1
|
Guasp M, Dalmau J. Predicting the future of autoimmune encephalitides. Rev Neurol (Paris) 2024; 180:862-875. [PMID: 39277478 DOI: 10.1016/j.neurol.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/17/2024]
Abstract
The concept that many neurologic and psychiatric disorders of unknown cause are immune-mediated has evolved fast during the past 20 years. The main contribution to the expansion of this field has been the discovery of antibodies that attack neuronal or glial cell-surface proteins or receptors, directly modifying their structure and function. These antibodies facilitate the diagnosis and prompt treatment of patients who often improve with immunotherapy. The identification of this group of diseases, collectively named "autoimmune encephalitides", was preceded by many years of investigations on other autoimmune CNS disorders in which the antibodies are against intracellular proteins, occur more frequently with cancer, and associate with cytotoxic T-cell responses that are less responsive to immunotherapy. Here, we first trace the recent history of the autoimmune encephalitides and address how to assess the clinical value and implement in our practice the rapid pace of autoantibody discovery. In addition, we review recent developments in the post-acute stage of the two main autoimmune encephalitides (NMDAR and LGI1) focusing on symptoms that are frequently overlooked or missed, and therefore undertreated. Because a better understanding of the pathophysiology of these diseases relies on animal models, we examine currently available studies, recognizing the existing needs for better and all-inclusive neuro-immunobiological models. Finally, we assess the status of biomarkers of disease outcome, clinical scales, current treatment strategies, and emerging therapies including CAR T-cell technology. Altogether, this overview is intended to identify gaps of knowledge and provide suggestions for improvement and insights for future research.
Collapse
Affiliation(s)
- M Guasp
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-CaixaResearch Institute, Barcelona, Spain; Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Madrid, Spain
| | - J Dalmau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-CaixaResearch Institute, Barcelona, Spain; Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Madrid, Spain; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Wang H, Xie C, Deng B, Ding J, Li N, Kou Z, Jin M, He J, Wang Q, Wen H, Zhang J, Zhou Q, Chen S, Chen X, Yuan TF, Zhu S. Structural basis for antibody-mediated NMDA receptor clustering and endocytosis in autoimmune encephalitis. Nat Struct Mol Biol 2024:10.1038/s41594-024-01387-3. [PMID: 39227720 DOI: 10.1038/s41594-024-01387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Antibodies against N-methyl-D-aspartate receptors (NMDARs) are most frequently detected in persons with autoimmune encephalitis (AE) and used as diagnostic biomarkers. Elucidating the structural basis of monoclonal antibody (mAb) binding to NMDARs would facilitate the development of targeted therapy for AE. Here, we reconstructed nanodiscs containing green fluorescent protein-fused NMDARs to label and sort individual immune B cells from persons with AE and further cloned and identified mAbs against NMDARs. This allowed cryo-electron microscopy analysis of NMDAR-Fab complexes, revealing that autoantibodies bind to the R1 lobe of the N-terminal domain of the GluN1 subunit. Small-angle X-ray scattering studies demonstrated NMDAR-mAb stoichiometry of 2:1 or 1:2, structurally suitable for mAb-induced clustering and endocytosis of NMDARs. Importantly, these mAbs reduced the surface NMDARs and NMDAR-mediated currents, without tonically affecting NMDAR channel gating. These structural and functional findings imply that the design of neutralizing antibody binding to the R1 lobe of NMDARs represents a potential therapy for AE treatment.
