1
|
Liu H, Shi Y, Yu M, Guo X, Ruan Y, Qin F, Zhou R, Feng J, Hu Z, Wu F, Jia Q, Yin Y, Guo Y, Wu F. Individual and joint associations between sleep duration and physical activity with cognitive function: A longitudinal analysis among middle-aged and older adults in China. Alzheimers Dement 2024. [PMID: 39692596 DOI: 10.1002/alz.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/11/2024] [Accepted: 07/28/2024] [Indexed: 12/19/2024]
Abstract
INTRODUCTION Studies using cross-sectional data or with a short follow-up period fail to distinguish whether the associations between sleep duration and physical activity with cognitive function result from reverse causation. METHODS The longitudinal study examined the individual and joint associations, with specific temporality, between sleep duration and physical activity with cognitive function, using time-lagged linear mixed models and generalized additive mixed models. RESULTS A total of 14,694 participants aged ≥ 50 years were included, with an average lagged time of 4.5 (standard deviation 1.3) years. Long sleep duration was independently associated with cognitive decline, while short sleep duration and physical activity were not. The analysis of joint effects showed that increased physical activity slowed the rate of cognitive decline among participants reporting long sleep duration, consistent with the results of the stratified analyses. DISCUSSION Interventions on improving sleep should consider concurrent physical activity to maximize benefits for slowing cognitive decline. HIGHLIGHTS Long sleep duration was independently associated with worse cognitive function, while short sleep duration was not. Elevated levels of physical activity were not independently associated with better cognitive function. Increased physical activity appeared to mitigate the negative impact of long sleep duration on cognitive function.
Collapse
Affiliation(s)
- Hongwei Liu
- School of Public Health, Fudan University, Shanghai, China
| | - Yan Shi
- Division of Chronic Non-Communicable Disease and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Min Yu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- The Department for Chronic and Non-Communicable Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xiaolei Guo
- The Department for Chronic and Non-Communicable Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Ye Ruan
- Division of Chronic Non-Communicable Disease and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Fei Qin
- School of Public Health, Fudan University, Shanghai, China
| | - Rongfei Zhou
- School of Public Health, Fudan University, Shanghai, China
| | - Jingyuan Feng
- School of Public Health, Fudan University, Shanghai, China
| | - Zihan Hu
- School of Public Health, Fudan University, Shanghai, China
| | - Fei Wu
- School of Public Health, Fudan University, Shanghai, China
| | - Qingqing Jia
- School of Public Health, Fudan University, Shanghai, China
| | - Yanlu Yin
- School of Public Health, Fudan University, Shanghai, China
| | - Yanfei Guo
- Division of Chronic Non-Communicable Disease and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
- School of Public Health and Community Medicine, Institution of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fan Wu
- School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Wang J, Wang W, Liu Y, Yao M, Du Q, Wei Y, Lu K, Li C, Li X, Li S, Tian X, Zhang T, Yin F, Ma Y. Relationship between cognitive function and sleep quality in middle-aged and older adults for minimizing disparities and achieving equity in health: Evidence from multiple nationwide cohorts. Arch Gerontol Geriatr 2024; 127:105585. [PMID: 39096555 DOI: 10.1016/j.archger.2024.105585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Cognitive decline, a heavy burden on middle-aged and older adults as global aging is aggravated, was found to be associated with sleep quality. However, the country-between heterogeneity of the association prevented us from quantifying underlying relationship and identifying potential effect modifiers for vulnerable populations and targeted interventions. METHODS We collected data from 79,922 eligible adults in five nationwide cohorts, examined the respective relationships between cognitive function and sleep quality, synthesized underlying average relationships by meta-analysis, and explored effect modifiers by meta-regressions. Additionally, we conducted subgroup and interaction analyses to identify vulnerable populations and to determine their disparities in vulnerability. RESULTS Although country-between disparities exist, cognitive function is robustly associated with sleep quality in middle-aged and older adults worldwide, with an effect (β) of 0.015 [0.003, 0.027]. Executive function is the subdomain most relevant to sleep quality. Disparities in the effects of sleep quality on subdomains exist in populations with different sexes (orientation: βfemale/βmale = 1.615, P = 0.020), marital statuses (orientation: βunmarried/βmarried = 2.074, P < 0.001), education levels (orientation:βuneducated/βeducated = 2.074, P < 0.001) and chronic disease statuses (memory: βunhealthy/βhealthy = 1.560, P = 0.005). CONCLUSIONS Cognitive function decreases with worsening sleep quality in middle-aged and older adults. Vulnerability to poor sleep generally persists in singles, females, the uneducated and people with chronic diseases. To minimize disparities and achieve health equity, we advocate for targeted interventions, i.e., encouraging socialization in singles, confirming effectiveness of hormone replacement therapy in females, employing compulsory education in middle-aged and older adults.
Collapse
Affiliation(s)
- Junyu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Wei Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Yaqiong Liu
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Menghan Yao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Qianqian Du
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Yuxin Wei
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Kai Lu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Chen Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Xuelin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Sheng Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Xinyue Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Tao Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Fei Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Yue Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China.
| |
Collapse
|
3
|
Wang F, Han X, Mu Q, Chen H, Wu Y, Kang Y, Liu Y. Cerebrospinal fluid mesencephalic astrocyte-derived neurotrophic factor: A moderating effect on sleep time and cognitive function. J Psychiatr Res 2024; 176:33-39. [PMID: 38838432 DOI: 10.1016/j.jpsychires.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/15/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Sleeping late has been associated with cognitive impairment, and insufficient sleep can affect the secretion of feeding-related cytokines. Feeding-related cytokines may contribute to cognitive deficits resulting from delayed bedtime. Glial cell line-derived neurotrophic factor (GDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF), which are feeding-related neurotrophic factors, have been associated with improved cognitive function and neuroprotective abilities. Enhanced expression of GDNF and MANF is linked to increased energy expenditure and hyperphagia, respectively. AIMS This study aimed to investigate the association between cerebrospinal fluid (CSF) GDNF, MANF, cognition, and sleep time and to explore the moderating effects of GDNF and MANF on cognitive impairment in individuals who sleep late. METHOD This cross-sectional study included participants (mean age 31.76 ± 10.22 years) who were categorized as ≤23 o'clock sleepers (n = 66) and >23 o'clock sleepers (n = 125) based on sleep time. Cognition was assessed using Montreal Cognitive Assessment (MoCA), and GDNF and MANF levels in CSF were measured. RESULTS MANF may play a moderating role in the relationship between sleep time and cognition (R2 = 0.06, β = 0.59, p = 0.031). Age showed a negative correlation with MoCA scores (R2 = 0.08, β = -0.18), while education exhibited a positive correlation (β = 0.17, both p < 0.05). Only ≤23 o'clock sleepers exhibited a negative correlation between MANF levels and BMI (r = -0.35, p = 0.005). CONCLUSIONS This study provides hitherto undocumented evidence of the potential protective effect of CSF MANF on cognitive impairment of late sleepers, which suggests that maintaining a regular sleep schedule may contribute to cognition and overall health, with MANF playing a role in this process.
Collapse
Affiliation(s)
- Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China; Xinjiang Key Laboratory of Neurological Disorder Research, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830063, China.
| | - Xiaoli Han
- Clinical Nutrition Department, Friendship Hospital, Urumqi, 830049, China
| | - Qingshuang Mu
- Xinjiang Key Laboratory of Neurological Disorder Research, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830063, China
| | - Hongxu Chen
- Xinjiang Key Laboratory of Neurological Disorder Research, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830063, China
| | - Yan Wu
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China
| | - Yimin Kang
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, 010110, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China; Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
4
|
Wang S, Zheng X, Huang J, Liu J, Li C, Shang H. Sleep characteristics and risk of Alzheimer's disease: a systematic review and meta-analysis of longitudinal studies. J Neurol 2024; 271:3782-3793. [PMID: 38656621 DOI: 10.1007/s00415-024-12380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is on the rise in our aging society, making it crucial to identify additional risk factors to mitigate its increasing incidence. This systematic review and meta-analysis aimed to provide updated evidence regarding the association between sleep and AD. METHODS We conducted a comprehensive search of MEDLINE, EMBASE, and Web of Science databases from inception to July 2023 to identify longitudinal studies. Adjusted relative risks were pooled for each sleep characteristic, and a dose-response analysis was performed specifically for sleep duration. RESULTS A total of 15,278 records were initially retrieved, and after screening, 35 records were ultimately included in the final analysis. The results showed that insomnia (RR, 1.43; 95%CI, 1.17-1.74), sleep-disordered breathing (RR, 1.22; 95%CI, 1.07-1.39), as well as other sleep problems, including sleep fragmentation and sleep-related movement disorders, were associated with a higher risk of developing AD, while daytime napping or excessive daytime sleepiness (RR, 1.18; 95%CI, 1.00-1.40) only exhibited a trend toward a higher risk of AD development. Furthermore, our analysis revealed a significant association between self-reported sleep problems (RR, 1.34; 95%CI, 1.26-1.42) and the incidence of AD, whereas this association was not observed with sleep problems detected by objective measurements (RR, 1.14; 95%CI, 0.99-1.31). Moreover, both quite short sleep duration (< 4 h) and long duration (> 8 h) were identified as potential risk factors for AD. CONCLUSIONS Our study found the association between various types of sleep problems and an increased risk of AD development. However, these findings should be further validated through additional objective device-based assessments. Additional investigation is required to establish a definitive causal connection between sleep problems and AD.
Collapse
Affiliation(s)
- Shichan Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, China
| | - Xiaoting Zheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, China
| | - Jingxuan Huang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, China
| | - Jiyong Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, China.
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, China.
| |
Collapse
|
5
|
Tang S, Liu R, Ren J, Song L, Dong L, Qin Y, Zhao M, Wang Y, Dong Y, Zhao T, Liu C, Hou T, Cong L, Sindi S, Winblad B, Du Y, Qiu C. Association of objective sleep duration with cognition and brain aging biomarkers in older adults. Brain Commun 2024; 6:fcae144. [PMID: 38756537 PMCID: PMC11098043 DOI: 10.1093/braincomms/fcae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/21/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
The neuropathological mechanisms underlying the association between sleep duration and mild cognitive impairment remain poorly understood. This population-based study included 2032 dementia-free people (age ≥ 60 years; 55.1% women) derived from participants in the Multimodal Interventions to Delay Dementia and Disability in Rural China; of these, data were available in 841 participants for Alzheimer's plasma biomarkers (e.g. amyloid-β, total tau and neurofilament light chain), 1044 for serum microvascular biomarkers (e.g. soluble adhesion molecules) and 834 for brain MRI biomarkers (e.g. whiter matter, grey matter, hippocampus, lacunes, enlarged perivascular spaces and white matter hyperintensity WMH). We used electrocardiogram-based cardiopulmonary coupling analysis to measure sleep duration, a neuropsychological test battery to assess cognitive function and the Petersen's criteria to define mild cognitive impairment. Data were analysed with multivariable logistic and general linear models. In the total sample (n = 2032), 510 participants were defined with mild cognitive impairment, including 438 with amnestic mild cognitive impairment and 72 with non-amnestic mild cognitive impairment. Long sleep duration (>8 versus 6-8 h) was significantly associated with increased likelihoods of mild cognitive impairment and non-amnestic mild cognitive impairment and lower scores in global cognition, verbal fluency, attention and executive function (Bonferroni-corrected P < 0.05). In the subsamples, long sleep duration was associated with higher plasma amyloid-β40 and total tau, a lower amyloid-β42/amyloid-β40 ratio and smaller grey matter volume (Bonferroni-corrected P < 0.05). Sleep duration was not significantly associated with serum-soluble adhesion molecules, white matter hyperintensity volume, global enlarged perivascular spaces and lacunes (P > 0.05). Alzheimer's and neurodegenerative pathologies may represent common pathways linking long sleep duration with mild cognitive impairment and low cognition in older adults.
Collapse
Affiliation(s)
- Shi Tang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Rui Liu
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Juan Ren
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
| | - Lin Song
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Lingling Dong
- Department of Neurology, Dongying People’s Hospital, Dongying 257091, China
| | - Yu Qin
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng 252000, China
| | - Mingqing Zhao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, 171 65 Solna, Sweden
| | - Yi Dong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Tong Zhao
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
| | - Cuicui Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Shireen Sindi
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, 171 65 Solna, Sweden
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
- Neuroepidemiology and Ageing Research Unit (AGE), School of Public Health, Imperial College London, London SW7 2AZ, United Kingdom
| | - Bengt Winblad
- Division of Neurogeriatrics and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, 141 83 Huddinge, Sweden
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, 171 65 Solna, Sweden
| |
Collapse
|
6
|
Pivac LN, Brown BM, Sewell KR, Doecke JD, Villemagne VL, Doré V, Weinborn M, Sohrabi HR, Gardener SL, Bucks RS, Laws SM, Taddei K, Maruff P, Masters CL, Rowe C, Martins RN, Rainey‐Smith SR. Suboptimal self-reported sleep efficiency and duration are associated with faster accumulation of brain amyloid beta in cognitively unimpaired older adults. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12579. [PMID: 38651160 PMCID: PMC11033837 DOI: 10.1002/dad2.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/28/2024] [Accepted: 03/10/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION This study investigated whether self-reported sleep quality is associated with brain amyloid beta (Aβ) accumulation. METHODS Linear mixed effect model analyses were conducted for 189 cognitively unimpaired (CU) older adults (mean ± standard deviation 74.0 ± 6.2; 53.2% female), with baseline self-reported sleep data, and positron emission tomography-determined brain Aβ measured over a minimum of three time points (range 33.3-72.7 months). Analyses included random slopes and intercepts, interaction for apolipoprotein E (APOE) ε4 allele status, and time, adjusting for sex and baseline age. RESULTS Sleep duration <6 hours, in APOE ε4 carriers, and sleep efficiency <65%, in the whole sample and APOE ε4 non-carriers, is associated with faster accumulation of brain Aβ. DISCUSSION These findings suggest a role for self-reported suboptimal sleep efficiency and duration in the accumulation of Alzheimer's disease (AD) neuropathology in CU individuals. Additionally, poor sleep efficiency represents a potential route via which individuals at lower genetic risk may progress to preclinical AD. Highlights In cognitively unimpaired older adults self-report sleep is associated with brain amyloid beta (Aβ) accumulation.Across sleep characteristics, this relationship differs by apolipoprotein E (APOE) genotype.Sleep duration <6 hours is associated with faster brain Aβ accumulation in APOE ε4 carriers.Sleep efficiency < 65% is associated with faster brain Aβ accumulation in APOE ε4 non-carriers.Personalized sleep interventions should be studied for potential to slow Aβ accumulation.
