1
|
dos Santos Melo YL, Luchiari AC, Lopes BS, Ferreira Rocha Silva MG, dos Santos Pais T, Procópio Gama Cortez JE, da Silva Camillo C, Bezerra de Moura SA, da Silva-Maia JK, de Araújo Morais AH. Acute toxicity of trypsin inhibitor from tamarind seeds in embryo and adult zebrafish ( Danio rerio). Toxicol Rep 2024; 13:101766. [PMID: 39469098 PMCID: PMC11513818 DOI: 10.1016/j.toxrep.2024.101766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
The trypsin inhibitor isolated from tamarind seeds (TTI) is being investigated for potential applications in the treatment of noncommunicable diseases (NCD), such as hypertension, obesity, and diabetes. This study aimed to assess TTI embryotoxicity and acute toxicity in adult zebrafish (Danio rerio). TTI was extracted and isolated from tamarind seeds. Embryonic and adult zebrafish were exposed for 96 hours to three concentrations of TTI (12.5, 25, and 50 mg/L). Zebrafish embryos (n=60 per group) were evaluated for survival, hatching, malformations, and potential developmental marker alterations, in addition to cardiotoxicity and neurotoxicity tests. For acute toxicity assessment in adults (n=20 per group), survival and locomotor and anxiety-like behaviors were assessed, along with genotoxicity (micronucleus) evaluation. Embryos exposed to TTI showed no significant adverse effects, presented normal heart rates and positive reflex response in the neurotoxicity tests. In adult fish, TTI did not cause mortality or significant behavioral changes, suggesting no neurotoxicity and no genotoxicity. Histopathological analyses of the whole body showed only changes in the liver and spinal cord, similar to those observed in the control group not exposed to TTI. These findings indicate TTI's biosafety and therapeutic potential in complex organisms. Further research is required to evaluate its long-term effects and efficacy in treating non-communicable diseases.
Collapse
Affiliation(s)
| | - Ana Carolina Luchiari
- FishLab, Physiology and Behavior Department, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Psychobiology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Beatriz Silva Lopes
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Tatiana dos Santos Pais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Christina da Silva Camillo
- Postgraduate Program in Structural and Functional Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sérgio Adriane Bezerra de Moura
- Postgraduate Program in Structural and Functional Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Juliana Kelly da Silva-Maia
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Heloneida de Araújo Morais
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
2
|
Rajeswari JJ, Faught E, Santos H, Vijayan MM. Mineralocorticoid receptor activates postnatal adiposity in zebrafish lacking proopiomelanocortin. J Cell Physiol 2024:e31428. [PMID: 39238189 DOI: 10.1002/jcp.31428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
The proopiomelanocortin (Pomc)-derived peptides, including adrenocorticotropic hormone and α-melanocyte stimulating hormone (α-Msh), play both a central and a peripheral role in modulating the stress response. The central role is predominantly associated with nutrient homeostasis, while peripherally they play an important role in the synthesis of glucocorticoids (GCs) in response to stress. Pomc mutations are a major risk factor in the development of early-onset childhood obesity in humans. This is attributed primarily to their central effects on melanocortin receptor dysfunction leading to hyperphagia and reduced energy expenditure, while the peripheral mechanism contributing to obesity has largely been unexplored. Here, we tested the hypothesis that Pomc mutation-mediated adrenal insufficiency and the associated changes in GC signaling contribute to postnatal adiposity using zebrafish as a model. We generated a ubiquitous Pomc knockout zebrafish that mimicked the mammalian mutant phenotype of adrenal insufficiency and enhanced adiposity. The loss of Pomc inhibited stress-induced cortisol production and reprogrammed GC signaling by reducing glucocorticoid receptor responsiveness, whereas the mineralocorticoid receptor (Mr) signaling was enhanced. Larval feeding led to enhanced growth and adipogenesis in the Pomc mutants, and this was inhibited by eplerenone, an Mr antagonist. Altogether, our results underscore a key role for Mr signaling in early developmental adipogenesis and a possible target for therapeutic intervention for early-onset childhood obesity due to Pomc dysfunction.
Collapse
Affiliation(s)
- Jithine J Rajeswari
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Erin Faught
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Helio Santos
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
3
|
Moll TO, Klemek ML, Farber SA. Directly Measuring Atherogenic Lipoprotein Kinetics in Zebrafish with the Photoconvertible LipoTimer Reporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596423. [PMID: 38853962 PMCID: PMC11160697 DOI: 10.1101/2024.05.29.596423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Lipoprotein kinetics are a crucial factor in understanding lipoprotein metabolism since a prolonged time in circulation can contribute to the atherogenic character of apolipoprotein-B (ApoB)-containing lipoproteins (B-lps). Here, we report a method to directly measure lipoprotein kinetics in live developing animals. We developed a zebrafish geneticly encoded reporter, LipoTimer, in which endogenous ApoBb.1 is fused to the photoconvertible fluorophore Dendra2 which shift its emission profile from green to red upon UV exposure. By quantifying the red population of ApoB-Dendra2 over time, we found that B-lp turnover in wild-type larvae becomes faster as development proceeds. Mutants with impaired B-lp uptake or lipolysis present with increased B-lp levels and half-life. In contrast, mutants with impaired B-lp triglyceride loading display slightly fewer and smaller-B-lps, which have a significantly shorter B-lp half-life. Further, we showed that chronic high-cholesterol feeding is associated with a longer B-lp half-life in wild-type juveniles but does not lead to changes in B-lp half-life in lipolysis deficient apoC2 mutants. These data support the hypothesis that B-lp lipolysis is suppressed by the flood of intestinal-derived B-lps that follow a high-fat meal.
Collapse
Affiliation(s)
- Tabea O.C. Moll
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Steven A. Farber
- Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
4
|
Mora I, Puiggròs F, Serras F, Gil-Cardoso K, Escoté X. Emerging models for studying adipose tissue metabolism. Biochem Pharmacol 2024; 223:116123. [PMID: 38484851 DOI: 10.1016/j.bcp.2024.116123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Understanding adipose metabolism is essential for addressing obesity and related health concerns. However, the ethical and scientific pressure to animal testing, aligning with the 3Rs, has triggered the implementation of diverse alternative models for analysing anomalies in adipose metabolism. In this review, we will address this issue from various perspectives. Traditional adipocyte cell cultures, whether animal or human-derived, offer a fundamental starting point. These systems have their merits but may not fully replicate in vivo complexity. Established cell lines are valuable for high-throughput screening but may lack the authenticity of primary-derived adipocytes, which closely mimic native tissue. To enhance model sophistication, spheroids have been introduced. These three-dimensional cultures better mimicking the in vivo microenvironment, enabling the study of intricate cell-cell interactions, gene expression, and metabolic pathways. Organ-on-a-chip (OoC) platforms take this further by integrating multiple cell types into microfluidic devices, simulating tissue-level functions. Adipose-OoC (AOoC) provides dynamic environments with applications spanning drug testing to personalized medicine and nutrition. Beyond in vitro models, genetically amenable organisms (Caenorhabditis elegans, Drosophila melanogaster, and zebrafish larvae) have become powerful tools for investigating fundamental molecular mechanisms that govern adipose tissue functions. Their genetic tractability allows for efficient manipulation and high-throughput studies. In conclusion, a diverse array of research models is crucial for deciphering adipose metabolism. By leveraging traditional adipocyte cell cultures, primary-derived cells, spheroids, AOoCs, and lower organism models, we bridge the gap between animal testing and a more ethical, scientifically robust, and human-relevant approach, advancing our understanding of adipose tissue metabolism and its impact on health.
