1
|
Idler BM, Iijima K, Ochkur SI, Jacobsen EA, Rank MA, Kita H, Lal D. Eosinophil Peroxidase: A Biomarker for Eosinophilic Chronic Rhinosinusitis Agnostic of Polyp Status. Laryngoscope 2024; 134:69-78. [PMID: 37255054 PMCID: PMC10687314 DOI: 10.1002/lary.30787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023]
Abstract
OBJECTIVE To evaluate eosinophil peroxidase (EPX) as a biomarker for tissue levels of eosinophilia, cytokines, and chemokines within chronic rhinosinusitis (CRS). METHODS Twenty-eight subjects undergoing sinonasal surgery were prospectively enrolled. Ethmoid tissue was analyzed with an in-house EPX immunoassay and a 48-plex cytokine-chemokine array. Clinical severity was assessed using SNOT-22 and Lund-Mackay scores. Subjects were grouped as follows: controls, polyp status (CRS with [CRSwNP] and without nasal polyps [CRSsNP]), tissue eosinophilia (eosinophilic CRS [eCRS], non-eosinophilic CRS [neCRS]), or combinations thereof (eCRSwNP, eCRSsNP, neCRSsNP). eCRS was defined as >10 eosinophils per high power field (HPF). Subjects without CRS or asthma were enrolled as controls. RESULTS EPX was elevated in CRSwNP compared to control (p = 0.007), in eCRS compared to neCRS (p = 0.002), and in eCRSwNP along with eCRSsNP compared to neCRSsNP (p = 0.023, p = 0.015, respectively). eCRS displayed elevated IL-5 compared to neCRS (p = 0.005). No significant differences in EPX or IL-5 were observed between eCRSwNP and eCRSsNP. IL-5 was elevated in eCRSwNP (p = 0.019) compared neCRSsNP. Area under the receiver operator characteristic curve was 0.938 (95% CI, 0.835-1.00) for EPX and tissue eosinophilia, with an optimal cut-point of 470 ng/mL being 100% specific and 81.25% sensitive for tissue eosinophilia. Linear regression revealed a strong correlation between EPX and IL-5 (R2 = 0.64, p < 0.001). Comparing EPX and IL-5, only EPX displayed significant correlation with SNOT-22 (p = 0.04) and Lund-Mackay score (p = 0.004). CONCLUSION EPX is associated with tissue eosinophilia in CRS patients regardless of polyp status. EPX correlates with IL-5 and could be potentially considered a biomarker for anti-IL-5 therapies. LEVEL OF EVIDENCE 3 Laryngoscope, 134:69-78, 2024.
Collapse
Affiliation(s)
- Beau M. Idler
- Mayo Clinic Alix School of Medicine, Mayo Clinic Arizona, Scottsdale, 85259
| | - Koji Iijima
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, 85259
| | - Sergei I. Ochkur
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, 85259
| | - Elizabeth A. Jacobsen
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, 85259
| | - Matthew A. Rank
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, 85259
- Department of Otorhinolaryngology-Head and Neck Surgery, Mayo Clinic Arizona, Phoenix, 85054
| | - Hirohito Kita
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, 85259
- Department of Otorhinolaryngology-Head and Neck Surgery, Mayo Clinic Arizona, Phoenix, 85054
| | - Devyani Lal
- Department of Otorhinolaryngology-Head and Neck Surgery, Mayo Clinic Arizona, Phoenix, 85054
| |
Collapse
|
2
|
Zhou Y, Liu Z, Liu Y. The potential roles and mechanisms of Chitinase-3-like-1 in the pathogenesis of type 2-biased airway diseases. Clin Immunol 2023; 257:109856. [PMID: 38036279 DOI: 10.1016/j.clim.2023.109856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
The immune modulation in the epithelium is a protective feature of the epithelial function in the mucosal airways. Dysfunction of the epithelium can lead to chronic allergic airway inflammatory diseases, such as chronic rhinosinusitis with nasal polyps (CRSwNP), allergic rhinitis (AR), and allergic asthma. Chitinase-3-like-1 (CHI3L1) is a key modulator in the epithelium against irritants, pathogens, and allergens and is involved in cancers, autoimmune diseases, neurological disorders, and other chronic diseases. Induction of epithelial cell-derived CHI3L1 is also confirmed to be implicated in the pathogenesis of Th2-related airway diseases like CRSwNP, AR, and allergic asthma, triggering a cascade of subsequent inflammatory reactions leading to the disease development. The techniques that block the biological function of CHI3L1 include small interfering RNA, neutralizing antibodies, and microRNAs and these methods proved to be successful in preclinical and clinical investigation in cancers, autoimmune diseases, asthma, and chronic obstructive pulmonary disease. Therefore, treatment with CHI3L1-blocking methods could open up therapeutic options for allergic airway diseases. This review article discusses the role of epithelial cell-derived CHI3L1 in the development of CRSwNP, AR, and allergic asthma and examines the use of CHI3L1 as a potential therapeutic agent for allergic airway diseases.
Collapse
Affiliation(s)
- Yian Zhou
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, PR China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, PR China.
| | - Yang Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, PR China.
| |
Collapse
|
3
|
Renteria AE, Maniakas A, Pelletier A, Filali-Mouhim A, Brochiero E, Valera FCP, Adam D, Mfuna LE, Desrosiers M. Utilization of Transcriptomic Profiling to Identify Molecular Markers Predicting Successful Recovery Following Endoscopic Sinus Surgery for Chronic Rhinosinusitis. Otolaryngol Head Neck Surg 2023; 169:1662-1673. [PMID: 37622488 DOI: 10.1002/ohn.482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVES Successful recovery from chronic rhinosinusitis (CRS) following endoscopic sinus surgery (ESS) can be characterized by minimal presence of symptoms and absence of disease on endoscopy. However, molecular markers of surgical success remain to be characterized. These could allow for better tailoring of perioperative therapy. This study aims to identify novel molecular markers associated with surgery responsive patient. STUDY DESIGN Prospective cohort study. SETTING Single academic hospital center. METHOD One hundred eighteen consecutive patients with CRS at high risk of recurrence after surgery were followed prospectively following ESS in an academic medical center. Symptomatic and endoscopic outcomes were assessed at 4 months, with success rigorously defined subjectively as minimal or no symptoms (no symptom greater than 1 on an ordinal scale of 0-3) and objectively by the absence of nasal polyposis on sinus cavity endoscopy and Lund-Kennedy endoscopic edema score no greater than 1. Samples were obtained at the time of surgery and at 4-month postoperatively. Changes associated with surgery were determined by gene expression profiling using Affymetrix's Clariom S Human HT arrays. RESULTS Successful ESS was characterized by a mild upregulation in Type 1 inflammation, upregulation of cell cycle progression, and epithelial barrier and proliferation-associated genes and pathways. ESS failure was associated to very high levels of Type 1 inflammation along with downregulation of epithelial barrier function and regeneration genes and pathways. CONCLUSION Successful recovery from ESS involves restoration of epithelial function and regulated activation of Type 1 inflammation. Excessively elevated Type 1 inflammation is associated with epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Axel E Renteria
- Immunopathology Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département d'Oto-rhino-laryngologie et chirurgie cervico-faciale du , Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Anastasios Maniakas
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Audrey Pelletier
- Immunopathology Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Ali Filali-Mouhim
- Immunopathology Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Emmanuelle Brochiero
- Immunopathology Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Fabiana C P Valera
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Damien Adam
- Immunopathology Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Leandra Endam Mfuna
- Immunopathology Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Martin Desrosiers
- Immunopathology Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département d'Oto-rhino-laryngologie et chirurgie cervico-faciale du , Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| |
Collapse
|
4
|
Jiang RS, Chen IC, Chen YM, Hsiao TH, Chen YC. Risk Prediction of Chronic Rhinosinusitis with or without Nasal Polyps in Taiwanese Population Using Polygenic Risk Score for Nasal Polyps. Biomedicines 2023; 11:2729. [PMID: 37893103 PMCID: PMC10603974 DOI: 10.3390/biomedicines11102729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
The association between single nucleotide polymorphisms and chronic rhinosinusitis (CRS) has been determined. However, it was not known whether the polygenic risk score (PRS) for nasal polyps (NP) could predict CRS with NP (CRSwNP) or without NP (CRSsNP). The aim of this study was to investigate the association between PRSs for NP and the risk of CRS with or without NP. Data from 535 individuals with CRS and 5350 control subjects in the Taiwan Precision Medicine Initiative project were collected. Four PRSs for NP, including PGS000933, PGS000934, PGS001848, and PGS002060 from UK Biobank, were tested in these participants. They were divided into four groups according to quartiles of PRSs. The logistic regression model was performed to evaluate CRSwNP and CRSsNP risk according to PRSs for NP. The PGS002060 had the highest area under the curve at 0.534 for CRSsNP prediction and at 0.588 for CRSwNP prediction. Compared to subjects in the lowest PRS category, the PGS002060 significantly increased the odds for CRSsNP by 1.48 at the highest quintile (p = 0.003) and by 2.32 at the highest quintile for CRSwNP (p = 0.002). In addition, the odds for CRSwNP increased by 3.01 times in female CRSwNP patients (p = 0.009) at the highest quintile compared with those in the lowest PRS category. The PRSs for NP developed from European populations could be applied to the Taiwanese population to predict CRS risk, especially for female CRSwNP.
Collapse
Affiliation(s)
- Rong-San Jiang
- Departments of Medical Research, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (R.-S.J.); (I.-C.C.); (Y.-M.C.); (T.-H.H.)
- Departments of Otolaryngology, Taichung Veterans General Hospital, Taichung 407219, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan
- RongHsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - I-Chieh Chen
- Departments of Medical Research, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (R.-S.J.); (I.-C.C.); (Y.-M.C.); (T.-H.H.)
| | - Yi-Ming Chen
- Departments of Medical Research, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (R.-S.J.); (I.-C.C.); (Y.-M.C.); (T.-H.H.)
- RongHsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung 407219, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Biomedical Science, National Chung Hsing University, Taichung 402202, Taiwan
- Precision Medicine Research Center, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Tzu-Hung Hsiao
- Departments of Medical Research, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (R.-S.J.); (I.-C.C.); (Y.-M.C.); (T.-H.H.)
