1
|
Bagnato F, Mordin M, Greene N, Mahida S, van Wingerden J. Associations between chronic active lesions and clinical outcomes in multiple sclerosis: A systematic literature review. J Manag Care Spec Pharm 2025:1-28. [PMID: 40357663 DOI: 10.18553/jmcp.2025.24294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic neuroinflammatory and neurodegenerative disease. Emerging evidence suggests that chronic disease processes within the central nervous system are important drivers of the ongoing disability accumulation in people with MS (pwMS). Chronic lesion activity driven by smoldering neuroinflammation is considered one of the neuropathological hallmarks of disease progression in worsening disability. Our understanding of the role of chronic active lesions (CALs) in MS pathology has expanded with improvements in imaging technology. Three in vivo imaging biomarkers of CALs are available to detect CALs: paramagnetic rim lesions (PRLs), 18 kDa translocator protein (TSPO)-positron emission tomography rim-positive lesions, and the magnetic resonance imaging (MRI)-defined slowly expanding lesions (SELs). OBJECTIVE To evaluate associations between CALs and measures of worsening disability in pwMS. METHODS A systematic literature search was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines using PubMed, Embase, and the Cochrane Library on April 21, 2023. The review included randomized controlled trials, retrospective studies, and prospective cross-sectional and longitudinal studies conducted during 2010-2023 reporting the outcomes of interest. Studies evaluating people with any MS phenotype were included if they reported any associative analysis between CALs and clinical outcomes. RESULTS A total of 30 of 149 unique studies identified in the literature met the inclusion criteria. Of these 30 publications, 18 were based on PRLs, 9 on MRI-defined SELs, 1 on PRLs and MRI-defined SELs simultaneously, and 2 on TSPO-positive lesions. PRLs were associated with disability worsening in 17 studies, as measured by clinical disability scales. MRI-defined SELs were associated with worsening disability in 10 studies. CONCLUSIONS CALs are frequently associated with disease progression and disability accumulation. CALs may provide an indicator of disease severity and may assist with the assessment of treatment efficacy.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuorimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | | | | | | | | |
Collapse
|
2
|
Vaccarino F, Quattrocchi CC, Parillo M. Susceptibility-Weighted Imaging (SWI): Technical Aspects and Applications in Brain MRI for Neurodegenerative Disorders. Bioengineering (Basel) 2025; 12:473. [PMID: 40428092 PMCID: PMC12109288 DOI: 10.3390/bioengineering12050473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) sequence sensitive to substances that alter the local magnetic field, such as calcium and iron, allowing phase information to distinguish between them. SWI is a 3D gradient-echo sequence with high spatial resolution that leverages both phase and magnitude effects. The interaction of paramagnetic (such as hemosiderin and deoxyhemoglobin), diamagnetic (including calcifications and minerals), and ferromagnetic substances with the local magnetic field distorts it, leading to signal changes. Neurodegenerative diseases are typically characterized by the progressive loss of neurons and their supporting cells within the neurovascular unit. This cellular decline is associated with a corresponding deterioration of both cognitive and motor abilities. Many neurodegenerative disorders are associated with increased iron accumulation or microhemorrhages in various brain regions, making SWI a valuable diagnostic tool in clinical practice. Suggestive SWI findings are known in Parkinson's disease, Lewy body dementia, atypical parkinsonian syndromes, multiple sclerosis, cerebral amyloid angiopathy, amyotrophic lateral sclerosis, hereditary ataxias, Huntington's disease, neurodegeneration with brain iron accumulation, and chronic traumatic encephalopathy. This review will assist radiologists in understanding the technical framework of SWI sequences for a correct interpretation of currently established MRI findings and for its potential future clinical applications.
Collapse
Affiliation(s)
- Federica Vaccarino
- Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, 38123 Trento, Italy; (C.C.Q.); (M.P.)
- Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Carlo Cosimo Quattrocchi
- Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, 38123 Trento, Italy; (C.C.Q.); (M.P.)
- Centre for Medical Sciences-CISMed, University of Trento, 38122 Trento, Italy
| | - Marco Parillo
- Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, 38123 Trento, Italy; (C.C.Q.); (M.P.)
| |
Collapse
|
3
|
Dong Y, Zheng M, Ding W, Guan H, Xiao J, Li F. Nrf2 activators for the treatment of rare iron overload diseases: From bench to bedside. Redox Biol 2025; 81:103551. [PMID: 39965404 PMCID: PMC11876910 DOI: 10.1016/j.redox.2025.103551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/02/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
Iron overload and related oxidative damage are seen in many rare diseases, due to mutation of iron homeostasis-related genes. As a core regulator on cellular antioxidant reaction, Nrf2 can also decrease systemic and cellular iron levels by regulating iron-related genes and pathways, making Nrf2 activators very good candidates for the treatment of iron overload disorders. Successful examples include the clinical use of omaveloxolone for Friedreich's Ataxia and dimethyl fumarate for relapsing-remitting multiple sclerosis. Despite these uses, the therapeutic potentials of Nrf2 activators for iron overload disorders may be overlooked in clinical practice. Therefore, this study talks about the potential use, possible mechanisms, and precautions of Nrf2 activators in treating rare iron overload diseases. In addition, a combination therapy with Nrf2 activators and iron chelators is proposed for clinical reference, aiming to facilitate the clinical use of Nrf2 activators for more iron overload disorders.
Collapse
Affiliation(s)
- Yimin Dong
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zheng
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhong Ding
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanfeng Guan
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jun Xiao
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Feng Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Dal-Bianco A, Oh J, Sati P, Absinta M. Chronic active lesions in multiple sclerosis: classification, terminology, and clinical significance. Ther Adv Neurol Disord 2024; 17:17562864241306684. [PMID: 39711984 PMCID: PMC11660293 DOI: 10.1177/17562864241306684] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
In multiple sclerosis (MS), increasing disability is considered to occur due to persistent, chronic inflammation trapped within the central nervous system (CNS). This condition, known as smoldering neuroinflammation, is present across the clinical spectrum of MS and is currently understood to be relatively resistant to treatment with existing disease-modifying therapies. Chronic active white matter lesions represent a key component of smoldering neuroinflammation. Initially characterized in autopsy specimens, multiple approaches to visualize chronic active lesions (CALs) in vivo using advanced neuroimaging techniques and postprocessing methods are rapidly emerging. Among these in vivo imaging correlates of CALs, paramagnetic rim lesions (PRLs) are defined by the presence of a perilesional rim formed by iron-laden microglia and macrophages, whereas slowly expanding lesions are identified based on linear, concentric lesion expansion over time. In recent years, several longitudinal studies have linked the occurrence of in vivo detected CALs to a more aggressive disease course. PRLs are highly specific to MS and therefore have recently been incorporated into the MS diagnostic criteria. They also have prognostic potential as biomarkers to identify patients at risk of early and severe disease progression. These developments could significantly affect MS care and the evaluation of new treatments. This review describes the latest knowledge on CAL biology and imaging and the relevance of CALs to the natural history of MS. In addition, we outline considerations for current and future in vivo biomarkers of CALs, emphasizing the need for validation, standardization, and automation in their assessment.
Collapse
Affiliation(s)
- Assunta Dal-Bianco
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18–20, Vienna 1090, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Pascal Sati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Martina Absinta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Experimental Neuropathology Lab, Neuro Center, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
5
|
Yokote H, Miyazaki Y, Fujimori J, Nishida Y, Toru S, Niino M, Nakashima I, Miura Y, Yokota T. Slowly expanding lesions are associated with disease activity and gray matter loss in relapse-onset multiple sclerosis. J Neuroimaging 2024; 34:758-765. [PMID: 39390692 DOI: 10.1111/jon.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Slowly expanding lesions (SELs) have been proposed as novel MRI markers of chronic active lesions in multiple sclerosis (MS). However, the mechanism through which SELs affect brain volume loss in patients with MS remains unknown. Additionally, the prevalence and significance of SELs in Asian patients with MS remain unclear. This study aimed to investigate the association between SELs and no evidence of disease activity (NEDA)-3 status as well as brain volume loss in Japanese patients. METHODS A total of 99 patients with relapse-onset MS were retrospectively evaluated. SELs were identified on brain MRI based on local deformation when consecutive scans were registered longitudinally. We developed a logistic regression model and generalized linear mixed models (GLMMs) to evaluate the association between the number of SELs and disease activity and changes in brain volume. RESULTS During the observation period (2.0 ± 0.22 years), 35 patients developed at least one SEL. Multivariable logistic regression analysis showed that ≥2 SELs were associated with 0.2 times the risk of achieving a NEDA-3 status. GLMMs revealed that the number of SELs was negatively associated with volume changes in the cortex (p = .00169) and subcortical gray matter (p = .00964) after correction for multiple comparisons. CONCLUSION SELs were identified in Japanese patients with MS during the 2-year observation period. The number of SELs is associated with disease activity and brain volume loss, suggesting that the number of SELs could be a biomarker of disease activity in MS.
Collapse
Affiliation(s)
- Hiroaki Yokote
- Department of Neurology, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusei Miyazaki
- Department of Clinical Research, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Juichi Fujimori
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoichiro Nishida
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuta Toru
- Department of Neurology, Nitobe Memorial Nakano General Hospital, Tokyo, Japan
| | - Masaaki Niino
- Department of Clinical Research, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Ichiro Nakashima
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoshiharu Miura
- Department of Neurology, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
6
|
Harrison DM, Sati P, Klawiter EC, Narayanan S, Bagnato F, Beck ES, Barker P, Calvi A, Cagol A, Donadieu M, Duyn J, Granziera C, Henry RG, Huang SY, Hoff MN, Mainero C, Ontaneda D, Reich DS, Rudko DA, Smith SA, Trattnig S, Zurawski J, Bakshi R, Gauthier S, Laule C. The use of 7T MRI in multiple sclerosis: review and consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Brain Commun 2024; 6:fcae359. [PMID: 39445084 PMCID: PMC11497623 DOI: 10.1093/braincomms/fcae359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The use of ultra-high-field 7-Tesla (7T) MRI in multiple sclerosis (MS) research has grown significantly over the past two decades. With recent regulatory approvals of 7T scanners for clinical use in 2017 and 2020, the use of this technology for routine care is poised to continue to increase in the coming years. In this context, the North American Imaging in MS Cooperative (NAIMS) convened a workshop in February 2023 to review the previous and current use of 7T technology for MS research and potential future research and clinical applications. In this workshop, experts were tasked with reviewing the current literature and proposing a series of consensus statements, which were reviewed and approved by the NAIMS. In this review and consensus paper, we provide background on the use of 7T MRI in MS research, highlighting this technology's promise for identification and quantification of aspects of MS pathology that are more difficult to visualize with lower-field MRI, such as grey matter lesions, paramagnetic rim lesions, leptomeningeal enhancement and the central vein sign. We also review the promise of 7T MRI to study metabolic and functional changes to the brain in MS. The NAIMS provides a series of consensus statements regarding what is currently known about the use of 7T MRI in MS, and additional statements intended to provide guidance as to what work is necessary going forward to accelerate 7T MRI research in MS and translate this technology for use in clinical practice and clinical trials. This includes guidance on technical development, proposals for a universal acquisition protocol and suggestions for research geared towards assessing the utility of 7T MRI to improve MS diagnostics, prognostics and therapeutic efficacy monitoring. The NAIMS expects that this article will provide a roadmap for future use of 7T MRI in MS.
Collapse
Affiliation(s)
- Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurology, Baltimore VA Medical Center, Baltimore, MD 21201, USA
| | - Pascal Sati
- Neuroimaging Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital, Montreal, QC, Canada, H3A 2B4
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada, H3A 2B4
| | - Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurology, Nashville VA Medical Center, TN Valley Healthcare System, Nashville, TN 37212, USA
| | - Erin S Beck
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alberto Calvi
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Alessandro Cagol
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Department of Health Sciences, University of Genova, 16132 Genova, Italy
| | - Maxime Donadieu
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeff Duyn
- Advanced MRI Section, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Department of Neurology, University Hospital Basel, 4001 Basel, Switzerland
| | - Roland G Henry
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Susie Y Huang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Michael N Hoff
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Caterina Mainero
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Rudko
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital, Montreal, QC, Canada, H3A 2B4
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN 37212, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37212, USA
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Jonathan Zurawski
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rohit Bakshi
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Susan Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Cornelia Laule
- Radiology, Pathology and Laboratory Medicine, Physics and Astronomy, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada, BC V6T 1Z4
| |
Collapse
|
7
|
Huerta MM, Conway DS, Planchon SM, Thoomukuntla B, Se-Hong O, Sakaie KE, Ontaneda D, Nakamura K. Longitudinal myelin content measures of slowly expanding lesions using 7T MRI in multiple sclerosis. J Neuroimaging 2024; 34:451-458. [PMID: 38778455 DOI: 10.1111/jon.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND AND PURPOSE Slowly expanding lesions (SELs) are thought to represent a subset of chronic active lesions and have been associated with clinical disability, severity, and disease progression. The purpose of this study was to characterize SELs using advanced magnetic resonance imaging (MRI) measures related to myelin and neurite density on 7 Tesla (T) MRI. METHODS The study design was retrospective, longitudinal, observational cohort with multiple sclerosis (n = 15). Magnetom 7T scanner was used to acquire magnetization-prepared 2 rapid acquisition gradient echo and advanced MRI including visualization of short transverse relaxation time component (ViSTa) for myelin, quantitative magnetization transfer (qMT) for myelin, and neurite orientation dispersion density imaging (NODDI). SELs were defined as lesions showing ≥12% of growth over 12 months on serial MRI. Comparisons of quantitative measures in SELs and non-SELs were performed at baseline and over time. Statistical analyses included two-sample t-test, analysis of variance, and mixed-effects linear model for MRI metrics between lesion types. RESULTS A total of 1075 lesions were evaluated. Two hundred twenty-four lesions (21%) were SELs, and 216 (96%) of the SELs were black holes. At baseline, compared to non-SELs, SELs showed significantly lower ViSTa (1.38 vs. 1.53, p < .001) and qMT (2.47 vs. 2.97, p < .001) but not in NODDI measures (p > .27). Longitudinally, only ViSTa showed a greater loss when comparing SEL and non-SEL (p = .03). CONCLUSIONS SELs have a lower myelin content relative to non-SELs without a difference in neurite measures. SELs showed a longitudinal decrease in apparent myelin water fraction reflecting greater tissue injury.