Collapse
Affiliation(s)
- Louise N. Pivac
- Centre for Healthy Ageing, Health Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- Alzheimer's Research Australia, Sarich Neuroscience Research InstituteNedlandsWestern AustraliaAustralia
| | - Belinda M. Brown
- Centre for Healthy Ageing, Health Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Kelsey R. Sewell
- Centre for Healthy Ageing, Health Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - James D. Doecke
- Australian E‐Health Research Centre, CSIROHerstonQueenslandAustralia
| | | | - Vincent Doré
- Australian E‐Health Research Centre, CSIROHerstonQueenslandAustralia
- Department of Molecular ImagingAustin HealthHeidelbergVictoriaAustralia
| | - Michael Weinborn
- School of Psychological ScienceUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Hamid R. Sohrabi
- Centre for Healthy Ageing, Health Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Samantha L. Gardener
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | - Romola S. Bucks
- School of Psychological ScienceUniversity of Western AustraliaPerthWestern AustraliaAustralia
- School of Population and Global HealthUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Simon M. Laws
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Collaborative Genomics and Translation GroupEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia
| | - Kevin Taddei
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | - Paul Maruff
- Cogstate Ltd., MelbourneMelbourneVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Christopher Rowe
- Department of Molecular ImagingAustin HealthHeidelbergVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Ralph N. Martins
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Department of Biomedical SciencesMacquarie UniversityMacquarie UniversitySydneyNew South WalesAustralia
| | - Stephanie R. Rainey‐Smith
- Centre for Healthy Ageing, Health Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- Alzheimer's Research Australia, Sarich Neuroscience Research InstituteNedlandsWestern AustraliaAustralia
- School of Psychological ScienceUniversity of Western AustraliaPerthWestern AustraliaAustralia
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| |
Collapse
|
7
|
Wen C, Gan JH, Huang GW, Wang XD, Lü Y, Niu JP, Meng XL, Cai P, Li Y, Gang BZ, You Y, Lv Y, Ren ZH, Liu S, Zeng Y, Ji Y. Physical exercise frequency and cognition: a multicenter cross-sectional cohort study. Front Aging Neurosci 2024; 16:1381692. [PMID: 38524118 PMCID: PMC10958531 DOI: 10.3389/fnagi.2024.1381692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024] Open
Abstract
Background and aims Dementia imposes a heavy burden on society and families, therefore, effective drug treatments, exploring and preventing factors associated with dementia, are paramount. To provide reference points for the best frequency of physical exercise (physical exercise), we investigated the association between frequency of PE and cognition in Chinese old adults. Methods 16,181 Chinese participants aged 65 years or older were included in this study. Associations between PE and cognition were estimated multivariate logistic and linear regression analyses. Associations were further investigated across dementia subtypes (Alzheimer dementia, vascular dementia, and other types of dementia). Subgroup analyses were performed in different age groups, in populations with and without stroke, and those with and without hypertension. Results PE associated with dementia after adjusting for full covariates (OR: 0.5414, 95% CI: 0.4536-0.6491, p < 0.001). Exercise performed at ≥3 times/week associated with lower risk of dementia (OR: 0.4794-0.6619, all p value <0.001). PE was associated with improved cognition (β: 12851, p < 0.001), and any PE frequency contributed to cognitive improvement (p values for exercise performed ≥1 time/week were <0.001). Similar conclusions were identified when we repeated analyses in different dementia subtypes and age groups. Subgroup analyses suggested that the cognition of individuals without hypertension also benefitted from exercising 1-2 times/week (OR: 0.6168, 95% CI: 0.4379-0.8668, p = 0.005). Conclusion The best exercise frequency is exercising ≥3 times/week for individuals from different dementia subtypes and age groups. While for those without hypertension, PE at 1-2 times /week is also beneficial.
Collapse
Affiliation(s)
- Chen Wen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jing-Huan Gan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guo-Wei Huang
- Department of Nutrition and Food Science, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiao-Dan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Ping Niu
- Department of Neurology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Xin-Ling Meng
- Department of Neurology, Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi, China
| | - Pan Cai
- Dementia Clinic, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yang Li
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Bao-Zhi Gang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong You
- Department of Neurology, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yan Lv
- Department of Neurology, Hainan General Hospital, Haikou, China
| | - Zhi-Hong Ren
- Department of Neurology, Beijing Electric Power Hospital, State Grid Corporation of China, Capital Medical University, Beijing, China
| | - Shuai Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Yong Ji
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| |
Collapse
|
8
|
Xiao X, Rui Y, Jin Y, Chen M. Relationship of Sleep Disorder with Neurodegenerative and Psychiatric Diseases: An Updated Review. Neurochem Res 2024; 49:568-582. [PMID: 38108952 DOI: 10.1007/s11064-023-04086-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Sleep disorders affect many people worldwide and can accompany neurodegenerative and psychiatric diseases. Sleep may be altered before the clinical manifestations of some of these diseases appear. Moreover, some sleep disorders affect the physiological organization and function of the brain by influencing gene expression, accelerating the accumulation of abnormal proteins, interfering with the clearance of abnormal proteins, or altering the levels of related hormones and neurotransmitters, which can cause or may be associated with the development of neurodegenerative and psychiatric diseases. However, the detailed mechanisms of these effects are unclear. This review mainly focuses on the relationship between and mechanisms of action of sleep in Alzheimer's disease, depression, and anxiety, as well as the relationships between sleep and Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. This summary of current research hotspots may provide researchers with better clues and ideas to develop treatment solutions for neurodegenerative and psychiatric diseases associated with sleep disorders.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yimin Rui
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yu Jin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
9
|
Tu L, Lv X, Yuan C, Chen H, Yu X, Wang H, Zhang Q. Sex differences in cognitive function trajectories and their determinants in older adults: Evidence from the Chinese longitudinal healthy longevity survey. Int J Geriatr Psychiatry 2024; 39:e6072. [PMID: 38488836 DOI: 10.1002/gps.6072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES To examine sex differences in the cognitive trajectories of a nationally representative sample of older people living in China and to explore potential determinants of these trajectories. METHODS The study included 2230 women and 2171 men who were cognitively healthy and aged over 60 at the first observation from the Chinese Longitudinal Healthy Longevity Survey based on the 2008-2018 cohort. Cognitive function was measured using the Chinese version of the Mini-Mental State Examination (MMSE). Group-based trajectory modeling was used to identify potential heterogeneity of longitudinal changes over the 10 years in each gender. Logistic regression was used to investigate associations between baseline characteristics (age, education, fertility history, sleep length, physical activity, and health status and behaviors) and trajectory classes. RESULTS Three trajectories (labeled stable, slow decline, and rapid decline) were identified according to the changes in MMSE scores for both women and men. For the women, both the slow and rapid decline groups accounted for a larger proportion (14.7% and 11.0%, respectively) than the male decline groups (8.1% and 6.6%, respectively), and the women had a lower baseline MMSE score with a faster decline. In the multivariable logistic regression analyses, older age, less education, older age at first birth, poorer functional abilities, hearing impairment, and lower baseline MMSE scores were significantly associated with cognitive decline in both the female and male groups compared to the stable group. For the women, sleeping over 9 h was also associated with a rapid cognitive decline trajectory, while current exercise and being overweight/obese were protective factors against cognitive decline. CONCLUSIONS The women had an overall more serious cognitive decline than men. The potential determinants of cognitive decline identified in this study could be considered for developing specific intervention strategies aimed at promoting a healthy brain and preventing cognitive decline in different sexes, especially in low-income and developing countries.
Collapse
Affiliation(s)
- Lihui Tu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiaozhen Lv
- Beijing Dementia Key Lab, Peking University Institute of Mental Health (Sixth Hospital), National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| | - Changzheng Yuan
- School of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hui Chen
- School of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yu
- Beijing Dementia Key Lab, Peking University Institute of Mental Health (Sixth Hospital), National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| | - Huali Wang
- Beijing Dementia Key Lab, Peking University Institute of Mental Health (Sixth Hospital), National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| | - Qinge Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Li QY, Hu HY, Zhang GW, Hu H, Ou YN, Huang LY, Wang AY, Gao PY, Ma LY, Tan L, Yu JT. Associations between cardiometabolic multimorbidity and cerebrospinal fluid biomarkers of Alzheimer's disease pathology in cognitively intact adults: the CABLE study. Alzheimers Res Ther 2024; 16:28. [PMID: 38321520 PMCID: PMC10848421 DOI: 10.1186/s13195-024-01396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/21/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Cardiometabolic multimorbidity is associated with an increased risk of dementia, but the pathogenic mechanisms linking them remain largely undefined. We aimed to assess the associations of cardiometabolic multimorbidity with cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) pathology to enhance our understanding of the underlying mechanisms linking cardiometabolic multimorbidity and AD. METHODS This study included 1464 cognitively intact participants from the Chinese Alzheimer's Biomarker and LifestylE (CABLE) database. Cardiometabolic diseases (CMD) are a group of interrelated disorders such as hypertension, diabetes, heart diseases (HD), and stroke. Based on the CMD status, participants were categorized as CMD-free, single CMD, or CMD multimorbidity. CMD multimorbidity is defined as the coexistence of two or more CMDs. The associations of cardiometabolic multimorbidity and CSF biomarkers were examined using multivariable linear regression models with demographic characteristics, the APOE ε4 allele, and lifestyle factors as covariates. Subgroup analyses stratified by age, sex, and APOE ε4 status were also performed. RESULTS A total of 1464 individuals (mean age, 61.80 years; age range, 40-89 years) were included. The markers of phosphorylated tau-related processes (CSF P-tau181: β = 0.165, P = 0.037) and neuronal injury (CSF T-tau: β = 0.065, P = 0.033) were significantly increased in subjects with CMD multimorbidity (versus CMD-free), but not in those with single CMD. The association between CMD multimorbidity with CSF T-tau levels remained significant after controlling for Aβ42 levels. Additionally, significantly elevated tau-related biomarkers were observed in patients with specific CMD combinations (i.e., hypertension and diabetes, hypertension and HD), especially in long disease courses. CONCLUSIONS The presence of cardiometabolic multimorbidity was associated with tau phosphorylation and neuronal injury in cognitively normal populations. CMD multimorbidity might be a potential independent target to alleviate tau-related pathologies that can cause cognitive impairment.
Collapse
Affiliation(s)
- Qiong-Yao Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Gao-Wen Zhang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Liang-Yu Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - An-Yi Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Pei-Yang Gao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Li-Yun Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, No. 12 Wulumuqi Road, Shanghai, China.
| |
Collapse
|
11
|
Aerqin Q, Chen XT, Ou YN, Ma YH, Zhang YR, Hu HY, Tan L, Yu JT. Associations between multimorbidity burden and Alzheimer's pathology in older adults without dementia: the CABLE study. Neurobiol Aging 2024; 134:1-8. [PMID: 37950963 DOI: 10.1016/j.neurobiolaging.2023.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 11/13/2023]
Abstract
Studies have shown that multimorbidity may be associated with the Alzheimer's disease (AD) stages, but it has not been fully characterized in patients without dementia. A total of 1402 Han Chinese older adults without dementia from Chinese Alzheimer's Biomarker and LifestylE (CABLE) study were included and grouped according to their multimorbidity patterns, defined by the number of chronic disorders and cluster analysis. Multivariable linear regression models were used to detect the associations with AD-related cerebrospinal fluid (CSF) biomarkers. Multimorbidity and severe multimorbidity (≥4 chronic conditions) were significantly associated with CSF amyloid and tau levels (pFDR < 0.05). Metabolic patterns were significantly associated with higher levels of CSF Aβ40 (β = 0.159, pFDR = 0.036) and tau (P-tau: β = 0.132, pFDR = 0.035; T-tau: β = 0.126, pFDR = 0.035). The above associations were only significant in the cognitively normal (CN) group. Multimorbidity was associated with brain AD pathology before any symptomatic evidence of cognitive impairment. Identifying such high-risk groups might allow tailored interventions for AD prevention.
Collapse
Affiliation(s)
- Qiaolifan Aerqin
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Tong Chen
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Ru Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Liu X, Xu P, Wei R, Cheng B, Sun L, Yang L, Chen G. Gender-and age-specific associations of sleep duration and quality with cognitive impairment in community-dwelling older adults in Anhui Province, China. Front Public Health 2024; 11:1047025. [PMID: 38249381 PMCID: PMC10796606 DOI: 10.3389/fpubh.2023.1047025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Objective To examine associations of sleep duration and quality with cognitive impairment in older adults and the moderating role of gender and age in these associations. Methods This community-based cross-sectional study included 4,837 participants aged 60 years and above. Cognitive function was assessed using the Chinese version of the Mini-Mental State Examination (MMSE), and the participants were grouped based on the presence of cognitive impairment. The duration and quality of sleep were assessed using the Pittsburgh Sleep Quality Index (PSQI). Multivariate logistic regression models were used to analyze associations of sleep duration and quality with cognitive impairment. The role of age and gender in these associations have also been explored. Results The age (mean ± SD) of the participants was 71.13 ± 5.50 years. Of all older adults, 1,811 (37.44%) were detected as cognitive impairment, and 1755 (36.8%) had poor sleep quality. Among those with cognitive impairment, 51.09% were female. The proportion of the participants with cognitive impairment is significantly higher in those with symptoms of depression (49.73%, 273/549) (χ2 = 41.275, p < 0.001) than in those without depressive symptoms. After adjustment for multiple confounding factors and the crucial covariate (depressive symptoms), the odds ratios (OR) (95% confidence interval [CI]) of cognitive impairment (with 7-7.9 h regarded as the reference group) for individuals with a sleep duration of <6, 6-6.9, 8-8.9, and ≥ 9 h were 1.280 (1.053-1.557), 1.425 (1.175-1.728), 1.294 (1.068-1.566), and 1.360 (1.109-1.668), respectively. Subgroup analysis showed a V-shaped association between night sleep duration and cognitive impairment in males (p ≤ 0.05), and the association was stronger for individuals aged 60-80 years. With regard to sleep quality, the fully adjusted OR (95%CI) of cognitive impairment were 1.263 (1.108-1.440). According to scores of subscales in the PSQI, daytime dysfunction was associated with an increased risk of cognitive impairment (OR: 1.128, 95%CI: 1.055-1.207). Subgroup analysis also revealed a statistically significant correlation between poor sleep quality (including daytime dysfunction) and cognitive impairment in different gender and age groups, with the association being stronger in females (OR: 1.287, 95%CI: 1.080-1.534) and those aged 81-97 years (OR: 2.128, 95%CI: 1.152-3.934). For cognitive impairment, the group aged 81-97 years with daytime dysfunction was associated with a higher odds ratio than other age groups. Conclusion The present study showed that inadequate or excessive sleep was associated with cognitive impairment, especially in males, who exhibited a V-shaped association. Cognitive impairment was also associated with poor sleep quality as well as daytime dysfunction, with females and individuals aged 81-97 years exhibiting the strongest association.
