferation and apoptosis of immature porcine Sertoli cells based on previous studies. Our results confirmed that miR-126 elevation promotes cell cycle progression, cell proliferation and represses cell apoptosis; on the contrary, the inhibitory effects of miR-126 result in the opposite. The phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2) gene, a member of the PI3K family, was verified as a direct target of miR-126 using the dual-luciferase reporter analysis. miR-126 negatively regulated the mRNA and protein expression level of PIK3R2 in immature porcine Sertoli cells. siRNA-induced PIK3R2 inhibition caused similar effects as miR-126 overexpression and eliminated the influences of miR-126 knockdown in immature porcine Sertoli cells. In addition, both miR-126 overexpression and PIK3R2 inhibition elevated the phosphorylation of PI3K and AKT, whereas the miR-126 knockdown demonstrated the contrary result. In short, miR-126 controls the proliferation and apoptosis of immature porcine Sertoli cells by targeting the PIK3R2 gene through the PI3K/AKT signaling pathway. The research supplies a theoretical and practical foundation for exploring the functional parts of miR-126 in swine sperm by defining the destiny of immature Sertoli cells.
Collapse
|
40
|
Xiao C, Rossignol F, Vaz FM, Ferreira CR. Inherited disorders of complex lipid metabolism: A clinical review. J Inherit Metab Dis 2021; 44:809-825. [PMID: 33594685 DOI: 10.1002/jimd.12369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Over 80 human diseases have been attributed to defects in complex lipid metabolism. A majority of them have been reported recently in the setting of rapid advances in genomic technology and their increased use in clinical settings. Lipids are ubiquitous in human biology and play roles in many cellular and intercellular processes. While inborn errors in lipid metabolism can affect every organ system with many examples of genetic heterogeneity and pleiotropy, the clinical manifestations of many of these disorders can be explained based on the disruption of the metabolic pathway involved. In this review, we will discuss the physiological function of major pathways in complex lipid metabolism, including nonlysosomal sphingolipid metabolism, acylceramide metabolism, de novo phospholipid synthesis, phospholipid remodeling, phosphatidylinositol metabolism, mitochondrial cardiolipin synthesis and remodeling, and ether lipid metabolism as well as common clinical phenotypes associated with each.
Collapse
Affiliation(s)
- Changrui Xiao
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Francis Rossignol
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Carlos R Ferreira
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
41
|
Functional and structural analyses of novel Smith-Kingsmore Syndrome-Associated MTOR variants reveal potential new mechanisms and predictors of pathogenicity. PLoS Genet 2021; 17:e1009651. [PMID: 34197453 PMCID: PMC8279410 DOI: 10.1371/journal.pgen.1009651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/14/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022] Open
Abstract
Smith-Kingsmore syndrome (SKS) is a rare neurodevelopmental disorder characterized by macrocephaly/megalencephaly, developmental delay, intellectual disability, hypotonia, and seizures. It is caused by dominant missense mutations in MTOR. The pathogenicity of novel variants in MTOR in patients with neurodevelopmental disorders can be difficult to determine and the mechanism by which variants cause disease remains poorly understood. We report 7 patients with SKS with 4 novel MTOR variants and describe their phenotypes. We perform in vitro functional analyses to confirm MTOR activation and interrogate disease mechanisms. We complete structural analyses to understand the 3D properties of pathogenic variants. We examine the accuracy of relative accessible surface area, a quantitative measure of amino acid side-chain accessibility, as a predictor of MTOR variant pathogenicity. We describe novel clinical features of patients with SKS. We confirm MTOR Complex 1 activation and identify MTOR Complex 2 activation as a new potential mechanism of disease in SKS. We find that pathogenic MTOR variants disproportionately cluster in hotspots in the core of the protein, where they disrupt alpha helix packing due to the insertion of bulky amino acid side chains. We find that relative accessible surface area is significantly lower for SKS-associated variants compared to benign variants. We expand the phenotype of SKS and demonstrate that additional pathways of activation may contribute to disease. Incorporating 3D properties of MTOR variants may help in pathogenicity classification. We hope these findings may contribute to improving the precision of care and therapeutic development for individuals with SKS. Smith-Kingsmore Syndrome is a rare disease caused by damage in a gene named MTOR that is associated with excessive growth of the head and brain, delays in development and deficits in intellectual functioning. We report 7 patients who have changes in MTOR that have never been reported before. We describe new medical findings in these patients that may be common in Smith-Kingsmore Syndrome more broadly. We then identify how these new gene changes impact the function of the MTOR protein and thus cell function downstream. Lastly, we show that changes in the gene that lie deep inside the 3D structure of the MTOR protein are more likely to cause disease than those changes that lie on the surface of the protein. We may be able to use the 3D properties of MTOR gene changes to predict if future changes we see are likely to cause disease or not.