Collapse
Affiliation(s)
- Mina M Huerta
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Devon S Conway
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sarah M Planchon
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Oh Se-Hong
- Department of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea
| | - Ken E Sakaie
- Imaging Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kunio Nakamura
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Naval-Baudin P, Pons-Escoda A, Castillo-Pinar A, Martínez-Zalacaín I, Arroyo-Pereiro P, Flores-Casaperalta S, Garay-Buitron F, Calvo N, Martinez-Yélamos A, Cos M, Martínez-Yélamos S, Majós C. The T1-dark-rim: A novel imaging sign for detecting smoldering inflammation in multiple sclerosis. Eur J Radiol 2024; 173:111358. [PMID: 38340569 DOI: 10.1016/j.ejrad.2024.111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE Paramagnetic rim lesions (PRLs), usually identified in susceptibility-weighted imaging (SWI), are a promising prognostic biomarker of disability progression in multiple sclerosis (MS). However, SWI is not routinely performed in clinical practice. The objective of this study is to define a novel imaging sign, the T1-dark rim, identifiable in a standard 3DT1 gradient-echo inversion-recovery sequence, such as 3D T1 turbo field echo (3DT1FE) and explore its performance as a SWI surrogate to define PRLs. METHODS This observational cross-sectional study analyzed MS patients who underwent 3T magnetic resonance imaging (MRI) including 3DT1TFE and SWI. Rim lesions were evaluated in 3DT1TFE, processed SWI, and SWI phase and categorized as true positive, false positive, or false negative based on the value of the T1-dark rim in predicting SWI phase PRLs. Sensitivity and positive predictive values of the T1-dark rim for detecting PRLs were calculated. RESULTS Overall, 80 rim lesions were identified in 63 patients (60 in the SWI phase and 78 in 3DT1TFE; 58 true positives, 20 false positives, and two false negatives). The T1-dark rim demonstrated 97% sensitivity and 74% positive predictive value for detecting PRLs. More PRLs were detected in the SWI phase than in processed SWI (60 and 57, respectively). CONCLUSION The T1-dark rim sign is a promising and accessible novel imaging marker to detect PRLs whose high sensitivity may enable earlier detection of chronic active lesions to guide MS treatment escalation. The relevance of T1-dark rim lesions that are negative on SWI opens up a new field for analysis.
Collapse
Affiliation(s)
- Pablo Naval-Baudin
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Diagnostic Imaging and Nuclear Medicine Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain; Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036 Barcelona, Spain.
| | - Albert Pons-Escoda
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Diagnostic Imaging and Nuclear Medicine Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain; Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036 Barcelona, Spain
| | - Albert Castillo-Pinar
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain
| | - Ignacio Martínez-Zalacaín
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain
| | - Pablo Arroyo-Pereiro
- Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036 Barcelona, Spain; Multiple Sclerosis Unit, Department of Neurology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Neurological Diseases and Neurogenetic Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Susanie Flores-Casaperalta
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Diagnostic Imaging and Nuclear Medicine Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Francis Garay-Buitron
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Diagnostic Imaging and Nuclear Medicine Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Nahum Calvo
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Diagnostic Imaging and Nuclear Medicine Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Antonio Martinez-Yélamos
- Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036 Barcelona, Spain; Multiple Sclerosis Unit, Department of Neurology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Neurological Diseases and Neurogenetic Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Mónica Cos
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Diagnostic Imaging and Nuclear Medicine Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Sergio Martínez-Yélamos
- Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036 Barcelona, Spain; Multiple Sclerosis Unit, Department of Neurology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Neurological Diseases and Neurogenetic Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Carles Majós
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Diagnostic Imaging and Nuclear Medicine Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| |
Collapse
|
9
|
Landes-Chateau C, Levraut M, Okuda DT, Themelin A, Cohen M, Kantarci OH, Siva A, Pelletier D, Mondot L, Lebrun-Frenay C. The diagnostic value of the central vein sign in radiologically isolated syndrome. Ann Clin Transl Neurol 2024; 11:662-672. [PMID: 38186317 DOI: 10.1002/acn3.51986] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024] Open
Abstract
OBJECTIVE The radiologically isolated syndrome (RIS) represents the earliest detectable preclinical phase of multiple sclerosis (MS). Increasing evidence suggests that the central vein sign (CVS) enhances lesion specificity, allowing for greater MS diagnostic accuracy. This study evaluated the diagnostic performance of the CVS in RIS. METHODS Patients were prospectively recruited in a single tertiary center for MS care. Participants with RIS were included and compared to a control group of sex and age-matched subjects. All participants underwent 3 Tesla magnetic resonance imaging, including postcontrast susceptibility-based sequences, and the presence of CVS was analyzed. Sensitivity and specificity were assessed for different CVS lesion criteria, defined by proportions of lesions positive for CVS (CVS+) or by the absolute number of CVS+ lesions. RESULTS 180 participants (45 RIS, 45 MS, 90 non-MS) were included, representing 5285 white matter lesions. Among them, 4608 were eligible for the CVS assessment (970 in RIS, 1378 in MS, and 2260 in non-MS). According to independent ROC comparisons, the proportion of CVS+ lesions performed similarly in diagnosing RIS from non-MS than MS from non-MS (p = 0.837). When a 6-lesion CVS+ threshold was applied, RIS lesions could be diagnosed with an accuracy of 87%. MS could be diagnosed with a sensitivity of 98% and a specificity of 83%. Adding OCBs or Kappa index to CVS biomarker increased the specificity to 100% for RIS diagnosis. INTERPRETATION This study shows evidence that CVS is an effective imaging biomarker in differentiating RIS from non-MS, with similar performances to those in MS.
Collapse
Affiliation(s)
| | - Michael Levraut
- Université Cote d'Azur, UMR2CA (URRIS), Nice, France
- Service de Médecine Interne, Centre Hospitalier Universitaire de Nice, Hôpital l'Archet 1, Nice, France
| | - Darin T Okuda
- The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Albert Themelin
- Service de Radiologie, Centre Hospitalier Universitaire de Nice, Hôpital Pasteur 2, Nice, France
| | - Mikael Cohen
- Université Cote d'Azur, UMR2CA (URRIS), Nice, France
- Service de Neurologie, Centre de Ressource et de Compétence Sclérose en Plaques (CRC-SEP), Centre Hospitalier Universitaire de Nice, Hôpital Pasteur 2, Nice, France
| | | | - Aksel Siva
- Istanbul University, Cerrahpasa School of Medicine, Istanbul, Turkey
| | | | - Lydiane Mondot
- Université Cote d'Azur, UMR2CA (URRIS), Nice, France
- Service de Radiologie, Centre Hospitalier Universitaire de Nice, Hôpital Pasteur 2, Nice, France
| | - Christine Lebrun-Frenay
- Université Cote d'Azur, UMR2CA (URRIS), Nice, France
- Service de Neurologie, Centre de Ressource et de Compétence Sclérose en Plaques (CRC-SEP), Centre Hospitalier Universitaire de Nice, Hôpital Pasteur 2, Nice, France
| |
Collapse
|
10
|
De Lury AD, Bisulca JA, Lee JS, Altaf MD, Coyle PK, Duong TQ. Magnetic resonance imaging detection of deep gray matter iron deposition in multiple sclerosis: A systematic review. J Neurol Sci 2023; 453:120816. [PMID: 37827008 DOI: 10.1016/j.jns.2023.120816] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease involving immune-mediated damage. Iron deposition in deep gray matter (DGM) structures like the thalamus and basal ganglia have been suggested to play a role in MS pathogenesis. Magnetic Resonance Imaging (MRI) imaging methods like T2 and T2* imaging, susceptibility-weighted imaging, and quantitative susceptibility mapping can track iron deposition storage in the brain primarily from ferritin and hemosiderin (paramagnetic iron storage proteins) with varying levels of tissue contrast and sensitivity. In this systematic review, we evaluated the role of DGM iron deposition as detected by MRI techniques in relation to MS-related neuroinflammation and its potential as a novel therapeutic target. We searched through PubMed, Embase, and Web of Science databases following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, against predetermined inclusion and exclusion criteria. We included 89 articles (n = 6630 patients), and then grouped them into different categories: i) methodological techniques to measure DGM iron, ii) cross-sectional and group comparison of DGM iron content, iii) longitudinal comparisons of DGM iron, iv) associations between DGM iron and other imaging and neurobiological markers, v) associations with disability, and vi) associations with cognitive impairment. The review revealed that iron deposition in DGM is independent yet concurrent with demyelination, and that these iron deposits contribute to MS-related cognitive impairment and disability. Variability in iron distributions appears to rely on a positive feedback loop between inflammation, and release of iron by oligodendrocytes. DGM iron seems to be a promising prognostic biomarker for MS pathophysiology.
Collapse
Affiliation(s)
- Amy D De Lury
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210(th) Street, Bronx, NY, USA.
| | - Joseph A Bisulca
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210(th) Street, Bronx, NY, USA.
| | - Jimmy S Lee
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210(th) Street, Bronx, NY, USA.
| | - Muhammad D Altaf
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210(th) Street, Bronx, NY, USA.
| | - Patricia K Coyle
- Department of Neurology, Stony Brook University Medical Center, Stony Brook, NY, USA.
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210(th) Street, Bronx, NY, USA.
| |
Collapse
|
11
|
Zierfuss B, Wang Z, Jackson AN, Moezzi D, Yong VW. Iron in multiple sclerosis - Neuropathology, immunology, and real-world considerations. Mult Scler Relat Disord 2023; 78:104934. [PMID: 37579645 DOI: 10.1016/j.msard.2023.104934] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Iron is an essential element involved in a multitude of bodily processes. It is tightly regulated, as elevated deposition in tissues is associated with diseases such as multiple sclerosis (MS). Iron accumulation in the central nervous system (CNS) of MS patients is linked to neurotoxicity through mechanisms including oxidative stress, glutamate excitotoxicity, misfolding of proteins, and ferroptosis. In the past decade, the combination of MRI and histopathology has enhanced our understanding of iron deposition in MS pathophysiology, including in the pro-inflammatory and neurotoxicity of iron-laden rims of chronic active lesions. In this regard, iron accumulation may not only have an impact on different CNS-resident cells but may also promote the innate and adaptive immune dysfunctions in MS. Although there are discordant results, most studies indicate lower levels of iron but higher amounts of the iron storage molecule ferritin in the circulation of people with MS. Considering the importance of iron, there is a need for evidence-guided recommendation for dietary intake in people living with MS. Potential novel therapeutic approaches include the regulation of iron levels using next generation iron chelators, as well as therapies to interfere with toxic consequences of iron overload including antioxidants in MS.
Collapse
Affiliation(s)
- Bettina Zierfuss
- The Research Center of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal H2X 0A9, Québec, Canada
| | - Zitong Wang
- Department of Psychiatry, College of Health Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | - Alexandra N Jackson
- School of Rehabilitation Therapy, Faculty of Health Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Dorsa Moezzi
- The Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - V Wee Yong
- The Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
12
|
Wang M, Liu C, Zou M, Niu Z, Zhu J, Jin T. Recent progress in epidemiology, clinical features, and therapy of multiple sclerosis in China. Ther Adv Neurol Disord 2023; 16:17562864231193816. [PMID: 37719665 PMCID: PMC10504852 DOI: 10.1177/17562864231193816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/24/2023] [Indexed: 09/19/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system characterized by inflammation, demyelination, and neurodegeneration. It mainly affects young adults, imposing a heavy burden on families and society. The epidemiology, clinical features, and management of MS are distinct among different countries. Although MS is a rare disease in China, there are 1.4 billion people in China, so the total number of MS patients is not small. Because of the lack of specific diagnostic biomarkers for MS, there is a high misdiagnosis rate in China, as in other regions. Due to different genetic backgrounds, the clinical manifestations of MS in Chinese are different from those in the West. Herein, this review aims to summarize the disease comprehensively, including clinical profile and the status of disease-modifying therapies in China based on published population-based observation and cohort studies, and also to compare with data from other countries and regions, thus providing help to develop diagnostic guideline and the novel therapeutic drugs. Meanwhile, we also discuss the problems and challenges we face, specifically for the diagnosis and treatment of MS in the middle- and low-income countries.
Collapse
Affiliation(s)
- Meng Wang
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Caiyun Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zixuan Niu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, No. 1, Xinmin Street, Changchun 130021, China
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm 171 64, Sweden
| | - Tao Jin
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, No. 1, Xinmin Street, Changchun 130021, China
| |
Collapse
|
13
|
Jakary A, Lupo JM, Mackin S, Yin A, Murray D, Yang T, Mukherjee P, Larson P, Xu D, Eisendrath S, Luks T, Li Y. Evaluation of major depressive disorder using 7 Tesla phase sensitive neuroimaging before and after mindfulness-based cognitive therapy. J Affect Disord 2023; 335:383-391. [PMID: 37192691 DOI: 10.1016/j.jad.2023.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
OBJECTIVE We applied 7 Tesla phase sensitive imaging to evaluate the impact of brain iron levels on depression severity and cognitive function in individuals with major depressive disorder (MDD) treated with mindfulness-based cognitive therapy (MBCT). METHODS Seventeen unmedicated MDD participants underwent MRI, evaluation of depression severity, and cognitive testing before and after receiving MBCT, compared to fourteen healthy controls (HC). Local field shift (LFS) values, measures of brain iron levels, were derived from phase images in the putamen, caudate, globus pallidus (GP), anterior cingulate cortex (ACC) and thalamus. RESULTS Compared to the HC group, the MDD group had significantly lower baseline LFS (indicative of higher iron) in the left GP and left putamen and had a higher number of subjects with impairment in a test of information processing speed. In the MDD group, lower LFS values in the left and right ACC, right putamen, right GP, and right thalamus were significantly associated with depression severity; and lower LFS in the right GP was correlated with worse performance on measures of attention. All MBCT participants experienced depression relief. MBCT treatment also significantly improved executive function and attention. MBCT participants with lower baseline LFS values in the right caudate experienced significantly greater improvement in depression severity with treatment; and those with lower LFS values in the right ACC, right caudate, and right GB at baseline performed better on measures of verbal learning and memory after MBCT. CONCLUSIONS Our study highlights the potential contribution of subtle differences in brain iron to MDD symptoms and their successful treatment.
