1
|
Cave AE, De Blasio FM, Chang DH, Münch GW, Steiner-Lim GZ. Eyes-open and eyes-closed EEG of older adults with subjective cognitive impairment versus healthy controls: A frequency principal components analysis study. Brain Res 2025; 1850:149399. [PMID: 39667551 DOI: 10.1016/j.brainres.2024.149399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
Subjective Cognitive Impairment (SCI) is a self-perceived worsening of cognitive decline, carrying an increased risk of developing Mild Cognitive Impairment (MCI) and Alzheimer's Disease (AD). Due to the self-report nature of SCI, an understanding of the biological mechanisms that contribute to an increased dementia risk is needed. This study aims to assess the differences in resting state electroencephalography (EEG) (eyes-open, eyes-closed; EO, EC) between older adults with SCI and healthy controls (HCs) utilising frequency principal components analysis (fPCA), a novel data driven approach. Participants (n = 14 per group: SCI, HCs) were matched on age, sex, years of education, mood, cognition, and pre-morbid function. Continuous resting EEG was recorded during 2-minute conditions (EO, EC) and were submitted to 4 separate fPCAs (each condition, group). Corresponding components were assessed between groups and conditions, correlated with demographics, mood, and cognition variables; multivariate logistic regression was also carried out. Component amplitudes were larger in HCs for delta-theta and alpha-beta, while theta-alpha was larger for SCI. DASS anxiety scores contributed to higher amplitudes for HCs in EO delta-theta and alpha-beta, while male sex and depressive symptoms contributed to higher amplitudes for the SCI group in EO and EC theta-alpha. Findings demonstrate a distinct divergent signature of neurological activity in older people with SCI, despite normal objective cognitive function. This is the first fPCA study to investigate neuronal differences between HCs and older adults with SCI at rest. Novel confounders and effect modifiers were identified that should be controlled in future studies.
Collapse
Affiliation(s)
- Adele E Cave
- NICM Health Research Institute, Western Sydney University, Penrith NSW 2751, Australia.
| | - Frances M De Blasio
- NICM Health Research Institute, Western Sydney University, Penrith NSW 2751, Australia; Brain & Behaviour Research Institute, and School of Psychology, University of Wollongong, Wollongong NSW 2522, Australia
| | - Dennis H Chang
- NICM Health Research Institute, Western Sydney University, Penrith NSW 2751, Australia
| | - Gerald W Münch
- NICM Health Research Institute, Western Sydney University, Penrith NSW 2751, Australia; School of Medicine, Western Sydney University, Penrith NSW 2751, Australia
| | - Genevieve Z Steiner-Lim
- NICM Health Research Institute, Western Sydney University, Penrith NSW 2751, Australia; Translational Health Research Institute (THRI), Western Sydney University, Penrith NSW 2751, Australia.
| |
Collapse
|
2
|
Babiloni C, Arakaki X, Baez S, Barry RJ, Benussi A, Blinowska K, Bonanni L, Borroni B, Bayard JB, Bruno G, Cacciotti A, Carducci F, Carino J, Carpi M, Conte A, Cruzat J, D'Antonio F, Della Penna S, Del Percio C, De Sanctis P, Escudero J, Fabbrini G, Farina FR, Fraga FJ, Fuhr P, Gschwandtner U, Güntekin B, Guo Y, Hajos M, Hallett M, Hampel H, Hanoğlu L, Haraldsen I, Hassan M, Hatlestad-Hall C, Horváth AA, Ibanez A, Infarinato F, Jaramillo-Jimenez A, Jeong J, Jiang Y, Kamiński M, Koch G, Kumar S, Leodori G, Li G, Lizio R, Lopez S, Ferri R, Maestú F, Marra C, Marzetti L, McGeown W, Miraglia F, Moguilner S, Moretti DV, Mushtaq F, Noce G, Nucci L, Ochoa J, Onorati P, Padovani A, Pappalettera C, Parra MA, Pardini M, Pascual-Marqui R, Paulus W, Pizzella V, Prado P, Rauchs G, Ritter P, Salvatore M, Santamaria-García H, Schirner M, Soricelli A, Taylor JP, Tankisi H, Tecchio F, Teipel S, Kodamullil AT, Triggiani AI, Valdes-Sosa M, Valdes-Sosa P, Vecchio F, Vossel K, Yao D, Yener G, Ziemann U, Kamondi A. Alpha rhythm and Alzheimer's disease: Has Hans Berger's dream come true? Clin Neurophysiol 2025; 172:33-50. [PMID: 39978053 DOI: 10.1016/j.clinph.2025.02.256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/14/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
In this "centenary" paper, an expert panel revisited Hans Berger's groundbreaking discovery of human restingstate electroencephalographic (rsEEG) alpha rhythms (8-12 Hz) in 1924, his foresight of substantial clinical applications in patients with "senile dementia," and new developments in the field, focusing on Alzheimer's disease (AD), the most prevalent cause of dementia in pathological aging. Clinical guidelines issued in 2024 by the US National Institute on Aging-Alzheimer's Association (NIA-AA) and the European Neuroscience Societies did not endorse routine use of rsEEG biomarkers in the clinical workup of older adults with cognitive impairment. Nevertheless, the expert panel highlighted decades of research from independent workgroups and different techniques showing consistent evidence that abnormalities in rsEEG delta, theta, and alpha rhythms (< 30 Hz) observed in AD patients correlate with wellestablished AD biomarkers of neuropathology, neurodegeneration, and cognitive decline. We posit that these abnormalities may reflect alterations in oscillatory synchronization within subcortical and cortical circuits, inducing cortical inhibitory-excitatory imbalance (in some cases leading to epileptiform activity) and vigilance dysfunctions (e.g., mental fatigue and drowsiness), which may impact AD patients' quality of life. Berger's vision of using EEG to understand and manage dementia in pathological aging is still actual.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy; San Raffaele of Cassino, Cassino, (FR), Italy.
| | - Xianghong Arakaki
- Cognition and Brain Integration Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Sandra Baez
- Universidad de los Andes, Bogota, Colombia; Global Brain Health Institute (GBHI), University of California, San Francisco, USA; Trinity College Dublin, Dublin, Ireland
| | - Robert J Barry
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Wollongong 2522, Australia
| | - Alberto Benussi
- Neurology Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Katarzyna Blinowska
- Department of Biomedical Physics, Faculty of Physics, University of Warsaw, Poland; Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Laura Bonanni
- Department of Medicine, Aging Sciences University G. d'Annunzio of Chieti-Pescara Chieti 66100 Chieti, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia 25125, Italy
| | | | - Giuseppe Bruno
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Alessia Cacciotti
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy; Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Filippo Carducci
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | - John Carino
- Clinical Neurophysiology, Royal Melbourne Hospital, Parkville, Melbourne, Australia
| | - Matteo Carpi
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | - Antonella Conte
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Josephine Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile
| | - Fabrizia D'Antonio
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Stefania Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | | | - Javier Escudero
- Institute for Imaging, Data and Communications, School of Engineering, University of Edinburgh, UK
| | - Giovanni Fabbrini
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Francesca R Farina
- The University of Chicago Division of the Biological Sciences 5841 S Maryland Avenue Chicago, IL 60637, USA; Global Brain Health Institute (GBHI), Trinity College Dublin, Ireland
| | - Francisco J Fraga
- Engineering, Modeling and Applied Social Sciences Center, Federal University of ABC, Santo André, Brazil
| | - Peter Fuhr
- Department of Neurology, Hospitals of the University of Basel, Basel, Switzerland
| | - Ute Gschwandtner
- Department of Neurology, Hospitals of the University of Basel, Basel, Switzerland
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital and The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China; Shenzhen Bay Laboratory, Shenzhen, China; Tianjin Huanhu Hospital, Tianjin, China
| | - Mihaly Hajos
- Cognito Therapeutics, Cambridge, MA, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 10, Room 7D37, 10 Center Drive, Bethesda, MD 20892-1428, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013 Paris, France
| | - Lutfu Hanoğlu
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey; Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ira Haraldsen
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Mahmoud Hassan
- MINDIG, F-35000 Rennes, France; School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | | | - András Attila Horváth
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry and Addictology, Budapest, Hungary; Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary; Research Centre for Natural Sciences, HUN-REN, Budapest, Hungary
| | - Agustin Ibanez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile; Global Brain Health Institute (GBHI), Trinity College Dublin, Ireland; Cognitive Neuroscience Center, Universidad de San Andrés, Victoria, Buenos Aires, Argentina
| | | | - Alberto Jaramillo-Jimenez
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Grupo de Neurociencias de Antioquia (GNA), Universidad de Antioquia, Medellín, Colombia
| | - Jaeseung Jeong
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Yang Jiang
- Aging Brain and Cognition Laboratory, Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, USA; Sanders Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Maciej Kamiński
- Department of Biomedical Physics, Faculty of Physics, University of Warsaw, Poland
| | - Giacomo Koch
- Human Physiology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Sanjeev Kumar
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Giorgio Leodori
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Gang Li
- Real World Evidence & Medical Value, Global Medical Affairs, Neurology, Eisai Inc., New Jersey, USA
| | - Roberta Lizio
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy; Oasi Research Institute - IRCCS, Troina, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | | | - Fernando Maestú
- Center For Cognitive and Computational Neuroscience, Complutense University of Madrid, Spain
| | - Camillo Marra
- Department of Psychology, Catholic University of Sacred Heart, Milan, Italy; Memory Clinic, Foundation Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Laura Marzetti
- Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy; Department of Engineering and Geology, "G. d'Annunzio" University of Chieti and Pescara, Pescara, Italy
| | - William McGeown
- Department of Psychological Sciences & Health, University of Strathclyde, Graham Hills Building, 40 George Street, Glasgow, UK
| | - Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy; Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Sebastian Moguilner
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile; Cognitive Neuroscience Center, Universidad de San Andrés, Victoria, Buenos Aires, Argentina; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Davide V Moretti
- Alzheimer's Rehabilitation Operative Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Faisal Mushtaq
- School of Psychology, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds, UK
| | | | - Lorenzo Nucci
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - John Ochoa
- Neurophysiology Laboratory GNA-GRUNECO. Universidad de Antioquia, Antioquia, Colombia
| | - Paolo Onorati
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of Continuity of Care and Frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy; Neurobiorepository and Laboratory of Advanced Biological Markers, University of Brescia, ASST Spedali Civili Hospital, Brescia, Italy; Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, Italy; Brain Health Center, University of Brescia, Brescia, Italy
| | - Chiara Pappalettera
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy; Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Mario Alfredo Parra
- Department of Psychological Sciences & Health, University of Strathclyde, Graham Hills Building, 40 George Street, Glasgow, UK
| | - Matteo Pardini
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberto Pascual-Marqui
- The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry, Zurich, Switzerland
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians University Munich, Munich, Germany; University Medical Center Göttingen, Göttingen, Germany
| | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy
| | - Pavel Prado
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Géraldine Rauchs
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, 14000 Caen, France
| | - Petra Ritter
- Berlin Institute of Health, Charité, Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Berlin, Germany; Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, Berlin, Germany; Einstein Center for Neuroscience Berlin, Berlin, Germany; Einstein Center Digital Future, Berlin, Germany
| | | | - Hernando Santamaria-García
- Pontificia Universidad Javeriana (PhD Program in Neuroscience), Bogotá, Colombia; Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio Bogotá, San Ignacio, Colombia
| | - Michael Schirner
- Berlin Institute of Health, Charité, Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Berlin, Germany; Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, Berlin, Germany; Einstein Center for Neuroscience Berlin, Berlin, Germany; Einstein Center Digital Future, Berlin, Germany
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Medical, Movement and Wellbeing Sciences, University of Naples Parthenope, Naples, Italy
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Franca Tecchio
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Roma, Italy
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE) Rostock, Rostock, Germany
| | - Alpha Tom Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Antonio Ivano Triggiani
- Neurophysiology of Epilepsy Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Pedro Valdes-Sosa
- Cuban Center for Neuroscience, Havana, Cuba; The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Fabrizio Vecchio
- Universidad de los Andes, Bogota, Colombia; Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Keith Vossel
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Görsev Yener
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey; Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anita Kamondi
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry and Addictology, Budapest, Hungary; Department of Neurosurgery and Neurointervention and Department of Neurology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Paitel ER, Otteman CBD, Polking MC, Licht HJ, Nielson KA. Functional and effective EEG connectivity patterns in Alzheimer's disease and mild cognitive impairment: a systematic review. Front Aging Neurosci 2025; 17:1496235. [PMID: 40013094 PMCID: PMC11861106 DOI: 10.3389/fnagi.2025.1496235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025] Open
Abstract
Background Alzheimer's disease (AD) might be best conceptualized as a disconnection syndrome, such that symptoms may be largely attributable to disrupted communication between brain regions, rather than to deterioration within discrete systems. EEG is uniquely capable of directly and non-invasively measuring neural activity with precise temporal resolution; connectivity quantifies the relationships between such signals in different brain regions. EEG research on connectivity in AD and mild cognitive impairment (MCI), often considered a prodromal phase of AD, has produced mixed results and has yet to be synthesized for comprehensive review. Thus, we performed a systematic review of EEG connectivity in MCI and AD participants compared with cognitively healthy older adult controls. Methods We searched PsycINFO, PubMed, and Web of Science for peer-reviewed studies in English on EEG, connectivity, and MCI/AD relative to controls. Of 1,344 initial matches, 124 articles were ultimately included in the systematic review. Results The included studies primarily analyzed coherence, phase-locked, and graph theory metrics. The influence of factors such as demographics, design, and approach was integrated and discussed. An overarching pattern emerged of lower connectivity in both MCI and AD compared to healthy controls, which was most prominent in the alpha band, and most consistent in AD. In the minority of studies reporting greater connectivity, theta band was most commonly implicated in both AD and MCI, followed by alpha. The overall prevalence of alpha effects may indicate its potential to provide insight into nuanced changes associated with AD-related networks, with the caveat that most studies were during the resting state where alpha is the dominant frequency. When greater connectivity was reported in MCI, it was primarily during task engagement, suggesting compensatory resources may be employed. In AD, greater connectivity was most common during rest, suggesting compensatory resources during task engagement may already be exhausted. Conclusion The review highlighted EEG connectivity as a powerful tool to advance understanding of AD-related changes in brain communication. We address the need for including demographic and methodological details, using source space connectivity, and extending this work to cognitively healthy older adults with AD risk toward advancing early AD detection and intervention.
Collapse
Affiliation(s)
- Elizabeth R. Paitel
- Aging, Imaging, and Memory Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
| | - Christian B. D. Otteman
- Aging, Imaging, and Memory Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
| | - Mary C. Polking
- Aging, Imaging, and Memory Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
| | - Henry J. Licht
- Aging, Imaging, and Memory Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
| | - Kristy A. Nielson
- Aging, Imaging, and Memory Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
4
|
Bjerkan J, Meglič B, Lancaster G, Kobal J, McClintock PVE, Crawford TJ, Stefanovska A. Neurovascular phase coherence is altered in Alzheimer's disease. Brain Commun 2025; 7:fcaf007. [PMID: 40008330 PMCID: PMC11852277 DOI: 10.1093/braincomms/fcaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/01/2024] [Accepted: 01/08/2025] [Indexed: 02/27/2025] Open
Abstract
Alzheimer's disease is the commonest form of dementia, but its cause still remains elusive. It is characterized by neurodegeneration, with amyloid-beta and tau aggregation. Recently, however, the roles of the vasculature and the neurovascular unit are being highlighted as important for disease progression. In particular, there is reduced microvascular density, and altered gene expression in vascular and glial cells. Structural changes naturally impact the functioning of the neurovascular unit, and the goal of the study was to quantify the corresponding changes in vivo, non-invasively. Our assessment is based on recordings of brain oxygenation, neuronal and cardiorespiratory activities, captured by functional near-infrared spectroscopy, electroencephalogram, electrocardiogram and respiration effort, respectively. Two groups were compared: an Alzheimer's disease group (N = 19) and a control group (N = 20) of similar age. The time-series were analysed using methods that can capture multi-scale and time-varying oscillations such as the wavelet transform power and wavelet phase coherence. The Alzheimer's disease group shows a significant decrease in the power of brain oxygenation oscillations compared to the control group. There is also a significant global reduction in the phase coherence between brain oxygenation time-series. The neurovascular phase coherence around 0.1 Hz is also significantly reduced in the Alzheimer's disease group. In addition, the average respiration rate is increased in the Alzheimer's disease group compared to the control group. We show that the phase coherence between vascular and neuronal activities is reduced in Alzheimer's disease compared to the control group, indicating altered functioning of the neurovascular unit. The brain oxygenation dynamics reveals reduced power and coordination of oscillations, especially in frequency ranges that are associated with vasomotion. This could lead to reduced oxygen delivery to the brain, which could affect ATP production, and potentially reduce amyloid-beta clearance. These changes in neurovascular dynamics have potential for early diagnosis, as a marker of disease progression, and for evaluating the effect of interventions.