Collapse
|
42
|
Nguyen T, Deenick EK, Tangye SG. Phosphatidylinositol 3-kinase signaling and immune regulation: insights into disease pathogenesis and clinical implications. Expert Rev Clin Immunol 2021; 17:905-914. [PMID: 34157234 DOI: 10.1080/1744666x.2021.1945443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase that plays a fundamental role in cell survival, metabolism, proliferation and differentiation. Thus, balanced PI3K signalling is critical for multiple aspects of human health. The discovery that germline variants in genes in the PI3K pathway caused inborn errors of immunity highlighted the non-redundant role of these signalling proteins in the human immune system. The subsequent identification and characterisation of >300 individuals with a novel immune dysregulatory disorder, termed activated PI3K-delta syndrome (APDS), has reinforced the status of PI3K as a key pathway regulating immune function. Studies of APDS have demonstrated that dysregulated PI3K function is disruptive for immune cell development, activation, differentiation, effector function and self-tolerance, which are all important in supporting effective, long-term immune responses. AREAS COVERED In this review, we recount recent findings regarding humans with germline variants in PI3K genes and discuss the underlying cellular and molecular pathologies, with a focus on implications for therapy in APDS patients. EXPERT OPINION Modulating PI3K immune cell signalling by offers opportunities for therapeutic interventions in settings of immunodeficiency, autoimmunity and malignancy, but also highlights potential adverse events that may result from overt pharmacological or intrinsic inhibition of PI3K function.
Collapse
Affiliation(s)
- Tina Nguyen
- Immunity & Inflammation Theme, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical Clinical School, University of NSW, Kensington, NSW, Australia
| | - Elissa K Deenick
- Immunity & Inflammation Theme, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical Clinical School, University of NSW, Kensington, NSW, Australia
| | - Stuart G Tangye
- Immunity & Inflammation Theme, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical Clinical School, University of NSW, Kensington, NSW, Australia
| |
Collapse
|
43
|
The Role of KRAS Mutations in Cortical Malformation and Epilepsy Surgery: A Novel Report of Nevus Sebaceous Syndrome and Review of the Literature. Brain Sci 2021; 11:brainsci11060793. [PMID: 34208656 PMCID: PMC8234150 DOI: 10.3390/brainsci11060793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
The rare nevus sebaceous (NS) syndrome (NSS) includes cortical malformations and drug-resistant epilepsy. Somatic RAS-pathway genetic variants are pathogenetic in NS, but not yet described within the brain of patients with NSS. We report on a 5-year-old boy with mild psychomotor delay. A brown-yellow linear skin lesion suggestive of NS in the left temporo-occipital area was evident at birth. Epileptic spasms presented at aged six months. EEG showed continuous left temporo-occipital epileptiform abnormalities. Brain MRI revealed a similarly located diffuse cortical malformation with temporal pole volume reduction and a small hippocampus. We performed a left temporo-occipital resection with histopathological diagnosis of focal cortical dysplasia type Ia in the occipital region and hippocampal sclerosis type 1. Three years after surgery, he is seizure-and drug-free (Engel class Ia) and showed cognitive improvement. Genetic examination of brain and skin specimens revealed the c.35G > T (p.Gly12Val) KRAS somatic missense mutation. Literature review suggests epilepsy surgery in patients with NSS is highly efficacious, with 73% probability of seizure freedom. The few histological analyses reported evidenced disorganized cortex, occasionally with cytomegalic neurons. This is the first reported association of a KRAS genetic variant with cortical malformations associated with epilepsy, and suggests a possible genetic substrate for hippocampal sclerosis.