Collapse
Affiliation(s)
- Angela Jakary
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America
| | - Scott Mackin
- Department of Psychiatry and Behavioral Sciences, UCSF, San Francisco, CA, United States of America
| | - Audrey Yin
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America
| | - Donna Murray
- Department of Psychiatry and Behavioral Sciences, UCSF, San Francisco, CA, United States of America
| | - Tony Yang
- Department of Psychiatry and Behavioral Sciences, UCSF, San Francisco, CA, United States of America
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America
| | - Peder Larson
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America
| | - Stuart Eisendrath
- Department of Psychiatry and Behavioral Sciences, UCSF, San Francisco, CA, United States of America
| | - Tracy Luks
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America
| | - Yan Li
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America.
| |
Collapse
|
14
|
Martire MS, Moiola L, Rocca MA, Filippi M, Absinta M. What is the potential of paramagnetic rim lesions as diagnostic indicators in multiple sclerosis? Expert Rev Neurother 2022; 22:829-837. [PMID: 36342396 DOI: 10.1080/14737175.2022.2143265] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION In multiple sclerosis (MS), paramagnetic rim lesions (PRLs) on MRI identify a subset of chronic active lesions (CALs), which have been linked through clinical and pathological studies to more severe disease course and greater disability accumulation. Beside their prognostic relevance, increasing evidence supports the use of PRL as a diagnostic biomarker. AREAS COVERED This review summarizes the most recent updates regarding the MRI pathophysiology of PRL, their prevalence in MS (by clinical phenotypes) vs mimicking conditions, and their potential role as diagnostic MS biomarkers. We searched PubMed with terms including 'multiple sclerosis' AND 'paramagnetic rim lesions' OR 'iron rim lesions' OR 'rim lesions' for manuscripts published between January 2008 and July 2022. EXPERT OPINION Current research suggests that PRL can improve the diagnostic specificity and the overall accuracy of MS diagnosis when used together with the dissemination in space MRI criteria and the central vein sign. Nevertheless, future prospective multicenter studies should further define the real-world prevalence and specificity of PRL. International guidelines are needed to establish methodological criteria for PRL identification before its implementation into clinical practice.
Collapse
Affiliation(s)
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Assunta Rocca
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Absinta
- Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Siger M. Magnetic Resonance Imaging in Primary Progressive Multiple Sclerosis Patients : Review. Clin Neuroradiol 2022; 32:625-641. [PMID: 35258820 PMCID: PMC9424179 DOI: 10.1007/s00062-022-01144-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022]
Abstract
The recently developed effective treatment of primary progressive multiple sclerosis (PPMS) requires the accurate diagnosis of patients with this type of disease. Currently, the diagnosis of PPMS is based on the 2017 McDonald criteria, although the contribution of magnetic resonance imaging (MRI) to this process is fundamental. PPMS, one of the clinical types of MS, represents 10%-15% of all MS patients. Compared to relapsing-remitting MS (RRMS), PPMS differs in terms of pathology, clinical presentation and MRI features. Regarding conventional MRI, focal lesions on T2-weighted images and acute inflammatory lesions with contrast enhancement are less common in PPMS than in RRMS. On the other hand, MRI features of chronic inflammation, such as slowly evolving/expanding lesions (SELs) and leptomeningeal enhancement (LME), and brain and spinal cord atrophy are more common MRI characteristics in PPMS than RRMS. Nonconventional MRI also shows differences in subtle white and grey matter damage between PPMS and other clinical types of disease. In this review, we present separate diagnostic criteria, conventional and nonconventional MRI specificity for PPMS, which may support and simplify the diagnosis of this type of MS in daily clinical practice.
Collapse
Affiliation(s)
- Malgorzata Siger
- Department of Neurology, Medical University of Łódź, 22 Kopcinskiego Str., 90-153, Łódź, Poland.
| |
Collapse
|
16
|
Jensen-Kondering U, Larsen N, Huhndorf M, Jansen O, Lüddecke R, Stürner K, Ravesh MS. Central vein sign in patients with inflammatory lesion of the upper cervical spinal cord on susceptibility weighted imaging at 3 tesla. Preliminary results. Magn Reson Imaging 2022; 93:11-14. [PMID: 35914655 DOI: 10.1016/j.mri.2022.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/23/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND A central vein sign (CVS) has been described in vivo in patients with MS but also in other inflammatory lesion of the brain such as neuromyelits optica spectrum disease and others. Recently, it has been used to differentiate patients with MS from other inflammatory lesions of the brain. OBJECTIVE It was the goal of this study to demonstrate the feasibility of the depiction of the CVS in patients with inflammatory lesion of the upper cervical spinal cord using susceptibility weighted imaging (SWI). METHODS Consecutive patients with inflammatory lesions of the upper cervical spinal cord were included. Patients were scanned using a 3 T Philips Ingenia CX. The presence of the CVS was assessed by two raters. Demographic and clinical parameters were compared between patients with and those without a CVS. RESULTS 20 patients could be included. 15 patients had a diagnosis of MS. A CVS was present in 8 patients (40%). Agreement between the two raters was substantial (κ = 0.79). Time from first manifestation was significantly different (14 vs. 2 years, p = 0.021) between patients with CVS and without CVS. CONCLUSION The depiction of the CVS in the upper cervical spine is feasible. More research is necessary to evaluate these preliminary results and the value of the CVS in the spinal cord.
Collapse
Affiliation(s)
- U Jensen-Kondering
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany; Department of Neuroradiology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
| | - N Larsen
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - M Huhndorf
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - O Jansen
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - R Lüddecke
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - K Stürner
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - M Salehi Ravesh
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
17
|
Huang W, Sweeney EM, Kaunzner UW, Wang Y, Gauthier SA, Nguyen TD. Quantitative susceptibility mapping versus phase imaging to identify multiple sclerosis iron rim lesions with demyelination. J Neuroimaging 2022; 32:667-675. [PMID: 35262241 PMCID: PMC9308704 DOI: 10.1111/jon.12987] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE To compare quantitative susceptibility mapping (QSM) and high-pass-filtered (HPF) phase imaging for (1) identifying chronic active rim lesions with more myelin damage and (2) distinguishing patients with increased clinical disability in multiple sclerosis. METHODS Eighty patients were scanned with QSM for paramagnetic rim detection and Fast Acquisition with Spiral Trajectory and T2prep for myelin water fraction (MWF). Chronic lesions were classified based on the presence/absence of rim on HPF and QSM images. A lesion-level linear mixed-effects model with MWF as the outcome was used to compare myelin damage among the lesion groups. A multiple patient-level linear regression model was fit to establish the association between Expanded Disease Status Scale (EDSS) and the log of the number of rim lesions. RESULTS Of 2062 lesions, 188 (9.1%) were HPF rim+/QSM rim+, 203 (9.8%) were HPF rim+/QSM rim-, and the remainder had no rim. In the linear mixed-effects model, HPF rim+/QSM rim+ lesions had significantly lower MWF than both HPF rim+/QSM rim- (p < .001) and HPF rim-/QSM rim- (p < .001) lesions, while the MWF difference between HPF rim+/QSM rim- and HPF rim-/QSM rim- lesions was not statistically significant (p = .130). Holding all other factors constant, the log number of QSM rim+ lesion was associated with EDSS increase (p = .044). The association between the log number of HPF rim+ lesions and EDSS was not statistically significant (p = .206). CONCLUSIONS QSM identifies paramagnetic rim lesions that on average have more myelin damage and stronger association with clinical disability than those detected by phase imaging.
Collapse
Affiliation(s)
- Weiyuan Huang
- Department of Radiotherapy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China.,Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Elizabeth M Sweeney
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE) Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ulrike W Kaunzner
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA.,Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
18
|
Simpson-Yap S, Atvars R, Blizzard L, van der Mei I, Taylor BV. Increasing incidence and prevalence of multiple sclerosis in the Greater Hobart cohort of Tasmania, Australia. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-328932. [PMID: 35577508 DOI: 10.1136/jnnp-2022-328932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/21/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND The Greater Hobart region (42.5°S) of Tasmania has consistently had the highest recorded prevalence and incidence rates of multiple sclerosis (MS) in Australia. We reassessed MS epidemiology in 2009-2019 and assessed longitudinal changes over 68 years. METHODS Cases recruited from clinic-based datasets and multiple other data sources. 2019 prevalence and 2009-2019 annual incidence and mortality rates estimated, and differences assessed using Poisson regression. RESULTS 436 MS cases resident on prevalence day were identified, and 130 had symptom onset within 2009-2019. Prevalence 197.1/100 000 (95% CI 179.4 to 216.5; 147.2/100 000 age standardised, 95% CI 126.5 to 171.3), a 36% increase since 2001 and 3.1-fold increase since 1961. 2009-2019 incidence rate=5.9/100 000 person-years, 95% CI 5.0 to 7.0 (6.1/1000 000 age standardised, 95% CI 4.7 to 7.9), a 2.8-fold increase since 1951-1961 and 65% since 2001-2009. 2009-2019 mortality rate=1.5/100 000 person-years, 95% CI 1.1 to 2.2 (0.9/100 000 age standardised, 95% CI 0.4 to 1.7), comparable to 2001-2009 (1.0/100 000) but reduced by 61% from 1951 to 1959 (2.1/100 000). 2001-2009 standardised mortality ratio=1.0 in 2009-2019, decreased from 2.0 in 1971-1979. Female:male prevalence sex ratio was 2.8, comparable to the 2009 value (2.6); incidence sex ratio (2.9) increased from 2001 to 9 (2.1). Comparisons with Newcastle, Australia (latitude=32.5°S) demonstrate a near complete abrogation of the latitudinal gradients for prevalence (ratio=1.0) and incidence (ratio=1.1), largely attributable to changing Hobart demography. CONCLUSIONS Prevalence and incidence of MS continue to increase significantly in Hobart, alongside marked reductions in mortality and increased case longevity. The marked increase in incidence is of particular note and may reflect longstanding changes in MS risk behaviours including changing sun exposure, obesity rates, and smoking behaviours, particularly in females. Falling mortality contributes to increase longevity and prevalence, likely reflecting improved overall MS healthcare and implementation of disease-modifying therapy.
Collapse
Affiliation(s)
- Steve Simpson-Yap
- Neuroepidemiology Unit, Melbourne School of Population & Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Clinical Outcomes Research Unit (CORe), Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
- MS Flagship, Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Leigh Blizzard
- MS Flagship, Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Ingrid van der Mei
- MS Flagship, Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Bruce V Taylor
- MS Flagship, Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
19
|
Moog TM, McCreary M, Wilson A, Stanley T, Yu FF, Pinho M, Guo X, Okuda DT. Direction and magnitude of displacement differ between slowly expanding and non-expanding multiple sclerosis lesions as compared to small vessel disease. J Neurol 2022; 269:4459-4468. [PMID: 35380254 DOI: 10.1007/s00415-022-11089-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE Differentiating between multiple sclerosis (MS) and small vessel disease (SVD) lesions represents a key challenge in the day-to-day management of patients. We aimed to distinguish between MS and SVD by identifying the dynamics of lesion movement patterns between enlarging and contracting foci from two MRI time points. METHODS Standardized 3-Tesla 3-dimensional brain magnetic resonance imaging (MRI) studies were performed at two time points on enrolled MS and SVD patients. Selected supratentorial lesions were segmented and longitudinal changes in the direction of lesion displacement and magnitude along with the evolution of contracting and expanding T1-weighted and T2-weighted MS lesions were quantified based on lesion centroid positioning. Bayesian linear mixed effects regression models were constructed to evaluate associations between changes in lesion transitions and disease state. RESULTS A total of 420 lesions were analyzed from 35 MS (female (F):22 (62.9%); median age (range):38 years (y) (22-61), median disease duration:7.38y (0.38-20.99)) and 12 SVD patients (F:11 (100%); 54y (40-66)). MS T2-weighted lesions that increased in volume between MRI time points demonstrated movement toward the cortex (p = 0.01), whereas those that decreased in volume moved toward the center (p < 0.0001). Lesion volume changes related to SVD demonstrated no effect on movement direction over time. Both expanding (p = 0.03) and contracting (p = 0.01) MS lesions demonstrated greater distances between centroids when compared to SVD. CONCLUSION Lesion dynamics may reveal distinct characteristics associated with the biology of disease while providing further insights into the behavior of inflammatory CNS disorders.
Collapse
Affiliation(s)
- Tatum M Moog
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, The University of Texas Southwestern Medical Center, 5303 Harry Hines Blvd., Dallas, TX, 75390-8806, USA
| | - Morgan McCreary
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, The University of Texas Southwestern Medical Center, 5303 Harry Hines Blvd., Dallas, TX, 75390-8806, USA
| | - Andrew Wilson
- Department of Computer Science, University of Texas at Dallas, Dallas, TX, USA
| | - Thomas Stanley
- Department of Computer Science, University of Texas at Dallas, Dallas, TX, USA
| | - Fang F Yu
- UT Southwestern Medical Center, Department of Radiology, Dallas, TX, USA
| | - Marco Pinho
- UT Southwestern Medical Center, Department of Radiology, Dallas, TX, USA
| | - Xiaohu Guo
- Department of Computer Science, University of Texas at Dallas, Dallas, TX, USA
| | - Darin T Okuda
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, The University of Texas Southwestern Medical Center, 5303 Harry Hines Blvd., Dallas, TX, 75390-8806, USA.
| |
Collapse
|
20
|
Zhang H, Nguyen TD, Zhang J, Marcille M, Spincemaille P, Wang Y, Gauthier SA, Sweeney EM. QSMRim-Net: Imbalance-aware learning for identification of chronic active multiple sclerosis lesions on quantitative susceptibility maps. Neuroimage Clin 2022; 34:102979. [PMID: 35247730 PMCID: PMC8892132 DOI: 10.1016/j.nicl.2022.102979] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND PURPOSE Chronic active multiple sclerosis (MS) lesions are characterized by a paramagnetic rim at the edge of the lesion and are associated with increased disability in patients. Quantitative susceptibility mapping (QSM) is an MRI technique that is sensitive to chronic active lesions, termed rim + lesions on the QSM. We present QSMRim-Net, a data imbalance-aware deep neural network that fuses lesion-level radiomic and convolutional image features for automated identification of rim + lesions on QSM. METHODS QSM and T2-weighted-Fluid-Attenuated Inversion Recovery (T2-FLAIR) MRI of the brain were collected at 3 T for 172 MS patients. Rim + lesions were manually annotated by two human experts, followed by consensus from a third expert, for a total of 177 rim + and 3986 rim negative (rim-) lesions. Our automated rim + detection algorithm, QSMRim-Net, consists of a two-branch feature extraction network and a synthetic minority oversampling network to classify rim + lesions. The first network branch is for image feature extraction from the QSM and T2-FLAIR, and the second network branch is a fully connected network for QSM lesion-level radiomic feature extraction. The oversampling network is designed to increase classification performance with imbalanced data. RESULTS On a lesion-level, in a five-fold cross validation framework, the proposed QSMRim-Net detected rim + lesions with a partial area under the receiver operating characteristic curve (pROC AUC) of 0.760, where clinically relevant false positive rates of less than 0.1 were considered. The method attained an area under the precision recall curve (PR AUC) of 0.704. QSMRim-Net out-performed other state-of-the-art methods applied to the QSM on both pROC AUC and PR AUC. On a subject-level, comparing the predicted rim + lesion count and the human expert annotated count, QSMRim-Net achieved the lowest mean square error of 0.98 and the highest correlation of 0.89 (95% CI: 0.86, 0.92). CONCLUSION This study develops a novel automated deep neural network for rim + MS lesion identification using T2-FLAIR and QSM images.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA; Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Jinwei Zhang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Melanie Marcille
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Yi Wang
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA; Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Susan A Gauthier
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Department of Neurology, Weill Cornell Medicine, New York, NY, USA; Feil Family Brain and Mind Institute, Weill Cornell Medicine, New York, NY, USA
| | - Elizabeth M Sweeney
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE) Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Lou C, Sati P, Absinta M, Clark K, Dworkin JD, Valcarcel AM, Schindler MK, Reich DS, Sweeney EM, Shinohara RT. Fully automated detection of paramagnetic rims in multiple sclerosis lesions on 3T susceptibility-based MR imaging. Neuroimage Clin 2022; 32:102796. [PMID: 34644666 PMCID: PMC8503902 DOI: 10.1016/j.nicl.2021.102796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022]
Abstract
Paramagnetic rim lesions are an important subtype of multiple sclerosis lesion. Automated methods can accelerate the assessment of paramagnetic rim lesions. APRL automatically identifies and accurately classifies paramagnetic rim lesions.