Collapse
Affiliation(s)
- Juliane Bjerkan
- Department of Physics, Lancaster University, LA1 4YB Lancaster, UK
| | - Bernard Meglič
- Department of Neurology, University Medical Centre, 1525 Ljubljana, Slovenia
| | - Gemma Lancaster
- Department of Physics, Lancaster University, LA1 4YB Lancaster, UK
| | - Jan Kobal
- Department of Neurology, University Medical Centre, 1525 Ljubljana, Slovenia
| | | | - Trevor J Crawford
- Department of Psychology, Lancaster University, LA1 4YF Lancaster, UK
| | | |
Collapse
|
5
|
Calvin-Dunn KN, Mcneela A, Leisgang Osse A, Bhasin G, Ridenour M, Kinney JW, Hyman JM. Electrophysiological insights into Alzheimer's disease: A review of human and animal studies. Neurosci Biobehav Rev 2025; 169:105987. [PMID: 39732222 DOI: 10.1016/j.neubiorev.2024.105987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/16/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
This review highlights the crucial role of neuroelectrophysiology in illuminating the mechanisms underlying Alzheimer's disease (AD) pathogenesis and progression, emphasizing its potential to inform the development of effective treatments. Electrophysiological techniques provide unparalleled precision in exploring the intricate networks affected by AD, offering insights into the synaptic dysfunction, network alterations, and oscillatory abnormalities that characterize the disease. We discuss a range of electrophysiological methods, from non-invasive clinical techniques like electroencephalography and magnetoencephalography to invasive recordings in animal models. By drawing on findings from these studies, we demonstrate how electrophysiological research has deepened our understanding of AD-related network disruptions, paving the way for targeted therapeutic interventions. Moreover, we underscore the potential of electrophysiological modalities to play a pivotal role in evaluating treatment efficacy. Integrating electrophysiological data with clinical neuroimaging and longitudinal studies holds promise for a more comprehensive understanding of AD, enabling early detection and the development of personalized treatment strategies. This expanded research landscape offers new avenues for unraveling the complexities of AD and advancing therapeutic approaches.
Collapse
Affiliation(s)
- Kirsten N Calvin-Dunn
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Cleveland Clinic Lou Ruvo Center for Brain Health, United States.
| | - Adam Mcneela
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States
| | - A Leisgang Osse
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Brain Health, University of Nevada, Las Vegas, United States
| | - G Bhasin
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Psychology, University of Nevada, Las Vegas, United States
| | - M Ridenour
- Department of Psychology, University of Nevada, Las Vegas, United States
| | - J W Kinney
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Brain Health, University of Nevada, Las Vegas, United States
| | - J M Hyman
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Psychology, University of Nevada, Las Vegas, United States
| |
Collapse
|
6
|
Park Y, Yoon E, Park J, Kim JS, Han JW, Bae JB, Kim SS, Kim DW, Woo SJ, Park J, Lee W, Yoo S, Kim KW. White matter microstructural integrity as a key to effective propagation of gamma entrainment in humans. GeroScience 2025; 47:1019-1037. [PMID: 39004653 PMCID: PMC11872816 DOI: 10.1007/s11357-024-01281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Gamma entrainment through sensory stimulation has the potential to reduce the pathology of Alzheimer's disease in mouse models. However, clinical trials in Alzheimer's disease (AD) patients have yielded inconsistent results, necessitating further investigation. This single-center pre-post intervention study aims to explore the influence of white matter microstructural integrity on gamma rhythm propagation from the visual cortex to AD-affected regions in 31 cognitively normal volunteers aged ≥ 65. Gamma rhythm propagation induced by optimal FLS was measured. Diffusion tensor imaging was employed to assess the integrity of white matter tracts of interest. After excluding 5 participants with a deficit in steady-state visually evoked potentials, 26 participants were included in the final analysis. In the linear regression analyses, gamma entrainment was identified as a significant predictor of gamma propagation (p < 0.001). Furthermore, the study identified white matter microstructural integrity as a significant predictor of gamma propagation by flickering light stimulation (p < 0.05), which was specific to tracts that connect occipital and temporal or frontal regions. These findings indicate that, despite robust entrainment of gamma rhythms in the visual cortex, their propagation to other regions may be impaired if the microstructural integrity of the white matter tracts connecting the visual cortex to other areas is compromised. Consequently, our findings have expanded our understanding of the prerequisites for effective gamma entrainment and suggest that future clinical trials utilizing visual stimulation for gamma entrainment should consider white matter tract microstructural integrity for candidate selection and outcome analysis.
Collapse
Affiliation(s)
- Yeseung Park
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Euisuk Yoon
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Jieun Park
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Jun Sung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jong Bin Bae
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sang-Su Kim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Do-Won Kim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Se Joon Woo
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jaehyeok Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Wheesung Lee
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Seunghyup Yoo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea.
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, Korea.
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Korea.
- Department of Health Science and Technology, Seoul National University Graduate School of Convergence Science and Technology, Suwon, Korea.
- Department of Neuropsychiatry, College of Medicine, Seoul National University, Seoul, Korea.
- Seoul National University Bundang Hospital, 82, Gumi-ro 173 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
| |
Collapse
|
7
|
Vetere LM, Galas AM, Vaughan N, Feng Y, Wick ZC, Philipsberg PA, Liobimova O, Fernandez-Ruiz A, Cai DJ, Shuman T. Medial entorhinal-hippocampal desynchronization parallels the emergence of memory impairment in a mouse model of Alzheimer's disease pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633171. [PMID: 39868201 PMCID: PMC11761809 DOI: 10.1101/2025.01.15.633171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive impairments in episodic and spatial memory, as well as circuit and network-level dysfunction. While functional impairments in medial entorhinal cortex (MEC) and hippocampus (HPC) have been observed in patients and rodent models of AD, it remains unclear how communication between these regions breaks down in disease, and what specific physiological changes are associated with the onset of memory impairment. We used silicon probes to simultaneously record neural activity in MEC and hippocampus before or after the onset of spatial memory impairment in the 3xTg mouse model of AD pathology. We found that reduced hippocampal theta power, reduced MEC-CA1 theta coherence, and altered phase locking of MEC and hippocampal neurons all coincided with the emergence of spatial memory impairment in 3xTg mice. Together, these findings indicate that disrupted temporal coordination of neural activity in the MEC-hippocampal system parallels the emergence of memory impairment in a model of AD pathology.
Collapse
Affiliation(s)
| | | | - Nick Vaughan
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yu Feng
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | | | - Denise J Cai
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
8
|
Chmiel J, Stępień-Słodkowska M. Resting-State EEG Oscillations in Amyotrophic Lateral Sclerosis (ALS): Toward Mechanistic Insights and Clinical Markers. J Clin Med 2025; 14:545. [PMID: 39860557 PMCID: PMC11766307 DOI: 10.3390/jcm14020545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Introduction: Amyotrophic lateral sclerosis (ALS) is a complex, progressive neurodegenerative disorder characterized by the degeneration of motor neurons in the brain, brainstem, and spinal cord. Several neuroimaging techniques can help reveal the pathophysiology of ALS. One of these is the electroencephalogram (EEG), a noninvasive and relatively inexpensive tool for examining electrical activity of the brain with excellent temporal precision. Methods: This mechanistic review examines the pattern of resting-state EEG activity. With a focus on publications published between January 1995 and October 2024, we carried out a comprehensive search in October 2024 across a number of databases, including PubMed/Medline, Research Gate, Google Scholar, and Cochrane. Results: The literature search yielded 17 studies included in this review. The studies varied significantly in their methodology and patient characteristics. Despite this, a common biomarker typical of ALS was found-reduced alpha power. Regarding other oscillations, the findings are less consistent and sometimes contradictory. As this is a mechanistic review, three possible explanations for this biomarker are provided. The main and most important one is increased cortical excitability. In addition, due to the limitations of the studies, recommendations for future research on this topic are outlined to enable a further and better understanding of EEG patterns in ALS. Conclusions: Most studies included in this review showed alpha power deficits in ALS patients, reflecting pathological hyperexcitability of the cerebral cortex. Future studies should address the methodological limitations identified in this review, including small sample sizes, inconsistent frequency-band definitions, and insufficient functional outcome measures, to solidify and extend current findings.
Collapse
Affiliation(s)
- James Chmiel
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland
- Doctoral School, University of Szczecin, Mickiewicza 16, 70-384 Szczecin, Poland
| | - Marta Stępień-Słodkowska
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland
| |
Collapse
|
9
|
Yang X, Fan Z, Li Z, Zhou J. Resting-state EEG microstate features for Alzheimer's disease classification. PLoS One 2024; 19:e0311958. [PMID: 39666689 PMCID: PMC11637251 DOI: 10.1371/journal.pone.0311958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/27/2024] [Indexed: 12/14/2024] Open
Abstract
Resting-state electroencephalogram (EEG) microstate analysis resolves EEG signals into topographical maps representing discrete, sequential network activations. These maps can be used to identify patterns in EEGs that may be indicative of underlying neurological conditions. One such pattern is observed in EEGs of patients with Alzheimer's disease (AD), where a global microstate disorganization is evident. We initially investigated the classification efficacy of microstate parameters as markers for AD classification. Subsequently, we compared the classification efficacy of EEG conventional features to ascertain the superiority of microstate features. We extracted raw EEG data from a public, independent database, OpenNeuro EEG. The raw EEG was subjected to preprocessing and band-pass filtering to obtain five distinct frequency bands. The SVM classifier was used to input the microstate feature set to determine the one with the best classification effect as the main band. In order to verify the advantage of the microstate features, the AD group and the healthy control group were filtered for the main frequency bands respectively. Then the microstate feature set and the regular feature set were extracted. The two feature sets were input into four different conventional machine learning classifiers, namely SVM, KNN, RF, and LR, in order to avoid the classifiers as the dependent variable. And the comparison of the classification results of simply two feature sets as the dependent variable can be obtained. The results show that in the Alpha (8-13 Hz) sub-band, the microstate feature set as model input to SVM is optimal for the recognition of AD, with a classification accuracy of 99.22%. The Alpha band, as the main frequency band, the microstate feature set as model input to the four classifiers obtains an average classification accuracy of 98.61%, and the average classification accuracy obtained by the conventional EEG feature set as model is 91.19%. Based on four different classifiers, microstate parameters can be served as markers to effectively classify the EEG of AD patients. The microstate feature set outperforms the conventional EEG feature set after excluding the effect of classifiers.
Collapse
Affiliation(s)
- Xiaoli Yang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Zhipeng Fan
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Zhenwei Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jiayi Zhou
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
10
|
Hansen LS, Carstensen MH, Henney MA, Nguyen NM, Thorning-Schmidt MW, Broeng J, Petersen PM, Andersen TS. Light-based gamma entrainment with novel invisible spectral flicker stimuli. Sci Rep 2024; 14:29747. [PMID: 39613776 DOI: 10.1038/s41598-024-75448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/04/2024] [Indexed: 12/01/2024] Open
Abstract
Light-based gamma entrainment using sensory stimuli (GENUS) shows considerable potential for the treatment of Alzheimer's disease (AD) in both animal and human models. While the clinical efficacy of GENUS for AD is paramount, its effectiveness will eventually also rely on the barrier to treatment adherence imposed by the discomfort of gazing at luminance flickering (LF) light. Currently, there have been few attempts to improve the comfort of GENUS. Here we investigate if Invisible spectral flicker (ISF), a novel type of light-based 40 Hz GENUS for which the flicker is almost imperceptible, can be used as a more comfortable option. We found that whereas ISF, LF, and chromatic flicker (CF) all produce a 40 Hz steady-state visually evoked potential (SSVEP), ISF scores significantly better on measures of comfort and perceived flicker. We also demonstrate that, while there is a trend towards a lower SSVEP response, reducing the stimulation brightness has no significant effect on the 40 Hz SSVEP or perceived flicker, though it significantly improves comfort. Finally, there is a slight decrease in the 40 Hz SSVEP response when stimulating with ISF from increasingly peripheral angles. This may ease the discomfort of GENUS treatment by freeing patients from gazing directly at the light.
Collapse
Affiliation(s)
- Luna S Hansen
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Building 343, Ørsteds Pl., 2800, Kgs. Lyngby, Denmark.
- OptoCeutics ApS, Nørrebrogade 45C, 4. tv., 2200, Copenhagen N, Denmark.
| | - Marcus H Carstensen
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Building 343, Ørsteds Pl., 2800, Kgs. Lyngby, Denmark
- OptoCeutics ApS, Nørrebrogade 45C, 4. tv., 2200, Copenhagen N, Denmark
| | - Mark A Henney
- OptoCeutics ApS, Nørrebrogade 45C, 4. tv., 2200, Copenhagen N, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Pl., Building 324, 2800, Kgs. Lyngby, Denmark
| | - N Mai Nguyen
- OptoCeutics ApS, Nørrebrogade 45C, 4. tv., 2200, Copenhagen N, Denmark
| | - Martin W Thorning-Schmidt
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Building 343, Ørsteds Pl., 2800, Kgs. Lyngby, Denmark
- OptoCeutics ApS, Nørrebrogade 45C, 4. tv., 2200, Copenhagen N, Denmark
| | - Jes Broeng
- OptoCeutics ApS, Nørrebrogade 45C, 4. tv., 2200, Copenhagen N, Denmark
- Centre for Technology Entrepreneurship, Technical University of Denmark, Produktionstorvet, Building 426, 2800, Kgs. Lyngby, Denmark
| | - Paul Michael Petersen
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Building 343, Ørsteds Pl., 2800, Kgs. Lyngby, Denmark
- OptoCeutics ApS, Nørrebrogade 45C, 4. tv., 2200, Copenhagen N, Denmark
| | - Tobias S Andersen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Pl., Building 324, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
11
|
Costanzo M, Cutrona C, Leodori G, Malimpensa L, D'antonio F, Conte A, Belvisi D. Exploring easily accessible neurophysiological biomarkers for predicting Alzheimer's disease progression: a systematic review. Alzheimers Res Ther 2024; 16:244. [PMID: 39497149 PMCID: PMC11533378 DOI: 10.1186/s13195-024-01607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/19/2024] [Indexed: 11/06/2024]
Abstract
Alzheimer disease (AD) remains a significant global health concern. The progression from preclinical stages to overt dementia has become a crucial point of interest for researchers. This paper reviews the potential of neurophysiological biomarkers in predicting AD progression, based on a systematic literature search following PRISMA guidelines, including 55 studies. EEG-based techniques have been predominantly employed, whereas TMS studies are less common. Among the investigated neurophysiological measures, spectral power measurements and event-related potentials-based measures, including P300 and N200 latencies, have emerged as the most consistent and reliable biomarkers for predicting the likelihood of conversion to AD. In addition, TMS-based indices of cortical excitability and synaptic plasticity have also shown potential in assessing the risk of conversion to AD. However, concerns persist regarding the methodological discrepancies among studies, the accuracy of these neurophysiological measures in comparison to established AD biomarkers, and their immediate clinical applicability. Further research is needed to validate the predictive capabilities of EEG and TMS measures. Advancements in this area could lead to cost-effective, reliable biomarkers, enhancing diagnostic processes and deepening our understanding of AD pathophysiology.
Collapse
Affiliation(s)
- Matteo Costanzo
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy
| | - Carolina Cutrona
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy
| | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy
- IRCCS Neuromed, Via Atinense 18, Pozzilli, 86077, IS, Italy
| | | | - Fabrizia D'antonio
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy
- IRCCS Neuromed, Via Atinense 18, Pozzilli, 86077, IS, Italy
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy.