- Department of Public Health, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402202, Taiwan
| | - Yi-Chen Chen
- Departments of Medical Research, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (R.-S.J.); (I.-C.C.); (Y.-M.C.); (T.-H.H.)
| |
Collapse
|
5
|
Brar T, McCabe C, Miglani A, Marino M, Lal D. Tissue Eosinophilia is Superior to an Analysis by Polyp Status for the Chronic Rhinosinusitis Transcriptome: An RNA Study. Laryngoscope 2023; 133:2480-2489. [PMID: 36594502 DOI: 10.1002/lary.30544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Accepted: 12/11/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE RNA sequencing (transcriptomics) is used to study biological pathways. However, the yield of data depends on comparing well-characterized cohorts. We compared tissue eosinophilia versus nasal polyp (NP) status as the metric to characterize transcriptomic mechanisms at play in eosinophilic and non-eosinophilic chronic rhinosinusitis (CRS) versus controls. METHODS RNA sequencing was conducted on sinonasal tissue samples of CRS and controls. Analyses were conducted based on polyp status [with nasal polyps (CRSwNP) and without nasal polyps (CRSsNP)] as well as tissue eosinophil levels per high power field (eos/hpf)[non-eosinophilic (<10 eos/hpf, neCRS) or eosinophilic (≥10 eos/hpf, eCRS)]. The yield of differentially expressed genes (DEGs) and biological pathways through Ingenuity Pathway Analysis (IPA) were compared. RESULTS CRS tissue differed from controls by 736 statistically significant DEGs. Both NP status and tissue eosinophilia were effective in differentiating CRS from controls and into two distinct subgroups. Statistically significant DEGs identified when comparing CRS by NP status were 60, whereas 110 DEGs were identified using eosinophil cutoff ≥10 and <10 eos/hpf. Additionally, heatmaps showed greater homogeneity within each CRS subgroup when analyzed by tissue eosinophilia versus NP status. On IPA, the IL-17 signaling pathway was significantly different only by tissue eosinophilia status, not NP status, being higher in CRS <10 eos/hpf. CONCLUSION Tissue eosinophilia is superior to an analysis by NP status for the study of CRS transcriptome by RNA sequencing in identifying DEGs. Classification of CRS samples by eosinophil counts agnostic of NP status may offer advantageous insights into CRS pathogenetic mechanisms. LEVEL OF EVIDENCE 3 Laryngoscope, 133:2480-2489, 2023.
Collapse
Affiliation(s)
- Tripti Brar
- Division of Rhinology, Department of Otolaryngology, Mayo Clinic in Arizona, Phoenix, Arizona, USA
| | - Chantal McCabe
- Department of Quantitative Health Sciences, Mayo Clinic, Phoenix, Arizona, USA
| | - Amar Miglani
- Division of Rhinology, Department of Otolaryngology, Mayo Clinic in Arizona, Phoenix, Arizona, USA
| | - Michael Marino
- Division of Rhinology, Department of Otolaryngology, Mayo Clinic in Arizona, Phoenix, Arizona, USA
| | - Devyani Lal
- Division of Rhinology, Department of Otolaryngology, Mayo Clinic in Arizona, Phoenix, Arizona, USA
| |
Collapse
|
6
|
Cui N, Zhu X, Zhao C, Meng C, Sha J, Zhu D. A Decade of Pathogenesis Advances in Non-Type 2 Inflammatory Endotypes in Chronic Rhinosinusitis: 2012-2022. Int Arch Allergy Immunol 2023; 184:1237-1253. [PMID: 37722364 DOI: 10.1159/000532067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/12/2023] [Indexed: 09/20/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a heterogeneous disease characterized by localized inflammation of the upper airways. CRS includes two main phenotypes, namely, CRS with nasal polyps and CRS without nasal polyps. The phenotype-based classification method cannot reflect the pathological mechanism. The endotype-based classification method has been paid more and more attention by researchers. It is mainly divided into type 2 and non-type 2 endotypes. The mechanism driving the pathogenesis of non-type 2 inflammation is currently unknown. In this review, the PubMed and Web of Science databases were searched to conduct a critical analysis of representative literature works on the pathogenesis of non-type 2 inflammation in CRS published in the past decade. This review summarizes the latest evidence that may lead to the pathogenesis of non-type 2 inflammation. It is the main method that analyzing the pathogenesis from the perspective of immunology. Genomics and proteomics technique provide new approaches to the study of the pathogenesis. Due to differences in race, environment, geography, and living habits, there are differences in the occurrence of non-type 2 inflammation, which increase the difficulty of understanding the pathogenesis of non-type 2 inflammation in CRS. Studies have confirmed that non-type 2 endotype is more common in Asian patients. The emergence of overlap and unclassified endotypes has promoted the study of heterogeneity in CRS. In addition, as the source of inflammatory cells and the initiation site of the inflammatory response, microvessels and microlymphatic vessels in the nasal mucosal subepithelial tissue participate in the inflammatory response and tissue remodeling. It is uncertain whether CRS patients affect the risk of infection with SARS-CoV-2. In addition, the pathophysiological mechanism of non-type 2 CRS combined with COVID-19 remains to be further studied, and it is worth considering how to select the befitting biologics for CRS patients with non-type 2 inflammation.
Collapse
Affiliation(s)
- Na Cui
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China,
| | - Xuewei Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chen Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Cuida Meng
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jichao Sha
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dongdong Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Cai S, Lou H, Zhang L. Prognostic factors for post-operative outcomes in chronic rhinosinusitis with nasal polyps: a systematic review. Expert Rev Clin Immunol 2023; 19:867-881. [PMID: 37225659 DOI: 10.1080/1744666x.2023.2218089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/30/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
INTRODUCTION Chronic rhinosinusitis with nasal polyps (CRSwNP) has a high recurrence rate after surgery despite the availability of medical treatments. Multiple clinical and biological factors have been associated with poor post-operative outcomes in patients with CRSwNP. However, these factors and their prognostic values have not yet been extensively summarized. AREAS COVERED This systematic review included 49 cohort studies exploring the prognostic factors for post-operative outcomes in CRSwNP. A total of 7802 subjects and 174 factors were included. All investigated factors were classified into three categories according to their predictive value and evidence quality, of which 26 factors were considered plausible for post-operative outcome prediction. Previous nasal surgery, ethmoid-to-maxillary (E/M) ratio, fractional exhaled nitric oxide, tissue eosinophil count or percentage, tissue neutrophil count, tissue IL-5, tissue eosinophil cationic protein, and CLC or IgE in nasal secretion provided more reliable information for prognosis in at least two studies. EXPERT OPINION Exploring predictors through noninvasive or minimally invasive methods for specimen collection is recommended for future work. Models combining multiple factors must be established, as no single factor is effective for the whole population.
Collapse
Affiliation(s)
- Shiru Cai
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Hongfei Lou
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Nakayama T, Haruna SI. A review of current biomarkers in chronic rhinosinusitis with or without nasal polyps. Expert Rev Clin Immunol 2023; 19:883-892. [PMID: 37017326 DOI: 10.1080/1744666x.2023.2200164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/04/2023] [Indexed: 04/06/2023]
Abstract
INTRODUCTION Chronic rhinosinusitis (CRS) is a heterogeneous disease with a variety of cellular and molecular pathophysiologic mechanisms. Biomarkers have been explored in CRS using various phenotypes, such as polyp recurrence after surgery. Recently, the presence of regiotype in CRS with nasal polyps (CRSwNP) and the introduction of biologics for the treatment of CRSwNP has indicated the importance of endotypes, and there is a need to elucidate endotype-based biomarkers. AREAS COVERED Biomarkers for eosinophilic CRS, nasal polyps, disease severity, and polyp recurrence have been identified. Additionally, endotypes are being identified for CRSwNP and CRS without nasal polyps using cluster analysis, an unsupervised learning technique. EXPERT OPINION Endotypes in CRS have still being established, and biomarkers capable of identifying endotypes of CRS are not yet clear. When identifying endotype-based biomarkers, it is necessary to first identify endotypes clarified by cluster analysis for outcomes. With the application of machine learning, the idea of predicting outcomes using a combination of multiple integrated biomarkers, rather than a single biomarker, will become mainstream.
Collapse
Affiliation(s)
- Tsuguhisa Nakayama
- Department of Otorhinolaryngology and Head & Neck Surgery, Dokkyo Medical University, Tochigi, Japan
| | - Shin-Ichi Haruna
- Department of Otorhinolaryngology and Head & Neck Surgery, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
9
|
Zhou A, Shi C, Fan Y, Zheng Y, Wang J, Liu Z, Xie H, Liu J, Jiao Q. Involvement of CD40-CD40L and ICOS-ICOSL in the development of chronic rhinosinusitis by targeting eosinophils. Front Immunol 2023; 14:1171308. [PMID: 37325657 PMCID: PMC10267736 DOI: 10.3389/fimmu.2023.1171308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 06/17/2023] Open
Abstract
Background Chronic rhinosinusitis (CRS), whose prevalence and pathogenesis are age-related, is characterized by nasal tissue eosinophil infiltration. CD40-CD40 ligand (CD40L) pathway involves in the eosinophil-mediated inflammation, and inducible co-stimulator (ICOS)-ICOS ligand (ICOSL) signal can strengthen CD40-CD40L interaction. Whether CD40-CD40L and ICOS-ICOSL have a role in the development of CRS remains unknown. Objectives The aim of this study is to investigate the association of CD40-CD40L and ICOS-ICOSL expression with CRS and underlying mechanisms. Methods Immunohistology detected the expression of CD40, CD40L, ICOS, and ICOSL. Immunofluorescence was performed to evaluate the co-localizations of CD40 or ICOSL with eosinophils. Correlations between CD40-CD40L and ICOS-ICOSL as well as clinical parameters were analyzed. Flow cytometry was used to explore the activation of eosinophils by CD69 expression and the CD40 and ICOSL expression on eosinophils. Results Compared with the non-eCRS subset, ECRS (eosinophilic CRS) subset showed significantly increased CD40, ICOS, and ICOSL expression. The CD40, CD40L, ICOS, and ICOSL expressions were all positively correlated with eosinophil infiltration in nasal tissues. CD40 and ICOSL were mainly expressed on eosinophils. ICOS expression was significantly correlated with the expression of CD40-CD40L, whereas ICOSL expression was correlated with CD40 expression. ICOS-ICOSL expression positively correlated with blood eosinophils count and disease severity. rhCD40L and rhICOS significantly enhanced the activation of eosinophils from patients with ECRS. Tumor necrosis factor-α (TNF-α) and interleukin-5 (IL-5) obviously upregulated CD40 expression on eosinophils, which was significantly inhibited by the p38 mitogen-activated protein kinase (MAPK) inhibitor. Conclusions Increased CD40-CD40L and ICOS-ICOSL expressions in nasal tissues are linked to eosinophils infiltration and disease severity of CRS. CD40-CD40L and ICOS-ICOSL signals enhance eosinophils activation of ECRS. TNF-α and IL-5 regulate eosinophils function by increasing CD40 expression partly via p38 MAPK activation in patients with CRS.