Collapse
Affiliation(s)
- Xuechun Liu
- Department of Neurology, The Second People’s Hospital of Hefei, Hefei, China
| | - Peiru Xu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Rong Wei
- Outpatient Department of the Second Hospital of Anhui Medical University, Hefei, China
| | - Beijing Cheng
- School of Public Health, Anhui Medical University, Hefei, China
| | - Liang Sun
- Fuyang Center of Disease Control and Prevention, Fuyang, China
| | - Linsheng Yang
- School of Public Health, Anhui Medical University, Hefei, China
| | - Guihai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Guo F, Tan MS, Hu H, Ou YN, Zhang MZ, Sheng ZH, Chi HC, Tan L. sTREM2 Mediates the Correlation Between BIN1 Gene Polymorphism and Tau Pathology in Alzheimer's Disease. J Alzheimers Dis 2024; 101:693-704. [PMID: 39240638 DOI: 10.3233/jad-240372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Background Bridging integrator 1 (BIN1) gene polymorphism has been reported to play a role in the pathological processes of Alzheimer's disease (AD). Objective To explore the association of BIN1 loci with neuroinflammation and AD pathology. Methods Alzheimer's Disease Neuroimaging Initiative (ADNI, N = 495) was the discovery cohort, and Chinese Alzheimer's Biomarker and LifestylE (CABLE, N = 619) study was used to replicate the results. Two BIN1 gene polymorphism (rs7561528 and rs744373) were included in the analysis. Multiple linear regression model and causal mediation analysis conducted through 10,000 bootstrapped iterations were used to examine the BIN1 loci relationship with cerebrospinal fluid (CSF) AD biomarkers and alternative biomarker of microglial activation microglia-soluble triggering receptor expressed on myeloid cells 2 (sTREM2). Results In ADNI database, we found a significant association between BIN1 loci (rs7561528 and rs744373) and levels of CSF phosphorylated-tau (P-tau) (pc = 0.017; 0.010, respectively) and total-tau (T-tau) (pc = 0.011; 0.013, respectively). The BIN1 loci were also correlated with CSF sTREM2 levels (pc = 0.010; 0.008, respectively). Mediation analysis demonstrated that CSF sTREM2 partially mediated the association of BIN1 loci with P-tau (Proportion of rs7561528 : 20.8%; Proportion of rs744373 : 24.8%) and T-tau (Proportion of rs7561528 : 36.5%; Proportion of rs744373 : 43.9%). The analysis in CABLE study replicated the mediation role of rs7561528. Conclusions This study demonstrated the correlation between BIN1 loci and CSF AD biomarkers as well as microglia biomarkers. Additionally, the link between BIN1 loci and tau pathology was partially mediated by CSF sTREM2.
Collapse
Affiliation(s)
- Fan Guo
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
- Department of Neurology, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Hao Hu
- Department of Neurology, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ming-Zhan Zhang
- Department of Neurology, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Ze-Hu Sheng
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hao-Chen Chi
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
- Department of Neurology, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| |
Collapse
|
14
|
Liu S, Zhou C, Fang Y, Zhu B, Wu H, Wu C, Guo T, Wu J, Wen J, Qin J, Chen J, Duanmu X, Tan S, Guan X, Xu X, Zhang M, Zhang B, Zhao G, Yan Y. Assessing the Role of Locus Coeruleus Degeneration in Essential Tremor and Parkinson's Disease with Sleep Disorders. JOURNAL OF PARKINSON'S DISEASE 2024; 14:833-842. [PMID: 38728202 PMCID: PMC11191536 DOI: 10.3233/jpd-240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/12/2024]
Abstract
Background Previous studies have demonstrated the importance of the locus coeruleus (LC) in sleep-wake regulation. Both essential tremor (ET) and Parkinson's disease (PD) share common sleep disorders, such as poor quality of sleep (QoS). LC pathology is a feature of both diseases. A question arises regarding the contribution of LC degeneration to the occurrence of poor QoS. Objective To evaluate the association between LC impairment and sleep disorders in ET and PD patients. Methods A total of 83 patients with ET, 124 with PD, and 83 healthy individuals were recruited and divided into ET/PD with/without poor QoS (Sle/NorET and Sle/NorPD) subgroups according to individual Pittsburgh Sleep Quality Index (PSQI) score. Neuromelanin-sensitive magnetic resonance imaging (NM-MRI) and free-water imaging derived from diffusion MRI were performed. Subsequently, we evaluated the association between contrast-to-noise ratio of LC (CNRLC) and free-water value of LC (FWLC) with PSQI scores in ET and PD groups. Results CNRLC was significantly lower in ET (p = 0.047) and PD (p = 0.018) than in healthy individuals, whereas no significant difference was found in FWLC among the groups. No significant differences were observed in CNR/FWLC between patients with/without sleep disorders after multiple comparison correction. No correlation was identified between CNR/FWLC and PSQI in ET and PD patients. Conclusions LC degeneration was observed in both ET and PD patients, implicating its involvement in the pathophysiology of both diseases. Additionally, no significant association was observed between LC integrity and PSQI, suggesting that LC impairment might not directly relate to overall QoS.
Collapse
Affiliation(s)
- Sicheng Liu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuelin Fang
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Bingting Zhu
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Haoting Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenqing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianmei Qin
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojie Duanmu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sijia Tan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guohua Zhao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Bulycheva I, Watanabe Y, Kitamura K, Kabasawa K, Saito T, Takahashi A, Kobayashi R, Oshiki R, Takachi R, Tsugane S, Yamazaki O, Watanabe K, Nakamura K. Self-Reported Sleep Duration and Bedtime Are Associated with Dementia Risk in Community-Dwelling People Aged 40-74 Years: The Murakami Cohort Study. J Alzheimers Dis 2024; 99:535-547. [PMID: 38669530 DOI: 10.3233/jad-231104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background Sleep is a potentially modifiable factor associated with dementia, including Alzheimer's disease, but current evidence supporting this is insufficient. Objective This study aimed to determine whether sleep duration and bedtime patterns are associated with the risk of dementia among middle-aged and older people. Methods This cohort study had an eight-year follow-up period. Participants were 13,601 community-dwelling people aged 40-74 years living in Murakami (Niigata, Japan). Data were collected using a self-administered questionnaire. Predictors were self-reported sleep duration and bedtime, and the outcome was newly-diagnosed dementia determined using the long-term care insurance database. Covariates were demographic characteristics, body mass index, smoking, alcohol consumption, total physical activity, insomnia symptoms, disease history, and either bedtime or sleep duration. Cox proportional hazard models were used to calculate hazard ratios (HRs). Results The mean age of participants at baseline was 59.2 years. Over a mean follow-up period of 8.0 years, 319 cases of dementia were observed. A long self-reported sleep duration relative to the reference sleep duration (7 hours) was associated with increased dementia risk, with the "8 hours" group (adjusted HR = 1.30, 95% CI:0.99-1.73) and "≥9 hours" group (adjusted HR = 1.46, 95% CI:1.00-2.15) having an increased risk (marginally significant) relative to the reference group. Early bedtime was associated with increased dementia risk (adjusted p for trend = 0.0010), with the "21 : 00 or earlier" group (adjusted HR = 1.61, 95% CI:1.14-2.28) having an increased risk relative to the reference ("23 : 00"). Conclusions A long self-reported sleep duration and early bedtime are both associated with increased dementia risk in middle-aged and older people.
Collapse
Affiliation(s)
- Irina Bulycheva
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yumi Watanabe
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kaori Kitamura
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keiko Kabasawa
- Department of Health Promotion Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshiko Saito
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akemi Takahashi
- Department of Rehabilitation, Niigata University of Rehabilitation, Niigata, Japan
| | - Ryosaku Kobayashi
- Department of Rehabilitation, Niigata University of Rehabilitation, Niigata, Japan
| | - Rieko Oshiki
- Department of Rehabilitation, Niigata University of Rehabilitation, Niigata, Japan
| | - Ribeka Takachi
- Department of Food Science and Nutrition, Nara Women's University Graduate School of Humanities and Sciences, Nara, Japan
| | - Shoichiro Tsugane
- Graduate School of Public Health, International University of Health and Welfare, Tokyo, Japan
| | | | - Kei Watanabe
- Department of Orthopaedic Surgery, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Kazutoshi Nakamura
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
16
|
Stankeviciute L, Falcon C, Operto G, Garcia M, Shekari M, Iranzo Á, Niñerola-Baizán A, Perissinotti A, Minguillón C, Fauria K, Molinuevo JL, Zetterberg H, Blennow K, Suárez-Calvet M, Cacciaglia R, Gispert JD, Grau-Rivera O. Differential effects of sleep on brain structure and metabolism at the preclinical stages of AD. Alzheimers Dement 2023; 19:5371-5386. [PMID: 37194734 DOI: 10.1002/alz.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Poor sleep quality is associated with cognitive outcomes in Alzheimer's disease (AD). We analyzed the associations between self-reported sleep quality and brain structure and function in cognitively unimpaired (CU) individuals. METHODS CU adults (N = 339) underwent structural magnetic resonance imaging, lumbar puncture, and the Pittsburgh Sleep Quality Index (PSQI) questionnaire. A subset (N = 295) performed [18F] fluorodeoxyglucose positron emission tomography scans. Voxel-wise associations with gray matter volumes (GMv) and cerebral glucose metabolism (CMRGlu) were performed including interactions with cerebrospinal fluid (CSF) AD biomarkers status. RESULTS Poorer sleep quality was associated with lower GMv and CMRGlu in the orbitofrontal and cingulate cortices independently of AD pathology. Self-reported sleep quality interacted with altered core AD CSF biomarkers in brain areas known to be affected in preclinical AD stages. DISCUSSION Poor sleep quality may impact brain structure and function independently from AD pathology. Alternatively, AD-related neurodegeneration in areas involved in sleep-wake regulation may induce or worsen sleep disturbances. Highlights Poor sleep impacts brain structure and function independent of Alzheimer's disease (AD) pathology. Poor sleep exacerbates brain changes observed in preclinical AD. Sleep is an appealing therapeutic strategy for preventing AD.
Collapse
Affiliation(s)
- Laura Stankeviciute
- Universitat Pompeu Fabra, Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Marina Garcia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Mahnaz Shekari
- Universitat Pompeu Fabra, Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Álex Iranzo
- Neurology Service, Hospital Clínic de Barcelona and Institut D'Investigacions Biomèdiques, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Aida Niñerola-Baizán
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Nuclear Medicine Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Andrés Perissinotti
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Nuclear Medicine Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Carolina Minguillón
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Jose Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCL, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
17
|
Jouvencel A, Baillet M, Meyer M, Dilharreguy B, Lamare F, Pérès K, Helmer C, Dartigues J, Amieva H, Mayo W, Catheline G. Night-to-night variability in sleep and amyloid beta burden in normal aging. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12460. [PMID: 37745892 PMCID: PMC10512442 DOI: 10.1002/dad2.12460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Alzheimer's disease is associated with sleep disturbances and accumulation of cerebral amyloid beta. The objective was to examine whether actigraphy-detected sleep parameters might be biomarkers for early amyloid burden. METHODS Participants underwent a week of actigraphy and an amyloid positron emission tomography (PET) scan. Sleep duration and continuity disruption (sleep fragmentation and nocturnal awakenings) were extracted and compared between amyloid-positive and amyloid-negative participants. Then multiple linear regressions were used between mean or night-to-night intra-individual variability (standard deviation) of sleep parameters and brain amyloid burden in a voxel-wise analysis. RESULTS Eighty-six subjects were included (80.3 ± 5.4 years; 48.8% of women). Amyloid-positive participants had a higher variability of sleep fragmentation compared to amyloid-negative participants. This parameter was associated with a higher amyloid burden in the frontal and parietal regions, and in the precuneus, in the whole sample. DISCUSSION This study highlights the relevance of using variability in sleep continuity as a potential biomarker of early amyloid pathogenesis.
Collapse
Affiliation(s)
| | - Marion Baillet
- GIGA‐CRC‐In Vivo Imaging Research UnitUniversity of LiègeLiègeBelgium
| | - Marie Meyer
- INCIA, EPHE, Université PSLUniv BordeauxCNRSBordeauxFrance
- Nuclear Medicine DepartmentUniversity Hospital of BordeauxBordeauxFrance
| | | | - Frederic Lamare
- INCIA, EPHE, Université PSLUniv BordeauxCNRSBordeauxFrance
- Nuclear Medicine DepartmentUniversity Hospital of BordeauxBordeauxFrance
| | - Karine Pérès
- INSERMBordeaux Population Health Research CenterUniversity of BordeauxUMR U1219BordeauxFrance
| | - Catherine Helmer
- INSERMBordeaux Population Health Research CenterUniversity of BordeauxUMR U1219BordeauxFrance
| | - Jean‐François Dartigues
- INSERMBordeaux Population Health Research CenterUniversity of BordeauxUMR U1219BordeauxFrance
| | - Hélène Amieva
- INSERMBordeaux Population Health Research CenterUniversity of BordeauxUMR U1219BordeauxFrance
| | - Willy Mayo
- INCIA, EPHE, Université PSLUniv BordeauxCNRSBordeauxFrance
| | | |
Collapse
|
18
|
The association of subjective sleep characteristics and plasma biomarkers of Alzheimer's disease pathology in older cognitively unimpaired adults with higher amyloid-β burden. J Neurol 2023; 270:3008-3021. [PMID: 36806992 DOI: 10.1007/s00415-023-11626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/23/2023]
Abstract
We aimed to investigate the association of subjective sleep characteristics and plasma Alzheimer's disease (AD) biomarkers in older cognitively unimpaired adults with higher amyloid-β (Aβ) burden. Unimpaired cognition was determined by education-adjusted performance for the Mini-Mental State Examination and exclusion of dementia and mild cognitive impairment via standardized neuropsychological tests. We used Pittsburgh Sleep Quality Index (PSQI) to assess subjective sleep quality. The participants also underwent examination of plasma AD biomarkers and 18F-florbetapir PET scan. Correlation and multiple linear regression analyses were used to investigate the association between subjective sleep characteristics and AD biomarkers. A total of 335 participants were included and 114 were Aβ-PET positive. Multivariable regression analysis showed sleep duration > 8 h and sleep disturbance were associated with Aβ deposition in total participants. Two multiple linear regression models were applied and the results revealed in participants with Aβ-PET (+), falling asleep at ≥ 22:00 to ≤ 23:00 was associated with higher levels of Aβ42 and Aβ42/40. Other associations with higher Aβ42/40 and standard uptake value ratio contained sleep efficiency value, sleep efficiency ≥ 75%, no/mild daytime dysfunction and PSQI score ≤ 5. Higher p-Tau-181 level was associated with sleep latency > 30 min in Aβ-PET (+) group and moderate/severe sleep disturbance in Aβ-PET (-) group. Our data suggests sleep duration ≤ 8 h and no/mild sleep disturbance may be related to less Aβ burden. In participants with Aβ deposition, falling asleep at 22:00 to 23:00, higher sleep efficiency (at least ≥ 75%), no/mild daytime dysfunction, sleep latency ≤ 30 min, and good sleep quality may help improve AD pathology.
