1
|
Han R, Wang Q, Xiong X, Chen X, Tu Z, Li B, Zhang F, Chen C, Pan M, Xu T, Chen L, Wang Z, Liu Y, He D, Guo X, He F, Wu P, Yin P, Liu Y, Yan X, Li S, Li XJ, Yang W. Deficiency of parkin causes neurodegeneration and accumulation of pathological α-synuclein in monkey models. J Clin Invest 2024; 134:e179633. [PMID: 39403921 PMCID: PMC11473153 DOI: 10.1172/jci179633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
Parkinson's disease (PD) is characterized by age-dependent neurodegeneration and the accumulation of toxic phosphorylated α-synuclein (pS129-α-syn). The mechanisms underlying these crucial pathological changes remain unclear. Mutations in parkin RBR E3 ubiquitin protein ligase (PARK2), the gene encoding parkin that is phosphorylated by PTEN-induced putative kinase 1 (PINK1) to participate in mitophagy, cause early onset PD. However, current parkin-KO mouse and pig models do not exhibit neurodegeneration. In the current study, we utilized CRISPR/Cas9 technology to establish parkin-deficient monkey models at different ages. We found that parkin deficiency leads to substantia nigra neurodegeneration in adult monkey brains and that parkin phosphorylation decreases with aging, primarily due to increased insolubility of parkin. Phosphorylated parkin is important for neuroprotection and the reduction of pS129-α-syn. Consistently, overexpression of WT parkin, but not a mutant form that cannot be phosphorylated by PINK1, reduced the accumulation of pS129-α-syn. These findings identify parkin phosphorylation as a key factor in PD pathogenesis and suggest it as a promising target for therapeutic interventions.
Collapse
Affiliation(s)
- Rui Han
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Qi Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xin Xiong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xiusheng Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Zhuchi Tu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Bang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Fei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Chunyu Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Mingtian Pan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Ting Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Laiqiang Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Zhifu Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yanting Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Dajian He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xiangyu Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Feng He
- Hubei Topgene Biotechnological Research Institute Co., Ltd. Wuhan, China
| | - Peng Wu
- Hubei Topgene Biotechnological Research Institute Co., Ltd. Wuhan, China
| | - Peng Yin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yunbo Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shihua Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xiao-Jiang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Weili Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Sevegnani M, Lama A, Girardi F, Hess MW, Castelo MP, Pichler I, Biressi S, Piccoli G. Parkin R274W mutation affects muscle and mitochondrial physiology. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167302. [PMID: 38878834 DOI: 10.1016/j.bbadis.2024.167302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Recessive mutations in the Parkin gene (PRKN) are the most common cause of young-onset inherited parkinsonism. Parkin is a multifunctional E3 ubiquitin ligase that plays a variety of roles in the cell including the degradation of proteins and the maintenance of mitochondrial homeostasis, integrity, and biogenesis. In 2001, the R275W mutation in the PRKN gene was identified in two unrelated families with a multigenerational history of postural tremor, dystonia and parkinsonism. Drosophila models of Parkin R275W showed selective and progressive degeneration of dopaminergic neuronal clusters, mitochondrial abnormalities, and prominent climbing defects. In the Prkn mouse orthologue, the amino acid R274 corresponds to human R275. Here we described an age-related motor impairment and a muscle phenotype in R274W +/+ mice. In vitro, Parkin R274W mutation correlates with abnormal myoblast differentiation, mitochondrial defects, and alteration in mitochondrial mRNA and protein levels. Our data suggest that the Parkin R274W mutation may impact mitochondrial physiology and eventually myoblast proliferation and differentiation.
Collapse
Affiliation(s)
| | - Adriano Lama
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Michael W Hess
- Innsbruck Medical University, Institute of Histology and Embryology, Medical University of Innsbruck, Austria
| | - Maria Paulina Castelo
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | | | | |
Collapse
|
3
|
Bustillos BA, Cocker LT, Coban MA, Weber CA, Bredenberg JM, Boneski PK, Siuda J, Slawek J, Puschmann A, Narendra DP, Graff-Radford NR, Wszolek ZK, Dickson DW, Ross OA, Caulfield TR, Springer W, Fiesel FC. Structural and Functional Characterization of the Most Frequent Pathogenic PRKN Substitution p.R275W. Cells 2024; 13:1540. [PMID: 39329724 PMCID: PMC11430725 DOI: 10.3390/cells13181540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Mutations in the PINK1 and PRKN genes are the most frequent genetic cause of early-onset Parkinson disease. The pathogenic p.R275W substitution in PRKN is the most frequent substitution observed in patients, and thus far has been characterized mostly through overexpression models that suggest a possible gain of toxic misfunction. However, its effects under endogenous conditions are largely unknown. We used patient fibroblasts, isogenic neurons, and post-mortem human brain samples from carriers with and without PRKN p.R275W to assess functional impact. Immunoblot analysis and immunofluorescence were used to study mitophagy activation, and mitophagy execution was analyzed by flow cytometry of the reporter mitoKeima. The functional analysis was accompanied by structural investigation of PRKN p.R275W. We observed lower PRKN protein in fibroblasts with compound heterozygous p.R275W mutations. Isogenic neurons showed an allele-dose dependent decrease in PRKN protein. Lower PRKN protein levels were accompanied by diminished phosphorylated ubiquitin and decreased MFN2 modification. Mitochondrial degradation was also allele-dose dependently impaired. Consistently, PRKN protein levels were drastically reduced in human brain samples from p.R275W carriers. Finally, structural simulations showed significant changes in the closed form of PRKN p.R275W. Our data suggest that under endogenous conditions the p.R275W mutation results in a loss-of-function by destabilizing PRKN.
Collapse
Affiliation(s)
| | - Liam T Cocker
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA
| | - Mathew A Coban
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA
| | - Caleb A Weber
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA
| | | | - Paige K Boneski
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA
| | - Joanna Siuda
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Jaroslaw Slawek
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Andreas Puschmann
- Department of Clinical Sciences, Neurology, Lund University, 22100 Lund, Sweden
- Department of Neurology, Skane University Hospital, 22185 Lund, Sweden
| | - Derek P Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | | | - Zbigniew K Wszolek
- Mayo Clinic, Graduate School of Biomedical, Sciences Neuroscience PhD Program, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA
- Mayo Clinic, Graduate School of Biomedical, Sciences Neuroscience PhD Program, Jacksonville, FL 32224, USA
| | - Owen A Ross
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA
- Mayo Clinic, Graduate School of Biomedical, Sciences Neuroscience PhD Program, Jacksonville, FL 32224, USA
| | - Thomas R Caulfield
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA
- Mayo Clinic, Department of Neurosurgery, Jacksonville, FL 32224, USA
- Mayo Clinic, Department of Cancer Biology, Jacksonville, FL 32224, USA
- Mayo Clinic, Department of Biochemistry & Molecular Biology, Jacksonville, FL 32224, USA
- Mayo Clinic, Department of Computational Biology, Jacksonville, FL 32224, USA
| | - Wolfdieter Springer
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA
- Mayo Clinic, Graduate School of Biomedical, Sciences Neuroscience PhD Program, Jacksonville, FL 32224, USA
| | - Fabienne C Fiesel
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA
- Mayo Clinic, Graduate School of Biomedical, Sciences Neuroscience PhD Program, Jacksonville, FL 32224, USA
| |
Collapse
|
4
|
Yuan Y, Wang Y, Liu M, Luo H, Liu X, Li L, Mao C, Yang T, Li S, Zhang X, Gao Y, Xu Y, Yang J. Peripheral cutaneous synucleinopathy characteristics in genetic Parkinson's disease. Front Neurol 2024; 15:1404492. [PMID: 38751879 PMCID: PMC11094647 DOI: 10.3389/fneur.2024.1404492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Background Cutaneous phosphorylated alpha-synuclein (p-α-syn) deposition is an important biomarker of idiopathic Parkinson's disease (iPD). Recent studies have reported synucleinopathies in patients with common genetic forms of PD. Objective This study aimed to detect p-α-syn deposition characteristic in rare genetic PD patients with CHCHD2 or RAB39B mutations. Moreover, this study also aimed to describe peripheral alpha-synuclein prion-like activity in genetic PD patients, and acquire whether the cutaneous synucleinopathy characteristics of genetic PD are consistent with central neuropathologies. Methods We performed four skin biopsy samples from the distal leg (DL) and proximal neck (C7) of 161 participants, including four patients with CHCHD2 mutations, two patients with RAB39B mutations, 16 patients with PRKN mutations, 14 patients with LRRK2 mutations, five patients with GBA mutations, 100 iPD patients, and 20 healthy controls. We detected cutaneous synucleinopathies using immunofluorescence staining and a seeding amplification assay (SAA). A systematic literature review was also conducted, involving 64 skin biopsies and 205 autopsies of genetic PD patients with synucleinopathy. Results P-α-syn was deposited in the peripheral cutaneous nerves of PD patients with CHCHD2, LRRK2, or GBA mutations but not in those with RAB39B or PRKN mutations. There were no significant differences in the location or rate of α-syn-positive deposits between genetic PD and iPD patients. Peripheral cutaneous synucleinopathy appears to well represent brain synucleinopathy of genetic PD, especially autosomal dominant PD (AD-PD). Cutaneous α-synuclein SAA analysis of iPD and LRRK2 and GBA mutation patients revealed prion-like activity. Conclusion P-α-syn deposition in peripheral cutaneous nerves, detected using SAA and immunofluorescence staining, may serve as an accurate biomarker for genetic PD and iPD in the future.
Collapse
Affiliation(s)
- Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yangyang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Minglei Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Xiaojing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Lanjun Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Ting Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuo Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyun Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Menon PJ, Sambin S, Criniere-Boizet B, Courtin T, Tesson C, Casse F, Ferrien M, Mariani LL, Carvalho S, Lejeune FX, Rebbah S, Martet G, Houot M, Lanore A, Mangone G, Roze E, Vidailhet M, Aasly J, Gan Or Z, Yu E, Dauvilliers Y, Zimprich A, Tomantschger V, Pirker W, Álvarez I, Pastor P, Di Fonzo A, Bhatia KP, Magrinelli F, Houlden H, Real R, Quattrone A, Limousin P, Korlipara P, Foltynie T, Grosset D, Williams N, Narendra D, Lin HP, Jovanovic C, Svetel M, Lynch T, Gallagher A, Vandenberghe W, Gasser T, Brockmann K, Morris HR, Borsche M, Klein C, Corti O, Brice A, Lesage S, Corvol JC. Genotype-phenotype correlation in PRKN-associated Parkinson's disease. NPJ Parkinsons Dis 2024; 10:72. [PMID: 38553467 PMCID: PMC10980707 DOI: 10.1038/s41531-024-00677-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Bi-allelic pathogenic variants in PRKN are the most common cause of autosomal recessive Parkinson's disease (PD). 647 patients with PRKN-PD were included in this international study. The pathogenic variants present were characterised and investigated for their effect on phenotype. Clinical features and progression of PRKN-PD was also assessed. Among 133 variants in index cases (n = 582), there were 58 (43.6%) structural variants, 34 (25.6%) missense, 20 (15%) frameshift, 10 splice site (7.5%%), 9 (6.8%) nonsense and 2 (1.5%) indels. The most frequent variant overall was an exon 3 deletion (n = 145, 12.3%), followed by the p.R275W substitution (n = 117, 10%). Exon3, RING0 protein domain and the ubiquitin-like protein domain were mutational hotspots with 31%, 35.4% and 31.7% of index cases presenting mutations in these regions respectively. The presence of a frameshift or structural variant was associated with a 3.4 ± 1.6 years or a 4.7 ± 1.6 years earlier age at onset of PRKN-PD respectively (p < 0.05). Furthermore, variants located in the N-terminus of the protein, a region enriched with frameshift variants, were associated with an earlier age at onset. The phenotype of PRKN-PD was characterised by slow motor progression, preserved cognition, an excellent motor response to levodopa therapy and later development of motor complications compared to early-onset PD. Non-motor symptoms were however common in PRKN-PD. Our findings on the relationship between the type of variant in PRKN and the phenotype of the disease may have implications for both genetic counselling and the design of precision clinical trials.