Collapse
Affiliation(s)
- Aina Zhou
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenxi Shi
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhui Fan
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yushuang Zheng
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jue Wang
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhichen Liu
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huanxia Xie
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jisheng Liu
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingqing Jiao
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Liu Y, Fu L, Liu Z. The Role and Clinical Relevance of Osteopontin in Allergic Airway Diseases. J Clin Med 2023; 12:jcm12062433. [PMID: 36983433 PMCID: PMC10057512 DOI: 10.3390/jcm12062433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The airway epithelium is exposed to numerous external irritants including infectious agents, environmental allergens, and atmospheric pollutants, releasing epithelial cytokines including thymic stromal lymphopoietin (TSLP), IL-33, and IL-25 and initiating downstream type 2 (IL-4, IL-13, and IL-5) and IgE-driven pathways. These pathways trigger the initiation and progression of allergic airway diseases, including chronic rhinosinusitis with nasal polyps (CRSwNP), allergic rhinitis (AR), and allergic asthma. However, the use of biological agents that target downstream cytokines, such as IL-5, IL-4, and IL-13 receptors and IgE, might not be sufficient to manage some patients successfully. Instead of blocking downstream cytokines, targeting upstream epithelial cytokines has been proposed to address the complex immunologic networks associated with allergic airway diseases. Osteopontin (OPN), an extracellular matrix glyco-phosphoprotein, is a key mediator involved in Th1-related diseases, including systemic lupus erythematosus, multiple sclerosis, inflammatory bowel disease, and rheumatoid arthritis. Emerging evidence, including ours, indicates that epithelial-cell-derived OPN also plays an essential role in Th2-skewed airway diseases, including CRSwNP, AR, and allergic asthma involving the Th17 response. Therefore, we reviewed the current knowledge of epithelial-cell-derived OPN in the pathogenesis of three type-2-biased airway diseases and provided a direction for its future investigation and clinical relevance.
Collapse
Affiliation(s)
- Yang Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan 430030, China
| | - Li Fu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan 430030, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan 430030, China
| |
Collapse
|
11
|
Urbančič J, Košak Soklič T, Demšar Luzar A, Hočevar Boltežar I, Korošec P, Rijavec M. Transcriptomic Differentiation of Phenotypes in Chronic Rhinosinusitis and Its Implications for Understanding the Underlying Mechanisms. Int J Mol Sci 2023; 24:ijms24065541. [PMID: 36982612 PMCID: PMC10051401 DOI: 10.3390/ijms24065541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/04/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a multifaceted disease with variable clinical courses and outcomes. We aimed to determine CRS-associated nasal-tissue transcriptome in clinically well-characterized and phenotyped individuals, to gain a novel insight into the biological pathways of the disease. RNA-sequencing of tissue samples of patients with CRS with polyps (CRSwNP), without polyps (CRSsNP), and controls were performed. Characterization of differently expressed genes (DEGs) and functional and pathway analysis was undertaken. We identified 782 common CRS-associated nasal-tissue DEGs, while 375 and 328 DEGs were CRSwNP- and CRSsNP-specific, respectively. Common key DEGs were found to be involved in dendritic cell maturation, the neuroinflammation pathway, and the inhibition of the matrix metalloproteinases. Distinct CRSwNP-specific DEGs were involved in NF-kβ canonical pathways, Toll-like receptor signaling, HIF1α regulation, and the Th2 pathway. CRSsNP involved the NFAT pathway and changes in the calcium pathway. Our findings offer new insights into the common and distinct molecular mechanisms underlying CRSwNP and CRSsNP, providing further understanding of the complex pathophysiology of the CRS, with future research directions for novel treatment strategies.
Collapse
Affiliation(s)
- Jure Urbančič
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
- Correspondence:
| | - Tanja Košak Soklič
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Ajda Demšar Luzar
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, SI-4204 Golnik, Slovenia
| | - Irena Hočevar Boltežar
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Peter Korošec
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, SI-4204 Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Matija Rijavec
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, SI-4204 Golnik, Slovenia
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Chen CC, Buchheit KM. Endotyping Chronic Rhinosinusitis with Nasal Polyps: Understanding Inflammation Beyond Phenotypes. Am J Rhinol Allergy 2023; 37:132-139. [PMID: 36848270 DOI: 10.1177/19458924221149003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a heterogenous group of inflammatory conditions impacting the nose and paranasal sinuses. Our understanding of the underlying pathobiology of CRSwNP has substantially improved due to ongoing translational research efforts. Advances in treatment options, including targeted respiratory biologic therapy for CRSwNP, allow for more personalized approaches for CRSwNP patient care. Patients with CRSwNP are typically classified to one or more endotype based on the presence of type 1, type 2, and type 3 inflammation. This review will discuss recent advances in our understanding of CRSwNP and how this may impact current and future treatment approaches for patients with CRSwNP.
Collapse
Affiliation(s)
- Chongjia C Chen
- Department of Medicine, Harvard Medical School, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kathleen M Buchheit
- Department of Medicine, Harvard Medical School, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
13
|
Lal D, Brar T, Ramkumar SP, Li J, Kato A, Zhang L. Genetics and epigenetics of chronic rhinosinusitis. J Allergy Clin Immunol 2023; 151:848-868. [PMID: 36797169 DOI: 10.1016/j.jaci.2023.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 02/16/2023]
Abstract
Discerning the genetics and epigenetics of chronic rhinosinusitis (CRS) may optimize outcomes through early diagnostics, personalized and novel therapeutics, and early prognostication. CRS associated with cystic fibrosis and primary ciliary dyskinesia has well-characterized genetic mutations. Most CRS subjects, however, do not exhibit identifiable monogenic alterations. Clustering in related individuals is seen in CRS with nasal polyps. Spouses of subjects with CRS without nasal polyps also may be at increased risk of the same disease. These observations generate questions on genetic and environmental influences in CRS. Genome-wide association studies have identified variations and polymorphisms between CRS and control subjects in genes related to innate and adaptive immunity. Candidate gene and transcriptomics studies have investigated and identified genetic variations related to immunity, inflammation, epithelial barrier function, stress-response, antigen processing, T-cell regulation, and cytokines in CRS. Epigenetic studies have identified mechanisms through which environmental factors may affect these gene functions. However, causality is not determined for most variations. Inferences drawn from these data must be measured because most investigations report unreplicated results from small study populations. Large, replicated studies in tight cohorts across diverse populations remain a pressing need in studying CRS genetics.
Collapse
Affiliation(s)
- Devyani Lal
- Department of Otolaryngology Head and Neck Surgery, Mayo Clinic in Arizona, Phoenix, Ariz.
| | - Tripti Brar
- Department of Otolaryngology Head and Neck Surgery, Mayo Clinic in Arizona, Phoenix, Ariz
| | - Shreya Pusapadi Ramkumar
- Department of Otolaryngology Head and Neck Surgery, Mayo Clinic in Arizona, Phoenix, Ariz; Saint Louis University School of Medicine, St Louis, Mo
| | - Jingyun Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Tongren Hospital, Capital Medical University, Beijing, China; Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Atsushi Kato
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Tongren Hospital, Capital Medical University, Beijing, China; Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Luo C, Zhu Y, Zhou J, Sun X, Zhang S, Tan S, Li Z, Lin H, Zhang W. Increased CYR61 expression activates CCND1/c-Myc pathway to promote nasal epithelial cells proliferation in chronic rhinosinusitis with nasal polyps. Clin Immunol 2023; 247:109235. [PMID: 36681101 DOI: 10.1016/j.clim.2023.109235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
PURPOSE Chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) is a chronic sinonasal inflammatory disease characterized histologically by hyperplastic nasal epithelium and epithelial cells proliferation. Cysteine-rich angiogenic inducer 61 (CYR61) acts as a positive regulator of cell cycle process. Cyclin D1 (CCND1) and c-Myc play key roles in the processes of cell cycle and cell growth. The purpose of our research was to explore the expression and roles of CYR61, CCND1 and c-Myc in CRSwNP. METHODS FeaturePlot and vlnPlot functions embedded in the seurat package (version 4.1.1) of R software (version 4.2.0) were applied to explore the cellular distribution of CYR61, CCND1 and c-Myc in the single-cell RNA sequencing (scRNA-seq) dataset of nasal tissue samples. CYR61, CCND1 and c-Myc immunolabeling and mRNA levels in nasal tissue samples were assessed by immunohistochemistry and real-time PCR. Co-localization of CYR61, CCND1 and c-Myc with basal epithelial cell marker P63 was assayed using double-label immunofluorescence staining. Furthermore, we collected and cultured human nasal epithelial cells (HNEC) to assess the regulation and role of CYR61 in vitro study. RESULTS CYR61, CCND1 and c-Myc were primarily expressed by nasal epithelial cells. Significant upregulation of CYR61, CCND1 and c-Myc positive cells and increased levels of CYR61, CCND1 and c-Myc mRNA were found in nasal polyps in comparison to control samples. Of note, CYR61 mRNA and protein levels were altered by SEB, LPS, IFN-γ, IL-13, IL-17A and TGF-β1 in HNEC. In addition, CYR61 intervention could increase CCND1 and c-Myc mRNA and protein levels to promote HNEC proliferation, and siRNA against ITGA2 (si-ITGA2) could reverse CYR61 induced upregulation of CCND1 and c-Myc mRNA and protein levels in HNEC and cell proliferation of HNEC. CONCLUSIONS CYR61, CCND1 and c-Myc were primarily expressed by epithelial cells in nasal mucosa. CYR61, CCND1 and c-Myc expression levels were increased in CRSwNP compared with controls. CYR61 could interact with ITGA2 to enhance HNEC proliferation via upregulating CCND1 and c-Myc levels in the HNEC, leading to hyperplastic nasal epithelium in CRSwNP.