- IRCCS Neuromed, Via Atinense 18, Pozzilli, 86077, IS, Italy.
| |
Collapse
|
12
|
Bennis K, Eustache F, Collette F, Vandewalle G, Hinault T. Daily Dynamics of Resting-State Electroencephalographic Theta and Gamma Fluctuations Are Associated With Cognitive Performance in Healthy Aging. J Gerontol B Psychol Sci Soc Sci 2024; 79:gbae152. [PMID: 39243136 DOI: 10.1093/geronb/gbae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Indexed: 09/09/2024] Open
Abstract
OBJECTIVES Healthy age-related cognitive changes are highly heterogeneous across individuals. This variability is increasingly explained through the lens of spontaneous fluctuations of brain activity, now considered a powerful index of age-related changes. However, brain activity is a biological process modulated by circadian rhythms, and how these fluctuations evolve throughout the day is under investigation. METHODS We analyzed data from 101 healthy late middle-aged participants from the Cognitive Fitness in Aging study (68 women and 33 men; aged 50-69 years). Participants completed 5 electroencephalographic (EEG) recordings of spontaneous resting-state activity on the same day. We used weighted phase-lag index (wPLI) analyses as an index of the functional synchrony between brain regions couplings, and we computed daily global PLI fluctuation rates of the 5 recordings to assess the association with cognitive performance and β-amyloid and tau/neuroinflammation pathological markers. RESULTS We found that theta and gamma daily fluctuations in the salience-control executive internetwork (SN-CEN) are associated with distinct mechanisms underlying cognitive heterogeneity in aging. Higher levels of SN-CEN theta daily fluctuations appear to be deleterious for memory performance and were associated with higher tau/neuroinflammation rates. In contrast, higher levels of gamma daily fluctuations are positively associated with executive performance and were associated with lower rate of β-amyloid deposition. DISCUSSION Thus, accounting for daily EEG fluctuations of brain activity contributes to a better understanding of subtle brain changes underlying individuals' cognitive performance in healthy aging. Results also provide arguments for considering the time of day when assessing cognition for old adults in a clinical context.
Collapse
Affiliation(s)
- Kenza Bennis
- Université de Caen Normandie, Inserm, EPHE-PSL, CHU de Caen, GIP Cyceron, U1077, NIMH, 14000 Caen, France
| | - Francis Eustache
- Université de Caen Normandie, Inserm, EPHE-PSL, CHU de Caen, GIP Cyceron, U1077, NIMH, 14000 Caen, France
| | - Fabienne Collette
- GIGA-CRC-In Vivo Imaging, Université de Liège and Belgian National Fund for Scientific Research, Liège, Belgium
| | - Gilles Vandewalle
- GIGA-CRC-In Vivo Imaging, Université de Liège and Belgian National Fund for Scientific Research, Liège, Belgium
| | - Thomas Hinault
- Université de Caen Normandie, Inserm, EPHE-PSL, CHU de Caen, GIP Cyceron, U1077, NIMH, 14000 Caen, France
| |
Collapse
|
13
|
Choi A, Zhang N, Adler CH, Beach TG, Shill HA, Driver-Dunckley E, Mehta S, Belden C, Atri A, Sabbagh MN, Caviness JN. Resting-state EEG predicts cognitive decline in a neuropathologically diagnosed longitudinal community autopsied cohort. Parkinsonism Relat Disord 2024; 128:107120. [PMID: 39236511 DOI: 10.1016/j.parkreldis.2024.107120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/02/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVE To assess correlative strengths of quantitative electroencephalography (qEEG) and visual rating scale EEG features on cognitive outcomes in only autopsied cases from the Arizona Study of Neurodegenerative Disorders (AZSAND). We hypothesized that autopsy proven Parkinson Disease will show distinct EEG features from Alzheimer's Disease prior to dementia (mild cognitive impairment). BACKGROUND Cognitive decline is debilitating across neurodegenerative diseases. Resting-state EEG analysis, including spectral power across frequency bins (qEEG), has shown significant associations with neurodegenerative disease classification and cognitive status, with autopsy confirmed diagnosis relatively lacking. METHODS Biannual EEG was analyzed from autopsied cases in AZSAND who had at least one rsEEG (>1 min eyes closed±eyes open). Analysis included global relative spectral power and a previously described visual rating scale (VRS). Linear mixed regression was performed for neuropsychological assessment and testing within 2 years of death (n = 236, 594 EEG exams) in a mixed linear regression model. RESULTS The cohort included cases with final clinicopathologic diagnoses of Parkinson's disease (n = 73), Alzheimer disease (n = 65), and tauopathy not otherwise specified (n = 56). A VRS score of 3 diffuse or frequent generalized slowing) over the study duration was associated with an increase in consensus diagnosis cognitive worsening at 4.9 (3.1) years (HR 2.02, CI 1.05-3.87). Increases in global theta power% and VRS were the most consistently associated with large regression coefficients inversely with cognitive performance measures. CONCLUSION Resting-state EEG analysis was meaningfully related to cognitive performance measures in a community-based autopsy cohort. EEG deserves further study and use as a cognitive biomarker.
Collapse
Affiliation(s)
- Alexander Choi
- Banner Sun Health Research Institute, 10515 W Santa Fe Dr, Sun City, AZ, 85351, USA.
| | - Nan Zhang
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, 10515 W Santa Fe Dr, Sun City, AZ, 85351, USA
| | - Holly A Shill
- Barrow Neurological Institute, 240 W. Thomas Suite 301, Phoenix, AZ, 85013, USA
| | - Erika Driver-Dunckley
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Shyamal Mehta
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Christine Belden
- Banner Sun Health Research Institute, 10515 W Santa Fe Dr, Sun City, AZ, 85351, USA
| | - Alireza Atri
- Banner Sun Health Research Institute, 10515 W Santa Fe Dr, Sun City, AZ, 85351, USA
| | - Marwan N Sabbagh
- Barrow Neurological Institute, 240 W. Thomas Suite 301, Phoenix, AZ, 85013, USA
| | - John N Caviness
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| |
Collapse
|
14
|
Zeng H, Zhao Y, Babiloni F, Tao M, Kong W, Dai G. A General DNA-Like Hybrid Symbiosis Framework: An EEG Cognitive Recognition Method. IEEE J Biomed Health Inform 2024; 28:6498-6511. [PMID: 39120983 DOI: 10.1109/jbhi.2024.3441332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
In electroencephalogram (EEG) cognitive recognition research, the combined use of artificial neural networks (ANNs) and spiking neural networks (SNNs) plays an important role to realize different categories of recognition tasks. However, most of the existing studies focus on the unidirectional interaction between an ANN and a SNN, which may be overly dependent on the performance of ANNs or SNNs. Inspired by the symbiosis phenomenon in nature, in this study, we propose a general DNA-like Hybrid Symbiosis (DNA-HS) framework, which enables mutual learning between the ANN and the SNN generated by this ANN through parametric genetic algorithm and bidirectional interaction mechanism to enhance the optimization ability of the model parameters, resulting in a significant improvement of the performance of the DNA-HS framework in all aspects. By comparing with seven typical EEG cognitive recognition models, the performance of the seven hybrid network frameworks constructed using this method on different EEG-based cognitive recognition tasks are all improved to different degrees, verifying the effectiveness of the proposed method. This unified hybrid network framework similar to the DNA structure is expected to open up a new approach and form a new research paradigm for EEG-based cognitive recognition task.
Collapse
|
15
|
Zandbagleh A, Miltiadous A, Sanei S, Azami H. Beta-to-Theta Entropy Ratio of EEG in Aging, Frontotemporal Dementia, and Alzheimer's Dementia. Am J Geriatr Psychiatry 2024; 32:1361-1382. [PMID: 39004533 DOI: 10.1016/j.jagp.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Aging, frontotemporal dementia (FTD), and Alzheimer's dementia (AD) manifest electroencephalography (EEG) alterations, particularly in the beta-to-theta power ratio derived from linear power spectral density (PSD). Given the brain's nonlinear nature, the EEG nonlinear features could provide valuable physiological indicators of aging and cognitive impairment. Multiscale dispersion entropy (MDE) serves as a sensitive nonlinear metric for assessing the information content in EEGs across biologically relevant time scales. OBJECTIVE To compare the MDE-derived beta-to-theta entropy ratio with its PSD-based counterpart to detect differences between healthy young and elderly individuals and between different dementia subtypes. METHODS Scalp EEG recordings were obtained from two datasets: 1) Aging dataset: 133 healthy young and 65 healthy older adult individuals; and 2) Dementia dataset: 29 age-matched healthy controls (HC), 23 FTD, and 36 AD participants. The beta-to-theta ratios based on MDE vs. PSD were analyzed for both datasets. Finally, the relationships between cognitive performance and the beta-to-theta ratios were explored in HC, FTD, and AD. RESULTS In the Aging dataset, older adults had significantly higher beta-to-theta entropy ratios than young individuals. In the Dementia dataset, this ratio outperformed the beta-to-theta PSD approach in distinguishing between HC, FTD, and AD. The AD participants had a significantly lower beta-to-theta entropy ratio than FTD, especially in the temporal region, unlike its corresponding PSD-based ratio. The beta-to-theta entropy ratio correlated significantly with cognitive performance. CONCLUSION Our study introduces the beta-to-theta entropy ratio using nonlinear MDE for EEG analysis, highlighting its potential as a sensitive biomarker for aging and cognitive impairment.
Collapse
Affiliation(s)
- Ahmad Zandbagleh
- School of Electrical Engineering (AZ), Iran University of Science and Technology, Tehran, Iran
| | - Andreas Miltiadous
- Department of Informatics and Telecommunications (AM), University of Ioannina, Arta, Greece
| | - Saeid Sanei
- Electrical and Electronic Engineering Department (SS), Imperial College London, London, UK
| | - Hamed Azami
- Centre for Addiction and Mental Health (HA), University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Mostile G, Terranova R, Carlentini G, Contrafatto F, Terravecchia C, Donzuso G, Sciacca G, Cicero CE, Luca A, Nicoletti A, Zappia M. Differentiating neurodegenerative diseases based on EEG complexity. Sci Rep 2024; 14:24365. [PMID: 39420009 PMCID: PMC11487174 DOI: 10.1038/s41598-024-74035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Neurodegenerative diseases are common causes of impaired mobility and cognition in the elderly. Among them, tauopathies and α-synucleinopathies were considered. The neurodegenerative processes and relative differential diagnosis were addressed through a qEEG non-linear analytic method. Study aims were to test accuracy of the power law exponent β applied to EEG in differentiating neurodegenerative diseases and to explore differences in neuronal connectivity among different neurodegenerative processes based on β. N = 230 patients with a diagnosis of tauopathy or α-synucleinopathy and at least one artifact-free EEG recording were selected. Periodogram was applied to EEG signal epochs from continuous recordings. Power law exponent β was determined by the slope of the signal power spectrum versus frequency in logarithmic scale. A data-driven clustering based on β values was performed to identify independent subgroups. Data-driven clustering based on β differentiated tauopathies (overall lower β values) from α-synucleinopathies (higher β values) with high sensitivity and specificity. Tauopathies also presented lower values in the correlation coefficients matrix among frontal sites of recording. In conclusion, significant differences in β values were found between tauopathies and α-synucleinopathies. Hence, β is proposed as a possible biomarker of differential diagnosis and neuronal connectivity.
Collapse
Affiliation(s)
- Giovanni Mostile
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy.
- Oasi Research Institute - IRCCS, Troina, Italy.
| | - Roberta Terranova
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Giulia Carlentini
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Federico Contrafatto
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Claudio Terravecchia
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Giulia Donzuso
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Giorgia Sciacca
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Calogero Edoardo Cicero
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Antonina Luca
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Alessandra Nicoletti
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Mario Zappia
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy.
| |
Collapse
|
17
|
Barba L, Abu-Rumeileh S, Barthel H, Massa F, Foschi M, Bellomo G, Gaetani L, Thal DR, Parnetti L, Otto M. Clinical and diagnostic implications of Alzheimer's disease copathology in Lewy body disease. Brain 2024; 147:3325-3343. [PMID: 38991041 DOI: 10.1093/brain/awae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/03/2024] [Accepted: 06/02/2024] [Indexed: 07/13/2024] Open
Abstract
Concomitant Alzheimer's disease (AD) pathology is a frequent event in the context of Lewy body disease (LBD), occurring in approximately half of all cases. Evidence shows that LBD patients with AD copathology show an accelerated disease course, a greater risk of cognitive decline and an overall poorer prognosis. However, LBD-AD cases may show heterogeneous motor and non-motor phenotypes with a higher risk of dementia and, consequently, be not rarely misdiagnosed. In this review, we summarize the current understanding of LBD-AD by discussing the synergistic effects of AD neuropathological changes and Lewy pathology and their clinical relevance. Furthermore, we provide an extensive overview of neuroimaging and fluid biomarkers under assessment for use in LBD-AD and their possible diagnostic and prognostic values. AD pathology can be predicted in vivo by means of CSF, MRI and PET markers, whereas the most promising technique to date for identifying Lewy pathology in different biological tissues is the α-synuclein seed amplification assay. Pathological imaging and CSF AD biomarkers are associated with a higher likelihood of cognitive decline in LBD but do not always mirror the neuropathological severity as in pure AD. Implementing the use of blood-based AD biomarkers might allow faster screening of LBD patients for AD copathology, thus improving the overall diagnostic sensitivity for LBD-AD. Finally, we discuss the literature on novel candidate biomarkers being exploited in LBD-AD to investigate other aspects of neurodegeneration, such as neuroaxonal injury, glial activation and synaptic dysfunction. The thorough characterization of AD copathology in LBD should be taken into account when considering differential diagnoses of dementia syndromes, to allow prognostic evaluation on an individual level, and to guide symptomatic and disease-modifying therapies.
Collapse
Affiliation(s)
- Lorenzo Barba
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig 04103, Germany
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Matteo Foschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila 67100, Italy
- Department of Neuroscience, Neurology Unit, S. Maria delle Croci Hospital of Ravenna, AUSL Romagna, Ravenna 48121, Italy
| | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Dietmar R Thal
- Department of Imaging and Pathology, Laboratory for Neuropathology, Leuven Brain Institute, KU Leuven, Leuven 3001, Belgium
- Department of Pathology, UZ Leuven, Leuven 3000, Belgium
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| |
Collapse
|
18
|
Yan S, Yang X, Duan Z. Controlling Alzheimer's disease by deep brain stimulation based on a data-driven cortical network model. Cogn Neurodyn 2024; 18:3157-3180. [PMID: 39555293 PMCID: PMC11564625 DOI: 10.1007/s11571-024-10148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 11/19/2024] Open
Abstract
This work aims to explore the control effect of DBS on Alzheimer's disease (AD) from a neurocomputational perspective. Firstly, a data-driven cortical network model is constructed using the Diffusion Tensor Imaging data. Then, a typical electrophysiological feature of EEG slowing in AD is reproduced by reducing the synaptic connectivity parameters. The corresponding changes in kinetic behavior mainly include an oscillation decrease in the amplitude and frequency of the pyramidal neuron population. Subsequently, DBS current with specific parameters is introduced into three potential targets of the hippocampus, the nucleus accumbens and the olfactory tubercle, respectively. The results indicate that applying DBS to simulated mild AD patients induces an increase in relative alpha power, a decrease in relative theta power, and a significant rightward shift of the dominant frequency. This is consistent with the EEG reversal in pharmacological treatments for AD. Further, the optimal stimulation strategy of DBS is investigated through spectral and statistical analyses. Specifically, the pathological symptoms of AD could be alleviated by adjusting the critical parameters of DBS, and the control effect of DBS on various targets is that the hippocampus is superior to the olfactory tubercle and nucleus accumbens. Finally, using correlation analysis between the power increments and the nodal degrees, it is concluded that the control effect of DBS is related to the importance of the nodes in the brain network. This study provides a theoretical guidance for determining DBS targets and parameters, which may have a substantial impact on the development of DBS treatment for AD.
Collapse
Affiliation(s)
- SiLu Yan
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| | - XiaoLi Yang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| | - ZhiXi Duan
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| |
Collapse
|
19
|
Trabado-Fernández A, García-Colomo A, Cuadrado-Soto E, Peral-Suárez Á, Salas-González MD, Lorenzo-Mora AM, Aparicio A, Delgado-Losada ML, Maestú-Unturbe F, López-Sobaler AM. Association of a DASH diet and magnetoencephalography in dementia-free adults with different risk levels of Alzheimer's disease. GeroScience 2024:10.1007/s11357-024-01361-3. [PMID: 39354239 DOI: 10.1007/s11357-024-01361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
This study explored how adherence to the DASH diet relates to electrophysiological measures in individuals at varying Alzheimer's disease (AD) risk due to family history (FH). There were 179 dementia-free subjects. DASH index was calculated, and participants were classified into different DASH adherence groups. Tertiles of relative alpha power in default mode network (DMN) regions were calculated. Multivariate logistic regression models were used to examine the association. Lower DASH adherence was associated with decreased odds of higher relative alpha power in the DMN, observed across the entire sample and specifically among those without a FH of AD. Logistic regression models indicated that participants with poorer DASH adherence had a reduced likelihood of elevated DMN alpha power, potentially influenced by vascular and amyloid-beta mechanisms. These findings underscore the dietary pattern's potential role in neural activity modulation, particularly in individuals not genetically predisposed to AD.