Collapse
Affiliation(s)
- Poornima Jayadev Menon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France.
- Assistance Publique Hôpitaux de Paris, Department of Neurology, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France.
- School of Postgraduate Studies, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Sara Sambin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Baptiste Criniere-Boizet
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Thomas Courtin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Genetics, Hôpital Pitié-Salpêtrière, Paris, France
| | - Christelle Tesson
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Fanny Casse
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Melanie Ferrien
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Louise-Laure Mariani
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Stephanie Carvalho
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Francois-Xavier Lejeune
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Sana Rebbah
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Gaspard Martet
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Marion Houot
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
- Centre of Excellence of Neurodegenerative Disease (CoEN), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Aymeric Lanore
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Graziella Mangone
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
- Department of Neurology, Movement Disorder Division, Rush University Medical Center, 1725 W. Harrison Street, Chicago, IL, USA
| | - Emmanuel Roze
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marie Vidailhet
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jan Aasly
- Department of Neurology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ziv Gan Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Yves Dauvilliers
- Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Institute for Neurosciences of Montpellier (INM), INSERM, Montpellier, France
| | | | | | - Walter Pirker
- Department of Neurology, Ottakring Clinic, Vienna, Austria
| | - Ignacio Álvarez
- Department of Neurology, Hospital Universitari Mutua de Terrassa, and Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Pau Pastor
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol and The Germans Trias i Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - Alessio Di Fonzo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Andrea Quattrone
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Prasad Korlipara
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Donald Grosset
- Institute of Neurological Sciences, University of Glasgow, Glasgow, UK
| | - Nigel Williams
- Department of Psychological Medicine and Neurology, Cardiff University, Cardiff, UK
| | - Derek Narendra
- Inherited Disorders Unit, Neurogenetics Branch, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Hsin-Pin Lin
- Inherited Disorders Unit, Neurogenetics Branch, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Carna Jovanovic
- University Clinical Center of Serbia, Neurology Clinic, Belgrade, Serbia
| | - Marina Svetel
- University Clinical Center of Serbia, Neurology Clinic, Belgrade, Serbia
| | - Timothy Lynch
- The Dublin Neurological Institute at the Mater Misericordiae University Hospital, Dublin Ireland and University College Dublin, Dublin, Ireland
| | - Amy Gallagher
- The Dublin Neurological Institute at the Mater Misericordiae University Hospital, Dublin Ireland and University College Dublin, Dublin, Ireland
| | - Wim Vandenberghe
- Department of Neurology, University Hospitals Leuven; Department of Neurosciences, KU Leuven; Leuven Brain Institute, Leuven, Belgium
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Kathrin Brockmann
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Max Borsche
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Olga Corti
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Genetics, Hôpital Pitié-Salpêtrière, Paris, France
| | - Suzanne Lesage
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Jean Christophe Corvol
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
6
|
Zheng C, Nguyen KK, Vishnivetskiy SA, Gurevich VV, Gurevich EV. Arrestin-3 binds parkin and enhances parkin-dependent mitophagy. J Neurochem 2024. [PMID: 38196269 PMCID: PMC11231064 DOI: 10.1111/jnc.16043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
Arrestins were discovered for their role in homologous desensitization of G-protein-coupled receptors (GPCRs). Later non-visual arrestins were shown to regulate several signaling pathways. Some of these pathways require arrestin binding to GPCRs, the regulation of others is receptor independent. Here, we demonstrate that arrestin-3 binds the E3 ubiquitin ligase parkin via multiple sites, preferentially interacting with its RING0 domain. Identification of the parkin domains involved suggests that arrestin-3 likely relieves parkin autoinhibition and/or stabilizes the enzymatically active "open" conformation of parkin. Arrestin-3 binding enhances ubiquitination by parkin of the mitochondrial protein mitofusin-1 and facilitates parkin-mediated mitophagy in HeLa cells. Furthermore, arrestin-3 and its mutant with enhanced parkin binding rescue mitofusin-1 ubiquitination and mitophagy in the presence of the Parkinson's disease-associated R275W parkin mutant, which is defective in both functions. Thus, modulation of parkin activity via arrestin-3 might be a novel strategy of anti-parkinsonian therapy.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Kevin K Nguyen
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Kalinderi K, Papaliagkas V, Fidani L. The Genetic Landscape of Sleep Disorders in Parkinson's Disease. Diagnostics (Basel) 2024; 14:106. [PMID: 38201415 PMCID: PMC10795795 DOI: 10.3390/diagnostics14010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Parknson's disease (PD) is the second most common neurodegenerative disease, affecting 1% of people aged over 60. PD is characterized by a wide range of motor symptoms, however the clinical spectrum of PD covers a wide range of non-motor symptoms, as well. Sleep disorders are among the most common non-motor symptoms of PD, can occur at any stage of the disease and significantly affect quality of life. These include rapid eye movement sleep behavior disorder (RBD), restless legs syndrome (RLS), excessive daytime sleepiness (EDS), insomnia, obstructive sleep apnea (OSA) and circadian rhythm disturbances. One of the main challenges in PD research is identifying individuals during the prodromal phase of the disease. Combining genetic and prodromal data may aid the early identification of individuals susceptible to PD. This review highlights current data regarding the genetic component of sleep disorders in PD patients, focusing on genes that have currently been associated with this PD co-morbidity.
Collapse
Affiliation(s)
- Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Liana Fidani
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
8
|
Yamanaka T, Matsui H. Modeling familial and sporadic Parkinson's disease in small fishes. Dev Growth Differ 2024; 66:4-20. [PMID: 37991125 DOI: 10.1111/dgd.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
The establishment of animal models for Parkinson's disease (PD) has been challenging. Nevertheless, once established, they will serve as valuable tools for elucidating the causes and pathogenesis of PD, as well as for developing new strategies for its treatment. Following the recent discovery of a series of PD causative genes in familial cases, teleost fishes, including zebrafish and medaka, have often been used to establish genetic PD models because of their ease of breeding and gene manipulation, as well as the high conservation of gene orthologs. Some of the fish lines can recapitulate PD phenotypes, which are often more pronounced than those in rodent genetic models. In addition, a new experimental teleost fish, turquoise killifish, can be used as a sporadic PD model, because it spontaneously manifests age-dependent PD phenotypes. Several PD fish models have already made significant contributions to the discovery of novel PD pathological features, such as cytosolic leakage of mitochondrial DNA and pathogenic phosphorylation in α-synuclein. Therefore, utilizing various PD fish models with distinct degenerative phenotypes will be an effective strategy for identifying emerging facets of PD pathogenesis and therapeutic modalities.
Collapse
Affiliation(s)
- Tomoyuki Yamanaka
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
9
|
Yang J, Li H, Zhao Y. Dessert or Poison? The Roles of Glycosylation in Alzheimer's, Parkinson's, Huntington's Disease, and Amyotrophic Lateral Sclerosis. Chembiochem 2023; 24:e202300017. [PMID: 37440197 DOI: 10.1002/cbic.202300017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/27/2023] [Indexed: 07/14/2023]
Abstract
Ministry of Education and Key Laboratory of Neurons and glial cells of the central nervous system (CNS) are modified by glycosylation and rely on glycosylation to achieve normal neural function. Neurodegenerative disease is a common disease of the elderly, affecting their healthy life span and quality of life, and no effective treatment is currently available. Recent research implies that various glycosylation traits are altered during neurodegenerative diseases, suggesting a potential implication of glycosylation in disease pathology. Herein, we summarized the current knowledge about glycosylation associated with Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic lateral sclerosis (ALS) pathogenesis, focusing on their promising functional avenues. Moreover, we collected research aimed at highlighting the need for such studies to provide a wealth of disease-related glycosylation information that will help us better understand the pathophysiological mechanisms and hopefully specific glycosylation information to provide further diagnostic and therapeutic directions for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiajun Yang
- Department of Biochemistry and Molecular Biology School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Endemic and Ethenic Diseases Medical Molecular Biology of Guizhou Province Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hongmei Li
- Department of Biochemistry and Molecular Biology School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Endemic and Ethenic Diseases Medical Molecular Biology of Guizhou Province Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yuhui Zhao
- Key Laboratory of Endemic and Ethenic Diseases Medical Molecular Biology of Guizhou Province Guizhou Medical University, Guiyang, 550004, Guizhou, China
- Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
10
|
Kamienieva I, Charzyńska A, Duszyński J, Malińska D, Szczepanowska J. In search for mitochondrial biomarkers of Parkinson's disease: Findings in parkin-mutant human fibroblasts. Biochim Biophys Acta Mol Basis Dis 2023:166787. [PMID: 37302428 DOI: 10.1016/j.bbadis.2023.166787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
Most cases of Parkinson's disease (PD) are idiopathic, with unknown aetiology and genetic background. However, approximately 10 % of cases are caused by defined genetic mutations, among which mutations in the parkin gene are the most common. There is increasing evidence of the involvement of mitochondrial dysfunction in the development of both idiopathic and genetic PD. However, the data on mitochondrial changes reported by different studies are inconsistent, which can reflect the variability in genetic background of the disease. Mitochondria, as a plastic and dynamic organelles, are the first place in the cell to respond to external and internal stress. In this work, we characterized mitochondrial function and dynamics (network morphology and turnover regulation) in primary fibroblasts from PD patients with parkin mutations. We performed clustering analysis of the obtained data to compare the profiles of mitochondrial parameters in PD patients and healthy donors. This allowed to extract the features characteristic for PD patients fibroblasts, which were a smaller and less complex mitochondrial network and decreased levels of mitochondrial biogenesis regulators and mitophagy mediators. The approach we used allowed a comprehensive characteristics of elements common for mitochondrial dynamics remodelling accompanying pathogenic mutation. This may be helpful in the deciphering key pathomechanisms of the PD disease.
Collapse
Affiliation(s)
- Iryna Kamienieva
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warszawa, Poland
| | - Agata Charzyńska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warszawa, Poland
| | - Jerzy Duszyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warszawa, Poland
| | - Dominika Malińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warszawa, Poland.
| | - Joanna Szczepanowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warszawa, Poland.
| |
Collapse
|
11
|
Paccosi E, Proietti-De-Santis L. Parkinson's Disease: From Genetics and Epigenetics to Treatment, a miRNA-Based Strategy. Int J Mol Sci 2023; 24:ijms24119547. [PMID: 37298496 DOI: 10.3390/ijms24119547] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders, characterized by an initial and progressive loss of dopaminergic neurons of the substantia nigra pars compacta via a potentially substantial contribution from protein aggregates, the Lewy bodies, mainly composed of α-Synuclein among other factors. Distinguishing symptoms of PD are bradykinesia, muscular rigidity, unstable posture and gait, hypokinetic movement disorder and resting tremor. Currently, there is no cure for PD, and palliative treatments, such as Levodopa administration, are directed to relieve the motor symptoms but induce severe side effects over time. Therefore, there is an urgency for discovering new drugs in order to design more effective therapeutic approaches. The evidence of epigenetic alterations, such as the dysregulation of different miRNAs that may stimulate many aspects of PD pathogenesis, opened a new scenario in the research for a successful treatment. Along this line, a promising strategy for PD treatment comes from the potential exploitation of modified exosomes, which can be loaded with bioactive molecules, such as therapeutic compounds and RNAs, and can allow their delivery to the appropriate location in the brain, overcoming the blood-brain barrier. In this regard, the transfer of miRNAs within Mesenchymal stem cell (MSC)-derived exosomes has yet to demonstrate successful results both in vitro and in vivo. This review, besides providing a systematic overview of both the genetic and epigenetic basis of the disease, aims to explore the exosomes/miRNAs network and its clinical potential for PD treatment.