Collapse
Affiliation(s)
- Han Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chun Xie
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Bo Deng
- Department of Neurology, Huashan Hospital and Institute of Neurology, National Center for Neurological Disorders, Fudan University, Shanghai, China
| | - Jinjun Ding
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine and School of Psychology, Shanghai, China
| | - Na Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Zengwei Kou
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Mengmeng Jin
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie He
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Han Wen
- DP Technology, Beijing, China
| | - Jinbao Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital and Institute of Neurology, National Center for Neurological Disorders, Fudan University, Shanghai, China.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine and School of Psychology, Shanghai, China.
| | - Shujia Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Italia M, Salvadè M, La Greca F, Zianni E, Pelucchi S, Spinola A, Ferrari E, Archetti S, Alberici A, Benussi A, Solje E, Haapasalo A, Hoffmann D, Katisko K, Krüger J, Facchinetti R, Scuderi C, Padovani A, DiLuca M, Scheggia D, Borroni B, Gardoni F. Anti-GluA3 autoantibodies define a new sub-population of frontotemporal lobar degeneration patients with distinct neuropathological features. Brain Behav Immun 2024; 118:380-397. [PMID: 38485064 DOI: 10.1016/j.bbi.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024] Open
Abstract
Autoantibodies directed against the GluA3 subunit (anti-GluA3 hIgGs) of AMPA receptors have been identified in 20%-25% of patients with frontotemporal lobar degeneration (FTLD). Data from patients and in vitro/ex vivo pre-clinical studies indicate that anti-GluA3 hIgGs negatively affect glutamatergic neurotransmission. However, whether and how the chronic presence of anti-GluA3 hIgGs triggers synaptic dysfunctions and the appearance of FTLD-related neuropathological and behavioural signature has not been clarified yet. To address this question, we developed and characterized a pre-clinical mouse model of passive immunization with anti-GluA3 hIgGs purified from patients. In parallel, we clinically compared FTLD patients who were positive for anti-GluA3 hIgGs to negative ones. Clinical data showed that the presence of anti-GluA3 hIgGs defined a subgroup of patients with distinct clinical features. In the preclinical model, anti-GluA3 hIgGs administration led to accumulation of phospho-tau in the postsynaptic fraction and dendritic spine loss in the prefrontal cortex. Remarkably, the preclinical model exhibited behavioural disturbances that mostly reflected the deficits proper of patients positive for anti-GluA3 hIgGs. Of note, anti-GluA3 hIgGs-mediated alterations were rescued in the animal model by enhancing glutamatergic neurotransmission with a positive allosteric modulator of AMPA receptors. Overall, our study clarified the contribution of anti-GluA3 autoantibodies to central nervous system symptoms and pathology and identified a specific subgroup of FTLD patients. Our findings will be instrumental in the development of a therapeutic personalised medicine strategy for patients positive for anti-GluA3 hIgGs.
Collapse
Affiliation(s)
- Maria Italia
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Michela Salvadè
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Filippo La Greca
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Elisa Zianni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Alessio Spinola
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Elena Ferrari
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Silvana Archetti
- Department of Laboratories, Central Laboratory of Clinical Chemistry Analysis. ASST Spedali Civili, Brescia, Italy
| | - Antonella Alberici
- Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alberto Benussi
- Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland; Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Annakaisa Haapasalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dorit Hoffmann
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kasper Katisko
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland; Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Johanna Krüger
- Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland; Neurocenter, Neurology, Oulu University Hospital, Oulu, Finland; Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Roberta Facchinetti
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Alessandro Padovani
- Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Monica DiLuca
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Diego Scheggia
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Barbara Borroni
- Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy.
| |
Collapse
|
4
|
Dalmau J. Changing landscape in the field of paraneoplastic neurology: Personal perspectives over a 35-year career. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:11-32. [PMID: 38494272 DOI: 10.1016/b978-0-12-823912-4.00013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Paraneoplastic neurologic syndromes are a group of rare disorders that have fascinated neurologists for more than a century. The discovery in the 1980s that many of these disorders occurred in association with antibodies against neuronal proteins revived the interest for these diseases. This chapter first traces the history of the paraneoplastic neurologic syndromes during the era that preceded the discovery of immune mechanisms and then reviews the immunologic period during which many of these syndromes were found to be associated with antibodies against intracellular onconeuronal proteins and pathogenic cytotoxic T-cell mechanisms. Alongside these developments, investigations on the antibody-mediated disorders of the peripheral nervous system, such as the myasthenic syndromes or neuromyotonia, provided suggestions for the study of the central nervous system (CNS) syndromes. These converging areas of research culminated with the groundbreaking discovery of a new category of CNS disorders mediated by antibodies against neuronal surface proteins or receptors. These disorders are not always paraneoplastic, and the understanding of these syndromes and mechanisms has changed the landscape of neurology and neurosciences.