Collapse
|
19
|
Guo Y, Shen XN, Wang HF, Chen SD, Zhang YR, Chen SF, Cui M, Cheng W, Dong Q, Ma T, Yu JT. The dynamics of plasma biomarkers across the Alzheimer's continuum. Alzheimers Res Ther 2023; 15:31. [PMID: 36750875 PMCID: PMC9906840 DOI: 10.1186/s13195-023-01174-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Failures in drug trials strengthen the necessity to further determine the neuropathological events during the development of Alzheimer's disease (AD). We sought to investigate the dynamic changes and performance of plasma biomarkers across the entire Alzheimer's continuum in the Chinese population. METHODS Plasma amyloid-β (Αβ)42, Aβ40, Aβ42/Aβ40, phosphorylated tau (p-tau)181, neurofilament light (NfL), and glial fibrillary acidic protein (GFAP) were measured utilizing the ultrasensitive single-molecule array technology across the AD continuum (n=206), wherein Aβ status was defined by the values of cerebrospinal fluid (CSF) Aβ42 or Aβ positron emission tomography (PET). Their trajectories were compared with those of putative CSF biomarkers. RESULTS Plasma GFAP and p-tau181 increased only in Aβ-positive individuals throughout aging, whereas NfL increased with aging regardless of Aβ status. Among the plasma biomarkers studied, GFAP was the one that changed first. It had a prominent elevation early in the cognitively unimpaired (CU) A+T- phase (CU A+T- phase: 97.10±41.29 pg/ml; CU A-T- phase: 49.18±14.39 pg/ml; p<0.001). From preclinical to symptomatic stages of AD, plasma GFAP started to rise sharply as soon as CSF Aβ became abnormal and continued to increase until reaching its highest level during the AD dementia phase. The greatest slope of change was seen in plasma GFAP. This is followed by CSF p-tau181 and total-tau, and, to a lesser extent, then plasma p-tau181. In contrast, the changes in plasma NfL, Aβ42/Aβ40, Aβ42, and Aβ40 were less pronounced. Of note, these plasma biomarkers exhibited smaller dynamic ranges than their CSF counterparts, except for GFAP which was the opposite. Plasma GFAP and p-tau181 were tightly associated with AD pathologies and amyloid tracer uptake in widespread brain areas. Plasma GFAP could accurately identify CSF Aβ42 (area under the curve (AUC)=0.911) and Aβ PET (AUC=0.971) positivity. Plasma p-tau181 also performed well in discriminating Aβ PET status (AUC=0.916), whereas the discriminative accuracy was relatively low for other plasma biomarkers. CONCLUSIONS This study is the first to delineate the trajectories of plasma biomarkers throughout the Alzheimer's continuum in the Chinese population, providing important implications for future trials targeting plasma GFAP to facilitate AD prevention and treatment.
Collapse
Affiliation(s)
- Yu Guo
- grid.11841.3d0000 0004 0619 8943Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Xue-Ning Shen
- grid.11841.3d0000 0004 0619 8943Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Hui-Fu Wang
- grid.8547.e0000 0001 0125 2443Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- grid.11841.3d0000 0004 0619 8943Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Ya-Ru Zhang
- grid.11841.3d0000 0004 0619 8943Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shu-Fen Chen
- grid.11841.3d0000 0004 0619 8943Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Mei Cui
- grid.11841.3d0000 0004 0619 8943Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Wei Cheng
- grid.11841.3d0000 0004 0619 8943Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China ,grid.453534.00000 0001 2219 2654Fudan ISTBI—ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China
| | - Qiang Dong
- grid.11841.3d0000 0004 0619 8943Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Tao Ma
- Department of Neurology, Wuxi Second People Hospital, Jiangnan University Medical Center, Wuxi, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
20
|
Zhao YL, Ou YN, Ma YH, Tan L, Yu JT. Characteristics of Subjective Cognitive Decline Associated with Alzheimer's Disease Amyloid Pathology: Findings from The CABLE Study. J Alzheimers Dis 2023; 92:581-590. [PMID: 36776070 DOI: 10.3233/jad-221154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
BACKGROUND Subjective cognitive decline (SCD) is considered as a preclinical hallmark of Alzheimer's disease (AD). However, the characteristics of SCD associated with amyloid pathology remain unclear. OBJECTIVE We aimed to explore the associations between SCD characteristics with amyloid pathology. METHODS Using logistic regression analyses, we analyzed the associations between cerebrospinal fluid (CSF) amyloid pathology with AD risk factors, SCD-specific characteristics (onset of SCD within the last five years, age at onset ≥60 years, feelings of worse performance, informant confirmation of complaints, worries, other domains of cognition complaints), as well as subthreshold depressive and anxiety symptoms among individuals with SCD. RESULTS A total of 535 SCD individuals with available CSF Aβ 42 information from the Chinese Alzheimer's Biomarker and LifestylE (CABLE) study (mean age of 63.5 years, range 40 to 88 years; 47.10% female) were enrolled. The characteristics of informant confirmation of complaints (OR, 95% CI = 2.00, 1.19-3.36), subthreshold depressive symptoms (OR, 95% CI = 2.31, 1.05-5.09), and subthreshold anxiety symptoms (OR, 95% CI = 2.22, 1.09-4.51) were found to be significantly associated with pathological amyloid in multivariate analyses when adjusting for age, sex, education, and APOE ɛ4. Besides, age and females were observed risks for amyloid pathology in subscale analyses. Nonetheless, we did not find any associations of other SCD-specific characteristics with amyloid pathology in this study. CONCLUSION Our study suggested that informant confirmed complaints and subthreshold psychiatric symptoms might be critical for discriminating AD-related SCD from non-AD related SCD.
Collapse
Affiliation(s)
- Yong-Li Zhao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Fauria K, Minguillon C, Knezevic I, Tort-Colet N, Stankeviciute L, Hernández L, Rădoi A, Deulofeu C, Fuentes-Julián S, Turull I, Fusté D, Sánchez-Benavides G, Arenaza-Urquijo EM, Suárez-Calvet M, Holst SC, Garcés P, Mueggler T, Zetterberg H, Blennow K, Arqueros A, Iranzo Á, Domingo Gispert J, Molinuevo JL, Grau-Rivera O. Exploring cognitive and biological correlates of sleep quality and their potential links with Alzheimer's disease (ALFASleep project): protocol for an observational study. BMJ Open 2022; 12:e067159. [PMID: 36585141 PMCID: PMC9809234 DOI: 10.1136/bmjopen-2022-067159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/21/2022] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION The growing worldwide prevalence of Alzheimer's disease (AD) and the lack of effective treatments pose a dire medical challenge. Sleep disruption is also prevalent in the ageing population and is increasingly recognised as a risk factor and an early sign of AD. The ALFASleep project aims to characterise sleep with subjective and objective measurements in cognitively unimpaired middle/late middle-aged adults at increased risk of AD who are phenotyped with fluid and neuroimaging AD biomarkers. This will contribute to a better understanding of the pathophysiological mechanisms linking sleep with AD, thereby paving the way for the development of non-invasive biomarkers and preventive strategies targeting sleep. METHODS AND ANALYSIS We will invite 200 participants enrolled in the ALFA+ (for ALzheimer and FAmilies) prospective observational study to join the ALFASleep study. ALFA+ participants are cognitively unimpaired middle-aged/late middle-aged adults who are followed up every 3 years with a comprehensive set of evaluations including neuropsychological tests, blood and cerebrospinal fluid (CSF) sampling, and MRI and positron emission tomography acquisition. ALFASleep participants will be additionally characterised with actigraphy and CSF-orexin-A measurements, and a subset (n=90) will undergo overnight polysomnography. We will test associations of sleep measurements and CSF-orexin-A with fluid biomarkers of AD and glial activation, neuroimaging outcomes and cognitive performance. In case we found any associations, we will test whether changes in AD and/or glial activation markers mediate the association between sleep and neuroimaging or cognitive outcomes and whether sleep mediates associations between CSF-orexin-A and AD biomarkers. ETHICS AND DISSEMINATION The ALFASleep study protocol has been approved by the independent Ethics Committee Parc de Salut Mar, Barcelona (2018/8207/I). All participants have signed a written informed consent before their inclusion (approved by the same ethics committee). Study findings will be presented at national and international conferences and submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT04932473.
Collapse
Affiliation(s)
- Karine Fauria
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Iva Knezevic
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | - Andreea Rădoi
- Barcelonaβeta Brain Research Center, Barcelona, Spain
| | | | | | - Israel Turull
- Barcelonaβeta Brain Research Center, Barcelona, Spain
| | - David Fusté
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Pasqual Maragall Foundation, Barcelona, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Eider M Arenaza-Urquijo
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | | | | | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, People's Republic of China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Aurora Arqueros
- Neurology Service, Hospital Clínic de Barcelona and Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Álex Iranzo
- Neurology Service, Hospital Clínic de Barcelona and Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
22
|
Wang J, Zhang YR, Shen XN, Han J, Cui M, Tan L, Dong Q, Zubarev RA, Yu JT. Deamidation-related blood biomarkers show promise for early diagnostics of neurodegeneration. Biomark Res 2022; 10:91. [PMID: 36575499 PMCID: PMC9795668 DOI: 10.1186/s40364-022-00435-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/13/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The strongest risk factor of neurodegenerative diseases (NDDs) is aging. Spontaneous asparaginyl deamidation leading to formation of isoaspartate (isoAsp) has been correlated with protein aggregation in NDDs. METHODS Two cohorts consisting of 140 subjects were studied. Cohort 1 contained patients with AD and healthy controls, while Cohort 2 recruited subjects with mild cognitive impairment (MCI), vascular dementia (VaD), frontotemporal dementia (FTD), Parkinson's disease (PD) and healthy controls. The levels of isoAsp in plasma human albumin (HSA), the most abundant protein in plasma, as well as the levels of immunoglobulin G (IgG) specific against deamidated HSA were measured. Apart from the memory tests, plasma biomarkers for NDDs reported in literature were also quantified, including amyloid beta (Aβ) peptides Aβ40 and Aβ42, neurofilament light protein (NfL), glial fibrillary acidic protein (GFAP) and phosphorylated tau 181 (p-tau181) protein. RESULTS Deamidation products of blood albumin were significantly elevated in vascular dementia and frontotemporal dementia (P < 0.05), but less so in PD. Intriguingly, the deamidation levels were significantly (P < 0.01) associated with the memory test scores for all tested subjects. Deamidation biomarkers performed superiorly (accuracy up to 92%) compared with blood biomarkers Aß42/Aß40, NfL, GFAP and p-tau181 in separating mild cognitive impairment from healthy controls. CONCLUSION We demonstrated the diagnostic capacity of deamidation-related biomarkers in predicting NDDs at the early stage of disease, and the biomarker levels significantly correlated with cognitive decline, strongly supporting the role of deamidation in triggering neurodegeneration and early stages of disease development. Prospective longitudinal studies with a longer observation period and larger cohorts should provide a more detailed picture of the deamidation role in NDD progression.
Collapse
Affiliation(s)
- Jijing Wang
- grid.4714.60000 0004 1937 0626Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ya-Ru Zhang
- grid.8547.e0000 0001 0125 2443Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China ,National Center for Neurological Disorders, Shanghai, China
| | - Xue-Ning Shen
- grid.8547.e0000 0001 0125 2443Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China ,National Center for Neurological Disorders, Shanghai, China
| | - Jinming Han
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mei Cui
- grid.8547.e0000 0001 0125 2443Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China ,National Center for Neurological Disorders, Shanghai, China
| | - Lan Tan
- grid.410645.20000 0001 0455 0905Department of Neurology, Qingdao Municipal Hospital Group, Qingdao University, Qingdao, China
| | - Qiang Dong
- grid.8547.e0000 0001 0125 2443Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China ,National Center for Neurological Disorders, Shanghai, China
| | - Roman A. Zubarev
- grid.4714.60000 0004 1937 0626Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jin-Tai Yu
- grid.8547.e0000 0001 0125 2443Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China ,National Center for Neurological Disorders, Shanghai, China
| |
Collapse
|
23
|
Wang HF, Zhang W, Rolls ET, Li Y, Wang L, Ma YH, Kang J, Feng J, Yu JT, Cheng W. Hearing impairment is associated with cognitive decline, brain atrophy and tau pathology. EBioMedicine 2022; 86:104336. [PMID: 36356475 PMCID: PMC9649369 DOI: 10.1016/j.ebiom.2022.104336] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/01/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Hearing impairment was recently identified as the most prominent risk factor for dementia. However, the mechanisms underlying the link between hearing impairment and dementia are still unclear. METHODS We investigated the association of hearing performance with cognitive function, brain structure and cerebrospinal fluid (CSF) proteins in cross-sectional, longitudinal, mediation and genetic association analyses across the UK Biobank (N = 165,550), the Chinese Alzheimer's Biomarker and Lifestyle (CABLE, N = 863) study, and the Alzheimer's Disease Neuroimaging Initiative (ADNI, N = 1770) database. FINDINGS Poor hearing performance was associated with worse cognitive function in the UK Biobank and in the CABLE study. Hearing impairment was significantly related to lower volume of temporal cortex, hippocampus, inferior parietal lobe, precuneus, etc., and to lower integrity of white matter (WM) tracts. Furthermore, a higher polygenic risk score (PRS) for hearing impairment was strongly associated with lower cognitive function, lower volume of gray matter, and lower integrity of WM tracts. Moreover, hearing impairment was correlated with a high level of CSF tau protein in the CABLE study and in the ADNI database. Finally, mediation analyses showed that brain atrophy and tau pathology partly mediated the association between hearing impairment and cognitive decline. INTERPRETATION Hearing impairment is associated with cognitive decline, brain atrophy and tau pathology, and hearing impairment may reflect the risk for cognitive decline and dementia as it is related to bran atrophy and tau accumulation in brain. However, it is necessary to assess the mechanism in future animal studies. FUNDING A full list of funding bodies that supported this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Hui-Fu Wang
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Zhang
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Edmund T Rolls
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK; Oxford Centre for Computational Neuroscience, Oxford, UK
| | - Yuzhu Li
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Linbo Wang
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jujiao Kang
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jianfeng Feng
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; Zhangjiang Fudan International Innovation Center, Shanghai, China; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Zhejiang, China
| | - Jin-Tai Yu
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Wei Cheng
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Zhejiang, China.
| |
Collapse
|
24
|
Zhao YL, Ou YN, Ma YH, Huang YY, Bi YL, Tan L, Yu JT. Association between Life’s Simple 7 and cerebrospinal fluid biomarkers of Alzheimer’s disease pathology in cognitively intact adults: the CABLE study. Alzheimers Res Ther 2022; 14:74. [PMID: 35619174 PMCID: PMC9134665 DOI: 10.1186/s13195-022-01019-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Introduction
This study sought to explore the association between Life’s Simple 7 (LS7) and cerebrospinal fluid (CSF) Alzheimer’s disease (AD) pathological biomarkers in the cognitively normal northern Chinese population.