Collapse
Affiliation(s)
- Elena Paccosi
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology (DEB), University of Tuscia, 01100 Viterbo, Italy
| | - Luca Proietti-De-Santis
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology (DEB), University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
12
|
Mirza FJ, Zahid S, Holsinger RMD. Neuroprotective Effects of Carnosic Acid: Insight into Its Mechanisms of Action. Molecules 2023; 28:molecules28052306. [PMID: 36903551 PMCID: PMC10005014 DOI: 10.3390/molecules28052306] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Carnosic acid is a diterpenoid abundantly present in plants belonging to the genus Rosmarinus and Salvia of the family Lamiaceae, accounting for their application in traditional medicine. The diverse biological properties of carnosic acid that include antioxidant, anti-inflammatory, and anticarcinogenic activities have instigated studies on its mechanistic role, providing further insights into its potential as a therapeutic agent. Accumulating evidence has established the relevance of carnosic acid as a neuroprotective agent exhibiting therapeutic efficacy in combatting neuronal-injury-induced disorders. The physiological importance of carnosic acid in the mitigation of neurodegenerative disorders is just beginning to be understood. This review summarizes the current data on the mode of action through which carnosic acid exerts its neuroprotective role that may serve to strategize novel therapeutic approaches for these debilitating neurodegenerative disorders.
Collapse
Affiliation(s)
- Fatima Javed Mirza
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
13
|
Liu FT, Lu JY, Sun YM, Li L, Yang YJ, Zhao J, Ge JJ, Wu P, Jiang JH, Wu JJ, Zuo CT, Wang J. Dopaminergic Dysfunction and Glucose Metabolism Characteristics in Parkin-Induced Early-Onset Parkinson's Disease Compared to Genetically Undetermined Early-Onset Parkinson's Disease. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:22-33. [PMID: 36939793 PMCID: PMC9883374 DOI: 10.1007/s43657-022-00077-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 01/28/2023]
Abstract
While early-onset Parkinson's disease (EOPD) caused by mutations in the parkin gene (PRKN) tends to have a relatively benign course compared to genetically undetermined (GU)-EOPD, the exact underlying mechanisms remain elusive. We aimed to search for the differences between PRKN-EOPD and GU-EOPD by dopamine transporter (DAT) and glucose metabolism positron-emission-tomography (PET) imaging. Twelve patients with PRKN-EOPD and 16 with GU-EOPD who accepted both 11C-2b-carbomethoxy-3b-(4-trimethylstannylphenyl) tropane (11C-CFT) and 18F-fluorodeoxyglucose PET were enrolled. The 11C-CFT uptake was analyzed on both regional and voxel levels, whereas glucose metabolism was assessed in a voxel-wise fashion. Correlations between DAT and glucose metabolism imaging, DAT imaging and clinical severity, as well as glucose metabolism imaging and clinical severity were explored. Both clinical symptoms and DAT-binding patterns in the posterior putamen were highly symmetrical in patients with PRKN-EOPD, and dopaminergic dysfunction in the ipsilateral putamen was severer in patients with PRKN-EOPD than GU-EOPD. Meanwhile, the DAT binding was associated with the severity of motor dysfunction in patients with GU-EOPD only. Patients with PRKN-EOPD showed increased glucose metabolism in the contralateral medial frontal gyrus (supplementary motor area (SMA)), contralateral substantia nigra, contralateral thalamus, and contralateral cerebellum. Notably, glucose metabolic activity in the contralateral medial frontal gyrus was inversely associated with regional DAT binding in the bilateral putamen. Patients with PRKN-EOPD showed enhanced metabolic connectivity within the bilateral putamen, ipsilateral paracentral and precentral lobules, and the ipsilateral SMA. Collectively, compared to GU-EOPD, PRKN-EOPD is characterized by symmetrical, more severe dopaminergic dysfunction and relative increased glucose metabolism. Meanwhile, SMA with elevated glucose metabolism and enhanced connectivity may act as compensatory mechanisms in PRKN-EOPD. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00077-8.
Collapse
Affiliation(s)
- Feng-Tao Liu
- Department of Neurology, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040 China
| | - Jia-Ying Lu
- Department of Nuclear Medicine & PET Center, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235 China
| | - Yi-Min Sun
- Department of Neurology, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040 China
| | - Ling Li
- Department of Nuclear Medicine & PET Center, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235 China
| | - Yu-Jie Yang
- Department of Neurology, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040 China
| | - Jue Zhao
- Department of Neurology, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040 China
| | - Jing-Jie Ge
- Department of Nuclear Medicine & PET Center, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235 China
| | - Ping Wu
- Department of Nuclear Medicine & PET Center, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235 China
| | - Jie-Hui Jiang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Jian-Jun Wu
- Department of Neurology, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040 China
| | - Chuan-Tao Zuo
- Department of Nuclear Medicine & PET Center, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235 China
- Human Phenome Institute, Fudan University, Shanghai, 200433 China
| | - Jian Wang
- Department of Neurology, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040 China
| |
Collapse
|
14
|
Trabjerg MS, Andersen DC, Huntjens P, Mørk K, Warming N, Kullab UB, Skjønnemand MLN, Oklinski MK, Oklinski KE, Bolther L, Kroese LJ, Pritchard CEJ, Huijbers IJ, Corthals A, Søndergaard MT, Kjeldal HB, Pedersen CFM, Nieland JDV. Inhibition of carnitine palmitoyl-transferase 1 is a potential target in a mouse model of Parkinson's disease. NPJ Parkinsons Dis 2023; 9:6. [PMID: 36681683 PMCID: PMC9867753 DOI: 10.1038/s41531-023-00450-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 12/01/2022] [Indexed: 01/22/2023] Open
Abstract
Glucose metabolism is dysregulated in Parkinson's disease (PD) causing a shift toward the metabolism of lipids. Carnitine palmitoyl-transferase 1A (CPT1A) regulates the key step in the metabolism of long-chain fatty acids. The aim of this study is to evaluate the effect of downregulating CPT1, either genetically with a Cpt1a P479L mutation or medicinally on PD using chronic rotenone mouse models using C57Bl/6J and Park2 knockout mice. We show that Cpt1a P479L mutant mice are resistant to rotenone-induced PD, and that inhibition of CPT1 is capable of restoring neurological function, normal glucose metabolism, and alleviate markers of PD in the midbrain. Furthermore, we show that downregulation of lipid metabolism via CPT1 alleviates pathological motor and non-motor behavior, oxidative stress, and disrupted glucose homeostasis in Park2 knockout mice. Finally, we confirm that rotenone induces gut dysbiosis in C57Bl/6J and, for the first time, in Park2 knockout mice. We show that this dysbiosis is alleviated by the downregulation of the lipid metabolism via CPT1.
Collapse
Affiliation(s)
- Michael Sloth Trabjerg
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Dennis Christian Andersen
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Pam Huntjens
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Kasper Mørk
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Nikolaj Warming
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ulla Bismark Kullab
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Marie-Louise Nibelius Skjønnemand
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Michal Krystian Oklinski
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Kirsten Egelund Oklinski
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Luise Bolther
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lona J. Kroese
- grid.430814.a0000 0001 0674 1393Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Colin E. J. Pritchard
- grid.430814.a0000 0001 0674 1393Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ivo J. Huijbers
- grid.430814.a0000 0001 0674 1393Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Angelique Corthals
- grid.258202.f0000 0004 1937 0116Department of Science, John Jay College of Criminal Justice, City University of New York, New York, NY 10019 USA
| | | | | | - Cecilie Fjord Morre Pedersen
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - John Dirk Vestergaard Nieland
- grid.5117.20000 0001 0742 471XLaboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
15
|
Kolicheski A, Turcano P, Tamvaka N, McLean PJ, Springer W, Savica R, Ross OA. Early-Onset Parkinson's Disease: Creating the Right Environment for a Genetic Disorder. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2353-2367. [PMID: 36502340 PMCID: PMC9837689 DOI: 10.3233/jpd-223380] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) by its common understanding is a late-onset sporadic movement disorder. However, there is a need to recognize not only the fact that PD pathogenesis expands beyond (or perhaps to) the brain but also that many early-onset patients develop motor signs before the age of 50 years. Indeed, studies have shown that it is likely the protein aggregation observed in the brains of patients with PD precedes the motor symptoms by perhaps a decade. Studies on early-onset forms of PD have shown it to be a heterogeneous disease with multiple genetic and environmental factors determining risk of different forms of disease. Genetic and neuropathological evidence suggests that there are α-synuclein centric forms (e.g., SNCA genomic triplication), and forms that are driven by a breakdown in mitochondrial function and specifically in the process of mitophagy and clearance of damaged mitochondria (e.g., PARKIN and PINK1 recessive loss-of-function mutations). Aligning genetic forms with recognized environmental influences will help better define patients, aid prognosis, and hopefully lead to more accurately targeted clinical trial design. Work is now needed to understand the cross-talk between these two pathomechanisms and determine a sense of independence, it is noted that autopsies studies for both have shown the presence or absence of α-synuclein aggregation. The integration of genetic and environmental data is critical to understand the etiology of early-onset forms of PD and determine how the different pathomechanisms crosstalk.
Collapse
Affiliation(s)
- Ana Kolicheski
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Pierpaolo Turcano
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA,
Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Nicole Tamvaka
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Pamela J. McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA,
Department of Medicine, University College Dublin, Dublin, Ireland,
Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA,Department of Biology, University of NorthFlorida, Jacksonville, FL, USA,Correspondence to: Owen A. Ross, PhD, Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA. Tel.: +1 904 953 6280; Fax: +1 904 953 7370; E-mail:
| |
Collapse
|
16
|
Cell Biology of Parkin: Clues to the Development of New Therapeutics for Parkinson's Disease. CNS Drugs 2022; 36:1249-1267. [PMID: 36378485 DOI: 10.1007/s40263-022-00973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
Parkinson's disease is the second most prevalent neurodegenerative disease and contributes significantly to morbidity globally. Currently, no disease-modifying therapies exist to combat this disorder. Insights from the molecular and cellular pathobiology of the disease seems to indicate promising therapeutic targets. The parkin protein has been extensively studied for its role in autosomal recessive Parkinson's disease and, more recently, its role in sporadic Parkinson's disease. Parkin is an E3 ubiquitin ligase that plays a prominent role in mitochondrial quality control, mitochondrial-dependent cell death pathways, and other diverse functions. Understanding the numerous roles of parkin has introduced many new possibilities for therapeutic modalities in treating both autosomal recessive Parkinson's disease and sporadic Parkinson's disease. In this article, we review parkin biology with an emphasis on mitochondrial-related functions and propose novel, potentially disease-modifying therapeutic approaches for treating this debilitating condition.