Collapse
Affiliation(s)
- Ignasi Mora
- Brudy Technology S.L., 08006 Barcelona, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| | - Florenci Serras
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona and Institute of Biomedicine of the University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Katherine Gil-Cardoso
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health Unit, 43204 Reus, Spain
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health Unit, 43204 Reus, Spain.
| |
Collapse
|
5
|
Moll T, Farber SA. Zebrafish ApoB-Containing Lipoprotein Metabolism: A Closer Look. Arterioscler Thromb Vasc Biol 2024; 44:1053-1064. [PMID: 38482694 PMCID: PMC11042983 DOI: 10.1161/atvbaha.123.318287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Zebrafish have become a powerful model of mammalian lipoprotein metabolism and lipid cell biology. Most key proteins involved in lipid metabolism, including cholesteryl ester transfer protein, are conserved in zebrafish. Consequently, zebrafish exhibit a human-like lipoprotein profile. Zebrafish with mutations in genes linked to human metabolic diseases often mimic the human phenotype. Zebrafish larvae develop rapidly and externally around the maternally deposited yolk. Recent work revealed that any disturbance of lipoprotein formation leads to the accumulation of cytoplasmic lipid droplets and an opaque yolk, providing a visible phenotype to investigate disturbances of the lipoprotein pathway, already leading to discoveries in MTTP (microsomal triglyceride transfer protein) and ApoB (apolipoprotein B). By 5 days of development, the digestive system is functional, making it possible to study fluorescently labeled lipid uptake in the transparent larvae. These and other approaches enabled the first in vivo description of the STAB (stabilin) receptors, showing lipoprotein uptake in endothelial cells. Various zebrafish models have been developed to mimic human diseases by mutating genes known to influence lipoproteins (eg, ldlra, apoC2). This review aims to discuss the most recent research in the zebrafish ApoB-containing lipoprotein and lipid metabolism field. We also summarize new insights into lipid processing within the yolk cell and how changes in lipid flux alter yolk opacity. This curious new finding, coupled with the development of several techniques, can be deployed to identify new players in lipoprotein research directly relevant to human disease.
Collapse
|
6
|
Zhao W, Chen Y, Hu N, Long D, Cao Y. The uses of zebrafish (Danio rerio) as an in vivo model for toxicological studies: A review based on bibliometrics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116023. [PMID: 38290311 DOI: 10.1016/j.ecoenv.2024.116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
An in vivo model is necessary for toxicology. This review analyzed the uses of zebrafish (Danio rerio) in toxicology based on bibliometrics. Totally 56,816 publications about zebrafish from 2002 to 2023 were found in Web of Science Core Collection, with Toxicology as the top 6 among all disciplines. Accordingly, the bibliometric map reveals that "toxicity" has become a hot keyword. It further reveals that the most common exposure types include acute, chronic, and combined exposure. The toxicological effects include behavioral, intestinal, cardiovascular, hepatic, endocrine toxicity, neurotoxicity, immunotoxicity, genotoxicity, and reproductive and transgenerational toxicity. The mechanisms include oxidative stress, inflammation, autophagy, and dysbiosis of gut microbiota. The toxicants commonly evaluated by using zebrafish model include nanomaterials, arsenic, metals, bisphenol, and dioxin. Overall, zebrafish provide a unique and well-accepted model to investigate the toxicological effects and mechanisms. We also discussed the possible ways to address some of the limitations of zebrafish model, such as the combination of human organoids to avoid species differences.
Collapse
Affiliation(s)
- Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Yuna Chen
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, PR China.
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
7
|
Yang G, Li C, Wang S, Liang X, Yang B, Zhang Y, Zhang X, Chang X, Meng X. Molecular characterization of the grass carp bscl2 gene and its expression response to lipid accumulation, nutritional status, insulin and glucagon. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110931. [PMID: 38070669 DOI: 10.1016/j.cbpb.2023.110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/03/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Bscl2 plays a role in lipid metabolism of mammals, however its role in teleost fish remains unclear. Using the grass carp (Ctenopharyngodon idella) as a model, the bscl2 gene was isolated from the brain and characterized. Thereafter, the tissue distribution of the gene was examined, before expression was analyzed as a function of fasting, refeeding, oral glucose administration and overfeeding. In addition, bscl2 mRNA levels were evaluated in grass carp primary hepatocytes treated with glucagon, insulin, oleic acid, and glucose. Results showed that the cloned bscl2 gene was 1341 bp, encoding 446 amino acids, and was highly expressed in the brain, heart, and gonad. Following oral glucose administration, bscl2 expression increased. Expression of bscl2 decreased in fasted fish but increased following refeeding. Overfeeding, which resulted in elevated lipid accumulation, also stimulated bscl2 expression. In primary hepatocytes, bscl2 levels were increased by glucose, oleic acid, and insulin treatments, and reduced by glucagon treatment. These data suggest that bscl2 may play an important role in nutrient metabolism in teleost fish.