Methods
From the Chinese Alzheimer’s Biomarker and LifestylE (CABLE) study, 1106 cognitively normal participants were enrolled. The mean age was 62.34 years, and 39.6% were female. LS7 scores were summed with each metric assigned 0, 1, or 2 scores. The multiple linear regression models were used to investigate the association between LS7 scores and CSF AD biomarkers.
Results
We found that LS7 scores were significantly associated with CSF AD pathologies, including Aβ42/40 (β = 0.034, P = .041), p-tau181 (β = − 0.043, P = .006), and t-tau (β = − 0.044, P = .003). In subscales, the biological metrics (blood pressure, cholesterol, glucose) were significantly related to CSF tau-related biomarkers. These associations were observed in the APOE ε4 allele non-carriers, yet not in carriers. The relationship of behavior metrics was found in the middle age and males.
Conclusion
Improving LS7 scores might do a favor to alleviate the pathology of AD in the preclinical stage, especially among the APOE ε4 allele non-carriers.
Collapse
|
25
|
Naismith SL, Leng Y, Palmer JR, Lucey BP. Age differences in the association between sleep and Alzheimer's disease biomarkers in the EPAD cohort. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12380. [PMID: 36447477 PMCID: PMC9695753 DOI: 10.1002/dad2.12380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/26/2022]
Abstract
Introduction We aimed to determine the independent association between sleep quality and Alzheimer's disease (AD) biomarkers, and whether the associations differ with age. Methods We included 1240 individuals aged ≥50, without dementia from the European Prevention of Alzheimer's Disease v1500.0 dataset. Linear regression was used to examine Pittsburgh Sleep Quality Index (PSQI) scores against cerebrospinal fluid (CSF) phosphorylated tau/β-amyloid ratio (p-tau/Aβ42) for the entire sample and via age tertiles. Models controlled for demographic, clinical, genetic, vascular, and neuroimaging variables. Results For the youngest age tertile, shorter sleep duration and higher sleep efficiency were associated with greater p-tau/Aβ42 ratio. For the oldest tertile, longer sleep latency was associated with greater p-tau/Aβ42. Discussion Differential relationships between sleep and AD pathology depend on age. Short sleep duration and sleep efficiency are relevant in middle age whereas time taken to fall asleep is more closely linked to AD biomarkers in later life. Highlights This study shows age differences in the link between sleep and AD biomarkers.Shorter sleep was associated with greater p-tau/Aβ42 ratio in middle age.The association was independent of genetic, vascular, and neuroimaging markers of AD.
Collapse
Affiliation(s)
- Sharon L. Naismith
- School of PsychologyFaculty of ScienceThe University of SydneySydneyNew South WalesAustralia
- CogSleep NHMRC Centre of Research ExcellenceThe University of SydneySydneyNew South WalesAustralia
- Brain and Mind Centre and Charles Perkins CentreThe University of SydneySydneyNew South WalesAustralia
| | - Yue Leng
- Department of Psychiatry and Behavioural SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Jake R. Palmer
- School of PsychologyFaculty of ScienceThe University of SydneySydneyNew South WalesAustralia
- CogSleep NHMRC Centre of Research ExcellenceThe University of SydneySydneyNew South WalesAustralia
- Brain and Mind Centre and Charles Perkins CentreThe University of SydneySydneyNew South WalesAustralia
| | - Brendan P. Lucey
- Department of NeurologyWashington University School of MedicineSt LouisMissouriUSA
| |
Collapse
|
26
|
Blackman J, Stankeviciute L, Arenaza-Urquijo EM, Suárez-Calvet M, Sánchez-Benavides G, Vilor-Tejedor N, Iranzo A, Molinuevo JL, Gispert JD, Coulthard E, Grau-Rivera O. Cross-sectional and longitudinal association of sleep and Alzheimer biomarkers in cognitively unimpaired adults. Brain Commun 2022; 4:fcac257. [PMID: 36337343 PMCID: PMC9630979 DOI: 10.1093/braincomms/fcac257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/25/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Sleep abnormalities are prevalent in Alzheimer’s disease, with sleep quality already impaired at its preclinical stage. Epidemiological and experimental data point to sleep abnormalities contributing to the risk of Alzheimer’s disease. However, previous studies are limited by either a lack of Alzheimer’s disease biomarkers, reduced sample size or cross-sectional design. Understanding if, when, and how poor sleep contributes to Alzheimer’s disease progression is important so that therapies can be targeted to the right phase of the disease. Using the largest cohort to date, the European Prevention of Alzheimer’s Dementia Longitudinal Cohort Study, we test the hypotheses that poor sleep is associated with core Alzheimer’s disease CSF biomarkers cross-sectionally and predicts future increments of Alzheimer’s disease pathology in people without identifiable symptoms of Alzheimer’s disease at baseline. This study included 1168 adults aged over 50 years with CSF core Alzheimer’s disease biomarkers (total tau, phosphorylated tau and amyloid-beta), cognitive performance, and sleep quality (Pittsburgh sleep quality index questionnaire) data. We used multivariate linear regressions to analyse associations between core Alzheimer’s disease biomarkers and the following Pittsburgh sleep quality index measures: total score of sleep quality, binarized score (poor sleep categorized as Pittsburgh sleep quality index > 5), sleep latency, duration, efficiency and disturbance. On a subsample of 332 participants with CSF taken at baseline and after an average period of 1.5 years, we assessed the effect of baseline sleep quality on change in Alzheimer’s disease biomarkers over time. Cross-sectional analyses revealed that poor sleep quality (Pittsburgh sleep quality index total > 5) was significantly associated with higher CSF t-tau; shorter sleep duration (<7 h) was associated with higher CSF p-tau and t-tau; and a higher degree of sleep disturbance (1–9 versus 0 and >9 versus 0) was associated with lower CSF amyloid-beta. Longitudinal analyses showed that greater sleep disturbances (1–9 versus 0 and >9 versus 0) were associated with a decrease in CSF Aβ42 over time. This study demonstrates that self-reported poor sleep quality is associated with greater Alzheimer’s disease-related pathology in cognitively unimpaired individuals, with longitudinal results further strengthening the hypothesis that disrupted sleep may represent a risk factor for Alzheimer’s disease. This highlights the need for future work to test the efficacy of preventive practices, designed to improve sleep at pre-symptomatic stages of disease, on reducing Alzheimer’s disease pathology.
Collapse
Affiliation(s)
- Jonathan Blackman
- North Bristol NHS Trust , Bristol BS10 5NB , UK
- Bristol Medical School, University of Bristol , Bristol BS8 1UD , UK
| | - Laura Stankeviciute
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation , Barcelona 08005 , Spain
- Universitat Pompeu Fabra , Barcelona 08005 , Spain
| | - Eider M Arenaza-Urquijo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation , Barcelona 08005 , Spain
- IMIM (Hospital del Mar Medical Research Institute) , Barcelona 08003 , Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES) , Madrid 28029 , Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation , Barcelona 08005 , Spain
- IMIM (Hospital del Mar Medical Research Institute) , Barcelona 08003 , Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES) , Madrid 28029 , Spain
- Servei de Neurologia, Hospital del Mar , Barcelona 08003 , Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation , Barcelona 08005 , Spain
- IMIM (Hospital del Mar Medical Research Institute) , Barcelona 08003 , Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES) , Madrid 28029 , Spain
| | - Natalia Vilor-Tejedor
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation , Barcelona 08005 , Spain
- Universitat Pompeu Fabra , Barcelona 08005 , Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology , Barcelona 08003 , Spain
- Department of Clinical Genetics, Erasmus University Medical Center , Rotterdam 3015 GD , The Netherlands
| | - Alejandro Iranzo
- Neurology Service, Hospital Clínic de Barcelona and Institut D'Investigacions Biomèdiques , Barcelona 08036 , Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona , Barcelona 28029 , Spain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation , Barcelona 08005 , Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation , Barcelona 08005 , Spain
- IMIM (Hospital del Mar Medical Research Institute) , Barcelona 08003 , Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Madrid 28029 , Spain
| | - Elizabeth Coulthard
- North Bristol NHS Trust , Bristol BS10 5NB , UK
- Bristol Medical School, University of Bristol , Bristol BS8 1UD , UK
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation , Barcelona 08005 , Spain
- IMIM (Hospital del Mar Medical Research Institute) , Barcelona 08003 , Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES) , Madrid 28029 , Spain
- Servei de Neurologia, Hospital del Mar , Barcelona 08003 , Spain
| | | |
Collapse
|
27
|
Li M, Ma Y, Fu Y, Liu J, Hu H, Zhao Y, Huang L, Tan L. Association between air pollution and
CSF sTREM2
in cognitively normal older adults: The
CABLE
study. Ann Clin Transl Neurol 2022; 9:1752-1763. [PMID: 36317226 PMCID: PMC9639632 DOI: 10.1002/acn3.51671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/04/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022] Open
Abstract
Objectives Ambient air pollution aggravates the process of Alzheimer's disease (AD) pathology. Currently, the exact inflammatory mechanisms underlying these links from clinical research remain largely unclear. Methods This study included 1,131 cognitively intact individuals from the Chinese Alzheimer's Biomarker and LifestylE database with data provided on cerebrospinal fluid (CSF) AD biomarkers (amyloid beta‐peptide 42 [Aβ42], total tau [t‐tau], and phosphorylated tau [p‐tau]), neuroinflammatory (CSF sTREM2), and systemic inflammatory markers (high sensitivity C‐reactive protein and peripheral immune cells). The 2‐year averaged levels of ambient fine particulate matter with diameter <2.5 μm (PM2.5), nitrogen dioxide (NO2), and ozone (O3) were estimated at each participant's residence. Multiple‐adjusted models were approached to detect associations of air pollution with inflammatory markers and AD‐related proteins. Results Ambient 2‐year averaged exposure of PM2.5 was associated with changes of neuroinflammatory markers, that is, CSF sTREM2 (β = −0.116, p = 0.0002). Similar results were found for O3 exposure among the elderly (β = −0.111, p = 0.0280) or urban population (β = −0.090, p = 0.0144). No significant evidence supported NO2 related to CSF sTREM2. For potentially causal associations with accumulated AD pathologies, the total effects of PM2.5 on CSF amyloid‐related protein (CSF Aβ42 and p‐tau/Aβ42) were partly mediated by CSF sTREM2, with proportions of 14.22% and 47.15%, respectively. Additional analyses found inverse associations between peripheral inflammatory markers with PM2.5 and NO2, but a positive correlation with O3. Interpretation These findings demonstrated a strong link between PM2.5 exposure and microglial dysfunction. Furthermore, CSF sTREM2 as a key mediator modulated the influences of PM2.5 exposure on AD amyloid pathologies.
Collapse
Affiliation(s)
- Meng Li
- Department of Neurology Qingdao Municipal Hospital, Qingdao University Qingdao China
| | - Ya‐Hui Ma
- Department of Neurology Qingdao Municipal Hospital, Qingdao University Qingdao China
| | - Yan Fu
- Department of Neurology Qingdao Municipal Hospital, Qingdao University Qingdao China
| | - Jia‐Yao Liu
- Department of Neurology Qingdao Municipal Hospital, Qingdao University Qingdao China
| | - He‐Ying Hu
- Department of Neurology Qingdao Municipal Hospital, Qingdao University Qingdao China
| | - Yong‐Li Zhao
- Department of Neurology Qingdao Municipal Hospital, Qingdao University Qingdao China
| | - Liang‐Yu Huang
- Department of Neurology Qingdao Municipal Hospital, Qingdao University Qingdao China
| | - Lan Tan
- Department of Neurology Qingdao Municipal Hospital, Qingdao University Qingdao China
| |
Collapse
|
28
|
Huang SY, Li YZ, Zhang YR, Huang YY, Wu BS, Zhang W, Deng YT, Chen SD, He XY, Chen SF, Dong Q, Zhang C, Chen RJ, Suckling J, Rolls ET, Feng JF, Cheng W, Yu JT. Sleep, physical activity, sedentary behavior, and risk of incident dementia: a prospective cohort study of 431,924 UK Biobank participants. Mol Psychiatry 2022; 27:4343-4354. [PMID: 35701596 DOI: 10.1038/s41380-022-01655-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
Abstract
Although sleep, physical activity and sedentary behavior have been found to be associated with dementia risk, findings are inconsistent and their joint relationship remains unclear. This study aimed to investigate independent and joint associations of these three modifiable behaviors with dementia risks. A total of 431,924 participants (median follow-up 9.0 years) without dementia from UK Biobank were included. Multiple Cox regressions were used to estimate adjusted hazard ratios (HRs) and 95% confidence intervals (CIs). Models fitted with restricted cubic spline were conducted to test for linear and nonlinear shapes of each association. Sleep duration, leisure-time physical activity (LTPA), and screen-based sedentary behavior individually associated with dementia risks in different non-linear patterns. Sleep duration associated with dementia in a U-shape with a nadir at 7 h/day. LTPA revealed a curvilinear relationship with dementia in diminishing tendency, while sedentary behavior revealed a J-shaped relationship. The dementia risk was 17% lower in the high LTPA group (HR[95%CI]: 0.83[0.76-0.91]) and 22% higher in the high sedentary behavior group (1.22[1.10-1.35]) compared to the corresponding low-level group, respectively. A combination of seven-hour/day sleep, moderate-to-high LTPA, and low-to-moderate sedentary behavior showed the lowest dementia risk (0.59[0.50-0.69]) compared to the referent group (longer or shorter sleep/low LTPA/high sedentary behavior). Notably, each behavior was non-linearly associated with brain structures in a pattern similar to its association with dementia, suggesting they may affect dementia risk by affecting brain structures. Our findings highlight the potential to change these three daily behaviors individually and simultaneously to reduce the risk of dementia.
Collapse
Affiliation(s)
- Shu-Yi Huang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Zhu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Yuan Huang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Yu He
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shu-Fen Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ren-Jie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Edmund T Rolls
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Oxford Centre for Computational Neuroscience, Oxford, UK
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China.