Collapse
Affiliation(s)
- Chunyu Luo
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ying Zhu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Jiayao Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Xiwen Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shiyao Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shaolin Tan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China; Postgraduate Training Base of Shanghai Sixth People's Hospital, Jinzhou Medical University, Shanghai, China
| | - Zhipeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Hai Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.
| | - Weitian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.
| |
Collapse
|
15
|
Ramakrishnan VR, Larson E, Holt J, Frank DN. Infection and inflammation in chronic rhinosinusitis: Gene ontology/pathway analysis perspective. Int Forum Allergy Rhinol 2022; 12:1566-1569. [PMID: 35829680 PMCID: PMC9712154 DOI: 10.1002/alr.23052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/11/2022] [Accepted: 06/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Vijay R. Ramakrishnan
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Eric Larson
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado School of Medicine, Denver, CO
| | - Justin Holt
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado School of Medicine, Denver, CO
| | - Daniel N. Frank
- Division of Infectious Diseases, University of Colorado School of Medicine, Denver, CO
- Microbiome Research Consortium, University of Colorado School of Medicine, Denver, CO
| |
Collapse
|
16
|
Construction and analysis of a ceRNA network and patterns of immune infiltration in chronic rhinosinusitis with nasal polyps: based on data mining and experimental verification. Sci Rep 2022; 12:9735. [PMID: 35697826 PMCID: PMC9192587 DOI: 10.1038/s41598-022-13818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
Recent studies have revealed the significant role of the competing endogenous RNA (ceRNA) network in human diseases. However, systematic analysis of the ceRNA mechanism in chronic rhinosinusitis with nasal polyps (CRSwNP) is limited. In this study, we constructed a competitive endogenous RNA (ceRNA) network and identified a potential regulatory axis in CRSwNP based on bioinformatics analysis and experimental verification. We obtained lncRNA, miRNA, and mRNA expression profiles from the Gene Expression Omnibus. After analysis of CRSwNP patients and the control groups, we identified 565 DE-lncRNAs, 23 DE-miRNAs, and 1799 DE-mRNAs by the DESeq2 R package or limma R package. Enrichment analysis of 1799 DE-mRNAs showed that CRSwNP was associated with inflammation and immunity. Moreover, we identified 21 lncRNAs, 8 miRNAs and 8 mRNAs to construct the lncRNA-miRNA-mRNA ceRNA network. A potential MIAT/miR-125a/IRF4 axis was determined according to the degree and positive correlation between a lncRNA and its competitive endogenous mRNAs. The GSEA results suggested that IRF4 may be involved in immune cell infiltration. The validation of another dataset confirmed that MIAT and IRF4 were differentially expressed between the CRSwNP and control groups. The area under the ROC curve (AUC) of MIAT and IRF4 was 0.944. The CIBERSORT analysis revealed that eosinophils and M2 macrophages may be involved in the CRSwNP process. MIAT was correlated with dendritic cells and M2 macrophages, and IRF4 was correlated with dendritic cells. Finally, to validate the key genes, we performed in-silico validation using another dataset and experimental validation using immunohistochemistry, immunofluorescence, and Western blot. In summary, the constructed novel MIAT/miR-125a/IRF4 axis may play a critical role in the development and progression of CRSwNP. We believe that the ceRNA network and immune cell infiltration could offer further insight into novel molecular therapeutic targets for CRSwNP.
Collapse
|
17
|
Kato A, Schleimer RP, Bleier BS. Mechanisms and pathogenesis of chronic rhinosinusitis. J Allergy Clin Immunol 2022; 149:1491-1503. [PMID: 35245537 PMCID: PMC9081253 DOI: 10.1016/j.jaci.2022.02.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 11/19/2022]
Abstract
Chronic rhinosinusitis (CRS) is a heterogeneous disease characterized by local inflammation of the upper airways and is historically divided into 2 main phenotypes: CRS with nasal polyps and CRS without nasal polyps. Inflammation in CRS is mainly characterized by 3 endotypes based on elevation of canonical lymphocyte cytokines: type (T) 1 (T1) by TH1 cytokine IFN-γ, T2 by TH2 cutokines IL-4, IL-5, and IL-13, and T3 by TH17 cytokines including IL-17. Inflammation in both CRS without nasal polyps and CRS with nasal polyps is highly heterogeneous, and the frequency of various endotypes varies geographically around the world. This finding complicates establishment of a unified understanding of the mechanisms of pathogenesis in CRS. Sinonasal epithelium acts as a passive barrier, and epithelial barrier dysfunction is a common feature in CRS induced by endotype-specific cytokines directly and indirectly. The sinonasal epithelium also participates in both innate immunity via recognition by innate pattern-recognition receptors and promotes and regulates adaptive immunity via release of chemokines and innate cytokines including thymic stromal lymphopoietin. The purpose of this review was to discuss the contribution of the epithelium to CRS pathogenesis and to update the field regarding endotypic heterogeneity and various mechanisms for understanding pathogenesis in CRS.
Collapse
Affiliation(s)
- Atsushi Kato
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago.
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago
| | - Benjamin S Bleier
- Department of Otolaryngology-Head & Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston
| |
Collapse
|
18
|
Kim DH, Kim SW, Basurrah MA, Hwang SH. Clinical and laboratory features for various criteria of eosinophilic chronic rhinosinusitis: a systematic review and meta-analysis. Clin Exp Otorhinolaryngol 2022; 15:230-246. [PMID: 35413170 PMCID: PMC9441508 DOI: 10.21053/ceo.2022.00052] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/11/2022] [Indexed: 11/22/2022] Open
Abstract
Objectives: To evaluate the differences in clinical and laboratory features between eosinophilic chronic rhinosinusitis (ECRS) and non-ECRS and to compare the diagnostic criteria for ECRS.Methods: We compared clinical features and/or laboratory findings classified as ECRS and non-ECRS according to various diagnostic criteria (histological and clinical criteria). In addition, we analyzed studies to compare endoscopic findings, symptom scores, laboratory findings, and computed tomography (CT) findings between ECRS and non-ECRS. Results: Our search included 55 studies with 6,143 patients. As a result of comparing clinical features and/or laboratory criteria with histological criteria, there were no significant differences regarding nasal symptom scores and CT scores according to criteria. Serum eosinophil levels showed differences according to criteria, however, ECRS were higher serum eosinophil levels than non-ECRS in all criteria. In the case of olfactory dysfunction, JESREC and tissue eosinophilia (
Collapse
|
19
|
Sun Q, Liu Z, Xu X, Yang Y, Han X, Wang C, Song F, Mou Y, Li Y, Song X. Identification of a circRNA/miRNA/mRNA ceRNA Network as a Cell Cycle-Related Regulator for Chronic Sinusitis with Nasal Polyps. J Inflamm Res 2022; 15:2601-2615. [PMID: 35494315 PMCID: PMC9045834 DOI: 10.2147/jir.s358387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To explore the mechanisms by which circRNA/miRNA/mRNA competitive endogenous RNAs (ceRNA) networks regulate CRSwNP. Methods The expression profiles of circRNAs, miRNAs, and mRNAs from patients with CRSwNP and control subjects were acquired from the Gene Expression Omnibus database. The circRNA/miRNA/mRNA ceRNA network was constructed based on the predicted circRNA–miRNA interactions and miRNA–mRNA interactions. Hub-mRNAs were screened by protein–protein interaction network analysis and Cytoscape molecular complex detection. The expression of factors in tissue and in hsa_circ_0031594 siRNA transfection cells was verified by RT-qPCR and the association between them was revealed by Spearman correlation analysis. Receiver operating characteristic curve analysis was performed with the pROC R package. Results The differential expression of 5423 circRNAs, 415 miRNAs, and 3673 mRNAs was identified in CRSwNP subjects compared to control subjects. Among these, 9 circRNAs, 39 miRNAs, and 78 mRNAs were screened to construct a ceRNA network. Ultimately, a subnetwork including circRNA hsa_circ_0031594, hsa-miR-1260b, hsa-miR-6507-5p, NCAPG2, RACGAP1, CHEK1 and PRC1 was screened out. RT-qPCR validated that the expression of hsa_circ_0031594, NCAPG2, PRC1 was significantly increased, and hsa-miR-1260b and hsa-miR-6507-5p were expressed significantly less in patients with CRSwNP than in control subjects. In addition, the AUCs of hsa_circ_0031594, hsa-miR-1260b, hsa-miR-6507-5p, NCAPG2, and PRC1 to discriminate CRSwNP patients were 0.995, 0.842, 0.862, 0.765, and 0.816. Spearman correlation showed that the expression of hsa_circ_0031594 was negatively correlated with hsa-miR-1260b and hsa-miR-6507-5p, and positively correlated with NCAPG2 and PRC1. In human nasal epithelial cell (HNEpC) line, knocking down hsa_circ_0031594 could increase the expression of hsa-miR-1260b and hsa-miR-6507-5p, and reduce the expression of NCAPG2 and PRC1. Conclusion CeRNA networks including hsa_circ_0031594, hsa-miR-1260b, and NCAPG2, and hsa_circ_0031594, hsa-miR-6507-5p, and PRC1 may be key regulators for CRSwNP occurrence, and may be potential targets for the pathogenesis and treatment development of CRSwNP.
Collapse
Affiliation(s)
- Qi Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Zhen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Xiangya Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Yujuan Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Xiao Han
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Cai Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- School of Clinical Medicine, Weifang Medical University, Weifang, People’s Republic of China
| | - Fei Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Department of Binzhou Medical University, Clinical Medical College Second, Binzhou Medical University, Yantai, People’s Republic of China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Yumei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Correspondence: Xicheng Song; Yumei Li, Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, People’s Republic of China, Tel +860535-6691999, Fax +860535-6240341, Email ;
| |
Collapse
|
20
|
Kato A, Peters AT, Stevens WW, Schleimer RP, Tan BK, Kern RC. Endotypes of chronic rhinosinusitis: Relationships to disease phenotypes, pathogenesis, clinical findings, and treatment approaches. Allergy 2022; 77:812-826. [PMID: 34473358 PMCID: PMC9148187 DOI: 10.1111/all.15074] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023]
Abstract
Chronic rhinosinusitis (CRS) is a common clinical syndrome that produces significant morbidity and costs to our health system. The study of CRS has progressed from an era focused on phenotype to include endotype-based information. Phenotypic classification has identified clinical heterogeneity in CRS based on endoscopically observed features such as presence of nasal polyps, presence of comorbid or systemic diseases, and timing of disease onset. More recently, laboratory-based findings have established CRS endotype based upon specific mechanisms or molecular biomarkers. Understanding the basis of widespread heterogeneity in the manifestations of CRS is advanced by findings that the three main endotypes, Type 1, 2, and 3, orchestrate the expression of three distinct large sets of genes. The development and use of improved methods of endotyping disease in the clinic are ushering in an expansion of the use of biological therapies targeting Type 2 inflammation now and perhaps other inflammatory endotypes in the near future. The purpose of this review is to discuss the phenotypic and endotypic heterogeneity of CRS from the perspective of advancing the understanding of the pathogenesis and improvement of treatment approaches and outcomes.