Collapse
Affiliation(s)
- Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Chengquan Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Sunan Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xiaomin Liang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Boya Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yanmin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Xindang Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
8
|
Gündüz G, Beler M, Ünal İ, Cansız D, Emekli-Alturfan E, Kose KN. Endotoxin of Porphyromonas gingivalis amplifies the inflammatory response in hyperglycemia-induced zebrafish through a mechanism involving chitinase-like protein YKL-40 analogs. Toxicol Res 2023; 39:625-636. [PMID: 37779592 PMCID: PMC10541394 DOI: 10.1007/s43188-023-00190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 10/03/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis), a key pathogen in periodontal diseases, is also associated with hyperglycemia-associated systemic diseases, including diabetes mellitus (DM). Gingipains are the most important endotoxins of P. gingivalis, and in vivo studies using gingipains are scarce. Zebrafish (Danio rerio) is a vertebrate with high physiological and genetic homology with humans that has multiple co-orthologs for human genes, including inflammation-related proteins. The aim of our study was to determine the effects of gingipain in a hyperglycemia-induced zebrafish model by evaluating inflammation, oxidant-antioxidant status, and the cholinergic system. Adult zebrafish were grouped into the control group (C), hyperglycemia-induced group subjected to 15 days of overfeeding (OF), gingipain-injected group (GP), and gingipain-injected hyperglycemic group (OF + GP). At the end of 15 days, an oral glucose tolerance test (OGTT) was performed, and fasting blood glucose (FBG) levels were measured. Lipid peroxidation (LPO), nitric oxide (NO), glutathione (GSH), glutathione S-transferase, catalase, acetylcholinesterase (AChE), alkaline phosphatase (ALP), and sialic acid (SA) levels were determined spectrophotometrically in the hepatopancreas. The expression levels of tnf-⍺, il-1β, ins, crp, and the acute phase protein YKL-40 analogs chia.5 and chia.6 were evaluated by RT‒PCR. After two weeks of overfeeding, significantly increased weight gain, FBG, and OGTT confirmed that the zebrafish were hyperglycemic. Increased oxidative stress, inflammation, and AChE and ALP activities were observed in both the overfeeding and GP groups. Amplification of inflammation and oxidative stress was evident in the OF + GP group through increased expression of crp, il-1β, chia.5, and chia.6 and increased LPO and NO levels. Our results support the role of gingipains in the increased inflammatory response in hyperglycemia-associated diseases.
Collapse
Affiliation(s)
- Gizem Gündüz
- Department of Periodontology, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Merih Beler
- Department of Biochemistry, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - İsmail Ünal
- Department of Biochemistry, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Derya Cansız
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Biochemistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Kemal Naci Kose
- Department of Periodontology, Faculty of Dentistry, Marmara University, Marmara University Basibuyuk Medical Campus, Basibuyuk, Maltepe, 34854 Istanbul, Turkey
| |
Collapse
|
9
|
Mallik R, Carlson KB, Wcisel DJ, Fisk M, Yoder JA, Dornburg A. A chromosome-level genome assembly of longnose gar, Lepisosteus osseus. G3 (BETHESDA, MD.) 2023; 13:jkad095. [PMID: 37119803 PMCID: PMC10320754 DOI: 10.1093/g3journal/jkad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Holosteans (gars and bowfins) represent the sister lineage to teleost fishes, the latter being a clade that comprises over half of all living vertebrates and includes important models for comparative genomics and human health. A major distinction between the evolutionary history of teleosts and holosteans is that all teleosts experienced a genome duplication event in their early evolutionary history. As the teleost genome duplication occurred after teleosts diverged from holosteans, holosteans have been heralded as a means to bridge teleost models to other vertebrate genomes. However, only three species of holosteans have been genome-sequenced to date, and sequencing of more species is needed to fill sequence sampling gaps and provide a broader comparative basis for understanding holostean genome evolution. Here we report the first high quality reference genome assembly and annotation of the longnose gar (Lepisosteus osseus). Our final assembly consists of 22,709 scaffolds with a total length of 945 bp with contig N50 of 116.61 kb. Using BRAKER2, we annotated a total of 30,068 genes. Analysis of the repetitive regions of the genome reveals the genome to contain 29.12% transposable elements, and the longnose gar to be the only other known vertebrate outside of the spotted gar and bowfin to contain CR1, L2, Rex1, and Babar. These results highlight the potential utility of holostean genomes for understanding the evolution of vertebrate repetitive elements, and provide a critical reference for comparative genomic studies utilizing ray-finned fish models.
Collapse
Affiliation(s)
- Rittika Mallik
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC 28223, USA
| | - Kara B Carlson
- Department of Molecular Biomedical Sciences, Genetics and Genomics Academy, and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| | - Dustin J Wcisel
- Department of Molecular Biomedical Sciences, Genetics and Genomics Academy, and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| | - Michael Fisk
- Aquatic Wildlife Diversity Group, North Carolina Wildlife Resources Commission, Raleigh, NC 27606, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, Genetics and Genomics Academy, and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
10
|
Chang C, Li H, Zhang R. Zebrafish facilitate non-alcoholic fatty liver disease research: Tools, models and applications. Liver Int 2023; 43:1385-1398. [PMID: 37122203 DOI: 10.1111/liv.15601] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become an increasingly epidemic metabolic disease worldwide. NAFLD can gradually deteriorate from simple liver steatosis, inflammation and fibrosis to liver cirrhosis and/or hepatocellular carcinoma. Zebrafish are vertebrate animal models that are genetically and metabolically conserved with mammals and have unique advantages such as high fecundity, rapid development ex utero and optical transparency. These features have rendered zebrafish an emerging model system for liver diseases and metabolic diseases favoured by many researchers in recent years. In the present review, we summarize a series of tools for zebrafish NAFLD research and the models established through different dietary feeding, hepatotoxic chemical treatments and genetic manipulations via transgenic or genome editing technologies. We also discuss how zebrafish models facilitate NAFLD studies by providing novel insights into NAFLD pathogenesis, toxicology research, and drug evaluation and discovery.
Collapse
Affiliation(s)
- Cheng Chang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Huicong Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ruilin Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
11
|
Du J, Hu Y, Hou M, Zhou J, Xiang F, Zheng H, Zhang X, He X, Xiao H. Combined effects of high-fat diet and polystyrene microplastic exposure on microplastic bioaccumulation and lipid metabolism in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108803. [PMID: 37164123 DOI: 10.1016/j.fsi.2023.108803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023]
Abstract
Extensive use of microplastics (MPs) threatens the safety of aquatic environments and hydrobionts. Increasing the weight of economic fish through high-fat diet (HFD) to increase production is common in aquaculture. However, little is known about the combined effects of MPs and HFD in fish. The aim of this study was to investigate the relationship between adiposity and MP bioaccumulation in fish. Using zebrafish as a vertebrate model, the content of polystyrene (PS) MPs in zebrafish tissues exposed to 5 and 50 μm of 1000 μg/L PS MPs was detected via confocal Raman spectroscopy in normal diet (ND) and HFD. The content of PS MPs in HFD group was significantly higher than that in ND group. The levels of hepatic lipids were significantly elevated in zebrafish subjected to HFD treatment, and this effect was aggravated by exposure to 5 μm PS MPs, and even caused liver injury. Transcriptomic analysis revealed that exposure to PS MPs interferes with hepatic lipid metabolism and energy homeostasis in zebrafish. These results suggests that in addition to controlling the use and performing proper recycling of plastic products in our daily life, we should not blindly increase the weight of fish through HFD. This aids protect the quality of economic fish and prevent MPs from being consumed by humans through the food chain. This study explored the interaction between fish feed culture and environmental pollutants to provide important reference for fish culture.