Collapse
Affiliation(s)
- Josep Dalmau
- IDIBAPS-Hospital Clinic, University of Barcelona, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
5
|
Quinot V, Höftberger R. Pathogenesis and immunopathology of paraneoplastic disorders. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:33-54. [PMID: 38494287 DOI: 10.1016/b978-0-12-823912-4.00027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Paraneoplastic neurologic syndromes (PNS) represent a rare group of immune-mediated complications associated with an underlying tumor. Ectopic protein expression in neoplastic cells or an aberrant immune regulation in the course of hematooncologic diseases or thymomas trigger an autoimmune response that may affect any part of the central and/or peripheral nervous system. Recent advances in drug therapies as well as novel animal models and neuropathologic studies have led to further insights on the immune pathomechanisms of PNS. Although the syndromes share common paths in pathogenesis, they may differ in the disease course, prognosis, and therapy targets, depending on the localization and type of antibody epitope. Neuropathologic hallmarks of PNS associated with antibodies directed against intracellular epitopes are characterized by T cell-dominated inflammation, reactive gliosis including microglial nodules, and neuronal degeneration. By contrast, the neuropathology of cell surface antibody-mediated PNS strongly depends on the targeted antigen and varies from B cell/plasma cell-dominated inflammation and well-preserved neurons together with a reduced expression of the target antigen in anti-NMDAR encephalitis to irreversible Purkinje cell loss in anti-P/Q-type VGCC antibody-associated paraneoplastic cerebellar degeneration. The understanding of different pathomechanisms in PNS is important because they strongly correspond with therapy response and prognosis, and should guide treatment decisions.
Collapse
Affiliation(s)
- Valérie Quinot
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Masciocchi S, Businaro P, Scaranzin S, Morandi C, Franciotta D, Gastaldi M. General features, pathogenesis, and laboratory diagnostics of autoimmune encephalitis. Crit Rev Clin Lab Sci 2024; 61:45-69. [PMID: 37777038 DOI: 10.1080/10408363.2023.2247482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/09/2023] [Indexed: 10/02/2023]
Abstract
Autoimmune encephalitis (AE) is a group of inflammatory conditions that can associate with the presence of antibodies directed to neuronal intracellular, or cell surface antigens. These disorders are increasingly recognized as an important differential diagnosis of infectious encephalitis and of other common neuropsychiatric conditions. Autoantibody diagnostics plays a pivotal role for accurate diagnosis of AE, which is of utmost importance for the prompt recognition and early treatment. Several AE subgroups can be identified, either according to the prominent clinical phenotype, presence of a concomitant tumor, or type of neuronal autoantibody, and recent diagnostic criteria have provided important insights into AE classification. Antibodies to neuronal intracellular antigens typically associate with paraneoplastic neurological syndromes and poor prognosis, whereas antibodies to synaptic/neuronal cell surface antigens characterize many AE subtypes that associate with tumors less frequently, and that are often immunotherapy-responsive. In addition to the general features of AE, we review current knowledge on the pathogenic mechanisms underlying these disorders, focusing mainly on the potential role of neuronal antibodies in the most frequent conditions, and highlight current theories and controversies. Then, we dissect the crucial aspects of the laboratory diagnostics of neuronal antibodies, which represents an actual challenge for both pathologists and neurologists. Indeed, this diagnostics entails technical difficulties, along with particularly interesting novel features and pitfalls. The novelties especially apply to the wide range of assays used, including specific tissue-based and cell-based assays. These assays can be developed in-house, usually in specialized laboratories, or are commercially available. They are widely used in clinical immunology and in clinical chemistry laboratories, with relevant differences in analytic performance. Indeed, several data indicate that in-house assays could perform better than commercial kits, notwithstanding that the former are based on non-standardized protocols. Moreover, they need expertise and laboratory facilities usually unavailable in clinical chemistry laboratories. Together with the data of the literature, we critically evaluate the analytical performance of the in-house vs commercial kit-based approach. Finally, we propose an algorithm aimed at integrating the present strategies of the laboratory diagnostics in AE for the best clinical management of patients with these disorders.