Collapse
|
17
|
Kim J, Daadi EW, Oh T, Daadi ES, Daadi MM. Human Induced Pluripotent Stem Cell Phenotyping and Preclinical Modeling of Familial Parkinson's Disease. Genes (Basel) 2022; 13:1937. [PMID: 36360174 PMCID: PMC9689743 DOI: 10.3390/genes13111937] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Parkinson's disease (PD) is primarily idiopathic and a highly heterogenous neurodegenerative disease with patients experiencing a wide array of motor and non-motor symptoms. A major challenge for understanding susceptibility to PD is to determine the genetic and environmental factors that influence the mechanisms underlying the variations in disease-associated traits. The pathological hallmark of PD is the degeneration of dopaminergic neurons in the substantia nigra pars compacta region of the brain and post-mortem Lewy pathology, which leads to the loss of projecting axons innervating the striatum and to impaired motor and cognitive functions. While the cause of PD is still largely unknown, genome-wide association studies provide evidence that numerous polymorphic variants in various genes contribute to sporadic PD, and 10 to 15% of all cases are linked to some form of hereditary mutations, either autosomal dominant or recessive. Among the most common mutations observed in PD patients are in the genes LRRK2, SNCA, GBA1, PINK1, PRKN, and PARK7/DJ-1. In this review, we cover these PD-related mutations, the use of induced pluripotent stem cells as a disease in a dish model, and genetic animal models to better understand the diversity in the pathogenesis and long-term outcomes seen in PD patients.
Collapse
Affiliation(s)
- Jeffrey Kim
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
| | - Etienne W. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Thomas Oh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Elyas S. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Marcel M. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
- Department of Radiology, Long School of Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
18
|
Aghazadeh N, Beilankouhi EAV, Fakhri F, Gargari MK, Bahari P, Moghadami A, Khodabandeh Z, Valilo M. Involvement of heat shock proteins and parkin/α-synuclein axis in Parkinson's disease. Mol Biol Rep 2022; 49:11061-11070. [PMID: 36097120 DOI: 10.1007/s11033-022-07900-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurological diseases, next only to Alzheimer's disease (AD) in terms of prevalence. It afflicts about 2-3% of individuals over 65 years old. The etiology of PD is unknown and several environmental and genetic factors are involved. From a pathological point of view, PD is characterized by the loss of dopaminergic neurons in the substantia nigra, which causes the abnormal accumulation of α-synuclein (α-syn) (a component of Lewy bodies), which subsequently interact with heat shock proteins (HSPs), leading to apoptosis. Apoptosis is a vital pathway for establishing homeostasis in body tissues, which is regulated by pro-apoptotic and anti-apoptotic factors. Recent findings have shown that HSPs, especially HSP27 and HSP70, play a pivotal role in regulating apoptosis by influencing the factors involved in the apoptosis pathway. Moreover, it has been reported that the expression of these HSPs in the nervous system is high. Apart from this finding, investigations have suggested that HSP27 and HSP70 (related to parkin) show a potent protective and anti-apoptotic impact against the damaging outcomes of mutant α-syn toxicity to nerve cells. Therefore, in this study, we aimed to investigate the relationship between these HSPs and apoptosis in patients with PD.
Collapse
Affiliation(s)
- Nina Aghazadeh
- Department of biology, Islamic Azad University, Tabriz, Iran
| | | | - Farima Fakhri
- Research Institute for Neuroscience, Kerman University of Medical Sciences, Kerman, Iran
| | - Morad Kohandel Gargari
- Faculty of Medicine, Imamreza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Bahari
- Department of Clinical Biochemistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Aliasghar Moghadami
- Department of Clinical Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zhila Khodabandeh
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Mohammad Valilo
- Department of Clinical Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Huang Y, Wei J, Cooper A, Morris MJ. Parkinson's Disease: From Genetics to Molecular Dysfunction and Targeted Therapeutic Approaches. Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
20
|
Shlevkov E, Murugan P, Montagna D, Stefan E, Hadzipasic A, Harvey JS, Kumar PR, Entova S, Bansal N, Bickford S, Wong LY, Hirst WD, Weihofen A, Silvian LF. Discovery of small-molecule positive allosteric modulators of Parkin E3 ligase. iScience 2022; 25:103650. [PMID: 35024585 PMCID: PMC8733272 DOI: 10.1016/j.isci.2021.103650] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/03/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Pharmacological activation of the E3 ligase Parkin represents a rational therapeutic intervention for the treatment of Parkinson's disease. Here we identify several compounds that enhance the activity of wildtype Parkin in the presence of phospho-ubiquitin and act as positive allosteric modulators (PAMs). While these compounds activate Parkin in a series of biochemical assays, they do not act by thermally destabilizing Parkin and fail to enhance the Parkin translocation rate to mitochondria or to enact mitophagy in cell-based assays. We conclude that in the context of the cellular milieu the therapeutic window to pharmacologically activate Parkin is very narrow.
Collapse
Affiliation(s)
- Evgeny Shlevkov
- Neurodegenerative Disease Research Unit, Biogen, Cambridge, MA 02142, USA
| | | | - Dan Montagna
- Neurodegenerative Disease Research Unit, Biogen, Cambridge, MA 02142, USA
| | - Eric Stefan
- Biotherapeutics and Medicinal Sciences, Biogen, Cambridge, MA 02142, USA
| | | | - James S. Harvey
- Biotherapeutics and Medicinal Sciences, Biogen, Cambridge, MA 02142, USA
| | - P. Rajesh Kumar
- Biotherapeutics and Medicinal Sciences, Biogen, Cambridge, MA 02142, USA
| | - Sonya Entova
- Biotherapeutics and Medicinal Sciences, Biogen, Cambridge, MA 02142, USA
| | - Nupur Bansal
- Biotherapeutics and Medicinal Sciences, Biogen, Cambridge, MA 02142, USA
| | - Shari Bickford
- Biotherapeutics and Medicinal Sciences, Biogen, Cambridge, MA 02142, USA
| | - Lai-Yee Wong
- Biotherapeutics and Medicinal Sciences, Biogen, Cambridge, MA 02142, USA
| | - Warren D. Hirst
- Neurodegenerative Disease Research Unit, Biogen, Cambridge, MA 02142, USA
| | - Andreas Weihofen
- Neurodegenerative Disease Research Unit, Biogen, Cambridge, MA 02142, USA
| | - Laura F. Silvian
- Biotherapeutics and Medicinal Sciences, Biogen, Cambridge, MA 02142, USA
| |
Collapse
|
21
|
Yoshino H, Li Y, Nishioka K, Daida K, Hayashida A, Ishiguro Y, Yamada D, Izawa N, Nishi K, Nishikawa N, Oyama G, Hatano T, Nakamura S, Yoritaka A, Motoi Y, Funayama M, Hattori N, the investigators of Japan Parkinson disease genetic study. Genotype-phenotype correlation of Parkinson's disease with PRKN variants. Neurobiol Aging 2022; 114:117-128. [DOI: 10.1016/j.neurobiolaging.2021.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022]
|
22
|
Alpha-Synuclein and Cognitive Decline in Parkinson Disease. Life (Basel) 2021; 11:life11111239. [PMID: 34833115 PMCID: PMC8625417 DOI: 10.3390/life11111239] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disorder in elderly people. It is characterized by the aggregation of misfolded alpha-synuclein throughout the nervous system. Aside from cardinal motor symptoms, cognitive impairment is one of the most disabling non-motor symptoms that occurs during the progression of the disease. The accumulation and spreading of alpha-synuclein pathology from the brainstem to limbic and neocortical structures is correlated with emerging cognitive decline in PD. This review summarizes the genetic and pathophysiologic relationship between alpha-synuclein and cognitive impairment in PD, together with potential areas of biomarker advancement.
Collapse
|
23
|
Guadagnolo D, Piane M, Torrisi MR, Pizzuti A, Petrucci S. Genotype-Phenotype Correlations in Monogenic Parkinson Disease: A Review on Clinical and Molecular Findings. Front Neurol 2021; 12:648588. [PMID: 34630269 PMCID: PMC8494251 DOI: 10.3389/fneur.2021.648588] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 12/30/2022] Open
Abstract
Parkinson disease (PD) is a complex neurodegenerative disorder, usually with multifactorial etiology. It is characterized by prominent movement disorders and non-motor symptoms. Movement disorders commonly include bradykinesia, rigidity, and resting tremor. Non-motor symptoms can include behavior disorders, sleep disturbances, hyposmia, cognitive impairment, and depression. A fraction of PD cases instead is due to Parkinsonian conditions with Mendelian inheritance. The study of the genetic causes of these phenotypes has shed light onto common pathogenetic mechanisms underlying Parkinsonian conditions. Monogenic Parkinsonisms can present autosomal dominant, autosomal recessive, or even X-linked inheritance patterns. Clinical presentations vary from forms indistinguishable from idiopathic PD to severe childhood-onset conditions with other neurological signs. We provided a comprehensive description of each condition, discussing current knowledge on genotype-phenotype correlations. Despite the broad clinical spectrum and the many genes involved, the phenotype appears to be related to the disrupted cell function and inheritance pattern, and several assumptions about genotype-phenotype correlations can be made. The interest in these assumptions is not merely speculative, in the light of novel promising targeted therapies currently under development.
Collapse
Affiliation(s)
- Daniele Guadagnolo
- Department of Experimental Medicine, Policlinico Umberto i Hospital, Sapienza University of Rome, Rome, Italy
| | - Maria Piane
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Medical Genetics and Advanced Cell Diagnostics Unit, S. Andrea University Hospital, Rome, Italy
| | - Maria Rosaria Torrisi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Medical Genetics and Advanced Cell Diagnostics Unit, S. Andrea University Hospital, Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Policlinico Umberto i Hospital, Sapienza University of Rome, Rome, Italy
| | - Simona Petrucci
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Medical Genetics and Advanced Cell Diagnostics Unit, S. Andrea University Hospital, Rome, Italy
| |
Collapse
|
24
|
Mor-Shaked H, Paz-Ebstein E, Basal A, Ben-Haim S, Grobe H, Heymann S, Israel Z, Namnah M, Nitzan A, Rosenbluh C, Saada A, Tzur T, Yanovsky-Dagan S, Zaidel-Bar R, Harel T, Arkadir D. Levodopa-responsive dystonia caused by biallelic PRKN exon inversion invisible to exome sequencing. Brain Commun 2021; 3:fcab197. [PMID: 34514401 PMCID: PMC8421701 DOI: 10.1093/braincomms/fcab197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/20/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022] Open
Abstract
Biallelic pathogenic variants in PRKN (PARK2), encoding the E3 ubiquitin ligase parkin, lead to early-onset Parkinson's disease. Structural variants, including duplications or deletions, are common in PRKN due to their location within the fragile site FRA6E. These variants are readily detectable by copy number variation analysis. We studied four siblings with levodopa-responsive dystonia by exome sequencing followed by genome sequencing. Affected individuals developed juvenile levodopa-responsive dystonia with subsequent appearance of parkinsonism and motor fluctuations that improved by subthalamic stimulation. Exome sequencing and copy number variation analysis were not diagnostic, yet revealed a shared homozygous block including PRKN. Genome sequencing revealed an inversion within PRKN, with intronic breakpoints flanking exon 5. Breakpoint junction analysis implicated non-homologous end joining and possibly replicative mechanisms as the repair pathways involved. Analysis of cDNA indicated skipping of exon 5 (84 bp) that was replaced by 93 bp of retained intronic sequence, preserving the reading frame yet altering a significant number of residues. Balanced copy number inversions in PRKN are associated with a severe phenotype. Such structural variants, undetected by exome analysis and by copy number variation analysis, should be considered in the relevant clinical setting. These findings raise the possibility that PRKN structural variants are more common than currently estimated.