Collapse
Affiliation(s)
- Juan Du
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, Hubei, People's Republic of China
| | - Yanqiu Hu
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, Hubei, People's Republic of China
| | - Miaomiao Hou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, People's Republic of China
| | - Jingyi Zhou
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, Hubei, People's Republic of China
| | - Feiyan Xiang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, Hubei, People's Republic of China
| | - Hao Zheng
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, Hubei, People's Republic of China
| | - Xiankai Zhang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, Hubei, People's Republic of China
| | - Xuelian He
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, Hubei, People's Republic of China.
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, Hubei, People's Republic of China.
| |
Collapse
|
12
|
Inflammation and Obesity: The Pharmacological Role of Flavonoids in the Zebrafish Model. Int J Mol Sci 2023; 24:ijms24032899. [PMID: 36769222 PMCID: PMC9917473 DOI: 10.3390/ijms24032899] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
A Mediterranean-style diet is highly encouraged thanks to its healthy food pattern, which includes valuable nutraceuticals such as polyphenols. Among these, flavonoids are associated with relevant biological properties through which they prevent or fight the onset of several human pathologies. Globally, the enhanced incidence of overweight and obese people has caused a dramatic increase in comorbidities, raising the need to provide better therapies. Therefore, the development of sophisticated animal models of metabolic dysregulation has allowed for a deepening of knowledge on this subject. Recent advances in using zebrafish (Danio rerio) as model for metabolic disease have yielded fundamental insights into the potential anti-obesity effects of flavonoids. Chronic low-grade inflammation and immune system activation seem to characterize the pathogenesis of obesity; thus, their reduction might improve the lipid profile of obese patients or prevent the development of associated metabolic illnesses. In this review, we highlight the beneficial role of flavonoids on obesity and related diseases linked to their anti-inflammatory properties. In light of the summarized studies, we suggest that anti-inflammatory therapies could have a relevant place in the prevention and treatment of obesity and metabolic disorders.
Collapse
|
13
|
Grepper D, Tabasso C, Aguettaz AKF, Martinotti A, Ebrahimi A, Lagarrigue S, Amati F. Methodological advancements in organ-specific ectopic lipid quantitative characterization: Effects of high fat diet on muscle and liver intracellular lipids. Mol Metab 2023; 68:101669. [PMID: 36642092 PMCID: PMC9938329 DOI: 10.1016/j.molmet.2023.101669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Ectopic lipid accumulation is a hallmark of metabolic diseases, linking obesity to non-alcoholic fatty liver disease, insulin resistance and diabetes. The use of zebrafish as a model of obesity and diabetes is raising due to the conserved properties of fat metabolism between humans and zebrafish, the homologous genes regulating lipid uptake and transport, the implementation of the '3R's principle and their cost-effectiveness. To date, a method allowing the conservation of lipid droplets (LDs) and organs in zebrafish larvae to image ectopic lipids is not available. Our objectives were to develop a novel methodology to quantitatively evaluate organ-specific LDs, in skeletal muscle and liver, in response to a nutritional perturbation. METHODS We developed a novel embedding and cryosectioning protocol allowing the conservation of LDs and organs in zebrafish larvae. To establish the quantitative measures, we used a three-arm parallel nutritional intervention design. Zebrafish larvae were fed a control diet containing 14% of nutritional fat or two high fat diets (HFDs) containing 25 and 36% of dietary fats. In muscle and liver, LDs were characterized using immunofluorescence confocal microscopy. In liver, intrahepatocellular lipids were discriminated from intrasinusoid lipids. To complete liver characteristics, fibrosis was identified with Masson's Trichrome staining. Finally, to confirm the conservation and effect of HFD, molecular players of fat metabolism were evaluated by RT-qPCR. RESULTS The cryosections obtained after setting up the embedding and cryopreservation method were of high quality, preserving tissue morphology and allowing the visualization of ectopic lipids. Both HFDs were obesogenic, without modifying larvae survival or development. Neutral lipid content increased with time and augmented dietary fat. Intramuscular LD volume density increased and was explained by an increase in LDs size but not in numbers. Intrahepatocellular LD volume density increased and was explained by an increased number of LDs, not by their increased size. Sinusoid area and lipid content were both increased. Hepatic fibrosis appeared with both HFDs. We observed alterations in the expression of genes associated with LD coating proteins, LD dynamics, lipogenesis, lipolysis and fatty acid oxidation. CONCLUSIONS In this study, we propose a reproducible and fast method to image zebrafish larvae without losing LD quality and organ morphology. We demonstrate the impact of HFD on LD characteristics in liver and skeletal muscle accompanied by alterations of key players of fat metabolism. Our observations confirm the evolutionarily conserved mechanisms in lipid metabolism and reveal organ specific adaptations. The methodological advancements proposed in this work open the doors to study organelle adaptations in obesity and diabetes related research such as lipotoxicity, organelle contacts and specific lipid depositions.
Collapse
Affiliation(s)
- Dogan Grepper
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland
| | - Cassandra Tabasso
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland
| | - Axel K F Aguettaz
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland; Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Adrien Martinotti
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland; Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ammar Ebrahimi
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland; Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sylviane Lagarrigue
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland
| | - Francesca Amati
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland; Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
14
|
Fromenty B, Roden M. Mitochondrial alterations in fatty liver diseases. J Hepatol 2023; 78:415-429. [PMID: 36209983 DOI: 10.1016/j.jhep.2022.09.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/29/2022] [Accepted: 09/17/2022] [Indexed: 11/07/2022]
Abstract
Fatty liver diseases can result from common metabolic diseases, as well as from xenobiotic exposure and excessive alcohol use, all of which have been shown to exert toxic effects on hepatic mitochondrial functionality and dynamics. Invasive or complex methodology limits large-scale investigations of mitochondria in human livers. Nevertheless, abnormal mitochondrial function, such as impaired fatty acid oxidation and oxidative phosphorylation, drives oxidative stress and has been identified as an important feature of human steatohepatitis. On the other hand, hepatic mitochondria can be flexible and adapt to the ambient metabolic condition to prevent triglyceride and lipotoxin accumulation in obesity. Experience from studies on xenobiotics has provided important insights into the regulation of hepatic mitochondria. Increasing awareness of the joint presence of metabolic disease-related (lipotoxic) and alcohol-related liver diseases further highlights the need to better understand their mutual interaction and potentiation in disease progression. Recent clinical studies have assessed the effects of diets or bariatric surgery on hepatic mitochondria, which are also evolving as an interesting therapeutic target in non-alcoholic fatty liver disease. This review summarises the current knowledge on hepatic mitochondria with a focus on fatty liver diseases linked to obesity, type 2 diabetes and xenobiotics.