Collapse
Affiliation(s)
- Stefano Masciocchi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Pietro Businaro
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Silvia Scaranzin
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Morandi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Diego Franciotta
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Gastaldi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
7
|
Ryding M, Mikkelsen AW, Nissen MS, Nilsson AC, Blaabjerg M. Pathophysiological Effects of Autoantibodies in Autoimmune Encephalitides. Cells 2023; 13:15. [PMID: 38201219 PMCID: PMC10778077 DOI: 10.3390/cells13010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The heterogeneity of autoantibody targets in autoimmune encephalitides presents a challenge for understanding cellular and humoral pathophysiology, and the development of new treatment strategies. Thus, current treatment aims at autoantibody removal and immunosuppression, and is primarily based on data generated from other autoimmune neurological diseases and expert consensus. There are many subtypes of autoimmune encephalitides, which now entails both diseases with autoantibodies targeting extracellular antigens and classical paraneoplastic syndromes with autoantibodies targeting intracellular antigens. Here, we review the current knowledge of molecular and cellular effects of autoantibodies associated with autoimmune encephalitis, and evaluate the evidence behind the proposed pathophysiological mechanisms of autoantibodies in autoimmune encephalitis.
Collapse
Affiliation(s)
- Matias Ryding
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark;
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Anne With Mikkelsen
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark;
| | | | - Anna Christine Nilsson
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark;
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark;
| | - Morten Blaabjerg
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark;
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark;
- Brain Research—Inter Disciplinary Guided Excellence (BRIDGE), 5000 Odense, Denmark
| |
Collapse
|
8
|
Olivero G, Roggeri A, Pittaluga A. Anti-NMDA and Anti-AMPA Receptor Antibodies in Central Disorders: Preclinical Approaches to Assess Their Pathological Role and Translatability to Clinic. Int J Mol Sci 2023; 24:14905. [PMID: 37834353 PMCID: PMC10573896 DOI: 10.3390/ijms241914905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Autoantibodies against NMDA and AMPA receptors have been identified in the central nervous system of patients suffering from brain disorders characterized by neurological and psychiatric symptoms. It has been demonstrated that these autoantibodies can affect the functions and/or the expression of the targeted receptors, altering synaptic communication. The importance to clarify, in preclinical models, the molecular mechanisms involved in the autoantibody-mediated effects has emerged in order to understand their pathogenic role in central disorders, but also to propose new therapeutic approaches for preventing the deleterious central consequences. In this review, we describe some of the available preclinical literature concerning the impact of antibodies recognizing NMDA and AMPA receptors in neurons. This review discusses the cellular events that would support the detrimental roles of the autoantibodies, also illustrating some contrasting findings that in our opinion deserve attention and further investigations before translating the preclinical observations to clinic.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy (DiFar), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (G.O.); (A.R.)
| | - Alessandra Roggeri
- Department of Pharmacy (DiFar), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (G.O.); (A.R.)