Collapse
Affiliation(s)
- Alfredo Trabado-Fernández
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pl. de Ramón y Cajal S/N, 28040, Madrid, Spain
| | - Alejandra García-Colomo
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Faculty of Psychology, Complutense University of Madrid, 28223, Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
| | - Esther Cuadrado-Soto
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pl. de Ramón y Cajal S/N, 28040, Madrid, Spain.
- VALORNUT Research Group, Department of Nutrition and Food Science, Complutense University of Madrid, 28040, Madrid, Spain.
| | - África Peral-Suárez
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pl. de Ramón y Cajal S/N, 28040, Madrid, Spain
- VALORNUT Research Group, Department of Nutrition and Food Science, Complutense University of Madrid, 28040, Madrid, Spain
| | - María Dolores Salas-González
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pl. de Ramón y Cajal S/N, 28040, Madrid, Spain
- VALORNUT Research Group, Department of Nutrition and Food Science, Complutense University of Madrid, 28040, Madrid, Spain
| | - Ana María Lorenzo-Mora
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pl. de Ramón y Cajal S/N, 28040, Madrid, Spain
- Department of Nursing and Nutrition, Faculty of Biomedical Sciences, Universidad Europea de Madrid, 28670, Villaviciosa de Odón, Madrid, Spain
| | - Aránzazu Aparicio
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pl. de Ramón y Cajal S/N, 28040, Madrid, Spain
- VALORNUT Research Group, Department of Nutrition and Food Science, Complutense University of Madrid, 28040, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - María Luisa Delgado-Losada
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Faculty of Psychology, Complutense University of Madrid, 28223, Madrid, Spain
- VALORNUT Research Group, Department of Nutrition and Food Science, Complutense University of Madrid, 28040, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Fernando Maestú-Unturbe
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Faculty of Psychology, Complutense University of Madrid, 28223, Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Ana M López-Sobaler
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pl. de Ramón y Cajal S/N, 28040, Madrid, Spain
- VALORNUT Research Group, Department of Nutrition and Food Science, Complutense University of Madrid, 28040, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| |
Collapse
|
20
|
Jiang Y, Neal J, Sompol P, Yener G, Arakaki X, Norris CM, Farina FR, Ibanez A, Lopez S, Al‐Ezzi A, Kavcic V, Güntekin B, Babiloni C, Hajós M. Parallel electrophysiological abnormalities due to COVID-19 infection and to Alzheimer's disease and related dementia. Alzheimers Dement 2024; 20:7296-7319. [PMID: 39206795 PMCID: PMC11485397 DOI: 10.1002/alz.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 09/04/2024]
Abstract
Many coronavirus disease 2019 (COVID-19) positive individuals exhibit abnormal electroencephalographic (EEG) activity reflecting "brain fog" and mild cognitive impairments even months after the acute phase of infection. Resting-state EEG abnormalities include EEG slowing (reduced alpha rhythm; increased slow waves) and epileptiform activity. An expert panel conducted a systematic review to present compelling evidence that cognitive deficits due to COVID-19 and to Alzheimer's disease and related dementia (ADRD) are driven by overlapping pathologies and neurophysiological abnormalities. EEG abnormalities seen in COVID-19 patients resemble those observed in early stages of neurodegenerative diseases, particularly ADRD. It is proposed that similar EEG abnormalities in Long COVID and ADRD are due to parallel neuroinflammation, astrocyte reactivity, hypoxia, and neurovascular injury. These neurophysiological abnormalities underpinning cognitive decline in COVID-19 can be detected by routine EEG exams. Future research will explore the value of EEG monitoring of COVID-19 patients for predicting long-term outcomes and monitoring efficacy of therapeutic interventions. HIGHLIGHTS: Abnormal intrinsic electrophysiological brain activity, such as slowing of EEG, reduced alpha wave, and epileptiform are characteristic findings in COVID-19 patients. EEG abnormalities have the potential as neural biomarkers to identify neurological complications at the early stage of the disease, to assist clinical assessment, and to assess cognitive decline risk in Long COVID patients. Similar slowing of intrinsic brain activity to that of COVID-19 patients is typically seen in patients with mild cognitive impairments, ADRD. Evidence presented supports the idea that cognitive deficits in Long COVID and ADRD are driven by overlapping neurophysiological abnormalities resulting, at least in part, from neuroinflammatory mechanisms and astrocyte reactivity. Identifying common biological mechanisms in Long COVID-19 and ADRD can highlight critical pathologies underlying brain disorders and cognitive decline. It elucidates research questions regarding cognitive EEG and mild cognitive impairment in Long COVID that have not yet been adequately investigated.
Collapse
Affiliation(s)
- Yang Jiang
- Aging Brain and Cognition LaboratoryDepartment of Behavioral ScienceCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Jennifer Neal
- Aging Brain and Cognition LaboratoryDepartment of Behavioral ScienceCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Pradoldej Sompol
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Görsev Yener
- Faculty of MedicineDept of Neurologyİzmir University of EconomicsİzmirTurkey
- IBG: International Biomedicine and Genome CenterİzmirTurkey
| | - Xianghong Arakaki
- Cognition and Brain Integration LaboratoryDepartment of NeurosciencesHuntington Medical Research InstitutesPasadenaCaliforniaUSA
| | - Christopher M. Norris
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Agustin Ibanez
- BrainLat: Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiagoChile
- Cognitive Neuroscience CenterUniversidad de San AndrésVictoriaBuenos AiresArgentina
- GBHI: Global Brain Health InstituteTrinity College DublinThe University of DublinDublin 2Ireland
| | - Susanna Lopez
- Department of Physiology and Pharmacology “V. Erspamer,”Sapienza University of RomeRomeItaly
| | - Abdulhakim Al‐Ezzi
- Cognition and Brain Integration LaboratoryDepartment of NeurosciencesHuntington Medical Research InstitutesPasadenaCaliforniaUSA
| | - Voyko Kavcic
- Institute of GerontologyWayne State UniversityDetroitMichiganUSA
| | - Bahar Güntekin
- Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Department of BiophysicsSchool of MedicineIstanbul Medipol UniversityIstanbulTurkey
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “V. Erspamer,”Sapienza University of RomeRomeItaly
- Hospital San Raffaele CassinoCassinoFrosinoneItaly
| | - Mihály Hajós
- Cognito TherapeuticsCambridgeMassachusettsUSA
- Department of Comparative MedicineYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
21
|
Perez V, Duque A, Hidalgo V, Salvador A. EEG frequency bands in subjective cognitive decline: A systematic review of resting state studies. Biol Psychol 2024; 191:108823. [PMID: 38815895 DOI: 10.1016/j.biopsycho.2024.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
As the older population continues to expand, there is a growing prevalence of individuals who experience subjective cognitive decline (SCD), characterized by self-reported failures in cognitive function and an increased risk of cognitive impairment. Recognizing that preventive interventions are typically more effective in preclinical stages, current research endeavors to focus on identifying early biological markers of SCD using resting-state electroencephalogram (rsEEG) methods. To do so, a systematic literature review covering the past 20 years was conducted following PRISMA guidelines, in order to consolidate findings on rsEEG frequency bands in individuals with SCD. Pubmed and Web of Science databases were searched for rsEEG studies of people with SCD. Quality assessments were completed using a modified Newcastle-Ottawa scale. A total of 564 articles published from December 2003 to December 2023 were reviewed, and significant aspects of these papers were analyzed to provide a general overview of the research on this technique. After removing unrelated articles, nine articles were selected for the present study. The review emphasizes patterns in frequency band activity, revealing that individuals classified as SCD exhibited increased theta power than healthy controls, but decreased than MCI. However, findings for the alpha, delta, and beta bands were inconsistent, demonstrating variability across studies and highlighting the need for further research. Although the rsEEG of frequency bands emerges as a promising early biomarker, there is a noteworthy need to establish uniform standards and consistent measurement approaches in order to ensure the reliability and comparability of the results obtained in the research.
Collapse
Affiliation(s)
- Vanesa Perez
- Laboratory of Social Cognitive Neuroscience, IDOCAL, Department of Psychobiology, University of Valencia, Valencia, Spain; Valencian International University, Valencia, Spain
| | | | - Vanesa Hidalgo
- Laboratory of Social Cognitive Neuroscience, IDOCAL, Department of Psychobiology, University of Valencia, Valencia, Spain; Department of Psychology and Sociology, Area of Psychobiology, University of Zaragoza, Teruel, Spain.
| | - Alicia Salvador
- Laboratory of Social Cognitive Neuroscience, IDOCAL, Department of Psychobiology, University of Valencia, Valencia, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain
| |
Collapse
|
22
|
Zeltser A, Ochneva A, Riabinina D, Zakurazhnaya V, Tsurina A, Golubeva E, Berdalin A, Andreyuk D, Leonteva E, Kostyuk G, Morozova A. EEG Techniques with Brain Activity Localization, Specifically LORETA, and Its Applicability in Monitoring Schizophrenia. J Clin Med 2024; 13:5108. [PMID: 39274319 PMCID: PMC11395834 DOI: 10.3390/jcm13175108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objectives: Electroencephalography (EEG) is considered a standard but powerful tool for the diagnosis of neurological and psychiatric diseases. With modern imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and magnetoencephalography (MEG), source localization can be improved, especially with low-resolution brain electromagnetic tomography (LORETA). The aim of this review is to explore the variety of modern techniques with emphasis on the efficacy of LORETA in detecting brain activity patterns in schizophrenia. The study's novelty lies in the comprehensive survey of EEG methods and detailed exploration of LORETA in schizophrenia research. This evaluation aligns with clinical objectives and has been performed for the first time. Methods: The study is split into two sections. Part I examines different EEG methodologies and adjuncts to detail brain activity in deep layers in articles published between 2018 and 2023 in PubMed. Part II focuses on the role of LORETA in investigating structural and functional changes in schizophrenia in studies published between 1999 and 2024 in PubMed. Results: Combining imaging techniques and EEG provides opportunities for mapping brain activity. Using LORETA, studies of schizophrenia have identified hemispheric asymmetry, especially increased activity in the left hemisphere. Cognitive deficits were associated with decreased activity in the dorsolateral prefrontal cortex and other areas. Comparison of the first episode of schizophrenia and a chronic one may help to classify structural change as a cause or as a consequence of the disorder. Antipsychotic drugs such as olanzapine or clozapine showed a change in P300 source density and increased activity in the delta and theta bands. Conclusions: Given the relatively low spatial resolution of LORETA, the method offers benefits such as accessibility, high temporal resolution, and the ability to map depth layers, emphasizing the potential of LORETA in monitoring the progression and treatment response in schizophrenia.
Collapse
Affiliation(s)
- Angelina Zeltser
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Daria Riabinina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Valeria Zakurazhnaya
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Anna Tsurina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Elizaveta Golubeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Institute of Biodesign and Research of Living Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Alexander Berdalin
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Denis Andreyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Marketing, Faculty of Economics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena Leonteva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Institute of Biodesign and Research of Living Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Department of Mental Health, Faculty of Psychology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Psychiatry, Federal State Budgetary Educational Institution of Higher Education "Russian Biotechnological University (ROSBIOTECH)", Volokolamskoye Highway 11, 125080 Moscow, Russia
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|
23
|
Meghdadi AH, Salat D, Hamilton J, Hong Y, Boeve BF, St Louis EK, Verma A, Berka C. EEG and ERP biosignatures of mild cognitive impairment for longitudinal monitoring of early cognitive decline in Alzheimer's disease. PLoS One 2024; 19:e0308137. [PMID: 39116138 PMCID: PMC11309464 DOI: 10.1371/journal.pone.0308137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Cognitive decline in Alzheimer's disease is associated with electroencephalographic (EEG) biosignatures even at early stages of mild cognitive impairment (MCI). The aim of this work is to provide a unified measure of cognitive decline by aggregating biosignatures from multiple EEG modalities and to evaluate repeatability of the composite measure at an individual level. These modalities included resting state EEG (eyes-closed) and two event-related potential (ERP) tasks on visual memory and attention. We compared individuals with MCI (n = 38) to age-matched healthy controls HC (n = 44). In resting state EEG, the MCI group exhibited higher power in Theta (3-7Hz) and lower power in Beta (13-20Hz) frequency bands. In both ERP tasks, the MCI group exhibited reduced ERP late positive potential (LPP), delayed ERP early component latency, slower reaction time, and decreased response accuracy. Cluster-based permutation analysis revealed significant clusters of difference between the MCI and HC groups in the frequency-channel and time-channel spaces. Cluster-based measures and performance measures (12 biosignatures in total) were selected as predictors of MCI. We trained a support vector machine (SVM) classifier achieving AUC = 0.89, accuracy = 77% in cross-validation using all data. Split-data validation resulted in (AUC = 0.87, accuracy = 76%) and (AUC = 0.75, accuracy = 70%) on testing data at baseline and follow-up visits, respectively. Classification scores at baseline and follow-up visits were correlated (r = 0.72, p<0.001, ICC = 0.84), supporting test-retest reliability of EEG biosignature. These results support the utility of EEG/ERP for prognostic testing, repeated assessments, and tracking potential treatment outcomes in the limited duration of clinical trials.
Collapse
Affiliation(s)
- Amir H. Meghdadi
- Advanced Brain Monitoring, Inc., Carlsbad, CA, United States of America
| | - David Salat
- Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | | | - Yue Hong
- Massachusetts General Hospital, Boston, MA, United States of America
| | - Bradley F. Boeve
- Departments of Neurology and Medicine, Division of Pulmonary and Critical Care Medicine, Center for Sleep Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States of America
| | - Erik K. St Louis
- Departments of Neurology and Medicine, Division of Pulmonary and Critical Care Medicine, Center for Sleep Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States of America
- Department of Clinical and Translational Research, Mayo Clinic Health System Southwest Wisconsin, La Crosse, WI, United States of America
| | - Ajay Verma
- Formation Venture Engineering, Boston, MA, United States of America
| | - Chris Berka
- Advanced Brain Monitoring, Inc., Carlsbad, CA, United States of America
| |
Collapse
|
24
|
Li W, Varatharajah Y, Dicks E, Barnard L, Brinkmann BH, Crepeau D, Worrell G, Fan W, Kremers W, Boeve B, Botha H, Gogineni V, Jones DT. Data-driven retrieval of population-level EEG features and their role in neurodegenerative diseases. Brain Commun 2024; 6:fcae227. [PMID: 39086629 PMCID: PMC11289732 DOI: 10.1093/braincomms/fcae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 05/11/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Electrophysiologic disturbances due to neurodegenerative disorders such as Alzheimer's disease and Lewy Body disease are detectable by scalp EEG and can serve as a functional measure of disease severity. Traditional quantitative methods of EEG analysis often require an a-priori selection of clinically meaningful EEG features and are susceptible to bias, limiting the clinical utility of routine EEGs in the diagnosis and management of neurodegenerative disorders. We present a data-driven tensor decomposition approach to extract the top 6 spectral and spatial features representing commonly known sources of EEG activity during eyes-closed wakefulness. As part of their neurologic evaluation at Mayo Clinic, 11 001 patients underwent 12 176 routine, standard 10-20 scalp EEG studies. From these raw EEGs, we developed an algorithm based on posterior alpha activity and eye movement to automatically select awake-eyes-closed epochs and estimated average spectral power density (SPD) between 1 and 45 Hz for each channel. We then created a three-dimensional (3D) tensor (record × channel × frequency) and applied a canonical polyadic decomposition to extract the top six factors. We further identified an independent cohort of patients meeting consensus criteria for mild cognitive impairment (30) or dementia (39) due to Alzheimer's disease and dementia with Lewy Bodies (31) and similarly aged cognitively normal controls (36). We evaluated the ability of the six factors in differentiating these subgroups using a Naïve Bayes classification approach and assessed for linear associations between factor loadings and Kokmen short test of mental status scores, fluorodeoxyglucose (FDG) PET uptake ratios and CSF Alzheimer's Disease biomarker measures. Factors represented biologically meaningful brain activities including posterior alpha rhythm, anterior delta/theta rhythms and centroparietal beta, which correlated with patient age and EEG dysrhythmia grade. These factors were also able to distinguish patients from controls with a moderate to high degree of accuracy (Area Under the Curve (AUC) 0.59-0.91) and Alzheimer's disease dementia from dementia with Lewy Bodies (AUC 0.61). Furthermore, relevant EEG features correlated with cognitive test performance, PET metabolism and CSF AB42 measures in the Alzheimer's subgroup. This study demonstrates that data-driven approaches can extract biologically meaningful features from population-level clinical EEGs without artefact rejection or a-priori selection of channels or frequency bands. With continued development, such data-driven methods may improve the clinical utility of EEG in memory care by assisting in early identification of mild cognitive impairment and differentiating between different neurodegenerative causes of cognitive impairment.