Collapse
|
44
|
Pirozzi F, Lee B, Horsley N, Burkardt DD, Dobyns WB, Graham JM, Dentici ML, Cesario C, Schallner J, Porrmann J, Di Donato N, Sanchez-Lara PA, Mirzaa GM. Proximal variants in CCND2 associated with microcephaly, short stature, and developmental delay: A case series and review of inverse brain growth phenotypes. Am J Med Genet A 2021; 185:2719-2738. [PMID: 34087052 DOI: 10.1002/ajmg.a.62362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/28/2023]
Abstract
Cyclin D2 (CCND2) is a critical cell cycle regulator and key member of the cyclin D2-CDK4 (DC) complex. De novo variants of CCND2 clustering in the distal part of the protein have been identified as pathogenic causes of brain overgrowth (megalencephaly, MEG) and severe cortical malformations in children including the megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndrome. Megalencephaly-associated CCND2 variants are localized to the terminal exon and result in accumulation of degradation-resistant protein. We identified five individuals from three unrelated families with novel variants in the proximal region of CCND2 associated with microcephaly, mildly simplified cortical gyral pattern, symmetric short stature, and mild developmental delay. Identified variants include de novo frameshift variants and a dominantly inherited stop-gain variant segregating with the phenotype. This is the first reported association between proximal CCND2 variants and microcephaly, to our knowledge. This series expands the phenotypic spectrum of CCND2-related disorders and suggests that distinct classes of CCND2 variants are associated with reciprocal effects on human brain growth (microcephaly and megalencephaly due to possible loss or gain of protein function, respectively), adding to the growing paradigm of inverse phenotypes due to dysregulation of key brain growth genes.
Collapse
Affiliation(s)
- Filomena Pirozzi
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Benson Lee
- Division of Medical Genetics, Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Nicole Horsley
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Deepika D Burkardt
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William B Dobyns
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - John M Graham
- Medical Genetics Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Maria L Dentici
- Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy.,Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Claudia Cesario
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Jens Schallner
- Department of Neuropediatrics, School of Medicine, Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Joseph Porrmann
- Institute for Clinical Genetics, University Hospital, TU Dresden, Dresden, Germany
| | - Nataliya Di Donato
- Institute for Clinical Genetics, University Hospital, TU Dresden, Dresden, Germany
| | - Pedro A Sanchez-Lara
- Medical Genetics Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Division of Medical Genetics, Department of Pediatrics, University of Washington, Seattle, Washington, USA.,Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
45
|
Levenga J, Wong H, Milstead R, LaPlante L, Hoeffer CA. Immunohistological Examination of AKT Isoforms in the Brain: Cell-Type Specificity That May Underlie AKT's Role in Complex Brain Disorders and Neurological Disease. Cereb Cortex Commun 2021; 2:tgab036. [PMID: 34296180 PMCID: PMC8223503 DOI: 10.1093/texcom/tgab036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
Protein kinase B (PKB/AKT) is a central kinase involved in many neurobiological processes. AKT is expressed in the brain as three isoforms, AKT1, AKT2, and AKT3. Previous studies suggest isoform-specific roles in neural function, but very few studies have examined AKT isoform expression at the cellular level. In this study, we use a combination of histology, immunostaining, and genetics to characterize cell-type-specific expression of AKT isoforms in human and mouse brains. In mice, we find that AKT1 is the most broadly expressed isoform, with expression in excitatory neurons and the sole detectable AKT isoform in gamma-aminobutyric acid ergic interneurons and microglia. By contrast, we find that AKT2 is the sole isoform expressed in astroglia and is not detected in other neural cell types. We find that AKT3 is expressed in excitatory neurons with AKT1 but shows greater expression levels in dendritic compartments than AKT1. We extend our analysis to human brain tissues and find similar results. Using genetic deletion approaches, we also find that the cellular determinants restricting AKT isoform expression to specific cell types remain intact under Akt deficiency conditions. Because AKT signaling is linked to numerous neurological disorders, a greater understanding of cell-specific isoform expression could improve treatment strategies involving AKT.