Background and Purpose The presence of a paramagnetic rim around a white matter lesion has recently been shown to be a hallmark of a particular pathological type of multiple sclerosis lesion. Increased prevalence of these paramagnetic rim lesions is associated with a more severe disease course in MS, but manual identification is time-consuming. We present APRL, a method to automatically detect paramagnetic rim lesions on 3T T2*-phase images. Methods T1-weighted, T2-FLAIR, and T2*-phase MRI of the brain were collected at 3T for 20 subjects with MS. The images were then processed with automated lesion segmentation, lesion center detection, lesion labelling, and lesion-level radiomic feature extraction. A total of 951 lesions were identified, 113 (12%) of which contained a paramagnetic rim. We divided our data into a training set (16 patients, 753 lesions) and a testing set (4 patients, 198 lesions), fit a random forest classification model on the training set, and assessed our ability to classify paramagnetic rim lesions on the test set. Results The number of paramagnetic rim lesions per subject identified via our automated lesion labelling method was highly correlated with the gold standard count per subject, r = 0.86 (95% CI [0.68, 0.94]). The classification algorithm using radiomic features classified lesions with an area under the curve of 0.82 (95% CI [0.74, 0.92]). Conclusion This study develops a fully automated technique, APRL, for the detection of paramagnetic rim lesions using standard T1 and FLAIR sequences and a T2*phase sequence obtained on 3T MR images.
Collapse
Affiliation(s)
- Carolyn Lou
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE) Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kelly Clark
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE) Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jordan D Dworkin
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Alessandra M Valcarcel
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE) Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Sweeney
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE) Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA; Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Nylund M, Sucksdorff M, Matilainen M, Polvinen E, Tuisku J, Airas L. Phenotyping of multiple sclerosis lesions according to innate immune cell activation using 18 kDa translocator protein-PET. Brain Commun 2022; 4:fcab301. [PMID: 34993478 PMCID: PMC8727984 DOI: 10.1093/braincomms/fcab301] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/27/2022] Open
Abstract
Chronic active lesions are promotors of neurodegeneration and disease progression in multiple sclerosis. They harbour a dense rim of activated innate immune cells at the lesion edge, which promotes lesion growth and thereby induces damage. Conventional MRI is of limited help in identifying the chronic active lesions, so alternative imaging modalities are needed. Objectives were to develop a PET-based automated analysis method for phenotyping of chronic lesions based on lesion-associated innate immune cell activation and to comprehensively evaluate the prevalence of these lesions in the various clinical subtypes of multiple sclerosis, and their association with disability. In this work, we use 18 kDa translocator protein-PET imaging for phenotyping chronic multiple sclerosis lesions at a large scale. For this, we identified 1510 white matter T1-hypointense lesions from 91 multiple sclerosis patients (67 relapsing–remitting patients and 24 secondary progressive patients). Innate immune cell activation at the lesion rim was measured using PET imaging and the 18 kDa translocator protein-binding radioligand 11C-PK11195. A T1-hypointense lesion was classified as rim-active if the distribution volume ratio of 11C-PK11195-binding was low in the plaque core and considerably higher at the plaque edge. If no significant ligand binding was observed, the lesion was classified as inactive. Plaques that had considerable ligand binding both in the core and at the rim were classified as overall-active. Conventional MRI and disability assessment using the Expanded Disability Status Scale were performed at the time of PET imaging. In the secondary progressive cohort, an average of 19% (median, interquartile range: 11–26) of T1 lesions were rim-active in each individual patient, compared to 10% (interquartile range: 0–20) among relapsing–remitting patients (P = 0.009). Secondary progressive patients had a median of 3 (range: 0–11) rim-active lesions, versus 1 (range: 0–18) among relapsing–remitting patients (P = 0.029). Among those patients who had rim-active lesions (n = 63), the average number of active voxels at the rim was higher among secondary progressive compared to relapsing–remitting patients (median 158 versus 74; P = 0.022). The number of active voxels at the rim correlated significantly with the Expanded Disability Status Scale (R = 0.43, P < 0.001), and the volume of the rim-active lesions similarly correlated with the Expanded Disability Status Scale (R = 0.45, P < 0.001). Our study is the first to report in vivo phenotyping of chronic lesions at large scale, based on 18 kDa translocator protein-PET. Patients with higher disability displayed a higher proportion of rim-active lesions. The in vivo lesion phenotyping methodology offers a new tool for individual assessment of smouldering (rim-active) lesion burden.
Collapse
Affiliation(s)
- Marjo Nylund
- Turku PET Centre, Turku, Finland.,Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| | - Marcus Sucksdorff
- Turku PET Centre, Turku, Finland.,Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| | - Markus Matilainen
- Turku PET Centre, Turku, Finland.,Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Eero Polvinen
- Turku PET Centre, Turku, Finland.,Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| | | | - Laura Airas
- Turku PET Centre, Turku, Finland.,Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
23
|
Ineichen BV, Beck ES, Piccirelli M, Reich DS. New Prospects for Ultra-High-Field Magnetic Resonance Imaging in Multiple Sclerosis. Invest Radiol 2021; 56:773-784. [PMID: 34120128 PMCID: PMC8505164 DOI: 10.1097/rli.0000000000000804] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT There is growing interest in imaging multiple sclerosis (MS) through the ultra-high-field (UHF) lens, which currently means a static magnetic field strength of 7 T or higher. Because of higher signal-to-noise ratio and enhanced susceptibility effects, UHF magnetic resonance imaging improves conspicuity of MS pathological hallmarks, among them cortical demyelination and the central vein sign. This could, in turn, improve confidence in MS diagnosis and might also facilitate therapeutic monitoring of MS patients. Furthermore, UHF imaging offers unique insight into iron-related pathology, leptomeningeal inflammation, and spinal cord pathologies in neuroinflammation. Yet, limitations such as the longer scanning times to achieve improved resolution and incipient safety data on implanted medical devices need to be considered. In this review, we discuss applications of UHF imaging in MS, its advantages and limitations, and practical aspects of UHF in the clinical setting.
Collapse
Affiliation(s)
- Benjamin V. Ineichen
- From the Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Erin S. Beck
- From the Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Marco Piccirelli
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniel S. Reich
- From the Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
24
|
Treaba CA, Conti A, Klawiter EC, Barletta VT, Herranz E, Mehndiratta A, Russo AW, Sloane JA, Kinkel RP, Toschi N, Mainero C. Cortical and phase rim lesions on 7 T MRI as markers of multiple sclerosis disease progression. Brain Commun 2021; 3:fcab134. [PMID: 34704024 DOI: 10.1093/braincomms/fcab134] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Indexed: 11/14/2022] Open
Abstract
In multiple sclerosis, individual lesion-type patterns on magnetic resonance imaging might be valuable for predicting clinical outcome and monitoring treatment effects. Neuropathological and imaging studies consistently show that cortical lesions contribute to disease progression. The presence of chronic active white matter lesions harbouring a paramagnetic rim on susceptibility-weighted magnetic resonance imaging has also been associated with an aggressive form of multiple sclerosis. It is, however, still uncertain how these two types of lesions relate to each other, or which one plays a greater role in disability progression. In this prospective, longitudinal study in 100 multiple sclerosis patients (74 relapsing-remitting, 26 secondary progressive), we used ultra-high field 7-T susceptibility imaging to characterize cortical and rim lesion presence and evolution. Clinical evaluations were obtained over a mean period of 3.2 years in 71 patients, 46 of which had a follow-up magnetic resonance imaging. At baseline, cortical and rim lesions were identified in 96% and 63% of patients, respectively. Rim lesion prevalence was similar across disease stages. Patients with rim lesions had higher cortical and overall white matter lesion load than subjects without rim lesions (P = 0.018-0.05). Altogether, cortical lesions increased by both count and volume (P = 0.004) over time, while rim lesions expanded their volume (P = 0.023) whilst lacking new rim lesions; rimless white matter lesions increased their count but decreased their volume (P = 0.016). We used a modern machine learning algorithm based on extreme gradient boosting techniques to assess the cumulative power as well as the individual importance of cortical and rim lesion types in predicting disease stage and disability progression, alongside with more traditional imaging markers. The most influential imaging features that discriminated between multiple sclerosis stages (area under the curve±standard deviation = 0.82 ± 0.08) included, as expected, the normalized white matter and thalamic volume, white matter lesion volume, but also leukocortical lesion volume. Subarachnoid cerebrospinal fluid and leukocortical lesion volumes, along with rim lesion volume were the most important predictors of Expanded Disability Status Scale progression (area under the curve±standard deviation = 0.69 ± 0.12). Taken together, these results indicate that while cortical lesions are extremely frequent in multiple sclerosis, rim lesion development occurs only in a subset of patients. Both, however, persist over time and relate to disease progression. Their combined assessment is needed to improve the ability of identifying multiple sclerosis patients at risk of progressing disease.
Collapse
Affiliation(s)
- Constantina A Treaba
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Allegra Conti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Valeria T Barletta
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Elena Herranz
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Ambica Mehndiratta
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Andrew W Russo
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Jacob A Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | - Nicola Toschi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Caterina Mainero
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA.,Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
Thalamus Atrophy in the Peri-Pregnancy Period in Clinically Stable Multiple Sclerosis Patients: Preliminary Results. Brain Sci 2021; 11:brainsci11101270. [PMID: 34679335 PMCID: PMC8534211 DOI: 10.3390/brainsci11101270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 11/22/2022] Open
Abstract
Radiological activity in the post-partum period in MS patients is a well-known phenomenon, but there is no data concerning the influence of pregnancy on regional brain atrophy. The aim of this article was to investigate local brain atrophy in the peri-pregnancy period (PPP) in patients with MS. Thalamic volume (TV); corpus callosum volume (CCV) and classical MRI activity (new gadolinium enhancing lesions (Gd+), new T2 lesions, T1 lesions volume (T1LV) and T2 lesions volume (T2LV)) were analyzed in 12 clinically stable women with relapsing–remitting MS and with MRI performed in the PPP. We showed that there was a significant decrease in TV (p = 0.021) in the PPP. We also observed a significant increase in the T1 lesion volume (p = 0.028), new gadolinium-enhanced and new T2 lesions (in 46% and 77% of the scans, respectively) in the post-partum period. Our results suggest that the PPP in MS may be associated not only with classical MRI activity but, also, with regional brain atrophy.
Collapse
|
26
|
Yedavalli V, DiGiacomo P, Tong E, Zeineh M. High-resolution Structural Magnetic Resonance Imaging and Quantitative Susceptibility Mapping. Magn Reson Imaging Clin N Am 2021; 29:13-39. [PMID: 33237013 DOI: 10.1016/j.mric.2020.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
High-resolution 7-T imaging and quantitative susceptibility mapping produce greater anatomic detail compared with conventional strengths because of improvements in signal/noise ratio and contrast. The exquisite anatomic details of deep structures, including delineation of microscopic architecture using advanced techniques such as quantitative susceptibility mapping, allows improved detection of abnormal findings thought to be imperceptible on clinical strengths. This article reviews caveats and techniques for translating sequences commonly used on 1.5 or 3 T to high-resolution 7-T imaging. It discusses for several broad disease categories how high-resolution 7-T imaging can advance the understanding of various diseases, improve diagnosis, and guide management.
Collapse
Affiliation(s)
- Vivek Yedavalli
- Department of Radiology, Stanford University, 300 Pasteur Drive, Room S047, Stanford, CA 94305-5105, USA; Division of Neuroradiology, Johns Hopkins University, 600 N. Wolfe St. B-112 D, Baltimore, MD 21287, USA
| | - Phillip DiGiacomo
- Department of Bioengineering, Stanford University, Lucas Center for Imaging, Room P271, 1201 Welch Road, Stanford, CA 94305-5488, USA
| | - Elizabeth Tong
- Department of Radiology, 300 Pasteur Drive, Room S031, Stanford, CA 94305-5105, USA
| | - Michael Zeineh
- Department of Radiology, Stanford University, Lucas Center for Imaging, Room P271, 1201 Welch Road, Stanford, CA 94305-5488, USA.
| |
Collapse
|
27
|
Pinto C, Cambron M, Dobai A, Vanheule E, Casselman JW. Smoldering lesions in MS: if you like it then you should put a rim on it. Neuroradiology 2021; 64:703-714. [PMID: 34498108 DOI: 10.1007/s00234-021-02800-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE In multiple sclerosis (MS), chronic active/smoldering white matter lesions presenting with hypointense rims on susceptibility-weighted imaging (SWI) of the brain have been recognized as an important radiological feature. The aim of this work was to study the prevalence of paramagnetic rim lesions (RLs) in MS patients in a clinical setting and to assess differences in demographic and clinical variables regarding the presence of RLs. METHODS All 3 T brain magnetic resonance (MR) studies performed in MS patients between July 2020 and January 2021 were reviewed. In all patients, RLs were assessed on three-dimensional (3D) SWI images and the T2 FLAIR lesion load volume was assessed. Demographic, laboratory (oligoclonal bands in CSF), and clinical data, including functional status with Expanded Disability Status Scale (EDSS), were retrieved from the clinical files. RESULTS Of the 192 patients, 113 (59%) presented with at least 1 RL. In the RL-positive group, the mean RL count was 4.81 ranging from 1 to 37. There was no significant difference in the number of RLs between the different types of MS (p = 0.858). Regarding the presence of RLs, there were no significant differences based on gender (p = 0.083), disease duration (p = 0.520), treatment regime (p = 0.326), EDSS score (p = 0.103), and the associated T2 FLAIR lesion load volume. CONCLUSION SWI RLs were frequently detected in our cohort regardless of the MS type, T2 FLAIR lesion load volume, demographic features, disease duration, or clinical score. Our results suggest that RLs are not associated with more severe forms of the disease. Today, RLs can be seen on 3 T 3D SWI, although this is not a clinical standard sequence yet. Therefore, it should be considered an additional helpful MR sequence in the diagnostic workup of MS, although more studies are warranted to establish the role of RLs as prognostic markers.