Collapse
Affiliation(s)
- Wentao Li
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Kaiser Permanente Northern California, Sacramento, CA 95758, USA
| | - Yogatheesan Varatharajah
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
- Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ellen Dicks
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Leland Barnard
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Daniel Crepeau
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Winnie Fan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Walter Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Bradley Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
25
|
Pascarella A, Manzo L, Ferlazzo E. Modern neurophysiological techniques indexing normal or abnormal brain aging. Seizure 2024:S1059-1311(24)00194-8. [PMID: 38972778 DOI: 10.1016/j.seizure.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
Brain aging is associated with a decline in cognitive performance, motor function and sensory perception, even in the absence of neurodegeneration. The underlying pathophysiological mechanisms remain incompletely understood, though alterations in neurogenesis, neuronal senescence and synaptic plasticity are implicated. Recent years have seen advancements in neurophysiological techniques such as electroencephalography (EEG), magnetoencephalography (MEG), event-related potentials (ERP) and transcranial magnetic stimulation (TMS), offering insights into physiological and pathological brain aging. These methods provide real-time information on brain activity, connectivity and network dynamics. Integration of Artificial Intelligence (AI) techniques promise as a tool enhancing the diagnosis and prognosis of age-related cognitive decline. Our review highlights recent advances in these electrophysiological techniques (focusing on EEG, ERP, TMS and TMS-EEG methodologies) and their application in physiological and pathological brain aging. Physiological aging is characterized by changes in EEG spectral power and connectivity, ERP and TMS parameters, indicating alterations in neural activity and network function. Pathological aging, such as in Alzheimer's disease, is associated with further disruptions in EEG rhythms, ERP components and TMS measures, reflecting underlying neurodegenerative processes. Machine learning approaches show promise in classifying cognitive impairment and predicting disease progression. Standardization of neurophysiological methods and integration with other modalities are crucial for a comprehensive understanding of brain aging and neurodegenerative disorders. Advanced network analysis techniques and AI methods hold potential for enhancing diagnostic accuracy and deepening insights into age-related brain changes.
Collapse
Affiliation(s)
- Angelo Pascarella
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Italy; Regional Epilepsy Centre, Great Metropolitan "Bianchi-Melacrino-Morelli Hospital", Reggio Calabria, Italy.
| | - Lucia Manzo
- Regional Epilepsy Centre, Great Metropolitan "Bianchi-Melacrino-Morelli Hospital", Reggio Calabria, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Italy; Regional Epilepsy Centre, Great Metropolitan "Bianchi-Melacrino-Morelli Hospital", Reggio Calabria, Italy
| |
Collapse
|
26
|
Yener G, Kıyı İ, Düzenli-Öztürk S, Yerlikaya D. Age-Related Aspects of Sex Differences in Event-Related Brain Oscillatory Responses: A Turkish Study. Brain Sci 2024; 14:567. [PMID: 38928567 PMCID: PMC11202018 DOI: 10.3390/brainsci14060567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Earlier research has suggested gender differences in event-related potentials/oscillations (ERPs/EROs). Yet, the alteration in event-related oscillations (EROs) in the delta and theta frequency bands have not been explored between genders across the three age groups of adulthood, i.e., 18-50, 51-65, and >65 years. Data from 155 healthy elderly participants who underwent a neurological examination, comprehensive neuropsychological assessment (including attention, memory, executive function, language, and visuospatial skills), and magnetic resonance imaging (MRI) from past studies were used. The delta and theta ERO powers across the age groups and between genders were compared and correlational analyses among the ERO power, age, and neuropsychological tests were performed. The results indicated that females displayed higher theta ERO responses than males in the frontal, central, and parietal regions but not in the occipital location between 18 and 50 years of adulthood. The declining theta power of EROs in women reached that of men after the age of 50 while the theta ERO power was more stable across the age groups in men. Our results imply that the cohorts must be recruited at specified age ranges across genders, and clinical trials using neurophysiological biomarkers as an intervention endpoint should take gender into account in the future.
Collapse
Affiliation(s)
- Görsev Yener
- Faculty of Medicine, Izmir University of Economics, 35330 Balçova, Turkey
- Izmir Biomedicine and Genome Center, 35340 İzmir, Turkey
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, 35210 İzmir, Turkey; (İ.K.); (D.Y.)
| | - İlayda Kıyı
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, 35210 İzmir, Turkey; (İ.K.); (D.Y.)
| | - Seren Düzenli-Öztürk
- Department of Speech and Language Therapy, Faculty of Health Sciences, Izmir Bakırçay University, 35665 İzmir, Turkey;
| | - Deniz Yerlikaya
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, 35210 İzmir, Turkey; (İ.K.); (D.Y.)
| |
Collapse
|
27
|
Moguilner SG, Berezuk C, Bender AC, Pellerin KR, Gomperts SN, Cash SS, Sarkis RA, Lam AD. Sleep functional connectivity, hyperexcitability, and cognition in Alzheimer's disease. Alzheimers Dement 2024; 20:4234-4249. [PMID: 38764252 PMCID: PMC11180941 DOI: 10.1002/alz.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Sleep disturbances are common in Alzheimer's disease (AD) and may reflect pathologic changes in brain networks. To date, no studies have examined changes in sleep functional connectivity (FC) in AD or their relationship with network hyperexcitability and cognition. METHODS We assessed electroencephalogram (EEG) sleep FC in 33 healthy controls, 36 individuals with AD without epilepsy, and 14 individuals with AD and epilepsy. RESULTS AD participants showed increased gamma connectivity in stage 2 sleep (N2), which was associated with longitudinal cognitive decline. Network hyperexcitability in AD was associated with a distinct sleep connectivity signature, characterized by decreased N2 delta connectivity and reversal of several connectivity changes associated with AD. Machine learning algorithms using sleep connectivity features accurately distinguished diagnostic groups and identified "fast cognitive decliners" among study participants who had AD. DISCUSSION Our findings reveal changes in sleep functional networks associated with cognitive decline in AD and may have implications for disease monitoring and therapeutic development. HIGHLIGHTS Brain functional connectivity (FC) in Alzheimer's disease is altered during sleep. Sleep FC measures correlate with cognitive decline in AD. Network hyperexcitability in AD has a distinct sleep connectivity signature.
Collapse
Affiliation(s)
- Sebastian G. Moguilner
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Courtney Berezuk
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Alex C. Bender
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Kyle R. Pellerin
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Stephen N. Gomperts
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Sydney S. Cash
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Rani A. Sarkis
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
| | - Alice D. Lam
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
28
|
Sibilano E, Buongiorno D, Lassi M, Grippo A, Bessi V, Sorbi S, Mazzoni A, Bevilacqua V, Brunetti A. Understanding the Role of Self-Attention in a Transformer Model for the Discrimination of SCD From MCI Using Resting-State EEG. IEEE J Biomed Health Inform 2024; 28:3422-3433. [PMID: 38635390 DOI: 10.1109/jbhi.2024.3390606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The identification of EEG biomarkers to discriminate Subjective Cognitive Decline (SCD) from Mild Cognitive Impairment (MCI) conditions is a complex task which requires great clinical effort and expertise. We exploit the self-attention component of the Transformer architecture to obtain physiological explanations of the model's decisions in the discrimination of 56 SCD and 45 MCI patients using resting-state EEG. Specifically, an interpretability workflow leveraging attention scores and time-frequency analysis of EEG epochs through Continuous Wavelet Transform is proposed. In the classification framework, models are trained and validated with 5-fold cross-validation and evaluated on a test set obtained by selecting 20% of the total subjects. Ablation studies and hyperparameter tuning tests are conducted to identify the optimal model configuration. Results show that the best performing model, which achieves acceptable results both on epochs' and patients' classification, is capable of finding specific EEG patterns that highlight changes in the brain activity between the two conditions. We demonstrate the potential of attention weights as tools to guide experts in understanding which disease-relevant EEG features could be discriminative of SCD and MCI.
Collapse
|
29
|
Princen K, Van Dooren T, van Gorsel M, Louros N, Yang X, Dumbacher M, Bastiaens I, Coupet K, Dupont S, Cuveliers E, Lauwers A, Laghmouchi M, Vanwelden T, Carmans S, Van Damme N, Duhamel H, Vansteenkiste S, Prerad J, Pipeleers K, Rodiers O, De Ridder L, Claes S, Busschots Y, Pringels L, Verhelst V, Debroux E, Brouwer M, Lievens S, Tavernier J, Farinelli M, Hughes-Asceri S, Voets M, Winderickx J, Wera S, de Wit J, Schymkowitz J, Rousseau F, Zetterberg H, Cummings JL, Annaert W, Cornelissen T, De Winter H, De Witte K, Fivaz M, Griffioen G. Pharmacological modulation of septins restores calcium homeostasis and is neuroprotective in models of Alzheimer's disease. Science 2024; 384:eadd6260. [PMID: 38815015 PMCID: PMC11827694 DOI: 10.1126/science.add6260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/04/2024] [Indexed: 06/01/2024]
Abstract
Abnormal calcium signaling is a central pathological component of Alzheimer's disease (AD). Here, we describe the identification of a class of compounds called ReS19-T, which are able to restore calcium homeostasis in cell-based models of tau pathology. Aberrant tau accumulation leads to uncontrolled activation of store-operated calcium channels (SOCCs) by remodeling septin filaments at the cell cortex. Binding of ReS19-T to septins restores filament assembly in the disease state and restrains calcium entry through SOCCs. In amyloid-β and tau-driven mouse models of disease, ReS19-T agents restored synaptic plasticity, normalized brain network activity, and attenuated the development of both amyloid-β and tau pathology. Our findings identify the septin cytoskeleton as a potential therapeutic target for the development of disease-modifying AD treatments.
Collapse
Affiliation(s)
| | | | | | - Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Xiaojuan Yang
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research and Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | | | | | | | - Shana Dupont
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | - Eva Cuveliers
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | | | | | - Sofie Carmans
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | - Hein Duhamel
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | - Jovan Prerad
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | | | | | - Sofie Claes
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | | | | | | | - Marinka Brouwer
- Laboratory of Synapse Biology, VIB Center for Brain & Disease Research and KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Sam Lievens
- Cytokine Receptor Lab, VIB Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- Cytokine Receptor Lab, VIB Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | | | | | - Marieke Voets
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | - Joris Winderickx
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
- Functional Biology, Department of Biology, KU Leuven, 3001 Leuven-Heverlee, Belgium
| | - Stefaan Wera
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
- ViroVet NV, 3001 Leuven-Heverlee, Belgium
| | - Joris de Wit
- Laboratory of Synapse Biology, VIB Center for Brain & Disease Research and KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Jeffrey L. Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research and Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | | | - Hans De Winter
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Koen De Witte
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | - Marc Fivaz
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | |
Collapse
|
30
|
Liu H, Wang J, Xin X, Wang P, Jiang W, Meng T. The relationship and pathways between resting-state EEG, physical function, and cognitive function in older adults. BMC Geriatr 2024; 24:463. [PMID: 38802730 PMCID: PMC11129501 DOI: 10.1186/s12877-024-05041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE Based on resting-state electroencephalography (EEG) evidence, this study aimed to explore the relationship and pathways between EEG-mediated physical function and cognitive function in older adults with cognitive impairment. METHODS A total of 140 older adults with cognitive impairment were recruited, and data on their physical function, cognitive function, and EEG were collected. Pearson correlation analysis, one-way analysis of variance, linear regression analysis, and structural equation modeling analysis were conducted to explore the relationships and pathways among variables. RESULTS FP1 theta (effect size = 0.136, 95% CI: 0.025-0.251) and T4 alpha2 (effect size = 0.140, 95% CI: 0.057-0.249) were found to significantly mediate the relationship. The direct effect (effect size = 0.866, 95% CI: 0.574-1.158) and total effect (effect size = 1.142, 95% CI: 0.848-1.435) of SPPB on MoCA were both significant. CONCLUSION Higher physical function scores in older adults with cognitive impairment were associated with higher cognitive function scores. Left frontal theta and right temporal alpha2, as key observed indicators, may mediate the relationship between physical function and cognitive function. It is suggested to implement personalized exercise interventions based on the specific physical function of older adults, which may delay the occurrence and progression of cognitive impairment in older adults with cognitive impairment.
Collapse
Affiliation(s)
- Hairong Liu
- Physical Education Department of Shanghai International Studies University, Shanghai, China
| | - Jing Wang
- School of Sports and Health of Shanghai Lixin University of Accounting and Finance Shanghai, Shanghai, 201620, China
| | - Xin Xin
- Shanghai University of Sport, Shanghai, China
| | - Peng Wang
- Shanghai University of Sport, Shanghai, China
| | | | - Tao Meng
- School of Sports and Health of Shanghai Lixin University of Accounting and Finance Shanghai, Shanghai, 201620, China.
| |
Collapse
|
31
|
Pu Y, Tian P, Huang Z. Characteristics of the top 100 cited electroencephalography articles on aging: a bibliometric analysis. Am J Transl Res 2024; 16:1749-1756. [PMID: 38883376 PMCID: PMC11170590 DOI: 10.62347/ccti1306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024]
Abstract
Electroencephalography (EEG) is a widely used tool in neuroscience. To explore the features of the top 100 cited articles related to EEG and aging over the past decade, we conducted a bibliometric analysis using Web of Science Core Collection (WoSCC) data as of January 21, 2024. The selected top 100 cited papers were analyzed using VOSviewer and Excel. We examined the distribution of publication years, authors, institutions, countries/regions, and journals. Hotspots were identified through keyword analysis. The analyzed articles were published between 2014 and 2021, with the majority being published before 2020 (n=91). Citation counts in WoSCC ranged from 24 to 250, with a median of 40 and a mean of 53. A total of 818 authors from 283 institutions in 35 countries/territories contributed to these top papers. The United States of America (USA) (n=37), Germany (n=14), and Canada (n=11) ranked in the top three in terms of total publications or citations. The predominant journals were in the fields of Neuroscience (n=58), Geriatrics & Gerontology (n=22), Clinical Neurology (n=13), and Anesthesiology (n=9), which published most of the high-quality articles. Key themes included EEG, aging, Alzheimer's disease, mild cognitive impairment, functional connectivity, and alpha oscillations. Emerging topics included sleep, machine learning, delirium, postoperative cognitive function, virtual reality, monitoring, resting state, coherence, and transcranial direct current stimulation. In conclusion, this study provides a comprehensive overview of the trends in scientific literature on EEG in aging over the past decade. Authors and institutions from North America, Europe, and East Asia led in contributions. Journals focusing on neuroscience, geriatrics, and anesthesiology published the majority of articles. Degenerative neurological diseases and cognitive impairment were prominent topics, suggesting future studies should explore EEG's diagnostic utility for these disorders.
Collapse
Affiliation(s)
- Yuju Pu
- Department of Anesthesiology, Shenzhen Traditional Chinese Medicine Hospital Shenzhen 518033, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine Shenzhen 518033, Guangdong, China
| | - Pei Tian
- Department of Anesthesiology, Shenzhen Traditional Chinese Medicine Hospital Shenzhen 518033, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine Shenzhen 518033, Guangdong, China
| | - Zengping Huang
- Department of Anesthesiology, Shenzhen Traditional Chinese Medicine Hospital Shenzhen 518033, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine Shenzhen 518033, Guangdong, China
| |
Collapse
|
32
|
Sun J, Xie Z, Sun Y, Shen A, Li R, Yuan X, Lu B, Li Y. Precise prediction of cerebrospinal fluid amyloid beta protein for early Alzheimer's disease detection using multimodal data. MedComm (Beijing) 2024; 5:e532. [PMID: 38645663 PMCID: PMC11027992 DOI: 10.1002/mco2.532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 04/23/2024] Open
Abstract
Alzheimer's disease (AD) constitutes a neurodegenerative disorder marked by a progressive decline in cognitive function and memory capacity. The accurate diagnosis of this condition predominantly relies on cerebrospinal fluid (CSF) markers, notwithstanding the associated burdens of pain and substantial financial costs endured by patients. This study encompasses subjects exhibiting varying degrees of cognitive impairment, encompassing individuals with subjective cognitive decline, mild cognitive impairment, and dementia, constituting a total sample size of 82 participants. The primary objective of this investigation is to explore the relationships among brain atrophy measurements derived from magnetic resonance imaging, atypical electroencephalography (EEG) patterns, behavioral assessment scales, and amyloid β-protein (Aβ) indicators. The findings of this research reveal that individuals displaying reduced Aβ1-42/Aβ-40 levels exhibit significant atrophy in the frontotemporal lobe, alongside irregularities in various parameters related to EEG frequency characteristics, signal complexity, inter-regional information exchange, and microstates. The study additionally endeavors to estimate Aβ1-42/Aβ-40 content through the application of a random forest algorithm, amalgamating structural data, electrophysiological features, and clinical scales, achieving a remarkable predictive precision of 91.6%. In summary, this study proposes a cost-effective methodology for acquiring CSF markers, thereby offering a valuable tool for the early detection of AD.