Collapse
Affiliation(s)
- Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Emuna Paz-Ebstein
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Adily Basal
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Simona Ben-Haim
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Nuclear Medicine, Hadassah Medical Organization, Jerusalem 91120, Israel.,Institute of Nuclear Medicine, University College London and UCL Hospitals, NHS Trust, London NW1 2BU, UK
| | - Hanna Grobe
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Sami Heymann
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Neurosurgery, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Zvi Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Neurosurgery, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Montaser Namnah
- Department of Neurology, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Anat Nitzan
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Chaggai Rosenbluh
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Ann Saada
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Tomer Tzur
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Plastic Surgery, Hadassah Medical Organization, Jerusalem 91120, Israel
| | | | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization, Jerusalem 91120, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - David Arkadir
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Neurology, Hadassah Medical Organization, Jerusalem 91120, Israel
| |
Collapse
|
25
|
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by degeneration of the substantia nigra pars compacta and by accumulation of α-synuclein in Lewy bodies. PD is caused by a combination of environmental factors and genetic variants. These variants range from highly penetrant Mendelian alleles to alleles that only modestly increase disease risk. Here, we review what is known about the genetics of PD. We also describe how PD genetics have solidified the role of endosomal, lysosomal, and mitochondrial dysfunction in PD pathophysiology. Finally, we highlight how all three pathways are affected by α-synuclein and how this knowledge may be harnessed for the development of disease-modifying therapeutics.
Collapse
Affiliation(s)
- Gabriel E Vázquez-Vélez
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA.,Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA; .,Howard Hughes Medical Institute, Houston, Texas 77030, USA
| |
Collapse
|
26
|
Li W, Fu Y, Halliday GM, Sue CM. PARK Genes Link Mitochondrial Dysfunction and Alpha-Synuclein Pathology in Sporadic Parkinson's Disease. Front Cell Dev Biol 2021; 9:612476. [PMID: 34295884 PMCID: PMC8291125 DOI: 10.3389/fcell.2021.612476] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/10/2021] [Indexed: 11/28/2022] Open
Abstract
Parkinson’s disease (PD) is an age-related neurodegenerative disorder affecting millions of people worldwide. The disease is characterized by the progressive loss of dopaminergic neurons and spread of Lewy pathology (α-synuclein aggregates) in the brain but the pathogenesis remains elusive. PD presents substantial clinical and genetic variability. Although its complex etiology and pathogenesis has hampered the breakthrough in targeting disease modification, recent genetic tools advanced our approaches. As such, mitochondrial dysfunction has been identified as a major pathogenic hub for both familial and sporadic PD. In this review, we summarize the effect of mutations in 11 PARK genes (SNCA, PRKN, PINK1, DJ-1, LRRK2, ATP13A2, PLA2G6, FBXO7, VPS35, CHCHD2, and VPS13C) on mitochondrial function as well as their relevance in the formation of Lewy pathology. Overall, these genes play key roles in mitochondrial homeostatic control (biogenesis and mitophagy) and functions (e.g., energy production and oxidative stress), which may crosstalk with the autophagy pathway, induce proinflammatory immune responses, and increase oxidative stress that facilitate the aggregation of α-synuclein. Thus, rectifying mitochondrial dysregulation represents a promising therapeutic approach for neuroprotection in PD.
Collapse
Affiliation(s)
- Wen Li
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - YuHong Fu
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Carolyn M Sue
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
27
|
Ham S, Yun SP, Kim H, Kim D, Seo BA, Kim H, Shin JY, Dar MA, Lee GH, Lee YI, Kim D, Kim S, Kweon HS, Shin JH, Ko HS, Lee Y. Amyloid-like oligomerization of AIMP2 contributes to α-synuclein interaction and Lewy-like inclusion. Sci Transl Med 2021; 12:12/569/eaax0091. [PMID: 33177178 DOI: 10.1126/scitranslmed.aax0091] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/03/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Lewy bodies are pathological protein inclusions present in the brain of patients with Parkinson's disease (PD). These inclusions consist mainly of α-synuclein with associated proteins, such as parkin and its substrate aminoacyl transfer RNA synthetase complex-interacting multifunctional protein-2 (AIMP2). Although AIMP2 has been suggested to be toxic to dopamine neurons, its roles in α-synuclein aggregation and PD pathogenesis are largely unknown. Here, we found that AIMP2 exhibits a self-aggregating property. The AIMP2 aggregate serves as a seed to increase α-synuclein aggregation via specific and direct binding to the α-synuclein monomer. The coexpression of AIMP2 and α-synuclein in cell cultures and in vivo resulted in the rapid formation of α-synuclein aggregates with a corresponding increase in toxicity. Moreover, accumulated AIMP2 in mouse brain was largely redistributed to insoluble fractions, correlating with the α-synuclein pathology. Last, we found that α-synuclein preformed fibril (PFF) seeding, adult Parkin deletion, or oxidative stress triggered a redistribution of both AIMP2 and α-synuclein into insoluble fraction in cells and in vivo. Supporting the pathogenic role of AIMP2, AIMP2 knockdown ameliorated the α-synuclein aggregation and dopaminergic cell death in response to PFF or 6-hydroxydopamine treatment. Together, our results suggest that AIMP2 plays a pathological role in the aggregation of α-synuclein in mice. Because AIMP2 insolubility and coaggregation with α-synuclein have been seen in the PD Lewy body, targeting pathologic AIMP2 aggregation might be useful as a therapeutic strategy for neurodegenerative α-synucleinopathies.
Collapse
Affiliation(s)
- Sangwoo Ham
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea.,ToolGen Inc., Seoul 08501, Republic of Korea
| | - Seung Pil Yun
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyojung Kim
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea
| | - Donghoon Kim
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bo Am Seo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Heejeong Kim
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea
| | - Jeong-Yong Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea
| | - Mohamad Aasif Dar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gum Hwa Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Yun Il Lee
- Well Aging Research Center, DGIST, Daegu 42988, Republic of Korea.,Companion Diagnostics and Medical Technology Research Group, DGIST, Daegu 42988, Republic of Korea
| | - Doyeun Kim
- Medicinal Bioconvergence Research Center, Yonsei University, Incheon 21983, Republic of Korea.,College of Pharmacy and School of Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Yonsei University, Incheon 21983, Republic of Korea.,College of Pharmacy and School of Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Hee-Seok Kweon
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Joo-Ho Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea
| | - Han Seok Ko
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yunjong Lee
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Suwon 16419, Republic of Korea.
| |
Collapse
|
28
|
Magnusen AF, Hatton SL, Rani R, Pandey MK. Genetic Defects and Pro-inflammatory Cytokines in Parkinson's Disease. Front Neurol 2021; 12:636139. [PMID: 34239490 PMCID: PMC8259624 DOI: 10.3389/fneur.2021.636139] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a movement disorder attributed to the loss of dopaminergic (DA) neurons mainly in the substantia nigra pars compacta. Motor symptoms include resting tremor, rigidity, and bradykinesias, while non-motor symptoms include autonomic dysfunction, anxiety, and sleeping problems. Genetic mutations in a number of genes (e.g., LRRK2, GBA, SNCA, PARK2, PARK6, and PARK7) and the resultant abnormal activation of microglial cells are assumed to be the main reasons for the loss of DA neurons in PD with genetic causes. Additionally, immune cell infiltration and their participation in major histocompatibility complex I (MHCI) and/or MHCII-mediated processing and presentation of cytosolic or mitochondrial antigens activate the microglial cells and cause the massive generation of pro-inflammatory cytokines and chemokines, which are all critical for the propagation of brain inflammation and the neurodegeneration in PD with genetic and idiopathic causes. Despite knowing the involvement of several of such immune devices that trigger neuroinflammation and neurodegeneration in PD, the exact disease mechanism or the innovative biomarker that could detect disease severity in PD linked to LRRK2, GBA, SNCA, PARK2, PARK6, and PARK7 defects is largely unknown. The current review has explored data from genetics, immunology, and in vivo and ex vivo functional studies that demonstrate that certain genetic defects might contribute to microglial cell activation and massive generation of a number of pro-inflammatory cytokines and chemokines, which ultimately drive the brain inflammation and lead to neurodegeneration in PD. Understanding the detailed involvement of a variety of immune mediators, their source, and the target could provide a better understanding of the disease process. This information might be helpful in clinical diagnosis, monitoring of disease progression, and early identification of affected individuals.
Collapse
Affiliation(s)
- Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Shelby Loraine Hatton
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Reena Rani
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Paediatrics of University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
29
|
Sakuwa M, Adachi T, Yoshida K, Adachi Y, Nakano T, Hanajima R. An autopsy case of PARK2 due to a homozygous exon 2 deletion of parkin and associated with α-synucleinopathy. Neuropathology 2021; 41:293-300. [PMID: 34121225 DOI: 10.1111/neup.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 11/29/2022]
Abstract
Lewy bodies (LBs) are usually detected in patients with idiopathic Parkinson's disease (PD), but there have been few reports of LBs in a familial form of early-onset PD associated with several mutations in parkin, a gene that encodes a ubiquitin E3 ligase involved in mitochondrial homeostasis, being also known as PARK2. Here, we report a case of PD with a PARK2 mutation characterized by a homozygous deletion of exon 2 and incidental LB pathology. A 60-year-old man developed tremor in the upper limbs. Although levodopa was initially effective, his symptoms slowly progressed. His cardiac uptake of 123 I-metaiodobenzylguanidine, as assessed by myocardial scintigraphy, decreased from an early stage after the onset. At the age of 81 years, he developed Legionella pneumonia and died of respiratory failure. Histopathological examination revealed a moderate loss of pigmented neurons, as well as gliosis in the substantia nigra and the locus coeruleus. Little LB-related pathology was found in the locus coeruleus, dorsal nucleus of vagal nerve, and basal nucleus of Meynert. The cardiac sympathetic nerve in the epicardium showed a reduction in the numbers of fibers immunoreactive for tyrosine hydroxylase and phosphorylated neurofilament protein. Genetic analysis of frozen brain materials revealed a homozygous deletion of exon 2 of parkin. To our knowledge, this is the first autopsy case with a homozygous deletion of exon 2 of parkin. The number of LBs was small, the age of disease onset was later than that in typical PARK2-associated PD patients, and cardiac sympathetic denervation was also present. Thus, we considered the LBs in our case as incidental and preclinical α-synucleinopathy.