Collapse
Affiliation(s)
- Catarina Pinto
- Neuroradiology Department, Centro Hospitalar Universitário Do Porto, Porto, Portugal
- Department of Radiology, AZ St. Jan Brugge-Oostende av, Campus Brugge, Ruddershove 10, B-8000, Brugge, Belgium
| | - Melissa Cambron
- Department of Neurology, AZ St. Jan Brugge-Oostende av, Campus Brugge, Ruddershove 10, B-8000, Brugge, Belgium
| | - Adrienn Dobai
- Department of Oral Diagnostics, Faculty of Dentistry, Semmelweis University, Szentkirályi u. 47, Budapest, 1088, Hungary
- Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Balassa street 6, Budapest, 1083, Hungary
| | - Eva Vanheule
- Department of Radiology, AZ St. Jan Brugge-Oostende av, Campus Brugge, Ruddershove 10, B-8000, Brugge, Belgium
- Department of Radiology, UZ-Gent, Gent, Belgium
| | - Jan W Casselman
- Department of Radiology, AZ St. Jan Brugge-Oostende av, Campus Brugge, Ruddershove 10, B-8000, Brugge, Belgium.
- University Ghent, Gent, Belgium.
- Department of Radiology, AZ St. Augustinus, Oosterveldlaan 24, B-2610, Antwerpen, Belgium.
| |
Collapse
|
28
|
Sun K, Cui J, Xue R, Jiang T, Wang B, Zhang Z, Zhuo Y, Zhou XJ, Liang S, Yu X, Chen L. New imaging features of tuberous sclerosis complex: A 7 T MRI study. NMR IN BIOMEDICINE 2021; 34:e4565. [PMID: 34061413 DOI: 10.1002/nbm.4565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Few in vivo studies have focused on the perivenous association of tubers and iron deposition in the deep gray nuclei in patients with tuberous sclerosis complex (TSC). We investigated this possible relationship in TSC patients using susceptibility weighted imaging (SWI) at 7 T. SWI with high spatial resolution and enhanced sensitivity was performed on 11 TSC patients in comparison with 15 age- and sex-matched healthy controls. The relationship between tubers and veins was evaluated. In addition, the phase images of SWI were processed to produce local field shift (LFS) maps to quantify iron deposition. The mean LFS in the deep gray nuclei was compared between the TSC patients and healthy controls using a covariance analysis. Venous involvement was observed in 211 of the 231 (91.3%) cortical tubers on SWI. The slender tubers often oriented around the long axis of penetrating veins, possibly because cortical tubers typically developed and/or migrated along venous vasculatures. A significant difference in LFS of the thalamus was detected between the TSC patients and healthy controls (3.36 ± 0.50 versus 3.01 ± 0.39, p < 0.01). The new in vivo imaging features observed at 7 T provide valuable insights into the possible venous association of TSC lesions and iron accumulation in the deep gray nuclei. Our results may lead to a better understanding of the pathological changes involved in TSC under in vivo conditions.
Collapse
Affiliation(s)
- Kaibao Sun
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianfei Cui
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
- Chinese PLA General Hospital, Beijing, China
| | - Rong Xue
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| | - Tao Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bo Wang
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zihao Zhang
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Joe Zhou
- Center for MR Research and Departments of Radiology, Neurosurgery and Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Shuli Liang
- Chinese PLA General Hospital, Beijing, China
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xinguang Yu
- Chinese PLA General Hospital, Beijing, China
| | - Lin Chen
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
- The Innovation Center of Excellence on Brain Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Ontaneda D, Raza PC, Mahajan KR, Arnold DL, Dwyer MG, Gauthier SA, Greve DN, Harrison DM, Henry RG, Li DKB, Mainero C, Moore W, Narayanan S, Oh J, Patel R, Pelletier D, Rauscher A, Rooney WD, Sicotte NL, Tam R, Reich DS, Azevedo CJ, the North American Imaging in Multiple Sclerosis Cooperative (NAIMS). Deep grey matter injury in multiple sclerosis: a NAIMS consensus statement. Brain 2021; 144:1974-1984. [PMID: 33757115 PMCID: PMC8370433 DOI: 10.1093/brain/awab132] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Although multiple sclerosis has traditionally been considered a white matter disease, extensive research documents the presence and importance of grey matter injury including cortical and deep regions. The deep grey matter exhibits a broad range of pathology and is uniquely suited to study the mechanisms and clinical relevance of tissue injury in multiple sclerosis using magnetic resonance techniques. Deep grey matter injury has been associated with clinical and cognitive disability. Recently, MRI characterization of deep grey matter properties, such as thalamic volume, have been tested as potential clinical trial end points associated with neurodegenerative aspects of multiple sclerosis. Given this emerging area of interest and its potential clinical trial relevance, the North American Imaging in Multiple Sclerosis (NAIMS) Cooperative held a workshop and reached consensus on imaging topics related to deep grey matter. Herein, we review current knowledge regarding deep grey matter injury in multiple sclerosis from an imaging perspective, including insights from histopathology, image acquisition and post-processing for deep grey matter. We discuss the clinical relevance of deep grey matter injury and specific regions of interest within the deep grey matter. We highlight unanswered questions and propose future directions, with the aim of focusing research priorities towards better methods, analysis, and interpretation of results.
Collapse
Affiliation(s)
- Daniel Ontaneda
- Cleveland Clinic Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland, OH 44195, USA
| | - Praneeta C Raza
- Cleveland Clinic Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland, OH 44195, USA
| | - Kedar R Mahajan
- Cleveland Clinic Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland, OH 44195, USA
| | - Douglas L Arnold
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Douglas N Greve
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02129, USA
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Roland G Henry
- Department of Neurology, Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
- The UC San Francisco and Berkeley Bioengineering Graduate Group, University of California San Francisco, San Francisco, CA 94143, USA
| | - David K B Li
- Department of Radiology and Medicine (Neurology), University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Caterina Mainero
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02129, USA
| | - Wayne Moore
- Department of Pathology and Laboratory Medicine, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Raihaan Patel
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Daniel Pelletier
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Alexander Rauscher
- Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Roger Tam
- Department of Radiology and Medicine (Neurology), University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
- Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA
| | - Christina J Azevedo
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | |
Collapse
|
30
|
Dal-Bianco A, Grabner G, Kronnerwetter C, Weber M, Kornek B, Kasprian G, Berger T, Leutmezer F, Rommer PS, Trattnig S, Lassmann H, Hametner S. Long-term evolution of multiple sclerosis iron rim lesions in 7 T MRI. Brain 2021; 144:833-847. [PMID: 33484118 DOI: 10.1093/brain/awaa436] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 01/10/2023] Open
Abstract
Recent data suggest that multiple sclerosis white matter lesions surrounded by a rim of iron containing microglia, termed iron rim lesions, signify patients with more severe disease course and a propensity to develop progressive multiple sclerosis. So far, however, little is known regarding the dynamics of iron rim lesions over long-time follow-up. In a prospective longitudinal cohort study in 33 patients (17 females; 30 relapsing-remitting, three secondary progressive multiple sclerosis; median age 36.6 years (18.6-62.6), we characterized the evolution of iron rim lesions by MRI at 7 T with annual scanning. The longest follow-up was 7 years in a subgroup of eight patients. Median and mean observation period were 1 (0-7) and 2.9 (±2.6) years, respectively. Images were acquired using a fluid-attenuated inversion recovery sequence fused with iron-sensitive MRI phase data, termed FLAIR-SWI, as well as a magnetization prepared two rapid acquisition gradient echoes, termed MP2RAGE. Volumes and T1 relaxation times of lesions with and without iron rims were assessed by manual segmentation. The pathological substrates of periplaque signal changes outside the iron rims were corroborated by targeted histological analysis on 17 post-mortem cases (10 females; two relapsing-remitting, 13 secondary progressive and two primary progressive multiple sclerosis; median age 66 years (34-88), four of them with available post-mortem 7 T MRI data. We observed 16 nascent iron rim lesions, which mainly formed in relapsing-remitting multiple sclerosis. Iron rim lesion fraction was significantly higher in relapsing-remitting than progressive disease (17.8 versus 7.2%; P < 0.001). In secondary progressive multiple sclerosis only, iron rim lesions showed significantly different volume dynamics (P < 0.034) compared with non-rim lesions, which significantly shrank with time in both relapsing-remitting (P < 0.001) and secondary progressive multiple sclerosis (P < 0.004). The iron rims themselves gradually diminished with time (P < 0.008). Compared with relapsing-remitting multiple sclerosis, iron rim lesions in secondary progressive multiple sclerosis were significantly more destructive than non-iron rim lesions (P < 0.001), reflected by prolonged lesional T1 relaxation times and by progressively increasing changes ascribed to secondary axonal degeneration in the periplaque white matter. Our study for the first time shows that chronic active lesions in multiple sclerosis patients evolve over many years after their initial formation. The dynamics of iron rim lesions thus provide one explanation for progressive brain damage and disability accrual in patients. Their systematic recording might become useful as a tool for predicting disease progression and monitoring treatment in progressive multiple sclerosis.
Collapse
Affiliation(s)
| | - Günther Grabner
- Department of Neurology, Medical University of Vienna, Austria.,Department of Medical Engineering, Carinthia University of Applied Sciences, Klagenfurt, Austria
| | - Claudia Kronnerwetter
- Biomedical Imaging and Image-guided Therapy, High Field MR Center, Medical University of Vienna, Austria
| | - Michael Weber
- Biomedical Imaging and Image-guided Therapy, High Field MR Center, Medical University of Vienna, Austria
| | - Barbara Kornek
- Department of Neurology, Medical University of Vienna, Austria
| | - Gregor Kasprian
- Biomedical Imaging and Image-guided Therapy, High Field MR Center, Medical University of Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Austria
| | | | - Siegfried Trattnig
- Biomedical Imaging and Image-guided Therapy, High Field MR Center, Medical University of Vienna, Austria
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Austria
| | - Simon Hametner
- Department of Neurology, Medical University of Vienna, Austria
| |
Collapse
|
31
|
Bagnato F, Gauthier SA, Laule C, Moore GRW, Bove R, Cai Z, Cohen-Adad J, Harrison DM, Klawiter EC, Morrow SA, Öz G, Rooney WD, Smith SA, Calabresi PA, Henry RG, Oh J, Ontaneda D, Pelletier D, Reich DS, Shinohara RT, Sicotte NL. Imaging Mechanisms of Disease Progression in Multiple Sclerosis: Beyond Brain Atrophy. J Neuroimaging 2021; 30:251-266. [PMID: 32418324 DOI: 10.1111/jon.12700] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Clinicians involved with different aspects of the care of persons with multiple sclerosis (MS) and scientists with expertise on clinical and imaging techniques convened in Dallas, TX, USA on February 27, 2019 at a North American Imaging in Multiple Sclerosis Cooperative workshop meeting. The aim of the workshop was to discuss cardinal pathobiological mechanisms implicated in the progression of MS and novel imaging techniques, beyond brain atrophy, to unravel these pathologies. Indeed, although brain volume assessment demonstrates changes linked to disease progression, identifying the biological mechanisms leading up to that volume loss are key for understanding disease mechanisms. To this end, the workshop focused on the application of advanced magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging techniques to assess and measure disease progression in both the brain and the spinal cord. Clinical translation of quantitative MRI was recognized as of vital importance, although the need to maintain a relatively short acquisition time mandated by most radiology departments remains the major obstacle toward this effort. Regarding PET, the panel agreed upon its utility to identify ongoing pathological processes. However, due to costs, required expertise, and the use of ionizing radiation, PET was not considered to be a viable option for ongoing care of persons with MS. Collaborative efforts fostering robust study designs and imaging technique standardization across scanners and centers are needed to unravel disease mechanisms leading to progression and discovering medications halting neurodegeneration and/or promoting repair.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Susan A Gauthier
- Judith Jaffe Multiple Sclerosis Center, Department of Neurology, Feil Family Brain and Mind Institute, and Department of Radiology, Weill Cornell Medicine, New York, NY
| | - Cornelia Laule
- Department of Radiology, Pathology, and Laboratory Medicine, Department of Physics and Astronomy, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - George R Wayne Moore
- Department of Pathology and Laboratory Medicine, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Riley Bove
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, CT
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal and Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, Quebec, Canada
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD
| | - Eric C Klawiter
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sarah A Morrow
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Gülin Öz
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - William D Rooney
- Advanced Imaging Research Center, Departments of Biomedical Engineering, Neurology, and Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Seth A Smith
- Radiology and Radiological Sciences and Vanderbilt University Imaging Institute, Vanderbilt University Medical Center, and Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Roland G Henry
- Departments of Neurology, Radiology and Biomedical Imaging, and the UC San Francisco & Berkeley Bioengineering Graduate Group, University of California San Francisco, San Francisco, CA
| | - Jiwon Oh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Division of Neurology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Daniel Pelletier
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Penn Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, PA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | -
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
32
|
Gascho D, Zoelch N, Sommer S, Tappero C, Thali MJ, Deininger-Czermak E. 7-T MRI for brain virtual autopsy: a proof of concept in comparison to 3-T MRI and CT. Eur Radiol Exp 2021; 5:3. [PMID: 33442787 PMCID: PMC7806692 DOI: 10.1186/s41747-020-00198-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/26/2020] [Indexed: 11/10/2022] Open
Abstract
The detection and assessment of cerebral lesions and traumatic brain injuries are of particular interest in forensic investigations in order to differentiate between natural and traumatic deaths and to reconstruct the course of events in case of traumatic deaths. For this purpose, computed tomography (CT) and magnetic resonance imaging (MRI) are applied to supplement autopsy (traumatic death) or to supplant autopsy (natural deaths). This approach is termed “virtual autopsy.” The value of this approach increases as more microlesions and traumatic brain injuries are detected and assessed. Focusing on these findings, this article describes the examination of two decedents using CT, 3-T, and 7-T MRI. The main question asked was whether there is a benefit in using 7-T over 3-T MRI. To answer this question, the 3-T and 7-T images were graded regarding the detectability and the assessability of coup/contrecoup injuries and microlesions using 3-point Likert scales. While CT missed these findings, they were detectable on 3-T and 7-T MRI. However, the 3-T images appeared blurry in direct comparison with the 7-T images; thus, the detectability and assessability of small findings were hampered on 3-T MRI. The potential benefit of 7-T over 3-T MRI is discussed.