| | - Anna Pittaluga
- Center of Excellence for Biomedical Research, 3Rs Center, Department of Pharmacy (DiFar), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16145 Genoa, Italy
| |
Collapse
|
9
|
Lin J, Wang J, Li J. Patient characteristics and outcome in patients with anti-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) encephalitis. Neurol Sci 2023; 44:3253-3259. [PMID: 37010671 DOI: 10.1007/s10072-023-06769-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
OBJECTIVE Anti-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) encephalitis is a rare subtype of autoimmune encephalitis. We report patients diagnosed with anti-AMPAR encephalitis in western China, focusing on their clinical presentations, imaging results, treatment strategies, and prognosis. METHODS Data from patients diagnosed with anti-AMPAR encephalitis in the neurology center of West China Hospital from August 2018 to July 2021 were retrospectively collected and analyzed. Based on the diagnostic criteria of autoimmune encephalitis, nine cases were included. RESULTS Four patients (44%) were males, and the median age at presentation was 54 years (range, 25-85). Short-term memory loss was the most common initial symptom. Additional types of autoantibodies were identified in three patients. After presentation, four patients were found to have tumors: two with small cell lung cancer, one with ovarian teratoma, and one with thymoma. All patients accepted first-line immune therapy, and follow-up was available from 8 patients (median 20 weeks, range 4-78). At the last follow-up, three patients showed good outcomes (modified Rankin scale [mRS] 0-2; 37.5%). Five patients showed poor outcomes (mRS 3-6; 62.5%): two had minimal changes and remained hospitalized, two had residual severe cognitive impairments, and one patient died during follow-up. Outcomes were worse among patients with tumors. Finally, only one patient experienced relapse during follow-up. CONCLUSION Anti-AMPAR encephalitis should be considered in the differential diagnosis for middle- and senior-aged patients who present with predominantly acute or subacute short-term memory impairment. The long-term prognosis is correlated with the presence of a tumor.
Collapse
Affiliation(s)
- Jingfang Lin
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China
| | - Jierui Wang
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China
| | - Jinmei Li
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
10
|
Flammer J, Neziraj T, Rüegg S, Pröbstel AK. Immune Mechanisms in Epileptogenesis: Update on Diagnosis and Treatment of Autoimmune Epilepsy Syndromes. Drugs 2023; 83:135-158. [PMID: 36696027 PMCID: PMC9875200 DOI: 10.1007/s40265-022-01826-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/26/2023]
Abstract
Seizures and epilepsy can result from various aetiologies, yet the underlying cause of several epileptic syndromes remains unclear. In that regard, autoimmune-mediated pathophysiological mechanisms have been gaining attention in the past years and were included as one of the six aetiologies of seizures in the most recent classification of the International League Against Epilepsy. The increasing number of anti-neuronal antibodies identified in patients with encephalitic disorders has contributed to the establishment of an immune-mediated pathophysiology in many cases of unclear aetiology of epileptic syndromes. Yet only a small number of patients with autoimmune encephalitis develop epilepsy in the proper sense where the brain transforms into a state where it will acquire the enduring propensity to produce seizures if it is not hindered by interventions. Hence, the term autoimmune epilepsy is often wrongfully used in the context of autoimmune encephalitis since most of the seizures are acute encephalitis-associated and will abate as soon as the encephalitis is in remission. Given the overlapping clinical presentation of immune-mediated seizures originating from different aetiologies, a clear distinction among the aetiological entities is crucial when it comes to discussing pathophysiological mechanisms, therapeutic options, and long-term prognosis of patients. Moreover, a rapid and accurate identification of patients with immune-mediated epilepsy syndromes is required to ensure an early targeted treatment and, thereby, improve clinical outcome. In this article, we review our current understanding of pathogenesis and critically discuss current and potential novel treatment options for seizures and epilepsy syndromes of underlying or suspected immune-mediated origin. We further outline the challenges in proper terminology.
Collapse
Affiliation(s)
- Julia Flammer
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Tradite Neziraj
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stephan Rüegg
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.