Collapse
Affiliation(s)
- Atsushi Kato
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anju T Peters
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Otolaryngology - Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Whitney W Stevens
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Otolaryngology - Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Otolaryngology - Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bruce K Tan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Otolaryngology - Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert C Kern
- Department of Otolaryngology - Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
21
|
Fokkens WJ, Landis BN, Hopkins C, Reitsma S, Sedaghat AR. Rhinology in review: from COVID-19 to biologicals. Rhinology 2021; 59:490-500. [PMID: 34812433 DOI: 10.4193/rhin21.424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We look back at the end of what soon will be seen as an historic year, from COVID-19 to real-world introduction of biologicals influencing the life of our patients. This review describes the important findings in Rhinology over the past year. A large body of evidence now demonstrates loss of sense of smell to be one of the most common symptoms of COVID-19 infection; a meta-analysis of 3563 patients found the mean prevalence of self-reported loss to be 47%. A number of studies have now shown long-term reduced loss of smell and parosmia. Given the high numbers of people affected by COVID-19, even with the best reported recovery rates, a significant number worldwide will be left with severe olfactory dysfunction. The most prevalent causes for olfactory dysfunction, besides COVID-19 and upper respiratory tract infections in general, are trauma and CRSwNP. For these CRSwNP patients a bright future seems to be starting with the development of treatment with biologics. This year the Nobel prize in Medicine 2021 was awarded jointly to David Julius and Ardem Patapoutian for their discoveries of receptors for temperature and touch which has greatly enhanced our understanding of nasal hyperreactivity and understanding of intranasal trigeminal function. Finally, a new definition of chronic rhinitis has been proposed in the last year and we have seen many papers emphasizing the importance of endotyping patients in chronic rhinitis and rhinosinusitis in order to optimise treatment effect.
Collapse
Affiliation(s)
- W J Fokkens
- Department of Otorhinolaryngology, Amsterdam University Medical Centres, location AMC, Amsterdam, The Netherlands
| | - B N Landis
- Department of Otorhinolaryngology, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - C Hopkins
- Department of Otorhinolaryngology, Guy's Hospital, London, UK
| | - S Reitsma
- Department of Otorhinolaryngology, Amsterdam University Medical Centres, location AMC, Amsterdam, The Netherlands
| | - A R Sedaghat
- Department of Otolaryngology Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
22
|
Nakayama T, Lee IT, Le W, Tsunemi Y, Borchard NA, Zarabanda D, Dholakia SS, Gall PA, Yang A, Kim D, Akutsu M, Kashiwagi T, Patel ZM, Hwang PH, Frank DN, Haruna SI, Ramakrishnan VR, Nolan GP, Jiang S, Nayak JV. Inflammatory molecular endotypes of nasal polyps derived from Caucasian and Japanese populations. J Allergy Clin Immunol 2021; 149:1296-1308.e6. [PMID: 34863854 DOI: 10.1016/j.jaci.2021.11.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Emerging evidence suggests that chronic rhinosinusitis with nasal polyps (CRSwNP) is a highly heterogeneous disease with disparate inflammatory characteristics between different racial groups and geographies. Little is known currently about possible distinguishing factors underlying these inflammatory differences. OBJECTIVE To interrogate for differences between Caucasian and Japanese CRSwNP disease using whole transcriptome and single-cell RNA gene expression profiling of nasal polyps (NPs). METHODS We performed whole transcriptome RNA sequencing (RNA-seq) with endotype stratification of NPs from 8 Caucasian (residing in USA) and 9 Japanese (residing in Japan) patients. Reproducibility was confirmed by qPCR in an independent validation set of 46 Caucasian and 31 Japanese patients. Single-cell RNA-seq stratified key cell types for contributory transcriptional signatures. RESULTS Unsupervised clustering analysis identified two major endotypes present within both NP cohorts, which have previously been reported at the cytokine level: 1) type 2 endotype and 2) non-type 2 endotype. Importantly, there was a statistically significant difference in the proportion of these endotypes between these geographically distinct NP subgroups (p = 0.03). Droplet-based single-cell RNA sequencing further identified prominent type 2 inflammatory transcript expression: C-C motif chemokine ligand 13 (CCL13) and CCL18 in M2 macrophages, as well as cystatin SN (CST1) and CCL26 in basal, suprabasal, and secretory epithelial cells. CONCLUSION NPs from both racial groups harbor the same two major endotypes, which we determine are present in differing ratios between each cohort with CRSwNP disease. Distinct inflammatory and epithelial cells contribute to the type 2 inflammatory profiles observed.
Collapse
Affiliation(s)
- Tsuguhisa Nakayama
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Ivan T Lee
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Wei Le
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yasuhiro Tsunemi
- Department of Otorhinolaryngology-Head and Neck Surgery, Dokkyo Medical University, Tochigi, Japan
| | - Nicole A Borchard
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - David Zarabanda
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sachi S Dholakia
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Philip A Gall
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Angela Yang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Dayoung Kim
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Makoto Akutsu
- Department of Otorhinolaryngology-Head and Neck Surgery, Dokkyo Medical University, Tochigi, Japan
| | - Takashi Kashiwagi
- Department of Otorhinolaryngology-Head and Neck Surgery, Dokkyo Medical University, Tochigi, Japan
| | - Zara M Patel
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter H Hwang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel N Frank
- Division of Infectious Diseases, University of Colorado, Aurora, CO, USA
| | - Shin-Ichi Haruna
- Department of Otorhinolaryngology-Head and Neck Surgery, Dokkyo Medical University, Tochigi, Japan
| | - Vijay R Ramakrishnan
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado, Aurora, CO, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sizun Jiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Jayakar V Nayak
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Otolaryngology-Head and Neck Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
23
|
Orlandi RR, Kingdom TT, Smith TL, Bleier B, DeConde A, Luong AU, Poetker DM, Soler Z, Welch KC, Wise SK, Adappa N, Alt JA, Anselmo-Lima WT, Bachert C, Baroody FM, Batra PS, Bernal-Sprekelsen M, Beswick D, Bhattacharyya N, Chandra RK, Chang EH, Chiu A, Chowdhury N, Citardi MJ, Cohen NA, Conley DB, DelGaudio J, Desrosiers M, Douglas R, Eloy JA, Fokkens WJ, Gray ST, Gudis DA, Hamilos DL, Han JK, Harvey R, Hellings P, Holbrook EH, Hopkins C, Hwang P, Javer AR, Jiang RS, Kennedy D, Kern R, Laidlaw T, Lal D, Lane A, Lee HM, Lee JT, Levy JM, Lin SY, Lund V, McMains KC, Metson R, Mullol J, Naclerio R, Oakley G, Otori N, Palmer JN, Parikh SR, Passali D, Patel Z, Peters A, Philpott C, Psaltis AJ, Ramakrishnan VR, Ramanathan M, Roh HJ, Rudmik L, Sacks R, Schlosser RJ, Sedaghat AR, Senior BA, Sindwani R, Smith K, Snidvongs K, Stewart M, Suh JD, Tan BK, Turner JH, van Drunen CM, Voegels R, Wang DY, Woodworth BA, Wormald PJ, Wright ED, Yan C, Zhang L, Zhou B. International consensus statement on allergy and rhinology: rhinosinusitis 2021. Int Forum Allergy Rhinol 2021; 11:213-739. [PMID: 33236525 DOI: 10.1002/alr.22741] [Citation(s) in RCA: 413] [Impact Index Per Article: 137.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
I. EXECUTIVE SUMMARY BACKGROUND: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR-RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR-RS-2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence-based findings of the document. METHODS ICAR-RS presents over 180 topics in the forms of evidence-based reviews with recommendations (EBRRs), evidence-based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. RESULTS ICAR-RS-2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence-based management algorithm is provided. CONCLUSION This ICAR-RS-2021 executive summary provides a compilation of the evidence-based recommendations for medical and surgical treatment of the most common forms of RS.
Collapse
Affiliation(s)
| | | | | | | | | | - Amber U Luong
- University of Texas Medical School at Houston, Houston, TX
| | | | - Zachary Soler
- Medical University of South Carolina, Charleston, SC
| | - Kevin C Welch
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | | | | | | | - Claus Bachert
- Ghent University, Ghent, Belgium.,Karolinska Institute, Stockholm, Sweden.,Sun Yatsen University, Gangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David A Gudis
- Columbia University Irving Medical Center, New York, NY
| | - Daniel L Hamilos
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Richard Harvey
- University of New South Wales and Macquarie University, Sydney, New South Wales, Australia
| | | | | | | | | | - Amin R Javer
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | - Valerie Lund
- Royal National Throat Nose and Ear Hospital, UCLH, London, UK
| | - Kevin C McMains
- Uniformed Services University of Health Sciences, San Antonio, TX
| | | | - Joaquim Mullol
- IDIBAPS Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | - Alkis J Psaltis
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | - Luke Rudmik
- University of Calgary, Calgary, Alberta, Canada
| | - Raymond Sacks
- University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | - De Yun Wang
- National University of Singapore, Singapore, Singapore
| | | | | | | | - Carol Yan
- University of California San Diego, La Jolla, CA
| | - Luo Zhang
- Capital Medical University, Beijing, China
| | - Bing Zhou
- Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Bu X, Wang M, Luan G, Wang Y, Wang C, Zhang L. Integrated miRNA and mRNA expression profiling reveals dysregulated miRNA-mRNA regulatory networks in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol 2021; 11:1207-1219. [PMID: 33611865 DOI: 10.1002/alr.22781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/06/2021] [Accepted: 01/24/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND The precise mechanisms underlying pathogenesis of different subtypes of chronic rhinosinusitis with nasal polyps (CRSwNP) are still unclear. Emerging evidence indicates that microRNAs may play a role in the pathogenesis of CRSwNP. This study aimed to identify the dysregulated microRNA-messenger RNA (miRNA-mRNA) regulatory networks in eosinophilic (E) and non-eosinophilic (non-E) CRSwNP. METHODS Whole-transcriptome sequencing was performed on nasal tissues of patients with ECRSwNP and non-ECRSwNP, and control subjects. An integrated analysis of miRNA and mRNA expression was conducted to identify key mRNAs and miRNAs involved in the pathogenesis of ECRSwNP and non-ECRSwNP. The miRNAs of interest and their target genes were validated using quantitative real-time polymerase chain reaction (PCR). RESULTS A group of differentially expressed mRNAs (DE-mRNAs) and miRNAs (DE-miRs) were identified in ECRSwNP patients vs control subjects, non-ECRSwNP patients vs control subjects, and non-ECRSwNP vs ECRSwNP patients, respectively. Pathway enrichment analysis showed distinct immune and inflammatory functions associated with DE-mRNAs and target genes of DE-miRs in ECRSwNP vs control and non-ECRSwNP vs control groups. The miRNA-mRNA regulatory networks constructed with Cytoscape highlighted the roles of miR-154, miR-221, and miR-223 family miRNAs relating to both ECRSwNP and non-ECRSwNP, and the roles of the let-7 and miR-34/449 families in the development of non-ECRSwNP. Assessment using real-time PCR for the expression of miRNAs and target genes demonstrated highly consistent data with the RNA sequencing data. CONCLUSION ECRSwNP and non-ECRSwNP patients express distinct miRNA-mRNA regulatory networks compared with control subjects, thus providing potential targets for future development of novel therapeutic approaches for the management of CRSwNP.