Collapse
Affiliation(s)
- Jingnan Sun
- Department of Biomedical EngineeringTsinghua UniversityBeijingChina
| | - Zengmai Xie
- Department of Neurology, Shanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiChina
- Shanghai Key Laboratory of Vascular Lesions Regulation and RemodelingShanghaiChina
| | - Yike Sun
- Department of Biomedical EngineeringTsinghua UniversityBeijingChina
| | - Anruo Shen
- Department of Biomedical EngineeringTsinghua UniversityBeijingChina
| | - Renren Li
- Department of Neurology, Shanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiChina
- Shanghai Key Laboratory of Vascular Lesions Regulation and RemodelingShanghaiChina
| | - Xiao Yuan
- Department of Neurology, Shanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiChina
- Shanghai Key Laboratory of Vascular Lesions Regulation and RemodelingShanghaiChina
| | - Bai Lu
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
- Beijing Academy of Artificial IntelligenceBeijingChina
| | - Yunxia Li
- Department of Neurology, Shanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiChina
- Shanghai Key Laboratory of Vascular Lesions Regulation and RemodelingShanghaiChina
- Department of NeurologyTongji HospitalTongji UniversityShanghaiChina
| |
Collapse
|
33
|
Babiloni C, Jakhar D, Tucci F, Del Percio C, Lopez S, Soricelli A, Salvatore M, Ferri R, Catania V, Massa F, Arnaldi D, Famà F, Güntekin B, Yener G, Stocchi F, Vacca L, Marizzoni M, Giubilei F, Yıldırım E, Hanoğlu L, Hünerli D, Frisoni GB, Noce G. Resting state electroencephalographic alpha rhythms are sensitive to Alzheimer's disease mild cognitive impairment progression at a 6-month follow-up. Neurobiol Aging 2024; 137:19-37. [PMID: 38402780 DOI: 10.1016/j.neurobiolaging.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
Are posterior resting-state electroencephalographic (rsEEG) alpha rhythms sensitive to the Alzheimer's disease mild cognitive impairment (ADMCI) progression at a 6-month follow-up? Clinical, cerebrospinal, neuroimaging, and rsEEG datasets in 52 ADMCI and 60 Healthy old seniors (equivalent groups for demographic features) were available from an international archive (www.pdwaves.eu). The ADMCI patients were arbitrarily divided into two groups: REACTIVE and UNREACTIVE, based on the reduction (reactivity) in the posterior rsEEG alpha eLORETA source activities from the eyes-closed to eyes-open condition at ≥ -10% and -10%, respectively. 75% of the ADMCI patients were REACTIVE. Compared to the UNREACTIVE group, the REACTIVE group showed (1) less abnormal posterior rsEEG source activity during the eyes-closed condition and (2) a decrease in that activity at the 6-month follow-up. These effects could not be explained by neuroimaging and neuropsychological biomarkers of AD. Such a biomarker might reflect abnormalities in cortical arousal in quiet wakefulness to be used for clinical studies in ADMCI patients using 6-month follow-ups.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino (FR), Italy.
| | - Dharmendra Jakhar
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Medical, Movement and Wellbeing Sciences, University of Naples Parthenope, Naples, Italy
| | | | | | | | - Federico Massa
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy; Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir University of Economics, Faculty of Medicine, Izmir, Turkey
| | | | | | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Ebru Yıldırım
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Duygu Hünerli
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
34
|
Bagg MK, Hicks AJ, Hellewell SC, Ponsford JL, Lannin NA, O'Brien TJ, Cameron PA, Cooper DJ, Rushworth N, Gabbe BJ, Fitzgerald M. The Australian Traumatic Brain Injury Initiative: Statement of Working Principles and Rapid Review of Methods to Define Data Dictionaries for Neurological Conditions. Neurotrauma Rep 2024; 5:424-447. [PMID: 38660461 PMCID: PMC11040195 DOI: 10.1089/neur.2023.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
The Australian Traumatic Brain Injury Initiative (AUS-TBI) aims to develop a health informatics approach to collect data predictive of outcomes for persons with moderate-severe TBI across Australia. Central to this approach is a data dictionary; however, no systematic reviews of methods to define and develop data dictionaries exist to-date. This rapid systematic review aimed to identify and characterize methods for designing data dictionaries to collect outcomes or variables in persons with neurological conditions. Database searches were conducted from inception through October 2021. Records were screened in two stages against set criteria to identify methods to define data dictionaries for neurological conditions (International Classification of Diseases, 11th Revision: 08, 22, and 23). Standardized data were extracted. Processes were checked at each stage by independent review of a random 25% of records. Consensus was reached through discussion where necessary. Thirty-nine initiatives were identified across 29 neurological conditions. No single established or recommended method for defining a data dictionary was identified. Nine initiatives conducted systematic reviews to collate information before implementing a consensus process. Thirty-seven initiatives consulted with end-users. Methods of consultation were "roundtable" discussion (n = 30); with facilitation (n = 16); that was iterative (n = 27); and frequently conducted in-person (n = 27). Researcher stakeholders were involved in all initiatives and clinicians in 25. Importantly, only six initiatives involved persons with lived experience of TBI and four involved carers. Methods for defining data dictionaries were variable and reporting is sparse. Our findings are instructive for AUS-TBI and can be used to further development of methods for defining data dictionaries.
Collapse
Affiliation(s)
- Matthew K. Bagg
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Health Sciences, University of Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Amelia J. Hicks
- School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Monash-Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Victoria, Australia
| | - Sarah C. Hellewell
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Jennie L. Ponsford
- School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Monash-Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Victoria, Australia
| | - Natasha A. Lannin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Alfred Health, Melbourne, Victoria, Australia
| | - Terence J. O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Peter A. Cameron
- National Trauma Research Institute, Melbourne, Victoria, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Emergency and Trauma Centre, The Alfred Hospital, Melbourne, Victoria, Australia
| | - D. Jamie Cooper
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Nick Rushworth
- Brain Injury Australia, Sydney, New South Wales, Australia
| | - Belinda J. Gabbe
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Health Data Research UK, Swansea University Medical School, Swansea University, Singleton Park, United Kingdom
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
35
|
Prabhu P, Morise H, Kudo K, Beagle A, Mizuiri D, Syed F, Kotegar KA, Findlay A, Miller BL, Kramer JH, Rankin KP, Garcia PA, Kirsch HE, Vossel K, Nagarajan SS, Ranasinghe KG. Abnormal gamma phase-amplitude coupling in the parahippocampal cortex is associated with network hyperexcitability in Alzheimer's disease. Brain Commun 2024; 6:fcae121. [PMID: 38665964 PMCID: PMC11043655 DOI: 10.1093/braincomms/fcae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/08/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
While animal models of Alzheimer's disease (AD) have shown altered gamma oscillations (∼40 Hz) in local neural circuits, the low signal-to-noise ratio of gamma in the resting human brain precludes its quantification via conventional spectral estimates. Phase-amplitude coupling (PAC) indicating the dynamic integration between the gamma amplitude and the phase of low-frequency (4-12 Hz) oscillations is a useful alternative to capture local gamma activity. In addition, PAC is also an index of neuronal excitability as the phase of low-frequency oscillations that modulate gamma amplitude, effectively regulates the excitability of local neuronal firing. In this study, we sought to examine the local neuronal activity and excitability using gamma PAC, within brain regions vulnerable to early AD pathophysiology-entorhinal cortex and parahippocampus, in a clinical population of patients with AD and age-matched controls. Our clinical cohorts consisted of a well-characterized cohort of AD patients (n = 50; age, 60 ± 8 years) with positive AD biomarkers, and age-matched, cognitively unimpaired controls (n = 35; age, 63 ± 5.8 years). We identified the presence or the absence of epileptiform activity in AD patients (AD patients with epileptiform activity, AD-EPI+, n = 20; AD patients without epileptiform activity, AD-EPI-, n = 30) using long-term electroencephalography (LTM-EEG) and 1-hour long magnetoencephalography (MEG) with simultaneous EEG. Using the source reconstructed MEG data, we computed gamma PAC as the coupling between amplitude of the gamma frequency (30-40 Hz) with phase of the theta (4-8 Hz) and alpha (8-12 Hz) frequency oscillations, within entorhinal and parahippocampal cortices. We found that patients with AD have reduced gamma PAC in the left parahippocampal cortex, compared to age-matched controls. Furthermore, AD-EPI+ patients showed greater reductions in gamma PAC than AD-EPI- in bilateral parahippocampal cortices. In contrast, entorhinal cortices did not show gamma PAC abnormalities in patients with AD. Our findings demonstrate the spatial patterns of altered gamma oscillations indicating possible region-specific manifestations of network hyperexcitability within medial temporal lobe regions vulnerable to AD pathophysiology. Greater deficits in AD-EPI+ suggests that reduced gamma PAC is a sensitive index of network hyperexcitability in AD patients. Collectively, the current results emphasize the importance of investigating the role of neural circuit hyperexcitability in early AD pathophysiology and explore its potential as a modifiable contributor to AD pathobiology.
Collapse
Affiliation(s)
- Pooja Prabhu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Data science and Computer Applications, Manipal Institute of Technology, Manipal 576104, India
| | - Hirofumi Morise
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Medical Imaging Business Center, Ricoh Company Ltd., Kanazawa 920-0177, Japan
| | - Kiwamu Kudo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Medical Imaging Business Center, Ricoh Company Ltd., Kanazawa 920-0177, Japan
| | - Alexander Beagle
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Faatimah Syed
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Karunakar A Kotegar
- Department of Data science and Computer Applications, Manipal Institute of Technology, Manipal 576104, India
| | - Anne Findlay
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Paul A Garcia
- Epilepsy Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Heidi E Kirsch
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Epilepsy Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Keith Vossel
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
- Mary S. Easton Center for Alzheimer’s Research and Care, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kamalini G Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
36
|
Kolev V, Falkenstein M, Yordanova J. A distributed theta network of error generation and processing in aging. Cogn Neurodyn 2024; 18:447-459. [PMID: 38699606 PMCID: PMC11061062 DOI: 10.1007/s11571-023-10018-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/28/2023] [Indexed: 05/05/2024] Open
Abstract
Based on previous concepts that a distributed theta network with a central "hub" in the medial frontal cortex is critically involved in movement regulation, monitoring, and control, the present study explored the involvement of this network in error processing with advancing age in humans. For that aim, the oscillatory neurodynamics of motor theta oscillations was analyzed at multiple cortical regions during correct and error responses in a sample of older adults. Response-related potentials (RRPs) of correct and incorrect reactions were recorded in a four-choice reaction task. RRPs were decomposed in the time-frequency domain to extract oscillatory theta activity. Motor theta oscillations at extended motor regions were analyzed with respect to power, temporal synchronization, and functional connectivity. Major results demonstrated that errors had pronounced effects on motor theta oscillations at cortical regions beyond the medial frontal cortex by being associated with (1) theta power increase in the hemisphere contra-lateral to the movement, (2) suppressed spatial and temporal synchronization at pre-motor areas contra-lateral to the responding hand, (2) inhibited connections between the medial frontal cortex and sensorimotor areas, and (3) suppressed connectivity and temporal phase-synchronization of motor theta networks in the posterior left hemisphere, irrespective of the hand, left, or right, with which the error was made. The distributed effects of errors on motor theta oscillations demonstrate that theta networks support performance monitoring. The reorganization of these networks with aging implies that in older individuals, performance monitoring is associated with a disengagement of the medial frontal region and difficulties in controlling the focus of motor attention and response selection. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-10018-4.
Collapse
Affiliation(s)
- Vasil Kolev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, Sofia, 1113 Bulgaria
| | | | - Juliana Yordanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, Sofia, 1113 Bulgaria
| |
Collapse
|
37
|
Dukic S, Fasano A, Coffey A, Buxó T, McMackin R, Chipika R, Heverin M, Bede P, Muthuraman M, Lowery M, Carson RG, Hardiman O, Nasseroleslami B. Electroencephalographic β-band oscillations in the sensorimotor network reflect motor symptom severity in amyotrophic lateral sclerosis. Eur J Neurol 2024; 31:e16201. [PMID: 38235854 PMCID: PMC11235881 DOI: 10.1111/ene.16201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND AND PURPOSE Resting-state electroencephalography (EEG) holds promise for assessing brain networks in amyotrophic lateral sclerosis (ALS). We investigated whether neural β-band oscillations in the sensorimotor network could serve as an objective quantitative measure of progressive motor impairment and functional disability in ALS patients. METHODS Resting-state EEG was recorded in 18 people with ALS and 38 age- and gender-matched healthy controls. We estimated source-localized β-band spectral power in the sensorimotor cortex. Clinical evaluation included lower (LMN) and upper motor neuron scores, Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised score, fine motor function (FMF) subscore, and progression rate. Correlations between clinical scores and β-band power were analysed and corrected using a false discovery rate of q = 0.05. RESULTS β-Band power was significantly lower in people with ALS than controls (p = 0.004), and correlated with LMN score (R = -0.65, p = 0.013), FMF subscore (R = -0.53, p = 0.036), and FMF progression rate (R = 0.52, p = 0.036). CONCLUSIONS β-Band spectral power in the sensorimotor cortex reflects clinically evaluated motor impairment in ALS. This technology merits further investigation as a biomarker of progressive functional disability.
Collapse
Affiliation(s)
- Stefan Dukic
- Academic Unit of Neurology, School of Medicine, Trinity College DublinUniversity of DublinDublinIreland
- Department of Neurology, University Medical Centre Utrecht Brain CentreUtrecht UniversityUtrechtthe Netherlands
| | - Antonio Fasano
- Academic Unit of Neurology, School of Medicine, Trinity College DublinUniversity of DublinDublinIreland
| | - Amina Coffey
- Academic Unit of Neurology, School of Medicine, Trinity College DublinUniversity of DublinDublinIreland
| | - Teresa Buxó
- Academic Unit of Neurology, School of Medicine, Trinity College DublinUniversity of DublinDublinIreland
| | - Roisin McMackin
- Academic Unit of Neurology, School of Medicine, Trinity College DublinUniversity of DublinDublinIreland
- Discipline of Physiology, School of Medicine, Trinity College DublinUniversity of DublinDublinIreland
| | - Rangariroyashe Chipika
- Academic Unit of Neurology, School of Medicine, Trinity College DublinUniversity of DublinDublinIreland
| | - Mark Heverin
- Academic Unit of Neurology, School of Medicine, Trinity College DublinUniversity of DublinDublinIreland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College DublinUniversity of DublinDublinIreland
| | - Muthuraman Muthuraman
- Neural Engineering With Signal Analytics and Artificial Intelligence, Department of NeurologyUniversity of WürzburgWürzburgGermany
| | - Madeleine Lowery
- School of Electrical and Electronic EngineeringUniversity College DublinDublinIreland
| | - Richard G. Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College DublinUniversity of DublinDublinIreland
- School of PsychologyQueen's University BelfastBelfastIreland
| | - Orla Hardiman
- Academic Unit of Neurology, School of Medicine, Trinity College DublinUniversity of DublinDublinIreland
- Department of NeurologyBeaumont HospitalDublinIreland
| | - Bahman Nasseroleslami
- Academic Unit of Neurology, School of Medicine, Trinity College DublinUniversity of DublinDublinIreland
| |
Collapse
|
38
|
Tarasova I, Kukhareva I, Kupriyanova D, Temnikova T, Gorbatovskaya E, Trubnikova O. Electrical Activity Changes and Neurovascular Unit Markers in the Brains of Patients after Cardiac Surgery: Effects of Multi-Task Cognitive Training. Biomedicines 2024; 12:756. [PMID: 38672112 PMCID: PMC11048530 DOI: 10.3390/biomedicines12040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND There is growing interest in finding methods to enhance cognitive function and comprehend the neurophysiological mechanisms that underlie these improvements. It is assumed that non-pharmacological interventions have better results in cognitive recovery. The aim of this study was to assess the effect of multi-task cognitive training (MTT) on electroencephalographic (EEG) changes and markers of the neurovascular unit in patients undergoing coronary artery bypass grafting (CABG). METHODS This prospective cohort study involved 62 CABG patients aged 45-75 years, 30 of whom underwent a 5-7-day MTT course. The groups of patients were comparable with respect to baseline clinical and anamnestic characteristics. An EEG study was performed before surgery and 11-12 days after CABG. Markers of the neurovascular unit (S100β, NSE, and BDNF) were examined at three time points: before surgery, within the first 24 h after surgery, and 11-12 days after CABG. RESULTS Patients without training demonstrated higher relative theta power changes compared to the MTT patients. The course of MTT was associated with low plasma S100β concentration but high BDNF levels at the end of the training course. CONCLUSIONS The theta activity changes and the markers of the neurovascular unit (S100β, BDNF) indicated that the severity of brain damage in cardiac surgery patients after a short course of MTT was slightly reduced. Electrical brain activity indicators and vascular markers can be informative for monitoring the process of cognitive rehabilitation in cardiac surgery patients.