Collapse
Affiliation(s)
- Dominic Gascho
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, CH-8057, Zurich, Switzerland.
| | - Niklaus Zoelch
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, CH-8057, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Stefan Sommer
- Siemens Healthcare AG, Zurich, Switzerland.,Swiss Center for Musculoskeletal Imaging (SCMI), Balgrist Campus AG, Zurich, Switzerland
| | - Carlo Tappero
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, CH-8057, Zurich, Switzerland.,Department of Radiology, Hôpital Fribourgeois, Villars-sur-Glâne, Switzerland
| | - Michael J Thali
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, CH-8057, Zurich, Switzerland
| | - Eva Deininger-Czermak
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, CH-8057, Zurich, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Castellaro M, Tamanti A, Pisani AI, Pizzini FB, Crescenzo F, Calabrese M. The Use of the Central Vein Sign in the Diagnosis of Multiple Sclerosis: A Systematic Review and Meta-analysis. Diagnostics (Basel) 2020; 10:diagnostics10121025. [PMID: 33260401 PMCID: PMC7760678 DOI: 10.3390/diagnostics10121025] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/01/2023] Open
Abstract
Background: The central vein sign (CVS) is a radiological feature proposed as a multiple sclerosis (MS) imaging biomarker able to accurately differentiate MS from other white matter diseases of the central nervous system. In this work, we evaluated the pooled proportion of the CVS in brain MS lesions and to estimate the diagnostic performance of CVS to perform a diagnosis of MS and propose an optimal cut-off value. Methods: A systematic search was performed on publicly available databases (PUBMED/MEDLINE and Web of Science) up to 24 August 2020. Analysis of the proportion of white matter MS lesions with a central vein was performed using bivariate random-effect models. A meta-regression analysis was performed and the impact of using particular sequences (such as 3D echo-planar imaging) and post-processing techniques (such as FLAIR*) was investigated. Pooled sensibility and specificity were estimated using bivariate models and meta-regression was performed to address heterogeneity. Inclusion and publication bias were assessed using asymmetry tests and a funnel plot. A hierarchical summary receiver operating curve (HSROC) was used to estimate the summary accuracy in diagnostic performance. The Youden index was employed to estimate the optimal cut-off value using individual patient data. Results: The pooled proportion of lesions showing a CVS in the MS population was 73%. The use of the CVS showed a remarkable diagnostic performance in MS cases, providing a pooled specificity of 92% and a sensitivity of 95%. The optimal cut-off value obtained from the individual patient data pooled together was 40% with excellent accuracy calculated by the area under the ROC (0.946). The 3D-EPI sequences showed both a higher pooled proportion compared to other sequences and explained heterogeneity in the meta-regression analysis of diagnostic performances. The 1.5 Tesla (T) scanners showed a lower (58%) proportion of MS lesions with a CVS compared to both 3T (74%) and 7T (82%). Conclusions: The meta-analysis we have performed shows that the use of the CVS in differentiating MS from other mimicking diseases is encouraged; moreover, the use of dedicated sequences such as 3D-EPI and the high MRI field is beneficial.
Collapse
Affiliation(s)
- Marco Castellaro
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.T.); (A.I.P.); (F.C.); (M.C.)
- Correspondence:
| | - Agnese Tamanti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.T.); (A.I.P.); (F.C.); (M.C.)
| | - Anna Isabella Pisani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.T.); (A.I.P.); (F.C.); (M.C.)
| | | | - Francesco Crescenzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.T.); (A.I.P.); (F.C.); (M.C.)
| | - Massimiliano Calabrese
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.T.); (A.I.P.); (F.C.); (M.C.)
| |
Collapse
|
34
|
Absinta M, Sati P, Masuzzo F, Nair G, Sethi V, Kolb H, Ohayon J, Wu T, Cortese ICM, Reich DS. Association of Chronic Active Multiple Sclerosis Lesions With Disability In Vivo. JAMA Neurol 2020; 76:1474-1483. [PMID: 31403674 DOI: 10.1001/jamaneurol.2019.2399] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Importance In multiple sclerosis (MS), chronic active lesions, which previously could only be detected at autopsy, can now be identified on susceptibility-based magnetic resonance imaging (MRI) in vivo as non-gadolinium-enhancing lesions with paramagnetic rims. Pathologically, they feature smoldering inflammatory demyelination at the edge, remyelination failure, and axonal degeneration. To our knowledge, the prospect of long-term in vivo monitoring makes it possible for the first time to determine their contribution to disability and value as a treatment target. Objective To assess whether rim lesions are associated with patient disability and long-term lesion outcomes. Design, Setting, Participants We performed 3 studies at the National Institutes of Health Clinical Center: (1) a prospective clinical/radiological cohort of 209 patients with MS (diagnosis according to the 2010 McDonald revised MS criteria, age ≥18 years, with 7-T or 3-T susceptibility-based brain MRI results) who were enrolled from January 2012 to March 2018 (of 209, 17 patients [8%] were excluded because of uninterpretable MRI scans); (2) a radiological/pathological analysis of expanding lesions featuring rims; and (3) a retrospective longitudinal radiological study assessing long-term lesion evolution in 23 patients with MS with yearly MRI scans for 10 years or more (earliest scan, 1992). Main Outcomes and Measures (1) Identification of chronic rim lesions on 7-T or 3-T susceptibility-based brain MRI in 192 patients with MS and the association of rim counts with clinical disability (primary analysis) and brain volume changes (exploratory analysis). (2) Pathological characterization of 10 expanding lesions from an adult with progressive MS who came to autopsy after 7 years of receiving serial in vivo MRI scans. (3) Evaluation of annual lesion volume change (primary analysis) and T1 times (exploratory analysis) in 27 rim lesions vs 27 rimless lesions. Results Of 209 participants, 104 (50%) were women and 32 (15%) were African American. One hundred seventeen patients (56%) had at least 1 rim lesion regardless of prior or ongoing treatment. Further, 84 patients (40%) had no rims (mean [SD] age, 47 [14] years), 66 (32%) had 1 to 3 rims (mean [SD] age, 47 [11] years), and 42 (20%) had 4 rims or more (mean [SD] age, 44 [11] years). Individuals with 4 rim lesions or more reached motor and cognitive disability at an earlier age. Normalized volumes of brain, white matter, and basal ganglia were lower in those with rim lesions. Whereas rimless lesions shrank over time (-3.6%/year), rim lesions were stable in size or expanded (2.2%/year; P < .001). Rim lesions had longer T1 times, suggesting more tissue destruction, than rimless lesions. On histopathological analysis, all 10 rim lesions that expanded in vivo had chronic active inflammation. Conclusions and Relevance Chronic active lesions are common, are associated with more aggressive disease, exert ongoing tissue damage, and occur even in individuals treated with effective disease-modifying therapies. These results prompt the planning of MRI-based clinical trials aimed at treating perilesional chronic inflammation in MS.
Collapse
Affiliation(s)
- Martina Absinta
- Translational Neuroradiology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Pascal Sati
- Translational Neuroradiology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Federica Masuzzo
- Translational Neuroradiology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Govind Nair
- Translational Neuroradiology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Varun Sethi
- Translational Neuroradiology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Hadar Kolb
- Translational Neuroradiology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Joan Ohayon
- Translational Neuroradiology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Tianxia Wu
- Translational Neuroradiology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Irene C M Cortese
- Translational Neuroradiology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Daniel S Reich
- Translational Neuroradiology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
35
|
Utility of shape evolution and displacement in the classification of chronic multiple sclerosis lesions. Sci Rep 2020; 10:19560. [PMID: 33177565 PMCID: PMC7658967 DOI: 10.1038/s41598-020-76420-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
The accurate recognition of multiple sclerosis (MS) lesions is challenged by the high sensitivity and imperfect specificity of MRI. To examine whether longitudinal changes in volume, surface area, 3-dimensional (3D) displacement (i.e. change in lesion position), and 3D deformation (i.e. change in lesion shape) could inform on the origin of supratentorial brain lesions, we prospectively enrolled 23 patients with MS and 11 patients with small vessel disease (SVD) and performed standardized 3-T 3D brain MRI studies. Bayesian linear mixed effects regression models were constructed to evaluate associations between changes in lesion morphology and disease state. A total of 248 MS and 157 SVD lesions were studied. Individual MS lesions demonstrated significant decreases in volume < 3.75mm3 (p = 0.04), greater shifts in 3D displacement by 23.4% with increasing duration between MRI time points (p = 0.007), and greater transitions to a more non-spherical shape (p < 0.0001). If 62.2% of lesions within a given MRI study had a calculated theoretical radius > 2.49 based on deviation from a perfect 3D sphere, a 92.7% in-sample and 91.2% out-of-sample accuracy was identified for the diagnosis of MS. Longitudinal 3D shape evolution and displacement characteristics may improve lesion classification, adding to MRI techniques aimed at improving lesion specificity.
Collapse
|
36
|
Yu X, Graner M, Kennedy PGE, Liu Y. The Role of Antibodies in the Pathogenesis of Multiple Sclerosis. Front Neurol 2020; 11:533388. [PMID: 33192968 PMCID: PMC7606501 DOI: 10.3389/fneur.2020.533388] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/08/2020] [Indexed: 01/09/2023] Open
Abstract
The presence of persistent intrathecal oligoclonal immunoglobulin G (IgG) bands (OCBs) and lesional IgG deposition are seminal features of multiple sclerosis (MS) disease pathology. Despite extensive investigations, the role of antibodies, the products of mature CD19+ B cells, in disease development is still controversial and under significant debate. Recent success of B cell depletion therapies has revealed that CD20+ B cells contribute to MS pathogenesis via both antigen-presentation and T-cell-regulation. However, the limited efficacy of CD20+ B cell depletion therapies for the treatment of progressive MS indicates that additional mechanisms are involved. In this review, we present findings suggesting a potential pathological role for increased intrathecal IgGs, the relation of circulating antibodies to intrathecal IgGs, and the selective elevation of IgG1 and IgG3 subclasses in MS. We propose a working hypothesis that circulating B cells and antibodies contribute significantly to intrathecal IgGs, thereby exerting primary and pathogenic effects in MS development. Increased levels of IgG1 and IgG3 antibodies induce potent antibody-mediated cytotoxicity to central nervous system (CNS) cells and/or reduce the threshold required for antigen-driven antibody clustering leading to optimal activation of immune responses. Direct proof of the pathogenic roles of antibodies in MS may provide opportunities for novel blood biomarker identification as well as strategies for the development of effective therapeutic interventions.
Collapse
Affiliation(s)
- Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Peter G E Kennedy
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Yiting Liu
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
37
|
Calvi A, Haider L, Prados F, Tur C, Chard D, Barkhof F. In vivo imaging of chronic active lesions in multiple sclerosis. Mult Scler 2020; 28:683-690. [PMID: 32965168 PMCID: PMC8978472 DOI: 10.1177/1352458520958589] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
New clinical activity in multiple sclerosis (MS) is often accompanied by
acute inflammation which subsides. However, there is growing evidence
that a substantial proportion of lesions remain active well beyond the
acute phase. Chronic active lesions are most frequently found in
progressive MS and are characterised by a border of inflammation
associated with iron-enriched cells, leading to ongoing tissue injury.
Identifying imaging markers for chronic active lesions in vivo are
thus a major research goal. We reviewed the literature on imaging of
chronic active lesion in MS, focussing on ‘slowly expanding lesions’
(SELs), detected by volumetric longitudinal magnetic resonance imaging
(MRI) and ‘rim-positive’ lesions, identified by susceptibility
iron-sensitive MRI. Both SELs and rim-positive lesions have been found
to be prognostically relevant to future disability. Little is known
about the co-occurrence of rims around SELs and their
inter-relationship with other emerging techniques such as dynamic
contrast enhancement (DCE) and positron emission tomography (PET).
Collapse
Affiliation(s)
- Alberto Calvi
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK/Unità di neurologia, Associazione Centro ‘Dino Ferrari’, IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Lukas Haider
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK/Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ferran Prados
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK/Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK/e-Health Centre, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Carmen Tur
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK/Neurology Department, Luton and Dunstable University Hospital, Luton, UK
| | - Declan Chard
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK/National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, UK
| | - Frederik Barkhof
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK/Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK/Radiology & Nuclear Medicine, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Al-Radaideh A, El-Haj N, Hijjawi N. Iron deposition and atrophy in cerebral grey matter and their possible association with serum iron in relapsing-remitting multiple sclerosis. Clin Imaging 2020; 69:238-242. [PMID: 32977196 DOI: 10.1016/j.clinimag.2020.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/17/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The present study was carried out to investigate any possible linkage between cerebral grey matter volumetric, iron changes, white matter's lesions load and serum iron levels in a group of relapsing-remitting multiple sclerosis (RRMS) patients. MATERIALS AND METHODS Sixty-five RRMS patients along with thirty-four age-matched healthy controls (HCs) were recruited. Serum samples were isolated from blood samples which were collected in vacutainer plain tubes individually from both groups. Both groups were scanned at 1.5 T magnetic resonance imaging (MRI) using the following 3D sequences; T1-weighted gradient echo (MPRAGE), T2*-weighted gradient echo and T2-weighted fluid-attenuated inversion recovery (FLAIR). RESULTS Significant differences were observed between the RRMS patients and HCs for cortical and deep grey matter (dGM) volumes where cortical and dGM volumes in RRMS patient were significantly smaller than those in HCs. While iron deposition in the cortex, putamen (PT) and globus pallidus (GP) of RRMS patients were significantly higher than those of HCs, iron levels in thalamus (TH) and serum were significantly lower in RRMS compared to those in HCs. Except for T2 lesion load, none of volumetric measures showed any association with patients' disability status. Cerebral grey matter's iron changes did not show any association with those of serum. CONCLUSION Smaller cortical and subcortical grey matter volumes in RRMS patients compared to HCs were detected. None of the volumetric measures showed any association with patients' disability status. RRMS patients showed increased iron levels in the PT, GP and cortex and decreased levels in the TH and serum.