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Aerqin Q, Jia SS, Shen XN, Li Q, Chen KL, Ou YN, Huang YY, Dong Q, Chen SF, Yu JT. Serum Uric Acid Levels in Neurodegenerative Disorders: A Cross-Sectional Study. J Alzheimers Dis 2022; 90:761-773. [DOI: 10.3233/jad-220432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Excessive oxidative stress may contribute to neurodegeneration by leading to protein aggregation and mitochondrial dysfunction. Uric acid (UA) is an important endogenous antioxidant that protects against oxidative stress, yet its exact role in neurodegeneration remains unclear. Objective: To explore the performance of serum UA in neurodegenerative disorders. Methods: A total of 839 controls and 840 patients, including Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), frontotemporal dementia (FTD), dementia with Lewy bodies (DLB), motor neuron disease (MND), Creutzfeldt-Jakob disease (CJD), and mixed dementia (MixD) were enrolled. Fasting serum UA levels were measured in all participants and compared between patients and controls. Linear regression models were utilized to explore possible relationships of serum UA with cognition, disease duration, age, and age of onset. Results: Compared to controls (355.48 ± 85.38 μmol/L), serum UA was significantly lower in AD (291.29 ± 83.49 μmol/L, p < 0.001), PD (286.95 ± 81.78 μmol/L, p < 0.001), PSP (313.32 ± 88.19 μmol/L, p < 0.001), FTD (313.89 ± 71.18 μmol/L, p = 0.001), and DLB (279.23 ± 65.51 μmol/L, p < 0.001), adjusting for confounding factors including age, gender, education, etc. In addition, serum UA was positively correlated with cognitive levels in all patients (Mini-Mental State Examination: r = 0.136, p = 0.001; and Montreal Cognitive Assessment Scale: r = 0.108, p = 0.009). Conclusion: Decreased levels of serum UA were correlated with AD, PD, PSP, FTD, and DLB, offering significant potential as a promisingly relevant, less-invasive marker of multiple neurodegenerative disorders.
Collapse
Affiliation(s)
- Qiaolifan Aerqin
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sha-Sha Jia
- Department of Neurology, Changzhou Second People’s Hospital, Nanjing Medical University, Changzhou, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Quan Li
- Department of Laboratory Medicine, Huashan Hospital Hongqiao Branch, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke-Liang Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yu-Yuang Huang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shu-Fen Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Gan J, Liu S, Wang F, Shi Z, Lü Y, Niu J, Meng X, Cai P, Wang XD, Chen Z, Gang B, Ji Y. Association between prevalence rate of dementia with Lewy bodies and sleep characteristics in Chinese old adults. Front Hum Neurosci 2022; 16:976753. [PMID: 36188174 PMCID: PMC9518672 DOI: 10.3389/fnhum.2022.976753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 11/14/2022] Open
Abstract
Introduction: Few studies are available on the prevalence and sleep-related factors of dementia with Lewy bodies (DLB) in Chinese older adults, aiming to explore the associations between sleep characteristics and DLB. Methods: A cross-sectional study with 7,528 individuals aged ≥65 years in 106 communities in Northern China was conducted from April 2019 to January 2020. Questionaries (including demographic characteristics, comorbidities, lifestyles, and sleep characteristics) were administered, and neuropsychological assessments and physical examination were conducted in phase I; screening for probable DLB was done in phase II. Logistic regressions were used to assess associations. Results: A total of 919 (12.2%, 919/7,528) participants had dementia, and 101 (1.3%, 101/7,528) participants were diagnosed with DLB. The prevalence of dementia and DLB were slightly higher or equal in women, increased with age, and roughly decreased with nighttime sleep duration. Of the 101 participants, all of them (100.0%) had cognitive impairment, 46 (44.54%) displayed fluctuating cognition, 72 (71.29%) of them showed visual hallucination, 22 (21.78%) individuals reported RBD, and 27.71% showed Parkinsonism. Sleeping for <5 h (adjusted OR = 1.795, 95%CI: 1.055–3.054, p < 0.05) or having hypersomnolence (adjusted OR = 31.213, 95% CI: 17.618–55.301, p < 0.001) were significantly associated with the occurrence of DLB. Sleep duration of <5 h or >8 h had combined diagnostic value for DLB (AUC = 0.783, 95%CI: 0.734–0.831, p < 0.001). Conclusions: The current prevalence of DLB is 1.3% in Northern China. Short or long nighttime sleep duration is independently associated with the occurrence of dementia and DLB.
Collapse
Affiliation(s)
- Jinghuan Gan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuai Liu
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Fei Wang
- Department of Neurology, Yuncheng Central Hospital of Shanxi Province, Shanxi, China
| | - Zhihong Shi
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianping Niu
- Department of Neurology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Xinling Meng
- Department of Neurology, Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi, China
| | - Pan Cai
- Dementia Clinic, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiao-Dan Wang
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhichao Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baozhi Gang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Baozhi Gang Yong Ji
| | - Yong Ji
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
- *Correspondence: Baozhi Gang Yong Ji
| |
Collapse
|
31
|
National incidence of joint dislocation in China: a retrospective survey of 512,187 individuals. Chin Med J (Engl) 2022; 135:1742-1749. [PMID: 35984105 PMCID: PMC9509134 DOI: 10.1097/cm9.0000000000002253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Joint dislocations significantly impact public health. However, a comprehensive study on the incidence, distribution, and risk factors for joint dislocations in China is lacking. We conducted the China National Joint Dislocation Study, which is a part of the China National Fracture Study conducted to obtain the national incidence and risk factors for traumatic fractures, and to investigate the incidence and risk factors for joint dislocations. METHODS For this national retrospective epidemiological study, 512,187 participants were recruited using stratified random sampling and probability-proportional-to-size method from January 19 to May 16, 2015. Participants who sustained joint dislocations of the trunk, arms, or legs (skull, sternum, and ribs being excluded) in 2014 were personally interviewed to obtain data on age, educational background, ethnic origin, occupation, geographic region, and urbanization degree. The joint-dislocation incidence was calculated based on age, sex, body site, and demographic factors. The risk factors for different groups were examined using multiple logistic regression. RESULTS One hundred and nineteen participants sustained 121 joint dislocations in 2014. The population-weighted incidence rate of joint dislocations of the trunk, arms, or legs was 0.22 (95% confidence interval [CI]: 0.16, 0.27) per 1000 population in 2014 (men, 0.27 [0.20, 0.34]; women, 0.16 [0.10, 0.23]). For all ages, previous dislocation history (male: OR 42.33, 95% confidence interval [CI]: 12.03-148.90; female: OR 54.43, 95% CI: 17.37-170.50) and alcohol consumption (male: OR 3.50, 95% CI: 1.49-8.22; female: OR 2.65, 95% CI: 1.08-6.50) were risk factors for joint dislocation. Sleeping less than 7 h/day was a risk factor for men. Compared with children, women aged ≥15 years (female 15-64 years: OR 0.16, 95% CI: 0.04-0.61; female ≥65 years: OR 0.06, 95% CI: 0.01-0.41) were less likely to sustain joint dislocations. Women with more than three children were at higher dislocation risk than women without children (OR 6.92, 95% CI: 1.18-40.78). CONCLUSIONS The up-to-date data on joint dislocation incidence, distribution, and risk factors can be used as a reference for national healthcare, prevention, and management in China. Specific strategies for decreasing alcohol consumption and encouraging adequate sleeping hours should be developed to prevent or reduce dislocation incidents. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR-EPR-15005878.
Collapse
|
32
|
Sex Modified the Association between Sleep Duration and worse Cognitive Performance in Chinese Hypertensive Population: Insight from the China H-Type Hypertension Registry Study. Behav Neurol 2022; 2022:7566033. [PMID: 35783996 PMCID: PMC9249484 DOI: 10.1155/2022/7566033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/23/2022] [Accepted: 06/05/2022] [Indexed: 11/26/2022] Open
Abstract
Objectives Cognitive decline could be seen as the sign of preclinical phase of dementia, which was found to be sex differentiated. Previous studies had discovered that there might be some link between abnormal sleep duration and cognitive performance. Additionally, hypertension was found to be one of the important risk factors for cognitive decline and abnormal sleep duration was also a significant risk factor for hypertension. Therefore, the purpose of this study was to investigate sex differences in the association of sleep duration with cognitive performance and to further explore potential effect modifiers that may exist. Methods Data analyzed in this study was from the China H-type Hypertension Registry Study. Sleep duration was assessed with a sleep questionnaire and categorized as <5 hours, 5-8 hours, and ≥8 hours. Cognitive performance was evaluated with the Mini-Mental State Examination (MMSE). Result A total of 9527 subjects were included. The average age was 63.7 ± 9.8 years. Linear regression analyses showed that the association between long sleep duration (≥8 h) and MMSE score adjusting for pertinent covariables was stronger in female (β = −0.95, 95% CI: -1.23 to -0.68, P < 0.001) than in male (β = −0.29, 95% CI: -0.53 to -0.06, P = 0.013). Furthermore, there was a significant interaction between sleep duration and age on cognitive performance only in female. Conclusion In summary, this study found that long sleep duration (≥8 h) was associated with poorer cognitive performance. Furthermore, this association was more pronounced in female than in male, especially in older female.
Collapse
|
33
|
Hu H, Bi YL, Shen XN, Ma YH, Ou YN, Zhang W, Ma LZ, Hu HY, Dong Q, Tan L, Yu JT. Application of the amyloid/tau/neurodegeneration framework in cognitively intact adults: the CABLE Study. Ann Neurol 2022; 92:439-450. [PMID: 35700125 DOI: 10.1002/ana.26439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVES The amyloid/tau/neurodegeneration (AT[N]) framework has conceptualized Alzheimer's disease (AD) continuum as a continuum of disease with evidences of amyloid-related pathologies independent of clinical manifestation. Based on this framework, it is necessary to reveal the distribution and risk factors of AD continuum in the cognitively intact population among different cohorts and races, including the northern Chinese Han population. METHODS This study classified cognitively intact Chinese Alzheimer's Biomarker and LifestylE (CABLE) participants through the AT(N) scheme. Gaussian mixture models were used to identity the cutoff values of cerebrospinal fluid biomarkers, which distinguished AD continuum (A + T-N-, A + T + N-, A + T-N+ and A + T + N+) from 1,005 participants (mean age: 61 years; 40% female). Multivariable logistic regressions and Cochran-Armitage trend tests were used to test neuropsychological performance and risk factors for AD continuum. RESULTS Approximately one-third of individuals (33.7%) belonged to AD continuum. Four potential modifiable risk factors, including hypertension, thyroid diseases, social isolation and minimal depression symptoms, were identified for AD continuum (odds ratio [OR] ranging from 1.68 to 6.90). A trend toward higher prevalence of AD continuum was associated with a larger number of risk factors (P for trend <0.0001). The risk of AD continuum increased by about two times for each additional modifiable risk factor (OR 1.9, 95% CI 1.65-2.24, P < 0.0001). INTERPRETATION This study revealed the distribution and potential risk factors of AD continuum in cognitively intact Han population in northern China, which filled the gap in the area about the performance of the AT(N) framework in the Asian population. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, China
| | - Xue-Ning Shen
- From Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ling-Zhi Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- From Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- From Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| |
Collapse
|
34
|
Ma YH, Chen HS, Liu C, Feng QS, Feng L, Zhang YR, Hu H, Dong Q, Tan L, Kan HD, Zhang C, Suckling J, Zeng Y, Chen RJ, Yu JT. Association of Long-term Exposure to Ambient Air Pollution With Cognitive Decline and Alzheimer's Disease-Related Amyloidosis. Biol Psychiatry 2022; 93:780-789. [PMID: 35953319 DOI: 10.1016/j.biopsych.2022.05.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Air pollution induces neurotoxic reactions and may exert adverse effects on cognitive health. We aimed to investigate whether air pollutants accelerate cognitive decline and affect neurobiological signatures of Alzheimer's disease (AD). METHODS We used a population-based cohort from the Chinese Longitudinal Healthy Longevity Survey with 31,573 participants and a 10-year follow-up (5878 cognitively unimpaired individuals in Chinese Longitudinal Healthy Longevity Survey followed for 5.95 ± 2.87 years), and biomarker-based data from the Chinese Alzheimer's Biomarker and Lifestyle study including 1131 participants who underwent cerebrospinal fluid measurements of AD-related amyloid-β (Aβ) and tau proteins. Cognitive impairment was determined by education-corrected performance on the China-Modified Mini-Mental State Examination. Annual exposures to fine particulate matter (PM2.5), ground-level ozone (O3), and nitrogen dioxide (NO2) were estimated at areas of residence. Exposures were aggregated as 2-year averages preceding enrollments using Cox proportional hazards or linear models. RESULTS Long-term exposure to PM2.5 (per 20 μg/m3) increased the risk of cognitive impairment (hazard ratio, 1.100; 95% CI: 1.026-1.180), and similar associations were observed from separate cross-sectional analyses. Exposures to O3 and NO2 yielded elevated risk but with nonsignificant estimates. Individuals exposed to high PM2.5 manifested increased amyloid burdens as reflected by cerebrospinal fluid-AD biomarkers. Moreover, PM2.5 exposure-associated decline in global cognition was partly explained by amyloid pathology as measured by cerebrospinal fluid-Aβ42/Aβ40, P-tau/Aβ42, and T-tau/Aβ42, with mediation proportions ranging from 16.95% to 21.64%. CONCLUSIONS Long-term exposure to PM2.5 contributed to the development of cognitive decline, which may be partly explained by brain amyloid accumulation indicative of increased AD risk.
Collapse
Affiliation(s)
- Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China; Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hua-Shuai Chen
- School of Business, Xiangtan University, Xiangtan, Hunan, China
| | - Cong Liu
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| | - Qiu-Shi Feng
- Department of Sociology, National University of Singapore, Singapore
| | - Lei Feng
- Department of Psychological Medicine and Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore
| | - Ya-Ru Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hai-Dong Kan
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Diseases, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Yi Zeng
- Center for the Study of Aging and Human Development, Medical School of Duke University, Center for Healthy Aging and Development Studies, National School of Development, Raissun Institute for Advanced Studies, Peking University, Beijing, China
| | - Ren-Jie Chen
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Li Y, Sahakian BJ, Kang J, Langley C, Zhang W, Xie C, Xiang S, Yu J, Cheng W, Feng J. The brain structure and genetic mechanisms underlying the nonlinear association between sleep duration, cognition and mental health. NATURE AGING 2022; 2:425-437. [PMID: 37118065 DOI: 10.1038/s43587-022-00210-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/17/2022] [Indexed: 04/30/2023]
Abstract
Sleep duration, psychiatric disorders and dementias are closely interconnected in older adults. However, the underlying genetic mechanisms and brain structural changes are unknown. Using data from the UK Biobank for participants primarily of European ancestry aged 38-73 years, including 94% white people, we identified a nonlinear association between sleep, with approximately 7 h as the optimal sleep duration, and genetic and cognitive factors, brain structure, and mental health as key measures. The brain regions most significantly underlying this interconnection included the precentral cortex, the lateral orbitofrontal cortex and the hippocampus. Longitudinal analysis revealed that both insufficient and excessive sleep duration were significantly associated with a decline in cognition on follow up. Furthermore, mediation analysis and structural equation modeling identified a unified model incorporating polygenic risk score (PRS), sleep, brain structure, cognition and mental health. This indicates that possible genetic mechanisms and brain structural changes may underlie the nonlinear relationship between sleep duration and cognition and mental health.