Collapse
Affiliation(s)
- Mayuko Sakuwa
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Tadashi Adachi
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan.,Division of Neuropathology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kentaro Yoshida
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yoshiki Adachi
- Department of Neurology, National Hospital Organization Matsue Medical Center, Matsue, Japan
| | - Toshiya Nakano
- Department of Neurology, National Hospital Organization Matsue Medical Center, Matsue, Japan
| | - Ritsuko Hanajima
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
30
|
Kawabe H, Stegmüller J. The role of E3 ubiquitin ligases in synapse function in the healthy and diseased brain. Mol Cell Neurosci 2021; 112:103602. [DOI: 10.1016/j.mcn.2021.103602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/06/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
|
31
|
Nicoletti V, Palermo G, Del Prete E, Mancuso M, Ceravolo R. Understanding the Multiple Role of Mitochondria in Parkinson's Disease and Related Disorders: Lesson From Genetics and Protein-Interaction Network. Front Cell Dev Biol 2021; 9:636506. [PMID: 33869180 PMCID: PMC8047151 DOI: 10.3389/fcell.2021.636506] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
As neurons are highly energy-demanding cell, increasing evidence suggests that mitochondria play a large role in several age-related neurodegenerative diseases. Synaptic damage and mitochondrial dysfunction have been associated with early events in the pathogenesis of major neurodegenerative diseases, including Parkinson’s disease, atypical parkinsonisms, and Huntington disease. Disruption of mitochondrial structure and dynamic is linked to increased levels of reactive oxygen species production, abnormal intracellular calcium levels, and reduced mitochondrial ATP production. However, recent research has uncovered a much more complex involvement of mitochondria in such disorders than has previously been appreciated, and a remarkable number of genes and proteins that contribute to the neurodegeneration cascade interact with mitochondria or affect mitochondrial function. In this review, we aim to summarize and discuss the deep interconnections between mitochondrial dysfunction and basal ganglia disorders, with an emphasis into the molecular triggers to the disease process. Understanding the regulation of mitochondrial pathways may be beneficial in finding pharmacological or non-pharmacological interventions to delay the onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Valentina Nicoletti
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Palermo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michelangelo Mancuso
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
32
|
Seike N, Yokoseki A, Takeuchi R, Saito K, Miyahara H, Miyashita A, Ikeda T, Aida I, Nakajima T, Kanazawa M, Wakabayashi M, Toyoshima Y, Takahashi H, Matsumoto R, Toda T, Onodera O, Ishikawa A, Ikeuchi T, Kakita A. Genetic Variations and Neuropathologic Features of Patients with PRKN Mutations. Mov Disord 2021; 36:1634-1643. [PMID: 33570211 DOI: 10.1002/mds.28521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Mutations in PRKN are the most common cause of autosomal recessive juvenile parkinsonism. The objective of this study was to investigate the association between genotype and pathology in patients with PRKN mutations. METHODS We performed a sequence and copy number variation analysis of PRKN, mRNA transcripts, Parkin protein expression, and neuropathology in 8 autopsied patients. RESULTS All the patients harbored biallelic PRKN mutations. Two patients were homozygous and heterozygous, respectively, for the missense mutation p.C431F. Seven patients had exon rearrangements, including 2 patients from a single family who harbored a homozygous deletion of exon 4, and 3 patients who carried a homozygous duplication of exons 6-7, a homozygous duplication of exons 10-11, and a heterozygous duplication of exons 2-4. In the other 2 patients, we found a compound heterozygous duplication of exon 2, deletion of exon 3, and a heterozygous duplication of exon 2. However, sequencing of cDNA prepared from mRNA revealed 2 different transcripts derived from triplication of exon 2 and deletion of exons 2-3 and from duplication of exons 2-4 and deletion of exons 3-4. Western blotting and immunohistochemistry revealed faint or no expression of Parkin in their brains. In the substantia nigra pars compacta, a subfield-specific pattern of neuronal loss and mild gliosis were evident. Lewy bodies were found in 3 patients. Peripheral sensory neuronopathy was a feature. CONCLUSIONS Genomic and mRNA analysis is needed to identify the PRKN mutations. Variable mutations may result in no or little production of mature Parkin and the histopathologic features may be similar. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Naohiko Seike
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan.,Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akio Yokoseki
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ryoko Takeuchi
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kento Saito
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroaki Miyahara
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akinori Miyashita
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tetsuhiko Ikeda
- Department of Neurology, NHO Niigata National Hospital, Kashiwazaki, Japan
| | - Izumi Aida
- Department of Neurology, NHO Niigata National Hospital, Kashiwazaki, Japan
| | - Takashi Nakajima
- Department of Neurology, NHO Niigata National Hospital, Kashiwazaki, Japan
| | - Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Yasuko Toyoshima
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Atsushi Ishikawa
- Department of Neurology, Brain Disease Center Agano Hospital, Agano, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
33
|
Interaction between Parkin and α-Synuclein in PARK2-Mediated Parkinson's Disease. Cells 2021; 10:cells10020283. [PMID: 33572534 PMCID: PMC7911026 DOI: 10.3390/cells10020283] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Parkin and α-synuclein are two key proteins involved in the pathophysiology of Parkinson's disease (PD). Neurotoxic alterations of α-synuclein that lead to the formation of toxic oligomers and fibrils contribute to PD through synaptic dysfunction, mitochondrial impairment, defective endoplasmic reticulum and Golgi function, and nuclear dysfunction. In half of the cases, the recessively inherited early-onset PD is caused by loss of function mutations in the PARK2 gene that encodes the E3-ubiquitin ligase, parkin. Parkin is involved in the clearance of misfolded and aggregated proteins by the ubiquitin-proteasome system and regulates mitophagy and mitochondrial biogenesis. PARK2-related PD is generally thought not to be associated with Lewy body formation although it is a neuropathological hallmark of PD. In this review article, we provide an overview of post-mortem neuropathological examinations of PARK2 patients and present the current knowledge of a functional interaction between parkin and α-synuclein in the regulation of protein aggregates including Lewy bodies. Furthermore, we describe prevailing hypotheses about the formation of intracellular micro-aggregates (synuclein inclusions) that might be more likely than Lewy bodies to occur in PARK2-related PD. This information may inform future studies aiming to unveil primary signaling processes involved in PD and related neurodegenerative disorders.
Collapse
|
34
|
Reduced astrocytic reactivity in human brains and midbrain organoids with PRKN mutations. NPJ PARKINSONS DISEASE 2020; 6:33. [PMID: 33298969 PMCID: PMC7666226 DOI: 10.1038/s41531-020-00137-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/21/2020] [Indexed: 01/19/2023]
Abstract
Parkin (encoded by PRKN) is a ubiquitin ligase that plays an important role in cellular mitochondrial quality control. Mutations in PRKN cause selective dopaminergic cell loss in the substantia nigra and are presumed to induce a decrease in mitochondrial function caused by the defective clearance of mitochondria. Several studies have demonstrated that parkin dysfunction causes mitochondrial injury and astrocytic dysfunction. Using immunohistochemical methods, we analyzed astrocytic changes in human brains from individuals with PRKN mutations. Few glial fibrillary acidic protein- and vimentin-positive astrocytes were observed in the substantia nigra in PRKN-mutated subjects compared with subjects with idiopathic Parkinson's disease. We also differentiated patient-specific induced pluripotent stem cells into midbrain organoids and confirmed decreased numbers of glial fibrillary acidic protein-positive astrocytes in PRKN-mutated organoids compared with age- and sex-matched controls. Our study reveals PRKN-mutation-induced astrocytic alteration and suggests the possibility of an astrocyte-related non-autonomous cell death mechanism for dopaminergic neurons in brains of PRKN-mutated patients.
Collapse
|
35
|
Abstract
Discovery of Park2 is our finding of a family of young onset parkinsonism, in which this family was thought to be associated with a polymorphism of the manganese superoxide gene. The gene locus of the manganese superoxide dismutase has been known. We were able to pick up a gene for this family and related families in the close approximate position at the long arm of chromosome 6. The gene for this disease has a ubiquitin-like motif in the N-terminus and two RING finger structures. It was shown that this gene had a ubiquitin-protein ligase activity. But it is not elucidated the substrate of this enzyme. Meanwhile, it has become clear that PINK1 and Parkin work together to remove the mitochondria of the lowered membrane potential in the autophagosomes (mitophagy). Now that the molecular mechanisms of mitophagy is under investigation. In addition, many hot topics are going on such as Lewy body in Park2, single heterozygotes, rare clinical manifestations, and so on.
Collapse
Affiliation(s)
- Yoshikuni Mizuno
- Department of Neurology, Juntendo University Japan; Department of Neurology, Tokyo Clinic Japan.
| |
Collapse
|
36
|
Kook S, Zhan X, Thibeault K, Ahmed MR, Gurevich VV, Gurevich EV. Mdm2 enhances ligase activity of parkin and facilitates mitophagy. Sci Rep 2020; 10:5028. [PMID: 32193420 PMCID: PMC7081349 DOI: 10.1038/s41598-020-61796-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Loss-of-function mutations in the E3 ubiquitin ligase parkin have been implicated in the death of dopaminergic neurons in the substantia nigra, which is the root cause of dopamine deficit in the striatum in Parkinson's disease. Parkin ubiquitinates proteins on mitochondria that lost membrane potential, promoting the elimination of damaged mitochondria. Neuroprotective activity of parkin has been linked to its critical role in the mitochondria maintenance. Here we report a novel regulatory mechanism: another E3 ubiquitin ligase Mdm2 directly binds parkin and enhances its enzymatic activity in vitro and in intact cells. Mdm2 translocates to damaged mitochondria independently of parkin, enhances parkin-dependent ubiquitination of the outer mitochondria membrane protein mitofusin1. Mdm2 facilitates and its knockdown reduces parkin-dependent mitophagy. Thus, ubiquitously expressed Mdm2 might enhance cytoprotective parkin activity. The data suggest that parkin activation by Mdm2 could be targeted to increase its neuroprotective functions, which has implications for anti-parkinsonian therapy.
Collapse
Affiliation(s)
- Seunghyi Kook
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Pediatrics, Division of Neonatology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Xuanzhi Zhan
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Chemistry, Tennessee Technological University, Cookeville, TN, 38505, USA
| | - Kimberly Thibeault
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Mohamed R Ahmed
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Biomaterials and Advanced Drug Delivery Laboratories, Stanford University, Palo Alto, CA, 94304, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
37
|
Barodia SK, McMeekin LJ, Creed RB, Quinones EK, Cowell RM, Goldberg MS. PINK1 phosphorylates ubiquitin predominantly in astrocytes. NPJ PARKINSONS DISEASE 2019; 5:29. [PMID: 31840043 PMCID: PMC6906478 DOI: 10.1038/s41531-019-0101-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
Loss-of-function mutations in PINK1 are causally linked to recessively inherited Parkinson’s disease (PD), with marked loss of dopaminergic neurons in the substantia nigra that are required for normal movement. PINK1 is a nuclear-encoded mitochondrial-targeted kinase that phosphorylates a conserved serine at amino acid 65 (pS65) in ubiquitin as well as Parkin, another gene with loss-of-function mutations linked to recessive parkinsonism. The steady-state levels of PINK1 protein are very low, even in cells that express PINK1, because PINK1 is normally targeted for degradation after mitochondrial import by a process that is dependent upon mitochondrial membrane potential. Dissipation of the mitochondrial membrane potential with ionophores, such as CCCP and valinomycin, causes the accumulation of PINK1 on the outer mitochondrial membrane, a marked increase of pS65-ubiquitin and the recruitment of Parkin, which targets dysfunctional mitochondria for degradation by autophagy. While the high penetrance of PINK1 mutations establish its critical function for maintaining neurons, the activity of PINK1 in primary neurons has been difficult to detect. Mounting evidence implicates non-neuronal cells, including astrocytes and microglia, in the pathogenesis of both idiopathic and inherited PD. Herein we used both western analysis and immunofluorescence of pS65-ubiquitin to directly compare the activity of PINK1 in primary neurons, astrocytes, microglia, and oligodendrocyte progenitor cells cultured from the brains of wild-type (WT) and PINK1 knockout (KO) rat pups. Our findings that PINK1-dependent ubiquitin phosphorylation is predominantly in astrocytes supports increased priority for research on the function of PINK1 in astrocytes and the contribution of astrocyte dysfunction to PD pathogenesis.