Collapse
Affiliation(s)
- Josien Levenga
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Helen Wong
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Ryan Milstead
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Lauren LaPlante
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Charles A Hoeffer
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80303, USA.,Linda Crnic Institute, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
46
|
Moirangthem A, Mandal K, Saxena D, Srivastava P, Gambhir PS, Agrawal N, Shambhavi A, Nampoothiri S, Phadke SR. Genetic heterogeneity of disorders with overgrowth and intellectual disability: Experience from a center in North India. Am J Med Genet A 2021; 185:2345-2355. [PMID: 33942996 DOI: 10.1002/ajmg.a.62241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/25/2021] [Accepted: 04/10/2021] [Indexed: 12/24/2022]
Abstract
Overgrowth, defined as height and/or OFC ≥ +2SD, characterizes a subset of patients with syndromic intellectual disability (ID). Many of the disorders with overgrowth and ID (OGID) are rare and the full phenotypic and genotypic spectra have not been unraveled. This study was undertaken to characterize the phenotypic and genotypic profile of patients with OGID. Patients with OGID were ascertained from the cohort of patients who underwent cytogenetic microarray (CMA) and/or exome sequencing (ES) at our center over a period of 6 years. Thirty-one subjects (six females) formed the study group with ages between 3.5 months and 13 years. CMA identified pathogenic deletions in two patients. In another 11 patients, a disease causing variant was detected by ES. The spectrum of disorders encompassed aberrations in genes involved in the two main pathways associated with OGID. These were genes involved in epigenetic regulation like NSD1, NFIX, FOXP1, and those in the PI3K-AKT pathway like PTEN, AKT3, TSC2, PPP2R5D. Five novel pathogenic variants were added by this study. NSD1-related Sotos syndrome was the most common disorder, seen in five patients. A causative variant was identified in 61.5% of patients who underwent only ES compared to the low yield of 11.1% in the CMA group. The molecular etiology could be confirmed in 13 subjects with OGID giving a diagnostic yield of 42%. The major burden was formed by autosomal dominant monogenic disorders. Hence, ES maybe a better first-tier genomic test rather than CMA in OGID.