Collapse
Affiliation(s)
- Yuzhu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Barbara J Sahakian
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Christelle Langley
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Chao Xie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Shitong Xiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Jintai Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China.
- Shanghai Medical College and Zhongshan Hosptital Immunotherapy Technology Transfer Center, Shanghai, China.
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China.
- Zhangjiang Fudan International Innovation Center, Shanghai, China.
- Department of Computer Science, University of Warwick, Coventry, UK.
- School of Data Science, Fudan University, Shanghai, China.
| |
Collapse
|
36
|
Liang SY, Wang ZT, Tan L, Yu JT. Tau Toxicity in Neurodegeneration. Mol Neurobiol 2022; 59:3617-3634. [PMID: 35359226 DOI: 10.1007/s12035-022-02809-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/20/2022] [Indexed: 12/22/2022]
Abstract
Tau is a microtubule-associated protein widely distributed in the central nervous system (CNS). The main function of tau is to promote the assembly of microtubules and stabilize their structure. After a long period of research on neurodegenerative diseases, the function and dysfunction of the microtubule-associated protein tau in neurodegenerative diseases and tau neurotoxicity have attracted increasing attention. Tauopathies are a series of progressive neurodegenerative diseases caused by pathological changes in tau, such as abnormal phosphorylation. The pathological features of tauopathies are the deposition of abnormally phosphorylated tau proteins and the aggregation of tau proteins in neurons. This article first describes the normal physiological function and dysfunction of tau proteins and then discusses the enzymes and proteins involved in tau phosphorylation and dephosphorylation, the role of tau in cell dysfunction, and the relationships between tau and several neurodegenerative diseases. The study of tau neurotoxicity provides new directions for the treatment of tauopathies.
Collapse
Affiliation(s)
- Shu-Yu Liang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China. .,Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
37
|
Hu H, Fu JT, Bi YL, Ma YH, Huang YY, Wang X, Tan L, Yu JT. Tau Pathologies Mediate the Association of Cigarette Smoking with Cognitive Impairment in Older Adults Without Dementia: The CABLE Study. J Alzheimers Dis 2022; 86:1849-1859. [PMID: 35253762 DOI: 10.3233/jad-215618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Although cigarette smoking is an important modifiable factor of cognitive impairment, the roles of the Alzheimer’s disease (AD) core pathologies in modulating this process have not been fully delineated. Objective: This study aimed to explore associations of cigarette smoking with cognition and cerebrospinal fluid (CSF) AD biomarkers. Methods: A total of 1,079 non-demented participants were included from the Chinese Alzheimer’s Biomarker and LifestylE (CABLE) study. Associations of cigarette smoking with cognition and CSF AD biomarkers were explored by multiple linear regression models. The mediation analyses with 10,000 bootstrapped iterations were conducted to explore the mediation effects. Results: Heavy cigarette smokers (pack-years > 20) had poorer global cognition as well as higher levels of CSF p-tau and t-tau compared with the non-smokers (p < 0.01). Time-dose effect analysis among smokers also suggested that both cognitive impairment and tau pathologies markedly deteriorated with greater cumulative cigarette exposure, independently of the Aβ pathology (p < 0.01). In addition, smokers with older age or APOE ɛ4 showed more obvious influences on CSF tau pathologies but not on cognition. Overall, the influence of smoking on cognition was partially mediated by tau pathologies (estimated proportion: 12%), which still remained in late-life (10% ∼11%) and increased in APOE ɛ4 carriers (18% ∼24%). Encouragingly, long-term smoking cessation mitigated both cognitive impairment and tau pathologies (p < 0.05). Conclusion: Cigarette smoking was associated with both cognitive impairment and tau pathologies, which were accompanied by time-dose effects. Tau pathology might be a key mediator for influences of cigarette smoking on cognitive impairments.
Collapse
Affiliation(s)
- Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jun-Ting Fu
- Department of Neurology, Weifang Medical University, Weifang, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yu-Yuan Huang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Weifang Medical University, Weifang, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Wang J, Fan DY, Li HY, He CY, Shen YY, Zeng GH, Chen DW, Yi X, Ma YH, Yu JT, Wang YJ. Dynamic changes of CSF sPDGFRβ during ageing and AD progression and associations with CSF ATN biomarkers. Mol Neurodegener 2022; 17:9. [PMID: 35033164 PMCID: PMC8760673 DOI: 10.1186/s13024-021-00512-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023] Open
Abstract
Background Loss of brain capillary pericyte is involved in the pathologies and cognitive deficits in Alzheimer’s disease (AD). The role of pericyte in early stage of AD pathogenesis remains unclear. Methods We investigated the dynamic changes of soluble platelet-derived growth factor receptor β (sPDGFRβ) in cerebrospinal fluid (CSF), a marker of brain pericyte injury, in transition from normal ageing to early AD in a cognitively unimpaired population aged 20 to 90 years. Association between sPDGFRβ and ATN biomarkers were analyzed. Results In lifetime, CSF sPDGFRβ continually increased since age of 20 years, followed by the increases of phosphorylated tau-181 (P-tau181) and total tau (T-tau) at the age of 22.2 years and 31.7 years, respectively; CSF Aβ42 began to decline since the age of 39.6 years, indicating Aβ deposition. The natural trajectories of biomarkers suggest that pericyte injury is an early event during transition from normal status to AD, even earlier than Aβ deposition. In AD spectrum, CSF sPDGFRβ was elevated in preclinical stage 2 and participants with suspected non-AD pathophysiologies. Additionally, CSF sPDGFRβ was positively associated with P-tau181 and T-tau independently of Aβ42, and significantly strengthened the effects of Aβ42 on P-tau181, suggesting that pericyte injury accelerates Aβ-mediated tau hyperphosphorylation. Conclusions Our results suggest that pericyte injury contributes to AD progression in the early stage in an Aβ-independent pathway. Recovery of pericyte function would be a target for prevention and early intervention of AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00512-w.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Dong-Yu Fan
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.,Shigatse Branch, Xinqiao Hospital, Third Military Medical University, Shigatse, China
| | - Hui-Yun Li
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Chen-Yang He
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Ying-Ying Shen
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Gui-Hua Zeng
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Dong-Wan Chen
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Xu Yi
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China. .,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China. .,State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
39
|
Liu R, Tang S, Wang Y, Dong Y, Hou T, Ren Y, Cong L, Liu K, Qin Y, Sindi S, Du Y, Qiu C. Self-reported sleep characteristics associated with dementia among rural-dwelling Chinese older adults: a population-based study. BMC Neurol 2022; 22:5. [PMID: 34979998 PMCID: PMC8722012 DOI: 10.1186/s12883-021-02521-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sleep characteristics associated with dementia are poorly defined and whether their associations vary by demographics and APOE genotype among older adults are unclear. METHODS This population-based cross-sectional study included 4742 participants (age ≥ 65 years, 57.1% women) living in rural China. Sleep parameters were measured using the self-rated questionnaires of the Pittsburgh Sleep Quality Index and Epworth Sleepiness Scale. Global cognitive function was assessed with the Mini-Mental State Examination (MMSE). Dementia was diagnosed following the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, criteria, and the National Institute on Aging-Alzheimer's Association criteria for Alzheimer's disease (AD). Data were analysed using multiple logistic and general linear regression models. RESULTS Dementia was diagnosed in 173 participants (115 with AD). Multivariable-adjusted odds ratio (OR) of dementia was 1.71 (95%CI, 1.07-2.72) for sleep duration ≤4 h/night (vs. > 6-8 h/night), 0.76 (0.49-1.18) for > 4-6 h/night, 1.63 (1.05-2.55) for > 8 h/night, 1.11 (1.03-1.20) for lower sleep efficiency (per 10% decrease), and 1.85 (1.19-2.89) for excessive daytime sleepiness. Very short sleep duration (≤4 h/night), lower sleep efficiency, and excessive daytime sleepiness were significantly associated with being diagnosed with AD (multivariable-adjusted OR range = 1.12-2.07; p < 0.05). The associations of sleep problems with dementia and AD were evident mainly among young-old adults (65-74 years) or APOE ε4 carriers. Among dementia-free participants, these sleep characteristics were significantly associated with a lower MMSE score. CONCLUSIONS Self-reported sleep problems in dementia are characterized by very short or long sleep duration, low sleep efficiency, and excessive daytime sleepiness, especially among young-old people and APOE ε4 carriers. TRIAL REGISTRATION ChiCTR1800017758 (Aug 13, 2018).
Collapse
Affiliation(s)
- Rui Liu
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324 Jingwuweiqi Road, 250021, Jinan, Shandong, People's Republic of China
| | - Shi Tang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324 Jingwuweiqi Road, 250021, Jinan, Shandong, People's Republic of China.,Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, People's Republic of China
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324 Jingwuweiqi Road, 250021, Jinan, Shandong, People's Republic of China.,Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, People's Republic of China
| | - Yi Dong
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324 Jingwuweiqi Road, 250021, Jinan, Shandong, People's Republic of China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324 Jingwuweiqi Road, 250021, Jinan, Shandong, People's Republic of China.,Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, People's Republic of China
| | - Yifei Ren
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324 Jingwuweiqi Road, 250021, Jinan, Shandong, People's Republic of China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324 Jingwuweiqi Road, 250021, Jinan, Shandong, People's Republic of China.,Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China.,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, People's Republic of China
| | - Keke Liu
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324 Jingwuweiqi Road, 250021, Jinan, Shandong, People's Republic of China.,Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China.,Shandong Academy of Clinical Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Yu Qin
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Shireen Sindi
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden.,Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Neuroepidemiology and Ageing Research Unit, School of Public Health, Imperial College London, London, UK
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324 Jingwuweiqi Road, 250021, Jinan, Shandong, People's Republic of China. .,Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China. .,Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, People's Republic of China.
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324 Jingwuweiqi Road, 250021, Jinan, Shandong, People's Republic of China. .,Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China. .,Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden.
| |
Collapse
|
40
|
Wen C, Bi YL, Hu H, Huang SY, Ma YH, Hu HY, Tan L, Yu JT. Association of Subjective Cognitive Decline with Cerebrospinal Fluid Biomarkers of Alzheimer’s Disease Pathology in Cognitively Intact Older Adults: The CABLE Study. J Alzheimers Dis 2021; 85:1143-1151. [PMID: 34924386 DOI: 10.3233/jad-215178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Subjective cognitive decline (SCD) might occur at the early stages of dementia. Individuals with SCD have an increased risk of subsequent objective cognitive decline and greater rates of progression to dementia. Objective: We aimed to explore the associations between SCD and cerebrospinal fluid (CSF) biomarkers of Alzheimer’s disease (AD) pathology in cognitively normal individuals. Methods: A total of 1,099 cognitively normal elders with available data on CSF biomarkers of AD pathology (Aβ 42, P-tau, and T-tau) were included in our analysis. Linear regression was used to examine the associations of SCD status and SCD severity with CSF biomarkers. Additionally, a review was conducted to discuss the associations between SCD and CSF biomarkers of AD pathology. Results: After adjustments for covariates, SCD and SCD severity showed significant associations with CSF Aβ 42 (SCD: β= –0.0003, p = 0.0263; SCD severity: β= –0.0004, p = 0.0046), CSF T-tau/Aβ 42 ratio (SCD: β= 0.1080, p = 0.1080; SCD severity: β= 0.1129, p = 0.0009) and CSF P-tau/Aβ 42 ratio (SCD: β= 0.0167, p = 0.0103; SCD severity: β= 0.0193, p = 0.0006) rather than T-tau and P-tau compared with cognitively normal individuals. In the review, a total of 28 studies were finally included after reviewing 174 articles. CSF Aβ 42 was lower in SCD than cognitively normal (CN) individuals, but higher than those with objective cognitive decline. However, CSF tau pathology showed no difference between SCD and CN. Conclusion: The results indicated that pathophysiological changes in CSF Aβ pathology occurred in individuals with SCD, which provide new insights into early intervention of AD.
Collapse
Affiliation(s)
- Chen Wen
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Shu-Yi Huang
- From Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- From Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Zhang XX, Ma YH, Hu HY, Ma LZ, Tan L, Yu JT. Late-Life Obesity Associated with Tau Pathology in Cognitively Normal Individuals: The CABLE Study. J Alzheimers Dis 2021; 85:877-887. [PMID: 34897094 DOI: 10.3233/jad-215351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Existed evidence suggests that midlife obesity increases the risk of Alzheimer's disease (AD), while there is an inverse association between AD and obesity in late life. However, the underlying metabolic changes of AD pathological proteins attributed to obesity in two life stages were not clear. OBJECTIVE To investigate the associations of obesity types and obesity indices with AD biomarkers in cerebrospinal fluid (CSF) in different life stages. METHODS We recruited 1,051 cognitively normal individuals (61.94±10.29 years, 59.66%male) from the Chinese Alzheimer's Biomarker and LifestylE (CABLE) study with CSF detections for amyloid-β 42 (Aβ 42), total-tau (T-tau), and phosphorylated tau (P-tau). We utilized body mass index, waist circumference, waist-to-height ratio, and metabolic risk factors to determine human obesity types. Multiple linear models and interaction analyses were run to assess the impacts of obesity on AD biomarkers. RESULTS The metabolically unhealthy obesity or healthy obesity might exert a reduced tau pathology burden (p < 0.05). Individuals with overweight, general obesity, and central obesity presented lower levels of tau-related proteins in CSF than normal controls (p < 0.05). Specially, for late-life individuals, higher levels of obesity indices were associated with a lower load of tau pathology as measured by CSF T-tau and T-tau/Aβ 42 (p < 0.05). No similar significant associations were observed in midlife. CONCLUSION Collectively, late-life general and central obesity seems to be associated with the reduced load of tau pathology, which further consolidates the favorable influence of obesity in specific life courses for AD prevention.
Collapse
Affiliation(s)
- Xiao-Xue Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ling-Zhi Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Gao F, Liu T, Tuo M, Chi S. The role of orexin in Alzheimer disease: From sleep-wake disturbance to therapeutic target. Neurosci Lett 2021; 765:136247. [PMID: 34530113 DOI: 10.1016/j.neulet.2021.136247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/01/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Accumulating evidence has shown that sleep disturbance is a common symptom in Alzheimer's disease (AD), which is regarded as a modifiable risk factor for AD. Orexin is a key modulator of the sleep-wake cycle and has been found to be dysregulated in AD patients. The increased orexin in cerebrospinal fluid (CSF) is associated with decreased sleep efficiency and REM sleep, as well as cognitive impairment in AD patients. The orexin system has profuse projections to brain regions that are implicated in arousal and cognition and has been found to participate in the progression of AD pathology. Conversely the orexin receptor antagonists are able to consolidate sleep and reduce AD pathology. Therefore, improved understanding of the mechanisms linking orexin system, sleep disturbance and AD could make orexin receptor antagonists a promising target for the prevention or treatment of AD.