Collapse
Affiliation(s)
- Xiangting Bu
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, PR China
| | - Ming Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, PR China
| | - Ge Luan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, PR China
| | - Yang Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, PR China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, PR China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, PR China.,Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
25
|
Reduced Expression of Antimicrobial Protein Secretory Leukoprotease Inhibitor and Clusterin in Chronic Rhinosinusitis with Nasal Polyps. J Immunol Res 2021; 2021:1057186. [PMID: 33506054 PMCID: PMC7810533 DOI: 10.1155/2021/1057186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction Antimicrobial peptides and proteins (AMPs) constitute the first line of defense against pathogenic microorganisms in the airway. The association between AMPs and chronic rhinosinusitis with nasal polyps (CRSwNP) requires further investigations. This study is aimed at investigating the expression and regulation of major dysregulated AMPs in the nasal mucosa of CRSwNP. Methods The expression of AMPs was analyzed in nasal tissue from patients with eosinophilic (E) CRSwNP and nonECRSwNP and healthy subjects using RNA sequencing. The 10 most abundant AMPs expressed differentially in CRSwNP patients were verified by real-time PCR, and of these, the expression and regulation of secretory leukoprotease inhibitor (SLPI) and clusterin (CLU) were investigated further. Results The 10 most abundant AMPs expressed differentially in CRSwNP compared to healthy control, regardless of subtypes, included BPIFA1, BPIFB1, BPIFB2, CLU, LTF, LYZ, and SLPI, which were downregulated, and S100A8, S100A9, and HIST1H2BC, which were upregulated. ELISA and immunofluorescence confirmed the decreased expression of SLPI and CLU levels in CRSwNP. SLPI is expressed in both nasal epithelial cells and glandular cells, whereas CLU is mainly expressed in glandular cells. AB/PAS staining further demonstrated that both SLPI and CLU were mainly produced by mucous cells in submucosal glands. Furthermore, the numbers of submucosal glands were significantly decreased in nasal polyp tissue of CRSwNP compared to nasal tissue of controls. SLPI was downregulated by TGF-β1 and IL-4 in cultured nasal tissues in vitro, while CLU expression was inhibited by TGF-β1. Glucocorticoid treatment for 2 weeks significantly increased the expression of all downregulated AMPs, but not LYZ. Additionally, budesonide significantly increased the expression of SLPI and CLU in cultured nasal tissues. Conclusion The expression of major antimicrobial proteins is significantly decreased in nasal tissue of CRSwNP. The expression of SLPI and CLU is correlated with the numbers of submucosal glands and regulated by inflammatory cytokines and glucocorticoids.
Collapse
|
26
|
Klingler AI, Stevens WW, Tan BK, Peters AT, Poposki JA, Grammer LC, Welch KC, Smith SS, Conley DB, Kern RC, Schleimer RP, Kato A. Mechanisms and biomarkers of inflammatory endotypes in chronic rhinosinusitis without nasal polyps. J Allergy Clin Immunol 2020; 147:1306-1317. [PMID: 33326802 DOI: 10.1016/j.jaci.2020.11.037] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) without nasal polyps (CRSsNP) is a common disease that is characterized by multiple inflammatory endotypes. However, the molecular mechanisms in CRSsNP are poorly understood compared with those of polypoid CRS. OBJECTIVE Our aim was to identify mechanisms and biomarkers associated with inflammatory endotypes underpinning CRSsNP. METHODS Ethmoid tissues and nasal lavage fluids (NLFs) were obtained from control patients and patients with CRS. The gene expression profiles were determined by microarray analysis and quantitative RT-PCR, and expression of proteins was measured by ELISA and Luminex analysis. RESULTS Microarray found that compared with their levels of expression in control tissue, the levels of expression of 126, 241, and 545 genes were more than 3-fold and significantly elevated in CRSsNP with type 1 (T1) endotype, type 2 (T2) endotype, and type 3 (T3) endotype, respectively. Selected identified genes were confirmed by RT-PCR. Gene set enrichment analysis suggested that T1 CRSsNP was associated with IFN-γ signaling and antiviral immunity controlled by T cells (TH1 and CD8+), natural killer cells, and antigen-presenting cells; T2 CRSsNP was associated with STAT6 signaling and IgE-mediated activation controlled by eosinophils, mast cells, TH2 cells, group 2 innate lymphoid cells, and antigen-presenting cells; and T3 CRSsNP was associated with IL-17 signaling, acute inflammatory response, complement-mediated inflammation, and infection controlled by neutrophils, TH17 cells, B cells, and antigen-presenting cells. The results suggest that T1 (CXCL9 and CXCL10), T2 (eosinophilic proteins and CCL26), and T3 (CSF3) endotypic biomarkers in NLF may be able to distinguish tissue endotypes in CRSsNP. CONCLUSIONS Inflammatory endotypes in CRSsNP were controlled by different molecular mechanisms. NLF biomarker assays may allow for more precise and personalized medical treatments in CRS.
Collapse
Affiliation(s)
- Aiko I Klingler
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Whitney W Stevens
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce K Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Anju T Peters
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Julie A Poposki
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Leslie C Grammer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kevin C Welch
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Stephanie S Smith
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - David B Conley
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert C Kern
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Atsushi Kato
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
27
|
Hoggard M, Jacob B, Wheeler D, Zoing M, Chang K, Biswas K, Middleditch M, Douglas RG, Taylor MW. Multiomic analysis identifies natural intrapatient temporal variability and changes in response to systemic corticosteroid therapy in chronic rhinosinusitis. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:90-107. [PMID: 33220024 PMCID: PMC7860613 DOI: 10.1002/iid3.349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The pathophysiology and temporal dynamics of affected tissues in chronic rhinosinusitis (CRS) remain poorly understood. Here, we present a multiomics-based time-series assessment of nasal polyp biopsies from three patients with CRS, assessing natural variability over time and local response to systemic corticosteroid therapy. METHODS Polyp tissue biopsies were collected at three time points over two consecutive weeks. Patients were prescribed prednisone (30 mg daily) for 1 week between Collections 2 and 3. Polyp transcriptome, proteome, and microbiota were assessed via RNAseq, SWATH mass spectrometry, and 16S ribosomal RNA and ITS2 amplicon sequencing. Baseline interpatient variability, natural intrapatient variability over time, and local response to systemic corticosteroids, were investigated. RESULTS Overall, the highly abundant transcripts and proteins were associated with pathways involved in inflammation, FAS, cadherin, integrin, Wnt, apoptosis, and cytoskeletal signaling, as well as coagulation and B- and T-cell activation. Transcripts and proteins that naturally varied over time included those involved with inflammation- and epithelial-mesenchymal transition-related pathways, and a number of common candidate target biomarkers of CRS. Ten transcripts responded significantly to corticosteroid therapy, including downregulation of TNF, CCL20, and GSDMA, and upregulation of OVGP1, and PCDHGB1. Members of the bacterial genus Streptococcus positively correlated with immunoglobulin proteins IGKC and IGHG1. CONCLUSIONS Understanding natural dynamics of CRS-associated tissues is essential to provide baseline context for all studies on putative biomarkers, mechanisms, and subtypes of CRS. These data further our understanding of the natural dynamics within nasal polypoid tissue, as well as local changes in response to systemic corticosteroid therapy.
Collapse
Affiliation(s)
- Michael Hoggard
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Bincy Jacob
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Auckland Science Analytical Services, The University of Auckland, Auckland, New Zealand
| | - David Wheeler
- Nextgen Bioinformatic Services, Palmerston North, New Zealand
| | - Melissa Zoing
- Department of Surgery, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Kevin Chang
- Department of Statistics, Statistical Consulting Centre, The University of Auckland, Auckland, New Zealand
| | - Kristi Biswas
- Department of Surgery, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Martin Middleditch
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Auckland Science Analytical Services, The University of Auckland, Auckland, New Zealand
| | - Richard G Douglas
- Department of Surgery, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Michael W Taylor
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Xiong G, Xie X, Wang Q, Zhang Y, Ge Y, Lin W, Li M. Immune cell infiltration and related core genes expression characteristics in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Exp Ther Med 2020; 20:180. [PMID: 33101470 PMCID: PMC7579783 DOI: 10.3892/etm.2020.9310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) refers to chronic inflammation of the sinonasal mucosa. It can either be eosinophilic (ECRSwNP) or non-eosinophilic (non-ECRSwNP). However, immune cell infiltration in the microenvironment and pathogenesis of ECRSwNP and non-ECRSwNP are still unclear. The aim of the present study was to assess the immune cell infiltration and molecular mechanisms of ECRSwNP and non-ECRSwNP. In the present study, 22 immune cell types in ECRSwNP and non-ECRSwNP were investigated by CIBERSORT based on transcriptome data. The core gene related pathophysiology of CRSwNP was analyzed using Weighted Gene Correlation Network Analysis according to the phenotype of the infiltrated eosinophils and nasal polyps (NP). A total of four types of immune cells (mast cells, activated dendritic cells, M2 macrophages and activated natural killer cells) were demonstrated to have a direct and indirect correlation with eosinophilic infiltration in ECRSwNP. M1 macrophages and activated CD4+ memory T cells were correlated with major immune cell types in non-ECRSwNP. NP could affect the expression of ‘olfactory receptor activity’ and ‘channel activity’ genes to impair the olfactory signaling pathway and neuroactive ligand receptor pathway. ‘Cell adhesion molecule binding’, ‘cytokine receptor binding’ and ‘glucocorticoid receptor binding’ were significantly enriched in ECRSwNP, whereas epithelial cell injury, autophagy and the mTOR pathway (hsa04140 and hsa04150) may serve an important role in the pathogenesis of non-ECRSwNP. There were significantly different immune cell infiltration and related core genes expression characteristics between ECRSwNP and non-ECRSwNP. The results of the present study provide an improved basis for elucidation of the mechanism and treatment of CRSwNP.