Collapse
Affiliation(s)
- Irina Tarasova
- Research Institute for Complex Issues of Cardiovascular Diseases, Academician Barbarash Blvd., 6, 650002 Kemerovo, Russia; (I.K.); (D.K.); (T.T.); (E.G.); (O.T.)
| | | | | | | | | | | |
Collapse
|
39
|
Frisoni GB, Festari C, Massa F, Cotta Ramusino M, Orini S, Aarsland D, Agosta F, Babiloni C, Borroni B, Cappa SF, Frederiksen KS, Froelich L, Garibotto V, Haliassos A, Jessen F, Kamondi A, Kessels RP, Morbelli SD, O'Brien JT, Otto M, Perret-Liaudet A, Pizzini FB, Vandenbulcke M, Vanninen R, Verhey F, Vernooij MW, Yousry T, Boada Rovira M, Dubois B, Georges J, Hansson O, Ritchie CW, Scheltens P, van der Flier WM, Nobili F. European intersocietal recommendations for the biomarker-based diagnosis of neurocognitive disorders. Lancet Neurol 2024; 23:302-312. [PMID: 38365381 DOI: 10.1016/s1474-4422(23)00447-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 02/18/2024]
Abstract
The recent commercialisation of the first disease-modifying drugs for Alzheimer's disease emphasises the need for consensus recommendations on the rational use of biomarkers to diagnose people with suspected neurocognitive disorders in memory clinics. Most available recommendations and guidelines are either disease-centred or biomarker-centred. A European multidisciplinary taskforce consisting of 22 experts from 11 European scientific societies set out to define the first patient-centred diagnostic workflow that aims to prioritise testing for available biomarkers in individuals attending memory clinics. After an extensive literature review, we used a Delphi consensus procedure to identify 11 clinical syndromes, based on clinical history and examination, neuropsychology, blood tests, structural imaging, and, in some cases, EEG. We recommend first-line and, if needed, second-line testing for biomarkers according to the patient's clinical profile and the results of previous biomarker findings. This diagnostic workflow will promote consistency in the diagnosis of neurocognitive disorders across European countries.
Collapse
Affiliation(s)
- Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland; Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland.
| | - Cristina Festari
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Cotta Ramusino
- Unit of Behavioral Neurology and Dementia Research Center (DRC), IRCCS Mondino Foundation, Pavia, Italy
| | - Stefania Orini
- Alzheimer's Unit-Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Dag Aarsland
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway; UK Dementia Research Institute, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele of Cassino, Cassino, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of Continuity of Care and Frailty, ASST Spedali Civili, Brescia, Italy
| | - Stefano F Cappa
- Centro Ricerca sulle Demenze, IRCCS Mondino Foundation, Pavia, Italy; University Institute for Advanced Studies (IUSS), Pavia, Italy
| | - Kristian S Frederiksen
- Danish Dementia Research Centre, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lutz Froelich
- Department of Geriatric Psychiatry, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland; Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland; CIBM Center for Biomedical Imaging, Geneva, Switzerland
| | | | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Anita Kamondi
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary; Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Roy Pc Kessels
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands; Radboud UMC Alzheimer Center and Department of Medical Psychology, Radboud University Medical Center, Nijmegen, Netherlands; Vincent van Gogh Institute for Psychiatry, Venray, Netherlands
| | - Silvia D Morbelli
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Markus Otto
- Department of Neurology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | | | - Francesca B Pizzini
- Department of Diagnostic and Public Health, Verona University Hospital, Verona University, Verona, Italy
| | - Mathieu Vandenbulcke
- Department of Neurosciences, KU Leuven, Leuven, Belgium; Department of Geriatric Psychiatry, University Psychiatric Centre KU Leuven, Leuven-Kortenberg, Belgium
| | - Ritva Vanninen
- University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Frans Verhey
- Department of Psychiatry and Neuropsychology-Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Meike W Vernooij
- Department of Epidemiology and Department of Radiology and Nuclear Medicine Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Tarek Yousry
- Lysholm Department of Neuroradiology and the Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, UK
| | - Mercè Boada Rovira
- Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Bruno Dubois
- Institut de La Mémoire et de La Maladie d'Alzheimer, Neurology Department, Salpêtrière Hospital, Assistance Publique-Hôpital de Paris, Paris, France; Sorbonne University, Paris, France
| | | | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Craig W Ritchie
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, Western General Hospital, University of Edinburgh, Edinburgh, UK; Brain Health Scotland, Edinburgh, UK
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands; Amsterdam Neuroscience-Neurodegeneration, Amsterdam, Netherlands; Epidemiology and Data Science, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, Netherlands
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
40
|
Cecchetti G, Basaia S, Canu E, Cividini C, Cursi M, Caso F, Santangelo R, Fanelli GF, Magnani G, Agosta F, Filippi M. EEG Correlates in the 3 Variants of Primary Progressive Aphasia. Neurology 2024; 102:e207993. [PMID: 38165298 DOI: 10.1212/wnl.0000000000207993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The 3 clinical presentations of primary progressive aphasia (PPA) reflect heterogenous neuropathology, which is difficult to be recognized in vivo. Resting-state (RS) EEG is promising for the investigation of brain electrical substrates in neurodegenerative conditions. In this study, we aim to explore EEG cortical sources in the characterization of the 3 variants of PPA. METHODS This is a cross-sectional, single-center, memory center-based cohort study. Patients with PPA and healthy controls were consecutively recruited at the Neurology Unit, IRCCS San Raffaele Scientific Institute (Milan, Italy). Each participant underwent an RS 19-channel EEG. Using standardized low-resolution brain electromagnetic tomography, EEG current source densities were estimated at voxel level and compared among study groups. Using an RS functional MRI-driven model of source reconstruction, linear lagged connectivity (LLC) values within language and extra-language brain networks were obtained and analyzed among groups. RESULTS Eighteen patients with logopenic PPA variant (lvPPA; mean age = 72.7 ± 6.6; % female = 52.4), 21 patients with nonfluent/agrammatic PPA variant (nfvPPA; mean age = 71.7 ± 8.1; % female = 66.6), and 9 patients with semantic PPA variant (svPPA; mean age = 65.0 ± 6.9; % female = 44.4) were enrolled in the study, together with 21 matched healthy controls (mean age = 69.2 ± 6.5; % female = 57.1). Patients with lvPPA showed a higher delta density than healthy controls (p < 0.01) and patients with nfvPPA (p < 0.05) and svPPA (p < 0.05). Patients with lvPPA also displayed a greater theta density over the left posterior hemisphere (p < 0.01) and lower alpha2 values (p < 0.05) over the left frontotemporal regions than controls. Patients with nfvPPA showed a diffuse greater theta density than controls (p < 0.05). LLC was altered in all patients relative to controls (p < 0.05); the alteration was greater at slow frequency bands and within language networks than extra-language networks. Patients with lvPPA also showed greater LLC values at theta band than patients with nfvPPA (p < 0.05). DISCUSSION EEG findings in patients with PPA suggest that lvPPA-related pathology is associated with a characteristic disruption of the cortical electrical activity, which might help in the differential diagnosis from svPPA and nfvPPA. EEG connectivity was disrupted in all PPA variants, with distinct findings in disease-specific PPA groups. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that EEG analysis can distinguish PPA due to probable Alzheimer disease from PPA due to probable FTD from normal aging.
Collapse
Affiliation(s)
- Giordano Cecchetti
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Basaia
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Cividini
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Cursi
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Caso
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Santangelo
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanna F Fanelli
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Magnani
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- From the Neurology Unit (G.C., F.C., R.S., G.M., F.A., M.F.), Neurophysiology Service (G.C., M.C., R.S., G.F.F., M.F.), and Neuroimaging Research Unit (G.C., S.B., E.C., C.C., F.A., M.F.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (G.C., F.A., M.F.); and Neurorehabilitation Unit (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
41
|
Huang L, Li Q, Lu Y, Pan F, Cui L, Wang Y, Miao Y, Chen T, Li Y, Wu J, Chen X, Jia J, Guo Q. Consensus on rapid screening for prodromal Alzheimer's disease in China. Gen Psychiatr 2024; 37:e101310. [PMID: 38313393 PMCID: PMC10836380 DOI: 10.1136/gpsych-2023-101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024] Open
Abstract
Alzheimer's disease (AD) is a common cause of dementia, characterised by cerebral amyloid-β deposition, pathological tau and neurodegeneration. The prodromal stage of AD (pAD) refers to patients with mild cognitive impairment (MCI) and evidence of AD's pathology. At this stage, disease-modifying interventions should be used to prevent the progression to dementia. Given the inherent heterogeneity of MCI, more specific biomarkers are needed to elucidate the underlying AD's pathology. Although the uses of cerebrospinal fluid and positron emission tomography are widely accepted methods for detecting AD's pathology, their clinical applications are limited by their high costs and invasiveness, particularly in low-income areas in China. Therefore, to improve the early detection of Alzheimer's disease (AD) pathology through cost-effective screening methods, a panel of 45 neurologists, psychiatrists and gerontologists was invited to establish a formal consensus on the screening of pAD in China. The supportive evidence and grades of recommendations are based on a systematic literature review and focus group discussion. National meetings were held to allow participants to review, vote and provide their expert opinions to reach a consensus. A majority (two-thirds) decision was used for questions for which consensus could not be reached. Recommended screening methods are presented in this publication, including neuropsychological assessment, peripheral biomarkers and brain imaging. In addition, a general workflow for screening pAD in China is established, which will help clinicians identify individuals at high risk and determine therapeutic targets.
Collapse
Affiliation(s)
- Lin Huang
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinjie Li
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Lu
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengfeng Pan
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Cui
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Miao
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yatian Li
- Shanghai BestCovered, Shanghai, China
| | | | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianping Jia
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Rutkowski TM, Komendziński T, Otake-Matsuura M. Mild cognitive impairment prediction and cognitive score regression in the elderly using EEG topological data analysis and machine learning with awareness assessed in affective reminiscent paradigm. Front Aging Neurosci 2024; 15:1294139. [PMID: 38239487 PMCID: PMC10794306 DOI: 10.3389/fnagi.2023.1294139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The main objective of this study is to evaluate working memory and determine EEG biomarkers that can assist in the field of health neuroscience. Our ultimate goal is to utilize this approach to predict the early signs of mild cognitive impairment (MCI) in healthy elderly individuals, which could potentially lead to dementia. The advancements in health neuroscience research have revealed that affective reminiscence stimulation is an effective method for developing EEG-based neuro-biomarkers that can detect the signs of MCI. Methods We use topological data analysis (TDA) on multivariate EEG data to extract features that can be used for unsupervised clustering, subsequent machine learning-based classification, and cognitive score regression. We perform EEG experiments to evaluate conscious awareness in affective reminiscent photography settings. Results We use EEG and interior photography to distinguish between healthy cognitive aging and MCI. Our clustering UMAP and random forest application accurately predict MCI stage and MoCA scores. Discussion Our team has successfully implemented TDA feature extraction, MCI classification, and an initial regression of MoCA scores. However, our study has certain limitations due to a small sample size of only 23 participants and an unbalanced class distribution. To enhance the accuracy and validity of our results, future research should focus on expanding the sample size, ensuring gender balance, and extending the study to a cross-cultural context.
Collapse
Affiliation(s)
- Tomasz M. Rutkowski
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Graduate School of Education, The University of Tokyo, Tokyo, Japan
- Department of Cognitive Science, Institute of Information and Communication Research, Nicolaus Copernicus University, Toruń, Poland
| | - Tomasz Komendziński
- Department of Cognitive Science, Institute of Information and Communication Research, Nicolaus Copernicus University, Toruń, Poland
| | | |
Collapse
|
43
|
Sun J, Sun Y, Shen A, Li Y, Gao X, Lu B. An ensemble learning model for continuous cognition assessment based on resting-state EEG. NPJ AGING 2024; 10:1. [PMID: 38167843 PMCID: PMC10762083 DOI: 10.1038/s41514-023-00129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
One critical manifestation of neurological deterioration is the sign of cognitive decline. Causes of cognitive decline include but are not limited to: aging, cerebrovascular disease, Alzheimer's disease, and trauma. Currently, the primary tool used to examine cognitive decline is scale. However, scale examination has drawbacks such as its clinician subjectivity and inconsistent results. This study attempted to use resting-state EEG to construct a cognitive assessment model that is capable of providing a more scientific and robust evaluation on cognition levels. In this study, 75 healthy subjects, 99 patients with Mild Cognitive Impairment (MCI), and 78 patients with dementia were involved. Their resting-state EEG signals were collected twice, and the recording devices varied. By matching these EEG and traditional scale results, the proposed cognition assessment model was trained based on Adaptive Boosting (AdaBoost) and Support Vector Machines (SVM) methods, mapping subjects' cognitive levels to a 0-100 test score with a mean error of 4.82 (<5%). This study is the first to establish a continuous evaluation model of cognitive decline on a large sample dataset. Its cross-device usability also suggests universality and robustness of this EEG model, offering a more reliable and affordable way to assess cognitive decline for clinical diagnosis and treatment as well. Furthermore, the interpretability of features involved may further contribute to the early diagnosis and superior treatment evaluation of Alzheimer's disease.
Collapse
Affiliation(s)
- Jingnan Sun
- Department of Biomedical Engineering, Tsinghua University, 100084, Beijing, China
| | - Yike Sun
- Department of Biomedical Engineering, Tsinghua University, 100084, Beijing, China
| | - Anruo Shen
- Department of Biomedical Engineering, Tsinghua University, 100084, Beijing, China
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yunxia Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Xiaorong Gao
- Department of Biomedical Engineering, Tsinghua University, 100084, Beijing, China.
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, 100084, Beijing, China.
- Beijing Academy of Artificial Intelligence, 100080, Beijing, China.
| |
Collapse
|
44
|
Deng J, Sun B, Kavcic V, Liu M, Giordani B, Li T. Novel methodology for detection and prediction of mild cognitive impairment using resting-state EEG. Alzheimers Dement 2024; 20:145-158. [PMID: 37496373 PMCID: PMC10811294 DOI: 10.1002/alz.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Early discrimination and prediction of cognitive decline are crucial for the study of neurodegenerative mechanisms and interventions to promote cognitive resiliency. METHODS Our research is based on resting-state electroencephalography (EEG) and the current dataset includes 137 consensus-diagnosed, community-dwelling Black Americans (ages 60-90 years, 84 healthy controls [HC]; 53 mild cognitive impairment [MCI]) recruited through Wayne State University and Michigan Alzheimer's Disease Research Center. We conducted multiscale analysis on time-varying brain functional connectivity and developed an innovative soft discrimination model in which each decision on HC or MCI also comes with a connectivity-based score. RESULTS The leave-one-out cross-validation accuracy is 91.97% and 3-fold accuracy is 91.17%. The 9 to 18 months' progression trend prediction accuracy over an availability-limited subset sample is 84.61%. CONCLUSION The EEG-based soft discrimination model demonstrates high sensitivity and reliability for MCI detection and shows promising capability in proactive prediction of people at risk of MCI before clinical symptoms may occur.