Collapse
Affiliation(s)
- Fan Gao
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Liu
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Miao Tuo
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Song Chi
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
43
|
Wen C, Hu H, Ou YN, Bi YL, Ma YH, Tan L, Yu JT. Risk factors for subjective cognitive decline: the CABLE study. Transl Psychiatry 2021; 11:576. [PMID: 34753917 PMCID: PMC8578345 DOI: 10.1038/s41398-021-01711-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Increasing evidences supported that subjective cognitive decline (SCD) might be a potential first symptomatic manifestation of Alzheimer's disease (AD). The rapidly growing number of SCD individuals who seek medical help and advice also makes it urgent to develop more precise strategy for SCD. Therefore, this study aimed to explore the risk factors for SCD. Logistics and linear regression models were performed to investigate 41 factors for SCD in 1165 participants without objective cognitive impairment. Cochran-Armitage trend test was used to confirm the constant trend toward higher prevalence of SCD with an increasing number of risk factors. A high overall prevalence of SCD was found in total participants (42%). Eight factors were eventually identified as risk factors for SCD, including four stable factors associated with both SCD statues and severity (older age, thyroid diseases, minimal anxiety symptoms, and day time dysfunction; odds ratio (OR) ranging from 1.74 to 2.29) as well as four suggestive factors associated with either SCD statues or severity (female sex, anemia, lack of physical exercises, and living alone; OR ranging from 1.30 to 2.29). The prevalence of SCD gradually increased with the number of risk factors clustering increased in individuals (p for trend <0.001). Five of these eight factors were further proved among individuals with SCD-plus features. These findings revealed several risk factors for SCD, providing some new clues for formulating priority strategies for early prevention of SCD.
Collapse
Affiliation(s)
- Chen Wen
- grid.410645.20000 0001 0455 0905Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hao Hu
- grid.410645.20000 0001 0455 0905Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- grid.410645.20000 0001 0455 0905Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Lin Bi
- grid.410645.20000 0001 0455 0905Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- grid.410645.20000 0001 0455 0905Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
44
|
Hua J, Zhuang S, Shen Y, Tang X, Sun H, Fang Q. Exploring the Bidirectional Associations Between Short or Long Sleep Duration and Lower Cognitive Function: A 7-Year Cohort Study in China. Front Aging Neurosci 2021; 13:727763. [PMID: 34690740 PMCID: PMC8528020 DOI: 10.3389/fnagi.2021.727763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/14/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Sleep duration is linked to cognitive function, but whether short or prolonged sleep duration results from impaired cognition or vice versa has been controversial in previous studies. We aimed to investigate the bidirectional association between sleep duration and cognitive function in older Chinese participants. Methods: Data were obtained from a nationally representative study conducted in China. A total of 7984 participants aged 45 years or older were assessed at baseline between June 2011 and March 2012 (Wave 1), 2013 (Wave 2), 2015 (Wave 3), and 2018 (Wave 4). Nocturnal sleep duration was evaluated using interviews. Cognitive function was examined via assessments of global cognition, including episodic memory, visuospatial construction, calculation, orientation and attention capacity. Latent growth models and cross-lagged models were used to assess the bidirectional association between sleep duration and cognitive function. Results: Among the 7,984 participants who were followed in the four waves of the study, the baseline mean (SD) age was 64.7 (8.4) years, 3862 (48.4%) were male, and 6453 (80.7%) lived in rural areas. Latent growth models showed that both sleep duration and global cognition worsened over time. Cross-lagged models indicated that short or long sleep duration in the previous wave was associated with lower global cognition in the subsequent wave (standardized β = −0.066; 95% CI: −0.073, −0.059; P < 0.001; Wave 1 to 2) and that lower global cognition in the previous wave was associated with short or long sleep duration in the subsequent wave (standardized β = −0.106; 95% CI: −0.116, −0.096; P < 0.001; Wave 1 to 2). Conclusion: There was a bidirectional association between sleep duration and cognitive function, with lower cognitive function having a stronger association with long or short sleep duration than the reverse relationship. Global cognition was likely the major driver in these reciprocal associations.
Collapse
Affiliation(s)
- Jianian Hua
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Sheng Zhuang
- Department of Neurology, Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yueping Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xiang Tang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongpeng Sun
- Department of Child Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
45
|
Fu Y, Wang ZT, Qu Y, Wang XT, Ma YH, Bi YL, Dong Q, Tan L, Yu JT. Sleep Characteristics and Cognitive Function in Older Adults Without Dementia: The CABLE Study. J Alzheimers Dis 2021; 84:1029-1038. [PMID: 34602483 DOI: 10.3233/jad-215017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The associations between sleep characteristics and cognition are complicated. Alzheimer's disease (AD) pathologies have been proven to be associated with sleep characteristics. OBJECTIVE We aimed to investigate the associations between sleep characteristics and cognitive function and examine the roles of AD pathologies in modulating the association of sleep duration with cognition. METHODS A total of 974 participants who had measurements of cerebrospinal fluid (CSF) amyloid-β (Aβ), phosphorylated tau (P-tau), total tau proteins (T-tau), cognitive function, and sleep characteristics were included from the Chinese Alzheimer's Biomarker and Lifestyle (CABLE) study. Linear regression analyses were utilized to explore the associations of sleep characteristics with cognition. Non-linear regression analyses were utilized to explore the associations of sleep habits with cognition. Causal mediation analyses were conducted to explore the mediation effects of AD pathologies on cognition. RESULTS The Pittsburgh Sleep Quality Index (PSQI) total score was significantly negatively correlated with Montreal Cognitive Assessment (MoCA) score (p = 0.0176). Long latency (p = 0.0054) and low efficiency (p = 0.0273) were associated with cognitive impairment. Habitual nap behavior was associated with lower MoCA scores (p = 0.0045). U-shaped associations were observed between sleep habits (bedtime and nocturnal sleep duration) and cognition. A causal mediation analysis indicated that P-tau/Aβ42 mediated the association of sleep duration with cognition. CONCLUSION These findings showed sleep characteristics were associated with cognitive functions. Sleep habits (duration, bedtime) had U-shaped associations with cognition. AD core pathologies might partially mediate the influence of sleep duration on cognitive impairments.
Collapse
Affiliation(s)
- Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zuo-Teng Wang
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| | - Yi Qu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiao-Tong Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.,College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Xu W, Tan CC, Zou JJ, Cao XP, Tan L. Insomnia Moderates the Relationship Between Amyloid-β and Cognitive Decline in Late-Life Adults without Dementia. J Alzheimers Dis 2021; 81:1701-1710. [PMID: 33967043 DOI: 10.3233/jad-201582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND It is suggested that not all individuals with elevated Aβ will develop dementia or cognitive impairment. Environment or lifestyle might modulate the association of amyloid pathology with cognition. Insomnia is a risk factor of cognitive disorders including Alzheimer's disease. OBJECTIVE To investigate if insomnia moderated the relationship between amyloid-β (Aβ) and longitudinal cognitive performance in non-demented elders. METHODS A total of 385 Alzheimer's Disease Neuroimaging Initiative participants (mean age = 73 years, 48% females) who completed 4 + neuropsychological evaluations and a [18F] florbetapir positron emission tomography scan were followed up to 8 years. Linear mixed-effects regression models were used to examine the interactions effect between insomnia and Aβ on longitudinal cognitive sores, including four domains (memory [MEM], executive function [EF], language [LAN], and visuospatial function [VS]). RESULTS The Aβ-positive status (A+) but not insomnia independently predicted faster cognitive decline in all domains. Furthermore, the relationship between Aβ and cognitive decline was moderated by insomnia (MEM: χ2 = 4.05, p = 0.044, EF: χ2 = 4.38, p = 0.036, LAN: χ2 = 4.56, p = 0.033, and VS: χ2 = 4.12, p = 0.042). Individuals with both elevated Aβ and insomnia experienced faster cognitive decline than those with only elevated Aβ or insomnia. CONCLUSION These data reinforced the values of insomnia management in preventing dementia, possibly by interacting Aβ metabolism. Future efforts are warranted to determine whether sleep improvement will postpone the onset of dementia, specifically among populations in stages of preclinical or prodromal AD.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Juan-Juan Zou
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University; NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | | |
Collapse
|
47
|
Hu H, Meng L, Bi YL, Zhang W, Xu W, Shen XN, Ou YN, Ma YH, Dong Q, Tan L, Yu JT. Tau pathologies mediate the association of blood pressure with cognitive impairment in adults without dementia: The CABLE study. Alzheimers Dement 2021; 18:53-64. [PMID: 34031984 DOI: 10.1002/alz.12377] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/05/2021] [Accepted: 04/17/2021] [Indexed: 12/22/2022]
Abstract
INTRODUCTION This study delineated the interrelationships among blood pressure (BP), cerebrospinal fluid (CSF) core biomarkers of Alzheimer's disease (AD), and cognition. METHODS The linear regression analyses were conducted in 1546 non-demented participants (mean age of 61.58 years, range 40 to 89 years; 40% female; average days of BP measurement, 9.10 days). Mediation analyses with 10,000 bootstrapped iterations were used to explore the mediation effects. RESULTS A clear age-related pattern of BP was delineated. Mid-life hypertension (especially systolic BP), late-life lower diastolic BP, as well as mid- and late-life higher pulse pressure were associated with cognitive impairment and tau-related biomarkers. BP variability was associated only with cognition but not with CSF biomarkers. Overall, the associations between BP and cognition were partially mediated (proportion: 11% to 30%) by tau pathologies, independently of amyloid pathology. DISCUSSION Tau pathologies might play important roles in the relationship between BP and cognition, with significant age- and BP-type dependences.
Collapse
Affiliation(s)
- Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Li Meng
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, China
| | - Wei Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xue-Ning Shen
- From Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- From Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- From Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Abstract
OBJECTIVE To examine the association between sleep duration in different stages of life and amnestic mild cognitive impairment (aMCI). DESIGN, SETTING, AND PARTICIPANTS A total of 2472 healthy elderly and 505 patients with aMCI in China were included in this study. The study analyzed the association between aMCI and sleep duration in different stages of life. MEASUREMENTS We compared sleep duration in different stages of life and analyzed the association between Montreal Cognitive Assessment scores and sleep duration by curve estimation. Logistic regression was used to evaluate the association between aMCI and sleep duration. RESULTS In the analysis, there were no results proving that sleep duration in youth (P = 0.719, sleep duration < 10 hours; P = 0.999, sleep duration ≥ 10 hours) or midlife (P = 0.898, sleep duration < 9 hours; P = 0.504, sleep duration ≥ 9 hours) had a significant association with aMCI. In the group sleeping less than 7 hours in late life, each hour more of sleep duration was associated with approximately 0.80 of the original risk of aMCI (P = 0.011, odds ratio = 0.80, 95% confidence interval = 0.68-0.95). CONCLUSIONS Among the elderly sleeping less than 7 hours, there is a decreased risk of aMCI for every additional hour of sleep.
Collapse
|
49
|
Proteomic identification of select protein variants of the SNARE interactome associated with cognitive reserve in a large community sample. Acta Neuropathol 2021; 141:755-770. [PMID: 33646358 DOI: 10.1007/s00401-021-02282-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Age-related neuropathologies progressively impair cognitive abilities by damaging synaptic function. We aimed to identify key components within the presynaptic SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) machinery associated with cognitive performance and estimate their potential contribution to brain reserve in old age. We used targeted SRM proteomics to quantify amounts of 60 peptides, encoded in 30 different genes, in postmortem specimens of the prefrontal cortex from 1209 participants of two aging studies, with available antemortem cognitive evaluations and postmortem neuropathologic assessments. We found that select (but not all) proteoforms are strongly associated with cognitive function and the burden of Alzheimer's disease (AD) pathology. Specifically, greater abundance of STX1A (but not other syntaxins), SYT12, full-length SNAP25, and the GABAergic STXBP1 variant were robustly associated with better cognitive performance. By contrast, greater abundance of other presynaptic proteins (e.g., STXBP5 or tomosyn, STX7, or SYN2) showed a negative influence on cognition. Regression models adjusting for demographic and pathologic variables showed that altered levels of these protein species explained 7.7% additional between-subject variance in cognition (more than any individual age-related neuropathology in the model), suggesting that these molecules constitute key elements of brain reserve. Network analyses indicated that those peptides associated with brain reserve, and closest to the SNARE fusogenic activity, showed greater centrality measures and were better connected in the network. Validation assays confirmed the selective loss of the STX1A (but not STX1B) isoform in cognitively impaired cases. In rodent and human brains, STX1A was selectively located at glutamatergic terminals. However, in AD brains, STX1A was redistributed adjacent to neuritic pathology, and markedly expressed in astrocytes. Our study provides strong evidence, indicating that select presynaptic proteins are key in maintaining brain reserve. Compromised ability to sustain expression levels of these proteins may trigger synaptic dysfunction and concomitant cognitive impairment.
Collapse
|
50
|
André C, Laniepce A, Chételat G, Rauchs G. Brain changes associated with sleep disruption in cognitively unimpaired older adults: A short review of neuroimaging studies. Ageing Res Rev 2021; 66:101252. [PMID: 33418092 DOI: 10.1016/j.arr.2020.101252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
Ageing is characterized by a progressive decline of sleep quality. Sleep difficulties are increasingly recognized as a risk factor for Alzheimer's disease (AD), and have been associated with cognitive decline. However, the brain substrates underlying this association remain unclear. In this review, our objective was to provide a comprehensive overview of the relationships between sleep changes and brain structural, functional and molecular integrity, including amyloid and tau pathologies in cognitively unimpaired older adults. We especially discuss the topography and causality of these associations, as well as the potential underlying mechanisms. Taken together, current findings converge to a link between several sleep parameters, amyloid and tau levels in the CSF, and neurodegeneration in diffuse frontal, temporal and parietal areas. However, the existing literature remains heterogeneous, and the specific sleep changes associated with early AD pathological changes, in terms of topography and neuroimaging modality, is not clearly established yet. Notably, if slow wave sleep disruption seems to be related to frontal amyloid deposition, the brain correlates of sleep-disordered breathing and REM sleep disruption remain unclear. Moreover, sleep parameters associated with tau- and FDG-PET imaging are largely unexplored. Lastly, whether sleep disruption is a cause or a consequence of brain alterations remains an open question.
Collapse
|