Collapse
Affiliation(s)
- Ali Al-Radaideh
- Department of Medical Imaging, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan.
| | - Nawal El-Haj
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
39
|
Barquero G, La Rosa F, Kebiri H, Lu PJ, Rahmanzadeh R, Weigel M, Fartaria MJ, Kober T, Théaudin M, Du Pasquier R, Sati P, Reich DS, Absinta M, Granziera C, Maggi P, Bach Cuadra M. RimNet: A deep 3D multimodal MRI architecture for paramagnetic rim lesion assessment in multiple sclerosis. NEUROIMAGE-CLINICAL 2020; 28:102412. [PMID: 32961401 PMCID: PMC7509077 DOI: 10.1016/j.nicl.2020.102412] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/23/2020] [Accepted: 09/01/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES In multiple sclerosis (MS), the presence of a paramagnetic rim at the edge of non-gadolinium-enhancing lesions indicates perilesional chronic inflammation. Patients featuring a higher paramagnetic rim lesion burden tend to have more aggressive disease. The objective of this study was to develop and evaluate a convolutional neural network (CNN) architecture (RimNet) for automated detection of paramagnetic rim lesions in MS employing multiple magnetic resonance (MR) imaging contrasts. MATERIALS AND METHODS Imaging data were acquired at 3 Tesla on three different scanners from two different centers, totaling 124 MS patients, and studied retrospectively. Paramagnetic rim lesion detection was independently assessed by two expert raters on T2*-phase images, yielding 462 rim-positive (rim+) and 4857 rim-negative (rim-) lesions. RimNet was designed using 3D patches centered on candidate lesions in 3D-EPI phase and 3D FLAIR as input to two network branches. The interconnection of branches at both the first network blocks and the last fully connected layers favors the extraction of low and high-level multimodal features, respectively. RimNet's performance was quantitatively evaluated against experts' evaluation from both lesion-wise and patient-wise perspectives. For the latter, patients were categorized based on a clinically relevant threshold of 4 rim+ lesions per patient. The individual prediction capabilities of the images were also explored and compared (DeLong test) by testing a CNN trained with one image as input (unimodal). RESULTS The unimodal exploration showed the superior performance of 3D-EPI phase and 3D-EPI magnitude images in the rim+/- classification task (AUC = 0.913 and 0.901), compared to the 3D FLAIR (AUC = 0.855, Ps < 0.0001). The proposed multimodal RimNet prototype clearly outperformed the best unimodal approach (AUC = 0.943, P < 0.0001). The sensitivity and specificity achieved by RimNet (70.6% and 94.9%, respectively) are comparable to those of experts at the lesion level. In the patient-wise analysis, RimNet performed with an accuracy of 89.5% and a Dice coefficient (or F1 score) of 83.5%. CONCLUSIONS The proposed prototype showed promising performance, supporting the usage of RimNet for speeding up and standardizing the paramagnetic rim lesions analysis in MS.
Collapse
Affiliation(s)
- Germán Barquero
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne, Switzerland; Medical Image Analysis Laboratory (MIAL), Center for Biomedical Imaging (CIBM), University of Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Francesco La Rosa
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne, Switzerland; Medical Image Analysis Laboratory (MIAL), Center for Biomedical Imaging (CIBM), University of Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Hamza Kebiri
- Medical Image Analysis Laboratory (MIAL), Center for Biomedical Imaging (CIBM), University of Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Po-Jui Lu
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Reza Rahmanzadeh
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Mário João Fartaria
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital and University of Lausanne, Switzerland; Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Tobias Kober
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital and University of Lausanne, Switzerland; Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Marie Théaudin
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Renaud Du Pasquier
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Cristina Granziera
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Pietro Maggi
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Meritxell Bach Cuadra
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne, Switzerland; Medical Image Analysis Laboratory (MIAL), Center for Biomedical Imaging (CIBM), University of Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital and University of Lausanne, Switzerland.
| |
Collapse
|
40
|
Birkl C, Birkl-Toeglhofer AM, Kames C, Goessler W, Haybaeck J, Fazekas F, Ropele S, Rauscher A. The influence of iron oxidation state on quantitative MRI parameters in post mortem human brain. Neuroimage 2020; 220:117080. [PMID: 32585344 DOI: 10.1016/j.neuroimage.2020.117080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
A variety of Magnetic Resonance Imaging (MRI) techniques are known to be sensitive to brain iron content. In principle, iron sensitive MRI techniques are based on local magnetic field variations caused by iron particles in tissue. The purpose of this study was to investigate the sensitivity of MR relaxation and magnetization transfer parameters to changes in iron oxidation state compared to changes in iron concentration. Therefore, quantitative MRI parameters including R1, R2, R2∗, quantitative susceptibility maps (QSM) and magnetization transfer ratio (MTR) of post mortem human brain tissue were acquired prior and after chemical iron reduction to change the iron oxidation state and chemical iron extraction to decrease the total iron concentration. All assessed parameters were shown to be sensitive to changes in iron concentration whereas only R2, R2∗ and QSM were also sensitive to changes in iron oxidation state. Mass spectrometry confirmed that iron accumulated in the extraction solution but not in the reduction solution. R2∗ and QSM are often used as markers for iron content. Changes in these parameters do not necessarily reflect variations in iron content but may also be a result of changes in the iron's oxygenation state from ferric towards more ferrous iron or vice versa.
Collapse
Affiliation(s)
- Christoph Birkl
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Neuroradiology, Medical University of Innsbruck, Austria; Department of Neurology, Medical University of Graz, Austria.
| | - Anna Maria Birkl-Toeglhofer
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Austria; Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Christian Kames
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Walter Goessler
- Institute of Chemistry, Analytical Chemistry, University of Graz, Austria
| | - Johannes Haybaeck
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Austria; Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Austria
| | - Alexander Rauscher
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada; Department of Pediatrics (Division of Neurology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Clarke MA, Pareto D, Pessini-Ferreira L, Arrambide G, Alberich M, Crescenzo F, Cappelle S, Tintoré M, Sastre-Garriga J, Auger C, Montalban X, Evangelou N, Rovira À. Value of 3T Susceptibility-Weighted Imaging in the Diagnosis of Multiple Sclerosis. AJNR Am J Neuroradiol 2020; 41:1001-1008. [PMID: 32439639 DOI: 10.3174/ajnr.a6547] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/19/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Previous studies have suggested that the central vein sign and iron rims are specific features of MS lesions. Using 3T SWI, we aimed to compare the frequency of lesions with central veins and iron rims in patients with clinically isolated syndrome and MS-mimicking disorders and test their diagnostic value in predicting conversion from clinically isolated syndrome to MS. MATERIALS AND METHODS For each patient, we calculated the number of brain lesions with central veins and iron rims. We then identified a simple rule involving an absolute number of lesions with central veins and iron rims to predict conversion from clinically isolated syndrome to MS. Additionally, we tested the diagnostic performance of central veins and iron rims when combined with evidence of dissemination in space. RESULTS We included 112 patients with clinically isolated syndrome and 35 patients with MS-mimicking conditions. At follow-up, 94 patients with clinically isolated syndrome developed MS according to the 2017 McDonald criteria. Patients with clinically isolated syndrome had a median of 2 central veins (range, 0-19), while the non-MS group had a median of 1 central vein (range, 0-6). Fifty-six percent of patients who developed MS had ≥1 iron rim, and none of the patients without MS had iron rims. The sensitivity and specificity of finding ≥3 central veins and/or ≥1 iron rim were 70% and 86%, respectively. In combination with evidence of dissemination in space, the 2 imaging markers had higher specificity than dissemination in space and positive findings of oligoclonal bands currently used to support the diagnosis of MS. CONCLUSIONS A single 3T SWI scan offers valuable diagnostic information, which has the potential to prevent MS misdiagnosis.
Collapse
Affiliation(s)
- M A Clarke
- From the Vall d'Hebron Research Institute (M.A.C., D.P., M.A., M.T., J.S.-G., C.A., X.M., A.R.), Barcelona, Spain
| | - D Pareto
- From the Vall d'Hebron Research Institute (M.A.C., D.P., M.A., M.T., J.S.-G., C.A., X.M., A.R.), Barcelona, Spain.,Section of Neuroradiology, Department of Radiology (D.P., L.P.-F., C.A., A.R.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - L Pessini-Ferreira
- Section of Neuroradiology, Department of Radiology (D.P., L.P.-F., C.A., A.R.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - G Arrambide
- Department of Neurology-Neuroimmunology (G.A., M.T., J.S.-G., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Alberich
- From the Vall d'Hebron Research Institute (M.A.C., D.P., M.A., M.T., J.S.-G., C.A., X.M., A.R.), Barcelona, Spain
| | - F Crescenzo
- Department of Neurosciences, Biomedicine and Movement Sciences (F.C.), University of Verona, Verona, Italy
| | - S Cappelle
- Division of Radiology (S.C.), University Hospital Leuven, Leuven, Belgium
| | - M Tintoré
- From the Vall d'Hebron Research Institute (M.A.C., D.P., M.A., M.T., J.S.-G., C.A., X.M., A.R.), Barcelona, Spain.,Department of Neurology-Neuroimmunology (G.A., M.T., J.S.-G., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Sastre-Garriga
- From the Vall d'Hebron Research Institute (M.A.C., D.P., M.A., M.T., J.S.-G., C.A., X.M., A.R.), Barcelona, Spain.,Department of Neurology-Neuroimmunology (G.A., M.T., J.S.-G., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Auger
- From the Vall d'Hebron Research Institute (M.A.C., D.P., M.A., M.T., J.S.-G., C.A., X.M., A.R.), Barcelona, Spain.,Section of Neuroradiology, Department of Radiology (D.P., L.P.-F., C.A., A.R.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - X Montalban
- From the Vall d'Hebron Research Institute (M.A.C., D.P., M.A., M.T., J.S.-G., C.A., X.M., A.R.), Barcelona, Spain.,Department of Neurology-Neuroimmunology (G.A., M.T., J.S.-G., X.M.), Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Division of Neurology (X.M.), St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - N Evangelou
- Division of Clinical Neuroscience (N.E.), University of Nottingham, Nottingham, UK
| | - À Rovira
- From the Vall d'Hebron Research Institute (M.A.C., D.P., M.A., M.T., J.S.-G., C.A., X.M., A.R.), Barcelona, Spain .,Section of Neuroradiology, Department of Radiology (D.P., L.P.-F., C.A., A.R.), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
Zhang C, Wu B, Wang X, Chen C, Zhao R, Lu H, Zhu H, Xue B, Liang H, Sethi SK, Haacke EM, Zhu J, Peng Y, Cheng J. Vascular, flow and perfusion abnormalities in Parkinson's disease. Parkinsonism Relat Disord 2020; 73:8-13. [DOI: 10.1016/j.parkreldis.2020.02.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
|
43
|
Vaughn CB, Jakimovski D, Kavak KS, Ramanathan M, Benedict RHB, Zivadinov R, Weinstock-Guttman B. Epidemiology and treatment of multiple sclerosis in elderly populations. Nat Rev Neurol 2020; 15:329-342. [PMID: 31000816 DOI: 10.1038/s41582-019-0183-3] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The prevalence of multiple sclerosis (MS) and the age of affected patients are increasing owing to increased longevity of the general population and the availability of effective disease-modifying therapies. However, ageing presents unique challenges in patients with MS largely as a result of their increased frequency of age-related and MS-related comorbidities as well as transition of the disease course from an inflammatory to a neurodegenerative phenotype. Immunosenescence (the weakening of the immune system associated with natural ageing) might be at least partly responsible for this transition, which further complicates disease management. Currently approved therapies for MS are effective in preventing relapse but are not as effective in preventing the accumulation of disability associated with ageing and disease progression. Thus, ageing patients with MS represent a uniquely challenging population that is currently underserved by existing therapeutic regimens. This Review focuses on the epidemiology of MS in ageing patients. Unique considerations relevant to this population are discussed, including the immunology and pathobiology of the complex relationship between ageing and MS, the safety and efficacy of disease-modifying therapies, when discontinuation of treatment might be appropriate and the important role of approaches to support wellness and cognition.
Collapse
Affiliation(s)
- Caila B Vaughn
- Jacobs Multiple Sclerosis Center for Treatment and Research, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Katelyn S Kavak
- Jacobs Multiple Sclerosis Center for Treatment and Research, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Ralph H B Benedict
- Jacobs Multiple Sclerosis Center for Treatment and Research, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA.,Center for Biomedical Imaging at the Clinical Translational Science Institute, State University of New York (SUNY), Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Multiple Sclerosis Center for Treatment and Research, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA.
| |
Collapse
|
44
|
Ling C, Zhang Z, Wu Y, Fang X, Kong Q, Zhang W, Wang Z, Yang Q, Yuan Y. Reduced Venous Oxygen Saturation Associates With Increased Dependence of Patients With Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: A 7.0-T Magnetic Resonance Imaging Study. Stroke 2019; 50:3128-3134. [PMID: 31514698 DOI: 10.1161/strokeaha.119.026376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Accumulating evidence has demonstrated hemodynamic abnormalities and cerebral hypoperfusion in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Increased venous susceptibility assessed by susceptibility weighted imaging and mapping has been shown to indicate a decrease in venous oxygen saturation. This study aimed to investigate whether altered venous oxygen saturation is related to clinical phenotypes of CADASIL patients. Methods- Using 7.0-T susceptibility weighted imaging and mapping, we compared venous susceptibility of cortical veins between 41 CADASIL patients and 43 age- and sex-matched healthy controls. The magnetic resonance imaging lesion load, mini-mental state examination score, Barthel Index, and modified Rankin Scale were examined in the patient group, and the correlations between venous susceptibility and clinical characteristics were analyzed. Results- Venous susceptibility increased with age (r=0.508, P=0.001) and was higher in CADASIL patients than in healthy controls (t=-4.673; P<0.001). We found a positive association between venous susceptibility and the age-related white matter change scores (r=0.364; P=0.019), number of lacunar infarctions (r=0.520; P<0.001), number of cerebral microbleeds (ρ=0.445; P=0.004), and small-vessel disease scores (ρ=0.465; P=0.002) in CADASIL patients. Moreover, increased venous susceptibility was associated with higher modified Rankin Scale scores in CADASIL patients after adjustment for age- and small-vessel disease scores (odds ratio=3.178; 95% CI, 1.101-9.179; P=0.033). Conclusions- Our findings indicate that extensive cerebral hypoperfusion may induce central nervous system impairment in CADASIL, and susceptibility weighted imaging and mapping could be used clinically to assess the condition of CADASIL patients.