Collapse
Affiliation(s)
- Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000, Rennes, France
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.
| |
Collapse
|
15
|
Vasyutina M, Alieva A, Reutova O, Bakaleiko V, Murashova L, Dyachuk V, Catapano AL, Baragetti A, Magni P. The zebrafish model system for dyslipidemia and atherosclerosis research: Focus on environmental/exposome factors and genetic mechanisms. Metabolism 2022; 129:155138. [PMID: 35051509 DOI: 10.1016/j.metabol.2022.155138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
Dyslipidemias and atherosclerosis play a pivotal role in cardiovascular risk and disease. Although some pathophysiological mechanisms underlying these conditions have been unveiled, several knowledge gaps still remain. Experimental models, both in vitro and in vivo, have been instrumental to our better understanding of such complex processes. The latter have often been based on rodent species, either wild-type or, in several instances, genetically modified. In this context, the zebrafish may represent an additional very useful in vivo experimental model for dyslipidemia and atherosclerosis. Interestingly, the lipid metabolism of zebrafish shares several features with that present in humans, recapitulating some molecular features and pathophysiological aspects in a better way than that of rodents. The zebrafish model may be of help to address questions related to exposome factors as well as to genetic features, aiming to dissect selected aspects of the more complex scenario observed in humans. Indeed, exposome-related dyslipidemia/atherosclerosis research in zebrafish may target different scientific questions, related to nutrition, microbiota, temperature, light exposure at the larval stage, exposure to chemicals and epigenetic consequences of such external factors. Addressing genetic features related to dyslipidemia/atherosclerosis using the zebrafish model is already a reality and active research is now ongoing in this promising area. Novel technologies (gene and genome editing) may help to identify new candidate genes involved in dyslipidemia and dyslipidemia-related diseases. Based on these considerations, the zebrafish experimental model appears highly suitable for the study of exposome factors, genes and molecules involved in the development of atherosclerosis-related disease as well as for the validation of novel potential treatment options.
Collapse
Affiliation(s)
- Marina Vasyutina
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia.
| | - Asiiat Alieva
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia
| | - Olga Reutova
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia
| | | | - Lada Murashova
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia
| | | | - Alberico L Catapano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Milan, Italy
| | - Andrea Baragetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Milan, Italy
| | - Paolo Magni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Milan, Italy.
| |
Collapse
|
16
|
Qiao F, Tan F, Li LY, Lv HB, Chen L, Du ZY, Zhang ML. Alteration and the Function of Intestinal Microbiota in High-Fat-Diet- or Genetics-Induced Lipid Accumulation. Front Microbiol 2021; 12:741616. [PMID: 34603270 PMCID: PMC8484964 DOI: 10.3389/fmicb.2021.741616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
Diet and host genetics influence the composition of intestinal microbiota, yet few studies have compared the function of intestinal microbiota in the diet- or genotype-induced lipid deposition, which limits our understanding of the role of intestinal bacteria in metabolic disorders. The lipid accumulation in wild-type zebrafish fed with control (CON) or high-fat (HF) diet and two gene-knockout zebrafish lines (cpt1b–/– or pparab–/–) fed with control diet was measured after a 4-week feeding experiment. The intestinal microbiota composition of these groups was investigated using 16S ribosomal RNA (rRNA) gene sequencing (DNA-based) and 16S rRNA sequencing (RNA-based). The HF diet or deficiency of two genes induced more weight gain and higher triglyceride content in the liver compared with their control group. 16S rRNA gene sequencing (DNA-based) indicated the decreased abundance of Proteobacteria in the HF group compared with CON, but there was no significant difference in bacterial α diversity among treatments. 16S rRNA sequencing (RNA-based) confirmed the decreased abundance of Proteobacteria and the bacterial α diversity in the HF group compared with CON. Deficiency of cpt1b or pparab showed less change in microbiota composition compared with their wild-type group. Intestinal microbiota of each group was transferred to germ-free zebrafish, and the quantification of Nile red staining indicated that the intestinal microbiota of the HF group induced more lipid accumulation compared with CON, whereas intestinal microbiota of cpt1b–/– and pparab–/– zebrafish did not. The results showed that RNA-based bacterial sequencing revealed more bacterial alteration than DNA-based bacterial sequencing. HF diet had a more dominant role in shaping gut microbiota composition to induce lipid accumulation compared with the gene-knockout of cpt1b or pparab in zebrafish, and the transplant of intestinal microbiota from HF-fed fish induced more lipid deposition in germ-free zebrafish. Together, these data suggested that a high-fat diet exerted a more dominant role over the deletion of cpt1b or pparab on the intestinal bacterial composition, which corresponded to lipid accumulation.
Collapse
Affiliation(s)
- Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Fang Tan
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Ling-Yu Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Hong-Bo Lv
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
17
|
Luzio A, Figueiredo M, Matos MM, Coimbra AM, Álvaro AR, Monteiro SM. Effects of short-term exposure to genistein and overfeeding diet on the neural and retinal progenitor competence of adult zebrafish (Danio rerio). Neurotoxicol Teratol 2021; 88:107030. [PMID: 34506931 DOI: 10.1016/j.ntt.2021.107030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022]
Abstract
Neurogenesis is a process that occurs throughout the life of a vertebrate. Among the different factors that may affect the natural occurrence of neurogenesis, obesity seems to decrease the proliferation capacity of progenitor neuronal cells. Conversely, the phytoestrogen genistein is known to attenuate some obesity effects beyond its neuroprotective action. Aiming to improve the understanding of how obesity and genistein trigger an impact on the neural and retinal progenitor competence of adult zebrafish, fish were exposed to genistein (GEN - 2 μg L-1) alone or combined with two dietary groups (control and overfeed - OFD) for up to 9 weeks. Zebrafish were fed once per day with Artemia sp. in the control and GEN (2% of BW, control diet), and three times per day in the OFD and OFD + GEN groups (12% BW, overfeeding diet). To assess obesity induction, BMI, biometric parameters, and PPAR-γ protein were quantified. Afterwards, qRT-PCR and immunohistochemistry were performed to determine the cell proliferation and the presence of stem cells through PCNA and Sox-2. Our findings proved that overfeeding adult zebrafish increased the general growth and induced the development of fatty liver. However, for OFD + GEN, this effect was assuaged through the anti-adipogenic effect of GEN. This finding suggests that phytoestrogens could be beneficial to reduce the negative effects of obesity. Moreover, OF induced negative effects on retinal and brain homeostasis, decreasing the proliferation capacity of progenitor neuronal cells. With regard to retinal progenitor competence, genistein seems to mitigate the negative impacts of obesity, whereas the effects of obesity on the brain were exacerbated by this phytoestrogen which negatively influenced the homeostasis of zebrafish neural progenitor competence. This study highlighted the fact that the effects of phytoestrogens in adult neural progenitor competence are complex and could exhibit dissimilar effects depending on the tissue.