Collapse
Affiliation(s)
- Sandeep K Barodia
- 1Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Laura J McMeekin
- 2Department of Neuroscience, Southern Research, Birmingham, AL 35205 USA.,3Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Rose B Creed
- 1Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Elijah K Quinones
- 1Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Rita M Cowell
- 2Department of Neuroscience, Southern Research, Birmingham, AL 35205 USA.,3Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Matthew S Goldberg
- 1Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294 USA.,4Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
38
|
The Overcrowded Crossroads: Mitochondria, Alpha-Synuclein, and the Endo-Lysosomal System Interaction in Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20215312. [PMID: 31731450 PMCID: PMC6862467 DOI: 10.3390/ijms20215312] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide, mainly affecting the elderly. The disease progresses gradually, with core motor presentations and a multitude of non-motor manifestations. There are two neuropathological hallmarks of PD, the dopaminergic neuronal loss and the alpha-synuclein-containing Lewy body inclusions in the substantia nigra. While the exact pathomechanisms of PD remain unclear, genetic investigations have revealed evidence of the involvement of mitochondrial function, alpha-synuclein (α-syn) aggregation, and the endo-lysosomal system, in disease pathogenesis. Due to the high energy demand of dopaminergic neurons, mitochondria are of special importance acting as the cellular powerhouse. Mitochondrial dynamic fusion and fission, and autophagy quality control keep the mitochondrial network in a healthy state. Should defects of the organelle occur, a variety of reactions would ensue at the cellular level, including disrupted mitochondrial respiratory network and perturbed calcium homeostasis, possibly resulting in cellular death. Meanwhile, α-syn is a presynaptic protein that helps regulate synaptic vesicle transportation and endocytosis. Its misfolding into oligomeric sheets and fibrillation is toxic to the mitochondria and neurons. Increased cellular oxidative stress leads to α-syn accumulation, causing mitochondrial dysfunction. The proteasome and endo-lysosomal systems function to regulate damage and unwanted waste management within the cell while facilitating the quality control of mitochondria and α-syn. This review will analyze the biological functions and interactions between mitochondria, α-syn, and the endo-lysosomal system in the pathogenesis of PD.
Collapse
|
39
|
Li H, Jiang H, Zhang B, Feng J. Modeling Parkinson's Disease Using Patient-specific Induced Pluripotent Stem Cells. JOURNAL OF PARKINSONS DISEASE 2019; 8:479-493. [PMID: 30149462 PMCID: PMC6218140 DOI: 10.3233/jpd-181353] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder. It is characterized by the degeneration of nigral dopaminergic (DA) neurons. While over 90% of cases are idiopathic, without a clear etiology, mutations in many genes have been linked to rare, familial forms of PD. It has been quite challenging to develop effective animal models of PD that capture salient features of PD. The discovery of induced pluripotent stem cells (iPSCs) makes it possible to generate patient-specific DA neurons to study PD. Here, we review the methods for the generation of iPSCs and discuss previous studies using iPSC-derived neurons from monogenic forms of PD. These investigations have revealed several converging pathways that intersect with the unique vulnerabilities of human nigral DA neurons. With the rapid development in stem cell biology, it is possible to generate patient-specific neurons that will be increasingly similar to those in the brain of the patient. Combined with the ability to edit the genome to generate isogenic iPSCs, the generation and analysis of patient-specific midbrain DA neurons will transform PD research by providing a valuable tool for mechanistic study and drug discovery.
Collapse
Affiliation(s)
- Hong Li
- Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA.,Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Houbo Jiang
- Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA.,Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Boyang Zhang
- Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA.,Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jian Feng
- Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA.,Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
40
|
Tan MMX, Malek N, Lawton MA, Hubbard L, Pittman AM, Joseph T, Hehir J, Swallow DMA, Grosset KA, Marrinan SL, Bajaj N, Barker RA, Burn DJ, Bresner C, Foltynie T, Hardy J, Wood N, Ben-Shlomo Y, Grosset DG, Williams NM, Morris HR. Genetic analysis of Mendelian mutations in a large UK population-based Parkinson's disease study. Brain 2019; 142:2828-2844. [PMID: 31324919 PMCID: PMC6735928 DOI: 10.1093/brain/awz191] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/05/2019] [Accepted: 04/28/2019] [Indexed: 01/01/2023] Open
Abstract
Our objective was to define the prevalence and clinical features of genetic Parkinson's disease in a large UK population-based cohort, the largest multicentre prospective clinico-genetic incident study in the world. We collected demographic data, Movement Disorder Society Unified Parkinson's Disease Rating Scale scores, and Montreal Cognitive Assessment scores. We analysed mutations in PRKN (parkin), PINK1, LRRK2 and SNCA in relation to age at symptom onset, family history and clinical features. Of the 2262 participants recruited to the Tracking Parkinson's study, 424 had young-onset Parkinson's disease (age at onset ≤ 50) and 1799 had late onset Parkinson's disease. A range of methods were used to genotype 2005 patients: 302 young-onset patients were fully genotyped with multiplex ligation-dependent probe amplification and either Sanger and/or exome sequencing; and 1701 late-onset patients were genotyped with the LRRK2 'Kompetitive' allele-specific polymerase chain reaction assay and/or exome sequencing (two patients had missing age at onset). We identified 29 (1.4%) patients carrying pathogenic mutations. Eighteen patients carried the G2019S or R1441C mutations in LRRK2, and one patient carried a heterozygous duplication in SNCA. In PRKN, we identified patients carrying deletions of exons 1, 4 and 5, and P113Xfs, R275W, G430D and R33X. In PINK1, two patients carried deletions in exon 1 and 5, and the W90Xfs point mutation. Eighteen per cent of patients with age at onset ≤30 and 7.4% of patients from large dominant families carried pathogenic Mendelian gene mutations. Of all young-onset patients, 10 (3.3%) carried biallelic mutations in PRKN or PINK1. Across the whole cohort, 18 patients (0.9%) carried pathogenic LRRK2 mutations and one (0.05%) carried an SNCA duplication. There is a significant burden of LRRK2 G2019S in patients with both apparently sporadic and familial disease. In young-onset patients, dominant and recessive mutations were equally common. There were no differences in clinical features between LRRK2 carriers and non-carriers. However, we did find that PRKN and PINK1 mutation carriers have distinctive clinical features compared to young-onset non-carriers, with more postural symptoms at diagnosis and less cognitive impairment, after adjusting for age and disease duration. This supports the idea that there is a distinct clinical profile of PRKN and PINK1-related Parkinson's disease. We estimate that there are approaching 1000 patients with a known genetic aetiology in the UK Parkinson's disease population. A small but significant number of patients carry causal variants in LRRK2, SNCA, PRKN and PINK1 that could potentially be targeted by new therapies, such as LRRK2 inhibitors.
Collapse
Affiliation(s)
- Manuela M X Tan
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Naveed Malek
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Leon Hubbard
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Alan M Pittman
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Theresita Joseph
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Jason Hehir
- University College London Hospitals NHS Foundation Trust, UK
| | - Diane M A Swallow
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Katherine A Grosset
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Sarah L Marrinan
- Institute of Neuroscience, University of Newcastle, Newcastle upon Tyne, UK
| | - Nin Bajaj
- Department of Clinical Neurosciences, University of Nottingham, UK
| | - Roger A Barker
- UCL Movement Disorders Centre, University College London, London, UK
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge UK
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Cambridge, UK
| | - David J Burn
- Institute of Neuroscience, University of Newcastle, Newcastle upon Tyne, UK
| | - Catherine Bresner
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - John Hardy
- Reta Lila Weston Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Nicholas Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | | | - Donald G Grosset
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Nigel M Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| |
Collapse
|
41
|
Monin M, Lesage S, Brice A. Basi molecolari della malattia di Parkinson. Neurologia 2019. [DOI: 10.1016/s1634-7072(18)41584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
42
|
Greenland JC, Williams-Gray CH, Barker RA. The clinical heterogeneity of Parkinson's disease and its therapeutic implications. Eur J Neurosci 2019; 49:328-338. [PMID: 30059179 DOI: 10.1111/ejn.14094] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/29/2018] [Accepted: 07/24/2018] [Indexed: 02/02/2023]
Abstract
Although Parkinson's disease (PD) is primarily a movement disorder, there are a range of associated nonmotor symptoms, including cognitive impairment, depression and sleep disturbance. These can occur throughout the disease course, even predating the motor syndrome. However, both motor and nonmotor symptoms are variable between individual patients. Rate of disease progression is also heterogenous: although 50% have reached key milestones of either postural instability or dementia within 4 years from diagnosis, almost a quarter have a good prognosis at 10 years. In this review we discuss how a range of different factors including clinical features, pathology and genetics, have been used to describe the heterogeneity of PD. We explore the value of longitudinal studies of incident PD cohorts, based on our own experience in Cambridgeshire, to define differences in rates of disease progression and predictors of outcome, including how such studies have informed the development of prognostic models which can be used at an individual patient level. Finally, we discuss the benefits of better understanding the basis of heterogeneity of PD in terms of implications for the development and trialling of more targeted therapies for different subgroups of patients, including regenerative approaches.
Collapse
Affiliation(s)
- Julia C Greenland
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Caroline H Williams-Gray
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|
43
|
Kunath T, Natalwala A, Chan C, Chen Y, Stecher B, Taylor M, Khan S, Muqit MMK. Are PARKIN patients ideal candidates for dopaminergic cell replacement therapies? Eur J Neurosci 2019; 49:453-462. [PMID: 30586214 PMCID: PMC6492143 DOI: 10.1111/ejn.14314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022]
Abstract
Parkinson's is a heterogeneous, complex condition. Stratification of Parkinson's subtypes will be essential to identify those that will benefit most from a cell replacement therapy. Foetal mesencephalic grafts can alleviate motor symptoms in some Parkinson's patients. However, on-going synucleinopathy results in the grafts eventually developing Lewy bodies, and they begin to fail. We propose that Parkinson's patients with PARKIN mutations may benefit most from a cell replacement therapy because (a) they often lack synucleinopathy, and (b) their neurodegeneration is often confined to the nigrostriatal pathway. While patients with PARKIN mutations exhibit clinical signs of Parkinson's, post-mortem studies to date indicate the majority lack Lewy bodies suggesting the nigral dopaminergic neurons are lost in a cell autonomous manner independent of α-synuclein mechanisms. Furthermore, these patients are usually younger, slow progressing and typically do not suffer from complex non-nigral symptoms that are unlikely to be ameliorated by a cell replacement therapy. Transplantation of dopaminergic cells into the putamen of these patients will provide neurons with wild-type PARKIN expression to re-innervate the striatum. The focal nature of PARKIN-mediated neurodegeneration and lack of active synucleinopathy in most young-onset cases makes these patients ideal candidates for a dopaminergic cell replacement therapy. Strategies to improve the outcome of cell replacement therapies for sporadic Parkinson's include the use of adjunct therapeutics that target α-synuclein spreading and the use of genetically engineered grafts that are resistant to synucleinopathy.