Collapse
Affiliation(s)
- Gaoyun Xiong
- Department of Otolaryngology, Head and Neck Surgery, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Xiaoxing Xie
- Department of Otolaryngology, Head and Neck Surgery, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Qingliang Wang
- Department of Otolaryngology, Head and Neck Surgery, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Yanyan Zhang
- Department of Otolaryngology, Head and Neck Surgery, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Yanping Ge
- Department of Otolaryngology, Head and Neck Surgery, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Wei Lin
- Department of Otolaryngology, Head and Neck Surgery, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Mingqian Li
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
29
|
Min HJ, Kim KS. Expression Pattern of HMGB1 Differs Between Eosinophilic Chronic Rhinosinusitis With Nasal Polyp and Non-Eosinophilic Chronic Rhinosinusitis With Nasal Polyp: A Preliminary Study. Am J Rhinol Allergy 2020; 35:474-481. [PMID: 34151617 DOI: 10.1177/1945892420964408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Eosinophilic chronic rhinosinusitis with nasal polyps (ECRSwNP) is histologically distinct from non-eosinophilic CRSwNP (NECRSwNP) and exhibits a high frequency of recurrence. The differences between the pathogenesis of ECRSwNP and NECRSwNP are not well-characterized. HMGB1 has been implicated in the pathogenesis of CRSwNPs; however, its precise contributions to ECRSwNP and NECRSwNP have not been established. OBJECTIVE We evaluated the role of HMGB1 in the pathogenesis of ECRSwNP. METHODS A total of 26 nasal polyps (NPs) from patients with ECRSwNP and NECRSwNP who underwent endoscopic sinus surgery were obtained. Western blotting and immunohistochemistry were performed to compare the HMGB1 levels between the NPs from ECRS and NECRS. A multiplex cytokine assay was performed to evaluate the levels of other cytokines and chemokines in exudates in the NPs. Nasal lavage fluids were used to evaluate extracellular HMGB1 levels using enzyme-linked immunosorbent assay. RESULTS HMGB1 expression in the NPs was higher in ECRSwNP than in NECRSwNP. The level of HMGB1 in the exudate within the NPs was significantly higher in ECRSwNP than in NECRSwNP. Furthermore, HMGB1 levels in nasal lavage fluids from ECRSwNP were higher than those from NECRSwNP. We found that HMGB1 levels in the exudate in NPs and in nasal lavage fluids effectively differentiate ECRSwNP from NECRSwNP. CONCLUSION Our results suggest that a high level of HMGB1 in NPs is an important factor for differentiating ECRSwNP from NECRSwNP. HMGB1 may play a role in the development of ECRSwNP and should be further evaluated.
Collapse
Affiliation(s)
- Hyun Jin Min
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Kyung Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
30
|
Hoggard M, Douglas RG, Taylor MW, Biswas K. Assessing tissue transcription biomarkers of chronic rhinosinusitis: a comparison of sampling methodologies. Int Forum Allergy Rhinol 2020; 10:1057-1064. [PMID: 32662249 DOI: 10.1002/alr.22623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a spectrum of complex inflammatory conditions of the sinonasal mucosa. Identification of biomarkers that enable classification and improved delineation among CRS endotypes is of increasing interest. However, the extent to which less invasive sampling methods identify genuine tissue inflammatory patterns is not well understood. The aim of this study was to investigate mucosal swab and cytobrush sampling as less invasive proxies for tissue transcription levels of putative biomarkers of CRS. METHODS Expression levels of 21 biomarkers of interest were assessed via custom TaqMan array cards from mucosal biopsy, cytobrush, and swab samples, in 32 patients with CRS. Reported expression levels were compared between each of the 3 sample types within each patient. RESULTS Reported transcription levels from swab samples for IL33, MUC5AC, IL1RN, CXCL8 (IL-8), TNF, IFNG, IL5, OSM, IL1A, and IL17C, and cytobrush levels for IL33, MUC5AC, IL5RA, IL1RN, CXCL8 (IL-8), and IL5 were significantly different to tissue levels from matched biopsy samples. CONCLUSION Reported expression via swab and cytobrush sampling differed from patterns observed in matched tissue for 10 of 21 and 6 of 21 markers, respectively. Non-biopsy-based studies for these particular markers may therefore not adequately represent tissue inflammatory processes and should be interpreted with caution. Cytobrush samples largely tracked tissue patterns for the remaining target biomarkers. In these cases, cytobrush sampling appears to adequately reflect tissue patterns for several putative biomarkers of CRS, supporting their use in clinical and research settings as a less-invasive proxy for the assessment of mucosal tissue inflammatory transcription patterns.
Collapse
Affiliation(s)
- Michael Hoggard
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Richard G Douglas
- School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Michael W Taylor
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Kristi Biswas
- School of Medicine, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
31
|
Baschal EE, Larson ED, Bootpetch Roberts TC, Pathak S, Frank G, Handley E, Dinwiddie J, Moloney M, Yoon PJ, Gubbels SP, Scholes MA, Cass SP, Jenkins HA, Frank DN, Yang IV, Schwartz DA, Ramakrishnan VR, Santos-Cortez RLP. Identification of Novel Genes and Biological Pathways That Overlap in Infectious and Nonallergic Diseases of the Upper and Lower Airways Using Network Analyses. Front Genet 2020; 10:1352. [PMID: 32010199 PMCID: PMC6979043 DOI: 10.3389/fgene.2019.01352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
Previous genetic studies on susceptibility to otitis media and airway infections have focused on immune pathways acting within the local mucosal epithelium, and outside of allergic rhinitis and asthma, limited studies exist on the overlaps at the gene, pathway or network level between the upper and lower airways. In this report, we compared [1] pathways identified from network analysis using genes derived from published genome-wide family-based and association studies for otitis media, sinusitis, and lung phenotypes, to [2] pathways identified using differentially expressed genes from RNA-sequence data from lower airway, sinus, and middle ear tissues, in particular cholesteatoma tissue compared to middle ear mucosa. For otitis media, a large number of genes (n = 1,806) were identified as differentially expressed between cholesteatoma and middle ear mucosa, which in turn led to the identification of 68 pathways that are enriched in cholesteatoma. Two differentially expressed genes CR1 and SAA1 overlap in middle ear, sinus, and lower airway samples and are potentially novel genes for otitis media susceptibility. In addition, 56 genes were differentially expressed in both tissues from the middle ear and either sinus or lower airways. Pathways that are common in upper and lower airway diseases, whether from published DNA studies or from our RNA-sequencing analyses, include chromatin organization/remodeling, endocytosis, immune system process, protein folding, and viral process. Taken together, our findings from genetic susceptibility and differential tissue expression studies support the hypothesis that the unified airway theory wherein the upper and lower respiratory tracts act as an integrated unit also applies to infectious and nonallergic airway epithelial disease. Our results may be used as reference for identification of genes or pathways that are relevant to upper and lower airways, whether common across sites, or unique to each disease.
Collapse
Affiliation(s)
- Erin E Baschal
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Eric D Larson
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Tori C Bootpetch Roberts
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shivani Pathak
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Gretchen Frank
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Elyse Handley
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, CO, United States
| | - Jordyn Dinwiddie
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, CO, United States
| | - Molly Moloney
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Patricia J Yoon
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, CO, United States
| | - Samuel P Gubbels
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Melissa A Scholes
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, CO, United States
| | - Stephen P Cass
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Herman A Jenkins
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Daniel N Frank
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ivana V Yang
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - David A Schwartz
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Vijay R Ramakrishnan
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Regie Lyn P Santos-Cortez
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
32
|
Bleier BS. A "golden age" in skull base and rhinology research. Int Forum Allergy Rhinol 2019; 8:561-562. [PMID: 29694736 DOI: 10.1002/alr.22130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Nakayama T, Sugimoto N, Okada N, Tsurumoto T, Mitsuyoshi R, Takaishi S, Asaka D, Kojima H, Yoshikawa M, Tanaka Y, Haruna SI. JESREC score and mucosal eosinophilia can predict endotypes of chronic rhinosinusitis with nasal polyps. Auris Nasus Larynx 2019; 46:374-383. [DOI: 10.1016/j.anl.2018.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/19/2018] [Accepted: 09/07/2018] [Indexed: 12/20/2022]
|
34
|
Agache I, Akdis CA. Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes of allergic diseases. J Clin Invest 2019; 129:1493-1503. [PMID: 30855278 PMCID: PMC6436902 DOI: 10.1172/jci124611] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A rapidly developing paradigm for modern health care is a proactive and individualized response to patients' symptoms, combining precision diagnosis and personalized treatment. Precision medicine is becoming an overarching medical discipline that will require a better understanding of biomarkers, phenotypes, endotypes, genotypes, regiotypes, and theratypes of diseases. The 100-year-old personalized allergen-specific management of allergic diseases has particularly contributed to early awareness in precision medicine. Polyomics, big data, and systems biology have demonstrated a profound complexity and dynamic variability in allergic disease between individuals, as well as between regions. Escalating health care costs together with questionable efficacy of the current management of allergic diseases facilitated the emergence of the endotype-driven approach. We describe here a precision medicine approach that stratifies patients based on disease mechanisms to optimize management of allergic diseases.