Collapse
Affiliation(s)
- A Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Vila Real, Portugal; Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801 Vila Real, Portugal
| | - M Figueiredo
- Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801 Vila Real, Portugal
| | - M M Matos
- Department of Genetics and Biotechnology, Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Sciences Faculty, University of Lisbon, Lisbon, Portugal
| | - A M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Vila Real, Portugal; Department of Genetics and Biotechnology, Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - A R Álvaro
- Center for Neuroscience and Cell Biology, University of Coimbra (CNBC-UC), 3004-504 Coimbra, Portugal.
| | - S M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Vila Real, Portugal; Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801 Vila Real, Portugal.
| |
Collapse
|
18
|
Bootorabi F, Saadat F, Falak R, Manouchehri H, Changizi R, Mohammadi H, Safavifar F, Khorramizadeh MR. Gut micobiota alteration by Lactobacillus rhamnosus reduces pro-inflammatory cytokines and glucose level in the adult model of Zebrafish. BMC Res Notes 2021; 14:302. [PMID: 34372916 PMCID: PMC8351095 DOI: 10.1186/s13104-021-05706-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
Objective Type 2 diabetes mellitus (T2DM) is still a challenge for physicians to manage patient’s circumstances. It is assumed that alterations in the normal flora may be involved in the pathogenesis of T2DM through inducing chronic inflammation. To investigate the effect of Lactobacillus rhamnosus as a common probiotic on T2DM, we induced an experimental model of T2DM in adult male Zebrafish by gradient hyper-glucose accumulation methodology. Results In this trial 3-month old male adult Zebrafish were divided in to four groups including two control groups and T2DM induced groups with or without probiotic treatment. After 5 days of acclimation, T2DM was induced by a gradient hyper-glucose accumulation methodology. Diabetic fishes had statistically abnormal blood glucose and pro-inflammatory cytokine levels compared to control group (p = 0.0001). These results suggest that probiotic intervention decreased the blood glucose level in the T2DM-P group by decreasing pro-inflammatory cytokines responsible for signaling in T2DM therapeutic modalities. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05706-5.
Collapse
Affiliation(s)
- Fatemeh Bootorabi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Endocrinology and Metabolism Research Institute (EMRI), Next to Dr. Shariati Hospital,#10 Jalal Al-E-Ahmad Expy, 1411713119, Tehran, Iran
| | - Farshid Saadat
- Department of Immunology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Manouchehri
- Department of Aquaculture, Babol Branch of Islamic Azad University, 47134, Babol, Iran
| | - Reza Changizi
- Department of Aquaculture, Babol Branch of Islamic Azad University, 47134, Babol, Iran
| | - Hasan Mohammadi
- Zebrafish Core Facility, Endocrinology and Metabolism Research Institute (EMRI), Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Safavifar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Endocrinology and Metabolism Research Institute (EMRI), Next to Dr. Shariati Hospital,#10 Jalal Al-E-Ahmad Expy, 1411713119, Tehran, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Watts SA, D'Abramo LR. Standardized Reference Diets for Zebrafish: Addressing Nutritional Control in Experimental Methodology. Annu Rev Nutr 2021; 41:511-527. [PMID: 34270334 DOI: 10.1146/annurev-nutr-120420-034809] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ideal of experimental methodology in animal research is the reduction or elimination of environmental variables or consistency in their application. In lab animals, diet has been recognized as a very influential response variable. Reproducibility in research using rodents required the development of a unique diet of consistent ingredient and nutrient composition to allow for cross-comparisons of lab results, spatially and temporally. These diets are commonly referred to as standard reference diets (SRDs). The established validity of published nutritional requirements combined with the cooperation of commercial partners led to species-specific reference diets commonly used by the research community. During the last several decades, zebrafish (Danio rerio) have become a widespread alternative animal model, but specific knowledge of their nutrition is lacking. We present a short-term approach for developing an SRD for zebrafish, similar to that eventually attained for rodents over decades. Imminent development of an open-formulation, commercially produced SRD for zebrafish will notably advance translational biomedical science. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Stephen A Watts
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170, USA;
| | - Louis R D'Abramo
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170, USA;
| |
Collapse
|
20
|
Murphy LB, Santos-Ledo A, Dhanaseelan T, Eley L, Burns D, Henderson DJ, Chaudhry B. Exercise, programmed cell death and exhaustion of cardiomyocyte proliferation in aging zebrafish. Dis Model Mech 2021; 14:dmm049013. [PMID: 34296752 PMCID: PMC8319546 DOI: 10.1242/dmm.049013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/01/2021] [Indexed: 12/26/2022] Open
Abstract
Exercise may ameliorate the eventual heart failure inherent in human aging. In this study, we use zebrafish to understand how aging and exercise affect cardiomyocyte turnover and myocardial remodelling. We show that cardiomyocyte proliferation remains constant throughout life but that onset of fibrosis is associated with a late increase in apoptosis. These findings correlate with decreases in voluntary swimming activity, critical swimming speed (Ucrit), and increases in biomarkers of cardiac insufficiency. The ability to respond to severe physiological stress is also impaired with age. Although young adult fish respond with robust cardiomyocyte proliferation in response to enforced swimming, this is dramatically impaired in older fish and served by a smaller proliferation-competent cardiomyocyte population. Finally, we show that these aging responses can be improved through increased activity throughout adulthood. However, despite improvement in Ucrit and the proliferative response to stress, the size of the proliferating cardiomyocyte population remained unchanged. The zebrafish heart models human aging and reveals the important trade-off between preserving cardiovascular fitness through exercise at the expense of accelerated fibrotic change.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bill Chaudhry
- Biosciences Institute, Faculty of Biomedical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
21
|
Han SL, Liu Y, Limbu SM, Chen LQ, Zhang ML, Du ZY. The reduction of lipid-sourced energy production caused by ATGL inhibition cannot be compensated by activation of HSL, autophagy, and utilization of other nutrients in fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:173-188. [PMID: 33245450 DOI: 10.1007/s10695-020-00904-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
The adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL)-mediated lipolysis play important roles in lipid catabolism. ATGL is considered the central rate-limiting enzyme in the mobilization of fatty acids in mammals. Currently, severe fat accumulation has been commonly detected in farmed fish globally. However, the ATGL-mediated lipolysis and the potential synergy among ATGL, HSL, and autophagy, which is another way for lipid breakdown, have not been intensively understood in fish. In the present study, we added Atglistatin as an ATGL-specific inhibitor into the zebrafish diet and fed to the fish for 5 weeks. The results showed that the Atglistatin-treated fish exhibited severe fat deposition, reduced oxygen consumption, and fatty acid β-oxidation, accompanied with increased oxidative stress and inflammation. Furthermore, the Atglistatin-treated fish elevated total and phosphorylation protein expressions of HSL. However, the free fatty acids and lipase activities in organs were still systemically reduced in the Atglistatin-treated fish, and the autophagy marker LC3 was also decreased in the liver. On the other hand, glycogenolysis was stimulated but blood glucose was higher in the Atglistatin-treated fish. The transcriptomic analysis also provided the hint that the protein turnover efficiency in Atglistatin-treated fish was likely to be accelerated, but the protein content in whole fish was not affected. Taken together, ATGL plays crucial roles in energy homeostasis such that its inhibition causes loss of lipid-sourced energy production, which cannot be compensated by activation of HSL, autophagy, and utilization of other nutrients.