Collapse
Affiliation(s)
- Jinxian Deng
- Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingMichiganUSA
| | - Boxin Sun
- Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingMichiganUSA
| | - Voyko Kavcic
- Institute of GerontologyWayne State UniversityDetroitMichiganUSA
- International Institute of Applied GerontologyLjubljanaSlovenia
| | - Mingyan Liu
- Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborMichiganUSA
| | - Bruno Giordani
- Departments of PsychiatryNeurologyPsychology and School of NursingUniversity of MichiganAnn ArborMichiganUSA
- Michigan Alzheimer's Disease Research CenterAnn ArborMichiganUSA
| | - Tongtong Li
- Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingMichiganUSA
- Michigan Alzheimer's Disease Research CenterAnn ArborMichiganUSA
| |
Collapse
|
45
|
Stam CJ, de Haan W. Network Hyperexcitability in Early-Stage Alzheimer's Disease: Evaluation of Functional Connectivity Biomarkers in a Computational Disease Model. J Alzheimers Dis 2024; 99:1333-1348. [PMID: 38759000 PMCID: PMC11191539 DOI: 10.3233/jad-230825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/19/2024]
Abstract
Background There is increasing evidence from animal and clinical studies that network hyperexcitability (NH) may be an important pathophysiological process and potential target for treatment in early Alzheimer's disease (AD). Measures of functional connectivity (FC) have been proposed as promising biomarkers for NH, but it is unknown which measure has the highest sensitivity for early-stage changes in the excitation/inhibition balance. Objective We aim to test the performance of different FC measures in detecting NH at the earliest stage using a computational approach. Methods We use a whole brain computational model of activity dependent degeneration to simulate progressive AD pathology and NH. We investigate if and at what stage four measures of FC (amplitude envelope correlation corrected [AECc], phase lag index [PLI], joint permutation entropy [JPE] and a new measure: phase lag time [PLT]) can detect early-stage AD pathophysiology. Results The activity dependent degeneration model replicates spectral changes in line with clinical data and demonstrates increasing NH. Compared to relative theta power as a gold standard the AECc and PLI are shown to be less sensitive in detecting early-stage NH and AD-related neurophysiological abnormalities, while the JPE and the PLT show more sensitivity with excellent test characteristics. Conclusions Novel FC measures, which are better in detecting rapid fluctuations in neural activity and connectivity, may be superior to well-known measures such as the AECc and PLI in detecting early phase neurophysiological abnormalities and in particular NH in AD. These markers could improve early diagnosis and treatment target identification.
Collapse
Affiliation(s)
- Cornelis Jan Stam
- Department of Neurology, Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
| | - Willem de Haan
- Department of Neurology, Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
| |
Collapse
|
46
|
Vijverberg E, de Haan W, Scheijbeler E, Hamby ME, Catalano S, Scheltens P, Grundman M, Caggiano AO. A Pilot Electroencephalography Study of the Effect of CT1812 Treatment on Synaptic Activity in Patients with Mild to Moderate Alzheimer's Disease. J Prev Alzheimers Dis 2024; 11:1809-1817. [PMID: 39559892 PMCID: PMC11573871 DOI: 10.14283/jpad.2024.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/01/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND CT1812 is a first-in-class, sigma-2 receptor ligand, that prevents and displaces binding of amyloid beta (Aβ) oligomers. Normalization of quantitative electroencephalography (qEEG) markers suggests that CT1812 protects synapses from Aβ oligomer toxicity. OBJECTIVES Evaluate CT1812 impact on synaptic function using qEEG measurements. DESIGN Phase 2, randomized, double-blind, placebo-controlled, 4-week crossover study. SETTING VU University Medical Center and Brain Research Center Amsterdam, The Netherlands. PARTICIPANTS Adults with mild or moderate Alzheimer's disease (AD). INTERVENTION A daily 300 mg dose of CT1812 or placebo for 4 weeks. MEASUREMENTS A resting-state, eyes closed qEEG assessment occurred on Day 1 and on Day 29 of Treatment Periods 1 and 2, and at follow-up. The primary endpoint was global relative theta power (4-8 Hz), along with secondary EEG measures including global alpha corrected Amplitude Envelope Correlation (AEC-c). Cognitive and functional assessments, fluid biomarkers, and safety and tolerability were assessed. RESULTS 16 patients were randomized, and 15 completed. A non-significant (p=0.123) but consistent reduction occurred in global relative theta power and in relative theta power in frontal, temporal, parietal, occipital and central (p<0.006) brain regions with CT1812. A nominally significant (p=0.034) improvement was observed in global alpha AEC-c. Adverse events occurred in 11 patients with CT1812 and 6 with placebo - most commonly nausea, diarrhea, and procedural headache. No severe or serious AEs, deaths or discontinuations were reported. CONCLUSION CT1812 improved established EEG markers of spontaneous brain activity (spectral power, functional connectivity) in patients with mild-to-moderate AD, suggesting improved neuronal/synaptic function within a 4-week timespan.
Collapse
Affiliation(s)
- E Vijverberg
- Anthony O. Caggiano, MD, PhD, Cognition Therapeutics, Inc., 2500 Westchester Avenue, Purchase, NY 10577,
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Scheijbeler EP, de Haan W, Stam CJ, Twisk JWR, Gouw AA. Longitudinal resting-state EEG in amyloid-positive patients along the Alzheimer's disease continuum: considerations for clinical trials. Alzheimers Res Ther 2023; 15:182. [PMID: 37858173 PMCID: PMC10585755 DOI: 10.1186/s13195-023-01327-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND To enable successful inclusion of electroencephalography (EEG) outcome measures in Alzheimer's disease (AD) clinical trials, we retrospectively mapped the progression of resting-state EEG measures over time in amyloid-positive patients with mild cognitive impairment (MCI) or dementia due to AD. METHODS Resting-state 21-channel EEG was recorded in 148 amyloid-positive AD patients (MCI, n = 88; dementia due to AD, n = 60). Two or more EEG recordings were available for all subjects. We computed whole-brain and regional relative power (i.e., theta (4-8 Hz), alpha1 (8-10 Hz), alpha2 (10-13 Hz), beta (13-30 Hz)), peak frequency, signal variability (i.e., theta permutation entropy), and functional connectivity values (i.e., alpha and beta corrected amplitude envelope correlation, theta phase lag index, weighted symbolic mutual information, inverted joint permutation entropy). Whole-group linear mixed effects models were used to model the development of EEG measures over time. Group-wise analysis was performed to investigate potential differences in change trajectories between the MCI and dementia subgroups. Finally, we estimated the minimum sample size required to detect different treatment effects (i.e., 50% less deterioration, stabilization, or 50% improvement) on the development of EEG measures over time, in hypothetical clinical trials of 1- or 2-year duration. RESULTS Whole-group analysis revealed significant regional and global oscillatory slowing over time (i.e., increased relative theta power, decreased beta power), with strongest effects for temporal and parieto-occipital regions. Disease severity at baseline influenced the EEG measures' rates of change, with fastest deterioration reported in MCI patients. Only AD dementia patients displayed a significant decrease of the parieto-occipital peak frequency and theta signal variability over time. We estimate that 2-year trials, focusing on amyloid-positive MCI patients, require 36 subjects per arm (2 arms, 1:1 randomization, 80% power) to detect a stabilizing treatment effect on temporal relative theta power. CONCLUSIONS Resting-state EEG measures could facilitate early detection of treatment effects on neuronal function in AD patients. Their sensitivity depends on the region-of-interest and disease severity of the study population. Conventional spectral measures, particularly recorded from temporal regions, present sensitive AD treatment monitoring markers.
Collapse
Affiliation(s)
- Elliz P Scheijbeler
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands.
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands.
| | - Willem de Haan
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
| | - Cornelis J Stam
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
| | - Alida A Gouw
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
| |
Collapse
|
48
|
Babiloni C, Lopez S, Noce G, Ferri R, Panerai S, Catania V, Soricelli A, Salvatore M, Nobili F, Arnaldi D, Famà F, Massa F, Buttinelli C, Giubilei F, Stocchi F, Vacca L, Marizzoni M, D'Antonio F, Bruno G, De Lena C, Güntekin B, Yıldırım E, Hanoğlu L, Yener G, Yerlikaya D, Taylor JP, Schumacher J, McKeith I, Bonanni L, Pantano P, Piervincenzi C, Petsas N, Frisoni GB, Del Percio C, Carducci F. Relationship between default mode network and resting-state electroencephalographic alpha rhythms in cognitively unimpaired seniors and patients with dementia due to Alzheimer's disease. Cereb Cortex 2023; 33:10514-10527. [PMID: 37615301 PMCID: PMC10588004 DOI: 10.1093/cercor/bhad300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023] Open
Abstract
Here we tested the hypothesis of a relationship between the cortical default mode network (DMN) structural integrity and the resting-state electroencephalographic (rsEEG) rhythms in patients with Alzheimer's disease with dementia (ADD). Clinical and instrumental datasets in 45 ADD patients and 40 normal elderly (Nold) persons originated from the PDWAVES Consortium (www.pdwaves.eu). Individual rsEEG delta, theta, alpha, and fixed beta and gamma bands were considered. Freeware platforms served to derive (1) the (gray matter) volume of the DMN, dorsal attention (DAN), and sensorimotor (SMN) cortical networks and (2) the rsEEG cortical eLORETA source activities. We found a significant positive association between the DMN gray matter volume, the rsEEG alpha source activity estimated in the posterior DMN nodes (parietal and posterior cingulate cortex), and the global cognitive status in the Nold and ADD participants. Compared with the Nold, the ADD group showed lower DMN gray matter, lower rsEEG alpha source activity in those nodes, and lower global cognitive status. This effect was not observed in the DAN and SMN. These results suggest that the DMN structural integrity and the rsEEG alpha source activities in the DMN posterior hubs may be related and predict the global cognitive status in ADD and Nold persons.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele Cassino, Cassino (FR), Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, Rome, Italy
| | | | | | | | | | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy
- Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | - Flavio Nobili
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Dario Arnaldi
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Francesco Famà
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Federico Massa
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | | | | | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Fabrizia D'Antonio
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Carlo De Lena
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Bahar Güntekin
- Department of Biophysics, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Yıldırım
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir School of Economics, Faculty of Medicine, Izmir, Turkey
| | - Deniz Yerlikaya
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - John Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Julia Schumacher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Ian McKeith
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University “G. d'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | | | - Nikolaos Petsas
- Scuola di Specializzazione in Statistica Medica e Biometria, Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza University of Rome, Rome, Italy
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Claudio Del Percio
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, Rome, Italy
| | - Filippo Carducci
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, Rome, Italy
| |
Collapse
|
49
|
Andrade SM, da Silva-Sauer L, de Carvalho CD, de Araújo ELM, Lima EDO, Fernandes FML, Moreira KLDAF, Camilo ME, Andrade LMMDS, Borges DT, da Silva Filho EM, Lindquist AR, Pegado R, Morya E, Yamauti SY, Alves NT, Fernández-Calvo B, de Souza Neto JMR. Identifying biomarkers for tDCS treatment response in Alzheimer's disease patients: a machine learning approach using resting-state EEG classification. Front Hum Neurosci 2023; 17:1234168. [PMID: 37859768 PMCID: PMC10582524 DOI: 10.3389/fnhum.2023.1234168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Background Transcranial direct current stimulation (tDCS) is a promising treatment for Alzheimer's Disease (AD). However, identifying objective biomarkers that can predict brain stimulation efficacy, remains a challenge. The primary aim of this investigation is to delineate the cerebral regions implicated in AD, taking into account the existing lacuna in comprehension of these regions. In pursuit of this objective, we have employed a supervised machine learning algorithm to prognosticate the neurophysiological outcomes resultant from the confluence of tDCS therapy plus cognitive intervention within both the cohort of responders and non-responders to antecedent tDCS treatment, stratified on the basis of antecedent cognitive outcomes. Methods The data were obtained through an interventional trial. The study recorded high-resolution electroencephalography (EEG) in 70 AD patients and analyzed spectral power density during a 6 min resting period with eyes open focusing on a fixed point. The cognitive response was assessed using the AD Assessment Scale-Cognitive Subscale. The training process was carried out through a Random Forest classifier, and the dataset was partitioned into K equally-partitioned subsamples. The model was iterated k times using K-1 subsamples as the training bench and the remaining subsample as validation data for testing the model. Results A clinical discriminating EEG biomarkers (features) was found. The ML model identified four brain regions that best predict the response to tDCS associated with cognitive intervention in AD patients. These regions included the channels: FC1, F8, CP5, Oz, and F7. Conclusion These findings suggest that resting-state EEG features can provide valuable information on the likelihood of cognitive response to tDCS plus cognitive intervention in AD patients. The identified brain regions may serve as potential biomarkers for predicting treatment response and maybe guide a patient-centered strategy. Clinical Trial Registration https://classic.clinicaltrials.gov/ct2/show/NCT02772185?term=NCT02772185&draw=2&rank=1, identifier ID: NCT02772185.
Collapse
Affiliation(s)
- Suellen Marinho Andrade
- Aging and Neuroscience Laboratory, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Leandro da Silva-Sauer
- Aging and Neuroscience Laboratory, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | | | - Eloise de Oliveira Lima
- Aging and Neuroscience Laboratory, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Fernanda Maria Lima Fernandes
- Center for Alternative and Renewable Energies (CEAR), Department of Electrical Engineering, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Maria Eduarda Camilo
- Laboratory of Ergonomics and Health, Department of Physiotherapy, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Daniel Tezoni Borges
- Department of Physiotherapy, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Ana Raquel Lindquist
- Department of Physiotherapy, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Rodrigo Pegado
- Department of Physiotherapy, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Edgard Morya
- Edmond and Lily Safra International Institute of Neurosciences (IIN-ELS), Macaíba, Rio Grande do Norte, Brazil
| | - Seidi Yonamine Yamauti
- Edmond and Lily Safra International Institute of Neurosciences (IIN-ELS), Macaíba, Rio Grande do Norte, Brazil
| | - Nelson Torro Alves
- Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Bernardino Fernández-Calvo
- Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Cordoba, Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
| | - José Maurício Ramos de Souza Neto
- Center for Alternative and Renewable Energies (CEAR), Department of Electrical Engineering, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
50
|
Ab Razak A, Rahman NA, Zulkifly MFM, Sapiai NA, Phoa PKA, Mohamed Mustafar MF, Abdul Halim S, Ismail MI, Mohd Nawi SN, Ab Halim AS, Mohamed Hatta HZ, Abdullah JM. Preparing Malaysia for Population Aging through the Advanced Memory and Cognitive Service in Hospital Universiti Sains Malaysia. Malays J Med Sci 2023; 30:1-6. [PMID: 37928788 PMCID: PMC10624434 DOI: 10.21315/mjms2023.30.5.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Improving healthcare and living conditions has led to an increase in life expectancies and challenges of population aging in Malaysia. The Advanced Memory and Cognitive Service builds on integrated healthcare among multidisciplinary specialists to provide holistic and patient-centred healthcare. The service treats older adults experiencing neurocognitive impairment as well as young individuals with complex neurocognitive disorders and thoroughly screens asymptomatic individuals at high risk of developing neurocognitive disorders. This early intervention strategy is a preventive effort in the hope of reducing disease burden and improving quality of life to prepare Malaysia for the forthcoming population aging.
Collapse
Affiliation(s)
- Asrenee Ab Razak
- Department of Psychiatry, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Department of Psychiatry, Hospital Universiti Sains Malaysia, Kelantan, Malaysia
- Brain and Behaviour Cluster, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nabilah Abdul Rahman
- Department of Psychiatry, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Department of Psychiatry, Hospital Universiti Sains Malaysia, Kelantan, Malaysia
| | - Mohd Faizal Mohd Zulkifly
- Brain and Behaviour Cluster, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
- Department of Neurosciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nur Asma Sapiai
- Brain and Behaviour Cluster, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
- Department of Radiology, Hospital Universiti Sains Malaysia, Kelantan, Malaysia
| | - Picholas Kian Ann Phoa
- Department of Psychiatry, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Mohamed Faiz Mohamed Mustafar
- Brain and Behaviour Cluster, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
- Department of Neurosciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Sanihah Abdul Halim
- Brain and Behaviour Cluster, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
- Department of Neurosciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
- Department of Internal Medicine, Hospital Universiti Sains Malaysia, Kelantan, Malaysia
| | - Muhammad Ihfaz Ismail
- Brain and Behaviour Cluster, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
- Department of Neurosciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | - Ahmad Shahril Ab Halim
- Department of Psychiatry, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Department of Psychiatry, Hospital Universiti Sains Malaysia, Kelantan, Malaysia
- Brain and Behaviour Cluster, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | - Jafri Malin Abdullah
- Brain and Behaviour Cluster, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
- Department of Neurosciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|