Collapse
Affiliation(s)
- Chen Ling
- From the Department of Neurology, Peking University First Hospital, Beijing, China (C.L., X.F., W.Z., Z.W., Y.Y.)
| | - Zihao Zhang
- From the Department of Neurology, Peking University First Hospital, Beijing, China (C.L., X.F., W.Z., Z.W., Y.Y.)
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (Z.Z., Y.W., Q.K.)
- CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China (Z.Z., Y.W., Q.K.)
- University of Chinese Academy of Sciences, Beijing, China (Z.Z., Y.W., Q.K.)
| | - Yue Wu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (Z.Z., Y.W., Q.K.)
- CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China (Z.Z., Y.W., Q.K.)
- University of Chinese Academy of Sciences, Beijing, China (Z.Z., Y.W., Q.K.)
| | - Xiaojing Fang
- Department of Neurology, Peking University International Hospital, Beijing, China (X.F.)
| | - Qingle Kong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (Z.Z., Y.W., Q.K.)
- CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China (Z.Z., Y.W., Q.K.)
- University of Chinese Academy of Sciences, Beijing, China (Z.Z., Y.W., Q.K.)
| | - Wei Zhang
- From the Department of Neurology, Peking University First Hospital, Beijing, China (C.L., X.F., W.Z., Z.W., Y.Y.)
| | - Zhaoxia Wang
- From the Department of Neurology, Peking University First Hospital, Beijing, China (C.L., X.F., W.Z., Z.W., Y.Y.)
| | - Qi Yang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China (Q.Y.)
| | - Yun Yuan
- From the Department of Neurology, Peking University First Hospital, Beijing, China (C.L., X.F., W.Z., Z.W., Y.Y.)
| |
Collapse
|
45
|
7T GRE-MRI signal compartments are sensitive to dysplastic tissue in focal epilepsy. Magn Reson Imaging 2019; 61:1-8. [DOI: 10.1016/j.mri.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/19/2019] [Accepted: 05/04/2019] [Indexed: 12/11/2022]
|
46
|
Hansen MR, Okuda DT. Precision medicine for multiple sclerosis promotes preventative medicine. Ann N Y Acad Sci 2019; 1420:62-71. [PMID: 29878402 DOI: 10.1111/nyas.13846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is a chronic, lifelong disease, currently without a cure that is responsible for significant neurological injury in young adults. Precision medicine for MS aims to provide a more exacting and refined approach toward management by providing recommendations based on disease subtype, clinical status, existing radiological data, para-clinical data, and other biological markers. To achieve better outcomes, the three stages of care-diagnosis, treatment, and management-should be optimized. However, as the temporal profile of disease behavior is highly variable in MS, and unlike outcomes from other chronic conditions (i.e., hypertension, diabetes mellitus, etc.), should precision medicine for MS be one that focuses more on disease prevention and lifestyle modifications beyond recommendations for the use of disease-modifying therapies? As scientific advancements continue within the field of neuroimmunology, and until reliable biomarkers that predict disease outcomes are available, success may be better achieved by focusing on modifiable factors to reduce future disability.
Collapse
Affiliation(s)
- Madison R Hansen
- UT Southwestern Medical Center, Department of Neurology and Neurotherapeutics, Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, Clinical Center for Multiple Sclerosis, Dallas, Texas
| | - Darin T Okuda
- UT Southwestern Medical Center, Department of Neurology and Neurotherapeutics, Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, Clinical Center for Multiple Sclerosis, Dallas, Texas
| |
Collapse
|
47
|
Bian W, Kerr AB, Tranvinh E, Parivash S, Zahneisen B, Han MH, Lock CB, Goubran M, Zhu K, Rutt BK, Zeineh MM. MR susceptibility contrast imaging using a 2D simultaneous multi-slice gradient-echo sequence at 7T. PLoS One 2019; 14:e0219705. [PMID: 31314813 PMCID: PMC6636815 DOI: 10.1371/journal.pone.0219705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/29/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose To develop a 7T simultaneous multi-slice (SMS) 2D gradient-echo sequence for susceptibility contrast imaging, and to compare its quality to 3D imaging. Methods A frequency modulated and phase cycled RF pulse was designed to simultaneously excite multiple slices in multi-echo 2D gradient-echo imaging. The imaging parameters were chosen to generate images with susceptibility contrast, including T2*-weighted magnitude/phase images, susceptibility-weighted images and quantitative susceptibility/R2* maps. To compare their image quality with 3D gradient-echo imaging, both 2D and 3D imaging were performed on 11 healthy volunteers and 4 patients with multiple sclerosis (MS). The signal to noise ratio (SNR) in gray and white matter and their contrast to noise ratio (CNR) was simulated for the 2D and 3D magnitude images using parameters from the imaging. The experimental SNRs and CNRs were measured in gray/white matter and deep gray matter structures on magnitude, phase, R2* and QSM images from volunteers and the visibility of MS lesions on these images from patients was visually rated. All SNRs and CNRs were compared between the 2D and 3D imaging using a paired t-test. Results Although the 3D magnitude images still had significantly higher SNRs (by 13.0~17.6%), the 2D magnitude and QSM images generated significantly higher gray/white matter or globus pallidus/putamen contrast (by 13.3~87.5%) and significantly higher MS lesion contrast (by 5.9~17.3%). Conclusion 2D SMS gradient-echo imaging can serve as an alternative to often used 3D imaging to obtain susceptibility-contrast-weighted images, with an advantage of providing better image contrast and MS lesion sensitivity.
Collapse
Affiliation(s)
- Wei Bian
- Department of Biomedical Engineering, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Adam B. Kerr
- Department of Electrical Engineering, Stanford University, Palo Alto, CA, United States of America
| | - Eric Tranvinh
- Department of Radiology, Stanford University, Palo Alto, CA, United States of America
| | - Sherveen Parivash
- Department of Radiology, Stanford University, Palo Alto, CA, United States of America
| | - Benjamin Zahneisen
- Department of Radiology, Stanford University, Palo Alto, CA, United States of America
| | - May H. Han
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, United States of America
| | - Christopher B. Lock
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, United States of America
| | - Maged Goubran
- Department of Radiology, Stanford University, Palo Alto, CA, United States of America
| | - Kongrong Zhu
- Department of Electrical Engineering, Stanford University, Palo Alto, CA, United States of America
| | - Brian K. Rutt
- Department of Radiology, Stanford University, Palo Alto, CA, United States of America
| | - Michael M. Zeineh
- Department of Radiology, Stanford University, Palo Alto, CA, United States of America
- * E-mail:
| |
Collapse
|
48
|
Hametner S, Dal Bianco A, Trattnig S, Lassmann H. Iron related changes in MS lesions and their validity to characterize MS lesion types and dynamics with Ultra-high field magnetic resonance imaging. Brain Pathol 2019; 28:743-749. [PMID: 30020556 PMCID: PMC8028547 DOI: 10.1111/bpa.12643] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/31/2022] Open
Abstract
Iron accumulates with age in the normal human brain. This process is altered at several levels in the brain of multiple sclerosis (MS) patients. Since iron is mainly stored in oligodendrocytes and myelin in the normal brain, its liberation in demyelinating lesions may amplify tissue damage in demyelinating lesions and its uptake in macrophages and microglia may help to more precisely define activity stages of the lesions. In addition, glia cells change their iron import, export and storage properties in MS lesions, which is reflected by alterations in the expression of iron transport molecules. Changes of iron distribution in the brain can be reliably detected by MRI, particularly upon application of Ultra‐high magnetic field (7 Tesla). Iron‐sensitive MRI allows to more accurately distinguish the lesions in MS from those in other inflammatory brain diseases, to visualize a subset of slowly expanding lesions in the progressive stage of MS and to increase the sensitivity for lesion detection in the gray matter, such as the cerebral cortex or deep gray matter nuclei.
Collapse
Affiliation(s)
- Simon Hametner
- Center for Brain Research, Medical University of Vienna, Austria.,Institute of Neuropathology, University of Göttingen, Germany
| | - Assunta Dal Bianco
- Center for Brain Research, Medical University of Vienna, Austria.,Department of Neurology, Medical University of Vienna, Austria
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image-guided Therapy, High Field Magnetic Resonance Center, Medical University of Vienna, Austria
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Austria
| |
Collapse
|
49
|
Kaunzner UW, Kang Y, Zhang S, Morris E, Yao Y, Pandya S, Hurtado Rua SM, Park C, Gillen KM, Nguyen TD, Wang Y, Pitt D, Gauthier SA. Quantitative susceptibility mapping identifies inflammation in a subset of chronic multiple sclerosis lesions. Brain 2019; 142:133-145. [PMID: 30561514 PMCID: PMC6308309 DOI: 10.1093/brain/awy296] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/21/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022] Open
Abstract
Chronic active multiple sclerosis lesions, characterized by a hyperintense rim of iron-enriched, activated microglia and macrophages, have been linked to greater tissue damage. Post-mortem studies have determined that chronic active lesions are primarily related to the later stages of multiple sclerosis; however, the occurrence of these lesions, and their relationship to earlier disease stages may be greatly underestimated. Detection of chronic active lesions across the patient spectrum of multiple sclerosis requires a validated imaging tool to accurately identify lesions with persistent inflammation. Quantitative susceptibility mapping provides efficient in vivo quantification of susceptibility changes related to iron deposition and the potential to identify lesions harbouring iron-laden inflammatory cells. The PET tracer 11C-PK11195 targets the translocator protein expressed by activated microglia and infiltrating macrophages. Accordingly, this study aimed to validate that lesions with a hyperintense rim on quantitative susceptibility mapping from both relapsing and progressive patients demonstrate a higher level of innate immune activation as measured on 11C-PK11195 PET. Thirty patients were enrolled in this study, 24 patients had relapsing remitting multiple sclerosis, six had progressive multiple sclerosis, and all patients had concomitant MRI with a gradient echo sequence and PET with 11C-PK11195. A total of 406 chronic lesions were detected, and 43 chronic lesions with a hyperintense rim on quantitative susceptibility mapping were identified as rim+ lesions. Susceptibility (relative to CSF) was higher in rim+ (2.42 ± 17.45 ppb) compared to rim- lesions (-14.6 ± 19.3 ppb, P < 0.0001). Among rim+ lesions, susceptibility within the rim (20.04 ± 14.28 ppb) was significantly higher compared to the core (-5.49 ± 14.44 ppb, P < 0.0001), consistent with the presence of iron. In a mixed-effects model, 11C-PK11195 uptake, representing activated microglia/macrophages, was higher in rim+ lesions compared to rim- lesions (P = 0.015). Validating our in vivo imaging results, multiple sclerosis brain slabs were imaged with quantitative susceptibility mapping and processed for immunohistochemistry. These results showed a positive translocator protein signal throughout the expansive hyperintense border of rim+ lesions, which co-localized with iron containing CD68+ microglia and macrophages. In conclusion, this study provides evidence that suggests that a hyperintense rim on quantitative susceptibility measure within a chronic lesion is a correlate for persistent inflammatory activity and that these lesions can be identified in the relapsing patients. Utilizing quantitative susceptibility measure to differentiate chronic multiple sclerosis lesion subtypes, especially chronic active lesions, would provide a method to assess the impact of these lesions on disease progression.
Collapse
Affiliation(s)
- Ulrike W Kaunzner
- Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, New York City, NY, USA
| | - Yeona Kang
- Department of Radiology/Nuclear Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Shun Zhang
- Cornell MRI Research Lab, New York City, NY, USA
| | - Eric Morris
- Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, New York City, NY, USA
| | - Yihao Yao
- Cornell MRI Research Lab, New York City, NY, USA
| | - Sneha Pandya
- Department of Radiology/Nuclear Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Sandra M Hurtado Rua
- Department of Mathematics, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH, USA
| | - Calvin Park
- Yale Multiple Sclerosis Center, New Haven, CT, USA
| | | | | | - Yi Wang
- Cornell MRI Research Lab, New York City, NY, USA
| | - David Pitt
- Yale Multiple Sclerosis Center, New Haven, CT, USA
| | - Susan A Gauthier
- Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, New York City, NY, USA
| |
Collapse
|
50
|
Barisano G, Sepehrband F, Ma S, Jann K, Cabeen R, Wang DJ, Toga AW, Law M. Clinical 7 T MRI: Are we there yet? A review about magnetic resonance imaging at ultra-high field. Br J Radiol 2018; 92:20180492. [PMID: 30359093 DOI: 10.1259/bjr.20180492] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In recent years, ultra-high field MRI (7 T and above) has received more interest for clinical imaging. Indeed, a number of studies have shown the benefits from the application of this powerful tool not only for research purposes, but also in realms of improved diagnostics and patient management. The increased signal-to-noise ratio and higher spatial resolution compared with conventional and high-field clinical scanners allow imaging of small anatomical detail and subtle pathological findings. Furthermore, greater spectral resolution achieved at ultra-high field allows the resolution of metabolites for MR spectroscopic imaging. All these advantages have a significant impact on many neurological diseases, including multiple sclerosis, cerebrovascular disease, brain tumors, epilepsy and neurodegenerative diseases, in part because the pathology can be subtle and lesions small in these diseases, therefore having higher signal and resolution will help lesion detection. In this review, we discuss the main clinical neurological applications and some technical challenges which remain with ultra-high field MRI.
Collapse
Affiliation(s)
- Giuseppe Barisano
- 1 Department of Radiology, Keck Medical Center of University of Southern California , Los Angeles, CA , USA.,2 Stevens Neuroimaging and Informatics Institute, University of Southern California , Los Angeles, CA , USA
| | - Farshid Sepehrband
- 2 Stevens Neuroimaging and Informatics Institute, University of Southern California , Los Angeles, CA , USA
| | - Samantha Ma
- 2 Stevens Neuroimaging and Informatics Institute, University of Southern California , Los Angeles, CA , USA
| | - Kay Jann
- 2 Stevens Neuroimaging and Informatics Institute, University of Southern California , Los Angeles, CA , USA
| | - Ryan Cabeen
- 2 Stevens Neuroimaging and Informatics Institute, University of Southern California , Los Angeles, CA , USA
| | - Danny J Wang
- 2 Stevens Neuroimaging and Informatics Institute, University of Southern California , Los Angeles, CA , USA
| | - Arthur W Toga
- 2 Stevens Neuroimaging and Informatics Institute, University of Southern California , Los Angeles, CA , USA
| | - Meng Law
- 1 Department of Radiology, Keck Medical Center of University of Southern California , Los Angeles, CA , USA.,2 Stevens Neuroimaging and Informatics Institute, University of Southern California , Los Angeles, CA , USA
| |
Collapse
|