Collapse
Affiliation(s)
- Si-Lan Han
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yan Liu
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Samwel M Limbu
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
- Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, P.O. Box 35064, Dar es Salaam, Tanzania
- ECNU-UDSM Joint Research Center for Aquaculture and Fish Biology (JRCAFB), Dar es Salaam, Tanzania
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China.
- ECNU-UDSM Joint Research Center for Aquaculture and Fish Biology (JRCAFB), Shanghai, China.
| |
Collapse
|
22
|
van de Venter M, Didloff J, Reddy S, Swanepoel B, Govender S, Dambuza NS, Williams S, Koekemoer TC, Venables L. Wild-Type Zebrafish ( Danio rerio) Larvae as a Vertebrate Model for Diabetes and Comorbidities: A Review. Animals (Basel) 2020; 11:E54. [PMID: 33396883 PMCID: PMC7824285 DOI: 10.3390/ani11010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Zebrafish have become a popular alternative to higher animals in biomedical and pharmaceutical research. The development of stable mutant lines to model target specific aspects of many diseases, including diabetes, is well reported. However, these mutant lines are much more costly and challenging to maintain than wild-type zebrafish and are simply not an option for many research facilities. As an alternative to address the disadvantages of advanced mutant lines, wild-type larvae may represent a suitable option. In this review, we evaluate organ development in zebrafish larvae and discuss established methods that use wild-type zebrafish larvae up to seven days post fertilization to test for potential drug candidates for diabetes and its commonly associated conditions of oxidative stress and inflammation. This provides an up to date overview of the relevance of wild-type zebrafish larvae as a vertebrate antidiabetic model and confidence as an alternative tool for preclinical studies. We highlight the advantages and disadvantages of established methods and suggest recommendations for future developments to promote the use of zebrafish, specifically larvae, rather than higher animals in the early phase of antidiabetic drug discovery.
Collapse
Affiliation(s)
- Maryna van de Venter
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Jenske Didloff
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Shanika Reddy
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Bresler Swanepoel
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Sharlene Govender
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Ntokozo Shirley Dambuza
- Department of Pharmacy, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa;
| | - Saralene Williams
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Trevor Craig Koekemoer
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Luanne Venables
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| |
Collapse
|
23
|
Godino-Gimeno A, Sánchez E, Guillot R, Rocha A, Angotzi AR, Leal E, Rotllant J, Cerdá-Reverter JM. Growth Performance After Agouti-Signaling Protein 1 ( Asip1) Overexpression in Transgenic Zebrafish. Zebrafish 2020; 17:373-381. [PMID: 33112719 DOI: 10.1089/zeb.2020.1932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The melanocortin system is a key structure in the regulation of energy balance. Overexpression of inverse agonists, agouti-signaling protein (ASIP), and agouti-related protein (AGRP) results in increased food intake, linear growth, and body weight. ASIP regulates dorsal-ventral pigment polarity through melanocortin 1 receptor (MC1R) and overexpression induces obesity in mice by binding to central MC4R. Asip1 overexpression in transgenic zebrafish (asip1-Tg) enhances growth, yet experiments show fish overexpressing Asip1 do not develop obesity even under severe feeding regimes. Asip1-Tg fish do not need to eat more to grow larger and faster; thus, increased food efficiency can be observed. In addition, asip1-Tg fish reared at high density are able to grow far more than wild-type (WT) fish reared at low density, although asip1-Tg fish seem to be more sensitive to crowding stress than WT fish, thus making the melanocortin system a target for sustainable aquaculture, especially as the U.S. Food and Drug Association has recently approved transgenic fish trading.
Collapse
Affiliation(s)
- Alejandra Godino-Gimeno
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellon, Spain
| | - Elisa Sánchez
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellon, Spain
| | - Raúl Guillot
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellon, Spain
| | - Ana Rocha
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Matosinhos, Portugal.,MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Peniche, Portugal
| | - Anna Rita Angotzi
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellon, Spain
| | - Esther Leal
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellon, Spain
| | - Josep Rotllant
- Department of Biotechnology and Aquaculture, Instituto de Investigaciones Marinas, IIM-CSIC, Vigo, Spain
| | - José Miguel Cerdá-Reverter
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellon, Spain
| |
Collapse
|
24
|
Baran A, Sulukan E, Türkoğlu M, Ghosigharehagaji A, Yildirim S, Kankaynar M, Bolat I, Kaya M, Topal A, Ceyhun SB. Is sodium carboxymethyl cellulose (CMC) really completely innocent? It may be triggering obesity. Int J Biol Macromol 2020; 163:2465-2473. [PMID: 32987073 DOI: 10.1016/j.ijbiomac.2020.09.169] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/08/2020] [Accepted: 09/20/2020] [Indexed: 12/21/2022]
Abstract
The toxicity of sodium carboxymethyl cellulose (CMC), which has GRAS status and has been determined as "ADI non specified", was re-evaluated with a new modelling and molecular-based data. For this purpose, CMC, a food additive, was injected to the yolk sac (food) of the zebrafish embryo by the microinjection method at the 4th hour of fertilization at different concentrations. As a result, it was found that CMC showed no toxic effects within the framework of the parameters studied. But, we determined increasing lipid accumulation in zebrafish embryos exposed to CMC in a dose-dependent manner. To elucidate the mechanism underlying this lipid accumulation, the expression levels of genes related to obesity-linked lipid metabolism were examined. Our findings show that while CMC does not cause a toxic effect in zebrafish embryos, it can lead important effects on lipid metabolism by causing changes in the expression of some genes associated with obesity.