Collapse
Affiliation(s)
- Tilo Kunath
- MRC Centre for Regenerative MedicineInstitute for Stem Cell ResearchSchool of Biological SciencesThe University of EdinburghEdinburghUK
| | - Ammar Natalwala
- MRC Centre for Regenerative MedicineInstitute for Stem Cell ResearchSchool of Biological SciencesThe University of EdinburghEdinburghUK
- Translational Neurosurgery GroupWestern General HospitalEdinburghUK
| | - Claire Chan
- MRC Centre for Regenerative MedicineInstitute for Stem Cell ResearchSchool of Biological SciencesThe University of EdinburghEdinburghUK
| | - Yixi Chen
- MRC Centre for Regenerative MedicineInstitute for Stem Cell ResearchSchool of Biological SciencesThe University of EdinburghEdinburghUK
| | | | - Martin Taylor
- Edinburgh Research Interest GroupParkinson's UKEdinburghUK
| | - Sadaquate Khan
- Translational Neurosurgery GroupWestern General HospitalEdinburghUK
| | - Miratul M. K. Muqit
- MRC Protein Phosphorylation and Ubiquitylation UnitSchool of Life SciencesUniversity of DundeeDD1 5EHDundeeUK
| |
Collapse
|
44
|
The role of monogenic genes in idiopathic Parkinson's disease. Neurobiol Dis 2018; 124:230-239. [PMID: 30448284 DOI: 10.1016/j.nbd.2018.11.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Abstract
In the past two decades, mutations in multiple genes have been linked to autosomal dominant or recessive forms of monogenic Parkinson's disease (PD). Collectively, these monogenic (often familial) cases account for less than 5% of all PD, the majority being apparently sporadic cases. More recently, large-scale genome-wide association studies have identified over 40 loci that increase risk of PD. Importantly, there is overlap between monogenic and sporadic PD genes, particularly for the loci that contain the genes SNCA and LRRK2, which are mutated in monogenic dominant PD. There have also been reports of idiopathic PD cases with heterozygous variants in autosomal recessive genes suggesting that these mutations may increase risk of PD. These observations suggest that monogenic and idiopathic PD may have shared pathogenic mechanisms. Here, we focus mainly on the role of monogenic PD genes that represent pleomorphic risk loci for idiopathic PD. We also discuss the functional mechanisms that may play a role in increasing risk of disease in both monogenic and idiopathic forms.
Collapse
|
45
|
Lunati A, Lesage S, Brice A. The genetic landscape of Parkinson's disease. Rev Neurol (Paris) 2018; 174:628-643. [PMID: 30245141 DOI: 10.1016/j.neurol.2018.08.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 01/18/2023]
Abstract
The cause of Parkinson's disease (PD) remains unknown in most patients. Since 1997, with the first genetic mutation known to cause PD described in SNCA gene, many other genes with Mendelian inheritance have been identified. We summarize genetic, clinical and neuropathological findings related to the 27 genes reported in the literature since 1997, associated either with autosomal dominant (AD): LRRK2, SNCA, VPS35, GCH1, ATXN2, DNAJC13, TMEM230, GIGYF2, HTRA2, RIC3, EIF4G1, UCHL1, CHCHD2, and GBA; or autosomal recessive (AR) inheritance: PRKN, PINK1, DJ1, ATP13A2, PLA2G6, FBXO7, DNAJC6, SYNJ1, SPG11, VPS13C, PODXL, and PTRHD1; or an X-linked transmission: RAB39B. Clinical and neuropathological variability among genes is great. LRRK2 mutation carriers present a phenotype similar to those with idiopathic PD whereas, depending on the SNCA mutations, the phenotype ranges from early onset typical PD to dementia with Lewy bodies, including many other atypical forms. DNAJC6 nonsense mutations lead to a very severe phenotype whereas DNAJC6 missense mutations cause a more typical form. PRKN, PINK1 and DJ1 cases present with typical early onset PD with slow progression, whereas other AR genes present severe atypical Parkinsonism. RAB39B is responsible for a typical phenotype in women and a variable phenotype in men. GBA is a major PD risk factor often associated with dementia. A growing number of reported genes described as causal genes (DNAJC13, TMEM230, GIGYF2, HTRA2, RIC3, EIF4G1, UCHL1, and CHCHD2) are still awaiting replication or indeed have not been replicated, thus raising questions as to their pathogenicity. Phenotypic data collection and next generation sequencing of large numbers of cases and controls are needed to differentiate pathogenic dominant mutations with incomplete penetrance from rare, non-pathogenic variants. Although known genes cause a minority of PD cases, their identification will lead to a better understanding their pathological mechanisms, and may contribute to patient care, genetic counselling, prognosis determination and finding new therapeutic targets.
Collapse
Affiliation(s)
- A Lunati
- Inserm U1127, CNRS UMR 7225, UPMC université Paris 06 UMR S1127, Sorbonne université, institut du cerveau et de la moelle épinière, ICM, 75013 Paris, France
| | - S Lesage
- Inserm U1127, CNRS UMR 7225, UPMC université Paris 06 UMR S1127, Sorbonne université, institut du cerveau et de la moelle épinière, ICM, 75013 Paris, France
| | - A Brice
- Inserm U1127, CNRS UMR 7225, UPMC université Paris 06 UMR S1127, Sorbonne université, institut du cerveau et de la moelle épinière, ICM, 75013 Paris, France; Département de génétique, hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France.
| |
Collapse
|
46
|
Fadda L, Lombardi R, Soliveri P, Lauria G, Giovanni Defazio, Tagliavini F. Skin nerve α-synuclein deposits in a parkinsonian patient with heterozygous parkin mutation. Parkinsonism Relat Disord 2018; 60:182-183. [PMID: 30245173 DOI: 10.1016/j.parkreldis.2018.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/05/2018] [Accepted: 09/16/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Laura Fadda
- Department of Neurology, University of Cagliari, Cagliari, Italy.
| | - Raffaella Lombardi
- Neuroalgology Unity, IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| | - Paola Soliveri
- Movement Disorders Unity, IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| | - Giuseppe Lauria
- Neuroalgology Unity, IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Giovanni Defazio
- Department of Neurology, University of Cagliari, Cagliari, Italy
| | | |
Collapse
|
47
|
Johansen KK, Torp SH, Farrer MJ, Gustavsson EK, Aasly JO. A Case of Parkinson's Disease with No Lewy Body Pathology due to a Homozygous Exon Deletion in Parkin. Case Rep Neurol Med 2018; 2018:6838965. [PMID: 30050705 PMCID: PMC6046180 DOI: 10.1155/2018/6838965] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/07/2018] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is a clinical diagnosis based on the presence of cardinal motor signs, good response to levodopa, and no other explanations of the syndrome. Earlier diagnostic criteria required autopsy for a definite diagnosis based on neuronal loss in the substantia nigra pars compacta (SNpc) and the presence of Lewy bodies and neurites. Here, we present a patient who developed parkinsonism around the age of 20, with an excellent response to levodopa who, at age 65, received bilateral STN deep brain stimulation (DBS). The patient died at age 79. The autopsy showed severe neuronal loss in the SN without any Lewy bodies in the brainstem or in the hemispheres. Genetic screening revealed a homozygous deletion of exon 3-4 in the Parkin gene. In this case report we discuss earlier described pathological findings in Parkin cases without Lewy body pathology, the current diagnostic criteria for PD, and their clinical relevance.
Collapse
Affiliation(s)
| | - Sverre Helge Torp
- Department of Pathology, St. Olavs University Hospital, Trondheim, Norway
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matthew J. Farrer
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Emil K. Gustavsson
- Department of Neurology, St. Olavs University Hospital, Trondheim, Norway
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jan O. Aasly
- Department of Neurology, St. Olavs University Hospital, Trondheim, Norway
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
48
|
Smith LM, Parr-Brownlie LC. A neuroscience perspective of the gut theory of Parkinson's disease. Eur J Neurosci 2018; 49:817-823. [DOI: 10.1111/ejn.13869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/31/2018] [Accepted: 02/09/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Lisa M. Smith
- Department of Anatomy; Brain Health Research Centre, and Brain Research New Zealand; University of Otago; PO Box 913 Dunedin 9054 New Zealand
| | - Louise C. Parr-Brownlie
- Department of Anatomy; Brain Health Research Centre, and Brain Research New Zealand; University of Otago; PO Box 913 Dunedin 9054 New Zealand
| |
Collapse
|
49
|
Creed RB, Goldberg MS. New Developments in Genetic rat models of Parkinson's Disease. Mov Disord 2018; 33:717-729. [PMID: 29418019 DOI: 10.1002/mds.27296] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/04/2017] [Accepted: 12/10/2017] [Indexed: 12/12/2022] Open
Abstract
Preclinical research on Parkinson's disease has relied heavily on mouse and rat animal models. Initially, PD animal models were generated primarily by chemical neurotoxins that induce acute loss of dopaminergic neurons in the substantia nigra. On the discovery of genetic mutations causally linked to PD, mice were used more than rats to generate laboratory animals bearing PD-linked mutations because mutagenesis was more difficult in rats. Recent advances in technology for mammalian genome engineering and optimization of viral expression vectors have increased the use of genetic rat models of PD. Emerging research tools include "knockout" rats with disruption of genes in which mutations have been causally linked to PD, including LRRK2, α-synuclein, Parkin, PINK1, and DJ-1. Rats have also been increasingly used for transgenic and viral-mediated overexpression of genes relevant to PD, particularly α-synuclein. It may not be realistic to obtain a single animal model that completely reproduces every feature of a human disease as complex as PD. Nevertheless, compared with mice with the same mutations, many genetic rat animal models of PD better reproduce key aspects of PD including progressive loss of dopaminergic neurons in the substantia nigra, locomotor behavior deficits, and age-dependent formation of abnormal α-synuclein protein aggregates. Here we briefly review new developments in genetic rat models of PD that may have greater potential for identifying underlying mechanisms, for discovering novel therapeutic targets, and for developing greatly needed treatments to slow or halt disease progression. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rose B Creed
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew S Goldberg
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
50
|
Pipeline to gene discovery - Analysing familial Parkinsonism in the Queensland Parkinson's Project. Parkinsonism Relat Disord 2018; 49:34-41. [PMID: 29329938 DOI: 10.1016/j.parkreldis.2017.12.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/19/2017] [Accepted: 12/29/2017] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Family based study designs provide an informative resource to identify disease-causing mutations. The Queensland Parkinson's Project (QPP) has been involved in numerous genetic screening studies; however, details of the families enrolled into the register have not been comprehensively reported. This article characterises the families enrolled in the QPP and summarises monogenic forms of hereditary Parkinsonism found in the register. METHOD The presence of pathogenic point mutations and copy number variations (CNVs) were, generally, screened in a sample of over 1000 PD patients from the total of 1725. Whole exome sequencing (WES) was performed on eighteen probands from multiplex families. RESULTS The QPP contains seventeen incidences of confirmed monogenic forms of PD, including LRRK2 p.G2019S, VPS35 p.D620N, SNCA duplications and PARK2 p.G430D (hom) & exon 4 deletion (hom). Of these seventeen, five belong to multi-incident families, while another eight have a family history of at least one other case of PD. In additional families, WES did not identify known forms of monogenic Parkinsonism; however, three heterozygous mutations in PARK2, p.R275W, p.Q34fs, and a 40bp deletion in exon 3 were identified. Of these three mutations, only the 40bp deletion segregated with disease in a dominant inheritance pattern. CONCLUSION Eighteen probands have screened negative for known CNVs and mutations that cause clear monogenic forms of PD. Each family is a candidate for further genetic analysis to identify genetic variants segregating with disease. The families enrolled in the QPP provide a useful resource to aid in identifying novel forms of monogenic PD.
Collapse
|