Collapse
Affiliation(s)
- Amita Moirangthem
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Deepti Saxena
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Priyanka Srivastava
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Poonam Singh Gambhir
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Neha Agrawal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Arya Shambhavi
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, AIMS, Cochin, Kerala, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
47
|
Calandrelli R, Pilato F, Battaglia D, Panfili M, Quinci V, Colosimo C. Epileptic children with hemispheres' asymmetry. Quantitative brain magnetic resonance-based analysis of apparently unaffected hemisphere. Case-control study. Epilepsy Res 2021; 174:106642. [PMID: 33892221 DOI: 10.1016/j.eplepsyres.2021.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/04/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE We performed a quantitative hemispheres analysis in epileptic children with hemispheres' asymmetry -due to unilateral dysplastic malformation- in order to recognize subtle volumetric changes of the contralateral and apparently unaffected hemisphere. METHODS 13 children with Hemimegalencephaly (HME) and 20 with Hemimicrencephaly (Hme) were clustered in subgroups according to underlying hemispheric cortical dysplastic malformation and epilepsy pattern. 3D FSPGR T1weighted images were used to assess white and grey matter volumes for both hemispheres. Each volumetric parameter was compared with the average of an age-matched healthy control group. RESULTS HME subgroups: HME with pachygyria and focal (HME-PG-F; n 6) or multifocal epilepsy (HME-PG-MF; n.7). In both subgroups affected hemisphere (AH) volume was increased and contralateral hemisphere (CH) showed white matter volume reduction; in HME-PG-MF grey matter volume of CH was more reduced than HME-PG-F. Hme subgroups: Hme with polimicrogyria and focal epilepsy (Hme-PMG-F; n.8), Hme with giant subcortical nodular heterotopia and focal (Hme-SCH-F; n.6) or multifocal epilepsy (Hme-SCH-MF; n.6). In all subgroups AH volume was reduced; the volume of CH was significantly increased in Hme-PMG-F and Hme-SCH-MF while it was not significantly increased in Hme-SCH-F compared to affected hemisphere. CONCLUSIONS In patients with hemispheres' asymmetry, quantitative high-resolution MRI offers a more objective assessment of brain structures volume. The type of hemispheric dysplastic malformation together with the age of epilepsy onset and epileptic pattern may contribute to changes in contralateral and apparently unaffected hemisphere. Future studies are warranted to evaluate whether the early identification of these changes might help in planning future antiepileptic treatments.
Collapse
Affiliation(s)
- Rosalinda Calandrelli
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma-UOC Radiologia e Neuroradiologia, Polo Diagnostica Per Immagini, Radioterapia, Oncologia ed Ematologia, Area Diagnostica Per Immagini, 00168, Rome, Italy
| | - Fabio Pilato
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, via Álvaro del Portillo, 21, 00128, Rome, Italy.
| | - Domenica Battaglia
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma -UOC Neurologia - Polo Scienze dell'Invecchiamento, Neurologiche, Ortopediche e Della Testa-Collo, Dipartimento di Neuropsichiatria Infantile, 00168, Rome, Italy; Università Cattolica del Sacro Cuore, Istituto di Radiologia, 00168, Rome, Italy
| | - Marco Panfili
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma-UOC Radiologia e Neuroradiologia, Polo Diagnostica Per Immagini, Radioterapia, Oncologia ed Ematologia, Area Diagnostica Per Immagini, 00168, Rome, Italy
| | - Vincenzo Quinci
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma-UOC Radiologia e Neuroradiologia, Polo Diagnostica Per Immagini, Radioterapia, Oncologia ed Ematologia, Area Diagnostica Per Immagini, 00168, Rome, Italy
| | - Cesare Colosimo
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma-UOC Radiologia e Neuroradiologia, Polo Diagnostica Per Immagini, Radioterapia, Oncologia ed Ematologia, Area Diagnostica Per Immagini, 00168, Rome, Italy; Università Cattolica del Sacro Cuore, Istituto di Radiologia, 00168, Rome, Italy
| |
Collapse
|
48
|
Clinical spectrum of MTOR-related hypomelanosis of Ito with neurodevelopmental abnormalities. Genet Med 2021; 23:1484-1491. [PMID: 33833411 PMCID: PMC8354853 DOI: 10.1038/s41436-021-01161-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Hypomelanosis of Ito (HI) is a skin marker of somatic mosaicism.