Collapse
Affiliation(s)
- Alper Baran
- Department of Food Quality Control and Analysis, Erzurum Vocational School, Atatürk University, Erzurum, Turkey
| | - Ekrem Sulukan
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey; Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Medine Türkoğlu
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey; Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Atena Ghosigharehagaji
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Meryem Kankaynar
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey; Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Mükerrem Kaya
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum, Turkey
| | - Ahmet Topal
- Department of Basic Sciences, Faculty of Fisheries, Atatürk University, TR-25240 Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey; Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
25
|
Mahanta CS, Aparna S, Das SK, Jena BB, Swain BR, Patri M, Dash BP, Satapathy R. Star‐Shaped Phenylene BODIPY: Synthesis, Properties and Biocompatibility Assessment Using Zebrafish. ChemistrySelect 2020. [DOI: 10.1002/slct.202001954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Sai Aparna
- Department of ZoologyRavenshaw University Cuttack Odisha 753003 India
| | - Saroj Kumar Das
- Centre for BiotechnologySiksha ‘O' Anusandhan (Deemed to be University) Bhubaneswar Odisha 751030 India
| | | | | | - Manorama Patri
- Department of ZoologyRavenshaw University Cuttack Odisha 753003 India
| | - Barada P. Dash
- Department of ChemistrySiksha ‘O' Anusandhan (Deemed to be University) Bhubaneswar Odisha 751030 India
| | | |
Collapse
|
26
|
Fowler LA, Dennis-Cornelius LN, Dawson JA, Barry RJ, Davis JL, Powell ML, Yuan Y, Williams MB, Makowsky R, D'Abramo LR, Watts SA. Both Dietary Ratio of n-6 to n-3 Fatty Acids and Total Dietary Lipid Are Positively Associated with Adiposity and Reproductive Health in Zebrafish. Curr Dev Nutr 2020; 4:nzaa034. [PMID: 32258992 PMCID: PMC7108797 DOI: 10.1093/cdn/nzaa034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Controversial findings have been reported in human and animal studies regarding the influence of n-6 (ω-6) to n-3 (ω-3) fatty acid ratios on obesity and health. Two confounding factors may be related to interactions with other dietary lipid components or sex-specific differences in fatty acid metabolism. OBJECTIVE This study investigated main and interactive effects of total dietary lipid, ratio of n-6 to n-3 fatty acids, and sex on growth, adiposity, and reproductive health in wild-type zebrafish. METHODS Male and female zebrafish (3 wk old) were fed 9 diets consisting of 3 ratios of n-6 to n-3 fatty acids (1.4:1, 5:1, and 9.5:1) varied within 3 total lipid amounts (80, 110, and 140 g/kg) for 16 wk. Data were then collected on growth, body composition (determined by chemical carcass analysis), and female reproductive success (n = 32 breeding events/diet over 4 wk). Main and interactive effects of dietary lipid and sex were evaluated with regression methods. Significant differences within each dietary lipid component were relative to the intercept/reference group (80 g/kg and 1.4:1 ratio). RESULTS Dietary lipid and sex interacted in their effects on body weight (P = 0.015), total body length (P = 0.003), and total lipid mass (P = 0.029); thus, these analyses were stratified by sex. Female spawning success decreased as dietary total lipid and fatty acid ratio increased (P = 0.030 and P = 0.026, respectively). While total egg production was not associated with either dietary lipid component, females fed the 5:1 ratio produced higher proportions of viable embryos compared with the 1.4:1 ratio [median (95% CI): 0.915 (0.863, 0.956) vs 0.819 (0.716, 0.876); P < 0.001]. CONCLUSIONS Further characterization of dietary lipid requirements will help define healthy balances of dietary lipid, while the sex-specific responses to dietary lipid identified in this study may partially explain sex disparities in the development of obesity and its comorbidities.
Collapse
Affiliation(s)
- Lauren A Fowler
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - John A Dawson
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Robert J Barry
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James L Davis
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mickie L Powell
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuan Yuan
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael B Williams
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Louis R D'Abramo
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephen A Watts
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
27
|
Arjmand B, Tayanloo-Beik A, Foroughi Heravani N, Alaei S, Payab M, Alavi-Moghadam S, Goodarzi P, Gholami M, Larijani B. Zebrafish for Personalized Regenerative Medicine; A More Predictive Humanized Model of Endocrine Disease. Front Endocrinol (Lausanne) 2020; 11:396. [PMID: 32765420 PMCID: PMC7379230 DOI: 10.3389/fendo.2020.00396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
Regenerative medicine is a multidisciplinary field that aims to determine different factors and develop various methods to regenerate impaired tissues, organs, and cells in the disease and impairment conditions. When treatment procedures are specified according to the individual's information, the leading role of personalized regenerative medicine will be revealed in developing more effective therapies. In this concept, endocrine disorders can be considered as potential candidates for regenerative medicine application. Diabetes mellitus as a worldwide prevalent endocrine disease causes different damages such as blood vessel damages, pancreatic damages, and impaired wound healing. Therefore, a global effort has been devoted to diabetes mellitus investigations. Hereupon, the preclinical study is a fundamental step. Up to now, several species of animals have been modeled to identify the mechanism of multiple diseases. However, more recent researches have been demonstrated that animal models with the ability of tissue regeneration are more suitable choices for regenerative medicine studies in endocrine disorders, typically diabetes mellitus. Accordingly, zebrafish has been introduced as a model that possesses the capacity to regenerate different organs and tissues. Especially, fine regeneration in zebrafish has been broadly investigated in the regenerative medicine field. In addition, zebrafish is a suitable model for studying a variety of different situations. For instance, it has been used for developmental studies because of the special characteristics of its larva. In this review, we discuss the features of zebrafish that make it a desirable animal model, the advantages of zebrafish and recent research that shows zebrafish is a promising animal model for personalized regenerative diseases. Ultimately, we conclude that as a newly introduced model, zebrafish can have a leading role in regeneration studies of endocrine diseases and provide a good perception of underlying mechanisms.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Foroughi Heravani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Alaei
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology and Pharmacology, Toxicology and Poisoning Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Bagher Larijani
| |
Collapse
|
28
|
Zebrafish Models of Human Skeletal Disorders: Embryo and Adult Swimming Together. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1253710. [PMID: 31828085 PMCID: PMC6886339 DOI: 10.1155/2019/1253710] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/11/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
Danio rerio (zebrafish) is an elective model organism for the study of vertebrate development because of its high degree of homology with human genes and organs, including bone. Zebrafish embryos, because of the optical clarity, small size, and fast development, can be easily used in large-scale mutagenesis experiments to isolate mutants with developmental skeletal defects and in high-throughput screenings to find new chemical compounds for the ability to revert the pathological phenotype. On the other hand, the adult zebrafish represents another powerful resource for pathogenic and therapeutic studies about adult human bone diseases. In fish, some characteristics such as bone turnover, reparation, and remodeling of the adult bone tissue cannot be found at the embryonic stage. Several pathological models have been established in adult zebrafish such as bone injury models, osteoporosis, and genetic diseases such as osteogenesis imperfecta. Given the growing interest for metabolic diseases and their complications, adult zebrafish models of type 2 diabetes and obesity have been recently generated and analyzed for bone complications using scales as model system. Interestingly, an osteoporosis-like phenotype has been found to be associated with metabolic alterations suggesting that bone complications share the same mechanisms in humans and fish. Embryo and adult represent powerful resources in rapid development to study bone physiology and pathology from different points of view.
Collapse
|