Collapse
Affiliation(s)
- Ioana Agache
- Transylvania University, Faculty of Medicine, Brasov, Romania
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne – Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
35
|
Liu M, Guo P, An J, Guo C, Lu F, Lei Y. Genome‑wide profiling of lncRNA and mRNA expression in CRSwNP. Mol Med Rep 2019; 19:3855-3863. [PMID: 30864741 DOI: 10.3892/mmr.2019.10005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 10/03/2018] [Indexed: 11/06/2022] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is one of the most prevalent chronic diseases. In patients with CRSwNP, the present study performed comprehensive bioinformatics analyses to characterize the transcriptome profiles of mRNAs and long non‑coding RNAs (lncRNAs). A total of 265 differentially expressed lncRNAs and 994 mRNAs were identified. The majority of up‑ and downregulated differentially expressed genes were significantly enriched in the biological process of 'signal transduction'. The most significantly enriched molecular function was 'protein binding' and the most significantly enriched cellular component was 'membrane'. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis led to identification of several significantly enriched pathways [false discovery rate (FDR)<0.05], including 'cytokine‑cytokine receptor interaction' (FDR=3.94x1016) and 'cell adhesion molecules' (CAMs) (FDR=1.28x10‑5). Key differentially expressed lncRNAs were identified, including lncRNA XLOC_010280, which regulates chemokine (C‑C motif) ligand 18 (CCL18) and inflammation, and RP11‑798M19.6, which regulates polypeptide N‑acetylgalactosaminyltransferase 7 (GALNT7) and cell proliferation. Based on the results of reverse transcription‑quantitative polymerase chain reaction, except for CCL8, neural precursor cell expressed developmentally downregulated gene 4‑like and GALNT7, the expression of 3 other selected genes was consistent with the results of integrated analysis. The results of the present study provide a foundation for future investigations into mRNAs and lncRNAs as diagnostic and therapeutic targets in CRSwNP.
Collapse
Affiliation(s)
- Minglei Liu
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Jining, Jining, Shandong 272000, P.R. China
| | - Ping Guo
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Jining, Jining, Shandong 272000, P.R. China
| | - Jun An
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Jining, Jining, Shandong 272000, P.R. China
| | - Chao Guo
- Department of Anesthesiology, The First People's Hospital of Jining, Jining, Shandong 272000, P.R. China
| | - Fengxiang Lu
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Jining, Jining, Shandong 272000, P.R. China
| | - Yanhua Lei
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Jining, Jining, Shandong 272000, P.R. China
| |
Collapse
|
36
|
Workman AD, Nocera AL, Mueller SK, Otu HH, Libermann TA, Bleier BS. Translating transcription: proteomics in chronic rhinosinusitis with nasal polyps reveals significant discordance with messenger RNA expression. Int Forum Allergy Rhinol 2019; 9:776-786. [PMID: 30775848 DOI: 10.1002/alr.22315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/28/2018] [Accepted: 01/22/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Much of the literature examining chronic rhinosinusitis with nasal polyps (CRSwNP) immunopathology has been predicated on messenger RNA (mRNA) analysis with the assumption that transcriptional changes would reflect end-effector protein expression. The purpose of this study was to test this hypothesis using matched transcriptomic and proteomic data sets. METHODS Matched tissue proteomic and transcriptomic arrays were quantified in CRSwNP polyp tissue and control inferior turbinate tissue (n = 10/group). Mucus samples were additionally collected in 6 subjects from each group. Proteins were grouped into functional categories by bioinformatics and differential expression analyses. Log-log regression and Pearson correlations were performed to determine the level of agreement between data sets. RESULTS Of the 1310 proteins examined, 393 were significantly differentially expressed in CRSwNP. On regression analysis, differences in protein expression were poorly predicted by differences in mRNA expression (R2 = 0.020, p < 0.05). Several genes canonically thought to be overexpressed in CRSwNP, including IL-5, IL-13, TSLP, CCL13, and CCL26, showed substantial increases in mRNA transcription, but had minimally or unchanged protein expression. Others, including IgE, periostin, CCL18, and CST1/2, were increased at both the transcriptomic and proteomic levels. Among differentially regulated proteins, tissue and mucus protein levels showed weak correlation (r = 0.26, p < 0.0001). CONCLUSION Proteomic analysis in CRSwNP has revealed novel disease-associated proteins and pathways, yet correlates poorly with transcriptomic data. The increasing availability of proteomic arrays opens the door to new potential explanatory mechanisms in CRSwNP and suggests that mRNA based studies should be validated with protein analysis.
Collapse
Affiliation(s)
- Alan D Workman
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA.,Harvard Medical School, Boston, MA
| | - Angela L Nocera
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA.,Harvard Medical School, Boston, MA
| | - Sarina K Mueller
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA.,Harvard Medical School, Boston, MA.,Department of Otorhinolaryngology-Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hasan H Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE
| | - Towia A Libermann
- Harvard Medical School, Boston, MA.,Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, MA.,Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center (BIDMC), Boston, MA.,BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center (BIDMC), Boston, MA
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA.,Harvard Medical School, Boston, MA
| |
Collapse
|
37
|
Group 2 innate lymphoid cells and eosinophilic chronic rhinosinusitis. Curr Opin Allergy Clin Immunol 2019; 19:18-25. [DOI: 10.1097/aci.0000000000000496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Parrino D, Brescia G, Zanotti C, Tealdo G, Giacomelli L, Barion U, Sfriso P, Marioni G. Non-Eosinophilic Chronic Rhinosinusitis With Nasal Polyps: Eosinophil, Basophil, and Neutrophil Blood Counts Before and After Surgery. Ann Otol Rhinol Laryngol 2018; 128:233-240. [PMID: 30556407 DOI: 10.1177/0003489418818578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Research selectively investigating non-eosinophilic chronic rhinosinusitis with nasal polyps (CRSwNP) is lacking. The inflammatory patterns seen in non-eosinophilic CRSwNP are still poorly understood. The present study is the first to compare blood eosinophil, basophil, and neutrophil counts before/after surgery in patients with non-eosinophilic CRSwNP stratified by their clinical features. METHODS The study concerned 107 consecutive patients with histologically confirmed non-eosinophilic CRSwNP who underwent endoscopic sinus surgery (ESS). RESULTS Statistical analysis ruled out any significant change in mean blood eosinophil, basophil, and neutrophil counts after ESS. A significant positive correlation emerged between blood eosinophil and basophil counts in both pre- and post-ESS laboratory tests. In the subcohort of allergic patients, a significant negative correlation was found after ESS between eosinophil and neutrophil levels and between basophil and neutrophil levels. CONCLUSIONS In eosinophilic CRSwNP, ESS can clear polyps, remove inflammatory tissue, and reduce the inflammatory cytokines it generates, with a consequent reduction in blood eosinophil levels. The different results in non-eosinophilic CRSwNP support the conviction that the 2 types of CRSwNP are entities with distinct inflammatory response patterns.
Collapse
Affiliation(s)
- Daniela Parrino
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - Giuseppe Brescia
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - Claudia Zanotti
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - Giulia Tealdo
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | | | - Umberto Barion
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - Paolo Sfriso
- Rheumatology Unit, Department of Medicine DIMED, Padova University, Padova, Italy
| | - Gino Marioni
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| |
Collapse
|
39
|
Yan B, Wang Y, Li Y, Wang C, Zhang L. Inhibition of arachidonate 15-lipoxygenase reduces the epithelial-mesenchymal transition in eosinophilic chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol 2018; 9:270-280. [PMID: 30452122 DOI: 10.1002/alr.22243] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/05/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Bing Yan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
| | - Yang Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
| | - Ying Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
- Department of Allergy, Beijing TongRen Hospital; Capital Medical University; Beijing China
| |
Collapse
|
40
|
Sugimoto N, Nakayama T, Kasai Y, Asaka D, Mitsuyoshi R, Tsurumoto T, Takaishi S, Omae S, Kojima H, Tanaka Y, Haruna SI. The role of ADAM-like decysin 1 in non-eosinophilic chronic rhinosinusitis with nasal polyps. Acta Otolaryngol 2018; 138:830-836. [PMID: 29936897 DOI: 10.1080/00016489.2018.1481296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is classified into two subtypes: eosinophilic (ECRSwNP) and non-eosinophilic (NECRSwNP). Although the inflammatory patterns of ECRSwNP have been elucidated, NECRSwNP is poorly understood. AIMS/OBJECTIVES The metalloproteinase ADAM-like decysin 1 (ADAMDEC1) has been reported to play a role in the early stages of the inflammatory response. We investigated the role of ADAMDEC1 in the pathogenesis of CRSwNP. MATERIAL AND METHODS We compared ADAMDEC1 expression in nasal polyp tissue from CRS patients using immunohistochemistry and RT-qPCR. Macrophages were cultured and ADAMDEC1 expression was determined at baseline and after exposure to lipopolysaccharide (LPS). RESULTS ADAMDEC1 was virtually undetectable in tissues from control patients but was highly expressed in the NECRSwNP group compared with the ECRSwNP group. In nasal polyp tissues, ADAMDEC1 was expressed by CD68-positive cells, with a positive correlation between ADAMDEC1-positive and CD68-positive cells, and also between ADAMDEC1 and CD68 mRNA levels. Furthermore, stimulation of monocyte-derived macrophages with LPS induced ADAMDEC1 expression. CONCLUSIONS AND SIGNIFICANCE This study demonstrates that ADAMDEC1 is involved in the pathogenesis of NECRSwNP, and also bacterial endotoxin signalling in macrophages; however, the underlying mechanism remains to be elucidated.
Collapse
Affiliation(s)
- Naoki Sugimoto
- Department of Otorhinolaryngology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Tsuguhisa Nakayama
- Department of Otorhinolaryngology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Yoshiyuki Kasai
- Department of Otorhinolaryngology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Daiya Asaka
- Department of Otorhinolaryngology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Ryoto Mitsuyoshi
- Department of Otorhinolaryngology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Tadao Tsurumoto
- Department of Otorhinolaryngology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Shinya Takaishi
- Department of Otorhinolaryngology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Sachiko Omae
- Department of Otorhinolaryngology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Hiromi Kojima
- Department of Otorhinolaryngology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Yasuhiro Tanaka
- Department of Otolaryngology, Head and Neck Surgery, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Shin-Ichi Haruna
- Department of Otolaryngology, Head and Neck Surgery, Dokkyo Medical University, Shimotsuga-gun, Japan
| |
Collapse
|