Mosaic MTOR pathogenic variants have been
reported in HI with brain overgrowth. We sought to delineate further the
pigmentary skin phenotype and clinical spectrum of neurodevelopmental
manifestations of MTOR-related HI. Methods From two cohorts totaling 71 patients with pigmentary mosaicism, we
identified 14 patients with Blaschko-linear and one with flag-like pigmentation
abnormalities, psychomotor impairment or seizures, and a postzygotic MTOR variant in skin. Patient records, including
brain magnetic resonance image (MRI) were reviewed. Immunostaining (n = 3) for melanocyte markers and
ultrastructural studies (n = 2) were performed on skin biopsies. Results MTOR variants were present in
skin, but absent from blood in half of cases. In a patient (p.[Glu2419Lys]
variant), phosphorylation of p70S6K was constitutively increased. In
hypopigmented skin of two patients, we found a decrease in stage 4 melanosomes
in melanocytes and keratinocytes. Most patients (80%) had macrocephaly or
(hemi)megalencephaly on MRI. Conclusion MTOR-related HI is a recognizable
neurocutaneous phenotype of patterned dyspigmentation, epilepsy, intellectual
deficiency, and brain overgrowth, and a distinct subtype of hypomelanosis
related to somatic mosaicism. Hypopigmentation may be due to a defect in
melanogenesis, through mTORC1 activation, similar to hypochromic patches in
tuberous sclerosis complex. Graphical Abstract ![]()
Collapse
|
49
|
Specchio N, Pepi C, De Palma L, Trivisano M, Vigevano F, Curatolo P. Neuroimaging and genetic characteristics of malformation of cortical development due to mTOR pathway dysregulation: clues for the epileptogenic lesions and indications for epilepsy surgery. Expert Rev Neurother 2021; 21:1333-1345. [PMID: 33754929 DOI: 10.1080/14737175.2021.1906651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Malformation of cortical development (MCD) is strongly associated with drug-resistant epilepsies for which surgery to remove epileptogenic lesions is common. Two notable technological advances in this field are identification of the underlying genetic cause and techniques in neuroimaging. These now question how presurgical evaluation ought to be approached for 'mTORpathies.'Area covered: From review of published primary and secondary articles, the authors summarize evidence to consider focal cortical dysplasia (FCD), tuber sclerosis complex (TSC), and hemimegalencephaly (HME) collectively as MCD mTORpathies. The authors also consider the unique features of these related conditions with particular focus on the practicalities of using neuroimaging techniques currently available to define surgical targets and predict post-surgical outcome. Ultimately, the authors consider the surgical dilemmas faced for each condition.Expert opinion: Considering FCD, TSC, and HME collectively as mTORpathies has some merit; however, a unified approach to presurgical evaluation would seem unachievable. Nevertheless, the authors believe combining genetic-centered classification and morphologic findings using advanced imaging techniques will eventually form the basis of a paradigm when considering candidacy for early surgery.
Collapse
Affiliation(s)
- Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Chiara Pepi
- Rare and Complex Epilepsy Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Luca De Palma
- Rare and Complex Epilepsy Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Federico Vigevano
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| |
Collapse
|
50
|
Taylor DL, Wildin RS, Morley KW. Novel neonatal presentation of megalencephaly-polymicrogyria-pigmentary mosaicism syndrome (MPPM) related to MTOR mutation: Report of a case. Pediatr Dermatol 2021; 38:536-537. [PMID: 33325571 DOI: 10.1111/pde.14480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/30/2022]
Abstract
The PI3K/AKT/mTOR signaling pathway is a critical mediator of cell functions. Activating mutations of this pathway are known to disturb normal growth and development, leading to a range of overgrowth and neurologic syndromes. We report a case of megalencephaly-polymicrogyria-pigmentary mosaicism syndrome (MPPM) in novel association with MTOR pathogenic variant c.6644C>A (p.Ser2215Tyr) and neonatal evanescent skin findings. This case highlights the importance of a thorough newborn cutaneous examination, as this initial window offers a critical opportunity for potential prognostication and surveillance for neurological sequelae.
Collapse
Affiliation(s)
- Dustin L Taylor
- Division of Dermatology, University of Vermont Medical Center, Burlington, VT, USA
| | - Robert S Wildin
- Departments of Pathology & Laboratory Medicine and Pediatrics, University of Vermont Health Network, Burlington, VT, USA
| | - Keith W Morley
- Division of Dermatology, University of Vermont Medical Center, Burlington, VT, USA
| |
Collapse
|