| | - Anne-Katrin Pröbstel
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland. .,Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland. .,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
11
|
Anti-AMPA Receptor Autoantibodies Reduce Excitatory Currents in Rat Hippocampal Neurons. Pharmaceuticals (Basel) 2023; 16:ph16010077. [PMID: 36678574 PMCID: PMC9864520 DOI: 10.3390/ph16010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
The GluR3 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) has been identified as a target for autoantibodies (Aabs) in autoimmune encephalopathy and other diseases. Recent studies have proposed mechanisms by which these Aabs act, but their exact role in neuronal excitability is yet to be established. Patient Aabs have been shown to bind to specific regions within the GluR3 subunit. GLUR3B peptides were designed based on described (ELISA) immunogenic epitopes for Aabs and an immunisation strategy was used to generate novel anti-AMPAR Aabs. Target-specific binding and specificity of affinity-purified anti-AMPAR Aabs was confirmed using enzyme-linked immunosorbent assay, immunocytochemistry and Western blot. Functional anti-AMPAR Aab effects were determined on excitatory postsynaptic currents (EPSCs) from primary hippocampal neurons using whole-cell patch-clamp electrophysiology. Acute (10 or 30 min) or longer-term (24 h) application of anti-AMPAR Aabs caused a significant reduction in the mean frequency of spontaneous and miniature EPSCs in hippocampal neurons. Our data demonstrate that anti-AMPAR Aabs targeting peptides linked to auto-immune diseases mediate inhibitory effects on neuronal excitability at the synaptic level, such effects may lead to disruption of the excitatory/inhibitory balance at a network level.
Collapse
|
12
|
Yadav P, Podia M, Kumari SP, Mani I. Glutamate receptor endocytosis and signaling in neurological conditions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:167-207. [PMID: 36813358 DOI: 10.1016/bs.pmbts.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The non-essential amino acid glutamate acts as a major excitatory neurotransmitter and plays a significant role in the central nervous system (CNS). It binds with two different types of receptors, ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs), responsible for the postsynaptic excitation of neurons. They are important for memory, neural development and communication, and learning. Endocytosis and subcellular trafficking of the receptor are essential for the regulation of receptor expression on the cell membrane and excitation of the cells. The endocytosis and trafficking of the receptor are dependent on its type, ligand, agonist, and antagonist present. This chapter discusses the types of glutamate receptors, their subtypes, and the regulation of their internalization and trafficking. The roles of glutamate receptors in neurological diseases are also briefly discussed.
Collapse
Affiliation(s)
- Prerna Yadav
- Department of Microbiology, University of Delhi, New Delhi, India
| | - Mansi Podia
- Department of Microbiology, University of Delhi, New Delhi, India
| | - Shashi Prabha Kumari
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
13
|
Sun H, Ma D, Cheng Y, Li J, Zhang W, Jiang T, Li Z, Li X, Meng H. The JAK-STAT Signaling Pathway in Epilepsy. Curr Neuropharmacol 2023; 21:2049-2069. [PMID: 36518035 PMCID: PMC10556373 DOI: 10.2174/1570159x21666221214170234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is defined as spontaneous recurrent seizures in the brain. There is increasing evidence that inflammatory mediators and immune cells are involved in epileptic seizures. As more research is done on inflammatory factors and immune cells in epilepsy, new targets for the treatment of epilepsy will be revealed. The Janus kinase-signal transducer and transcriptional activator (JAKSTAT) signaling pathway is strongly associated with many immune and inflammatory diseases, At present, more and more studies have found that the JAK-STAT pathway is involved in the development and development of epilepsy, indicating the JAK-STAT pathway's potential promise as a target in epilepsy treatment. In this review, we discuss the composition, activation, and regulation of the JAK-STAT pathway and the relationship between the JAK-STAT pathway and epilepsy. In addition, we summarize the common clinical inhibitors of JAK and STAT that we would expect to be used in epilepsy treatment in the future.
Collapse
Affiliation(s)
- Huaiyu Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Cheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiaai Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wuqiong Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Ting Jiang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Zhaoran Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xuewei Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Sivakumar S, Ghasemi M, Schachter SC. Targeting NMDA Receptor Complex in Management of Epilepsy. Pharmaceuticals (Basel) 2022; 15:ph15101297. [PMID: 36297409 PMCID: PMC9609646 DOI: 10.3390/ph15101297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are widely distributed in the central nervous system (CNS) and play critical roles in neuronal excitability in the CNS. Both clinical and preclinical studies have revealed that the abnormal expression or function of these receptors can underlie the pathophysiology of seizure disorders and epilepsy. Accordingly, NMDAR modulators have been shown to exert anticonvulsive effects in various preclinical models of seizures, as well as in patients with epilepsy. In this review, we provide an update on the pathologic role of NMDARs in epilepsy and an overview of the NMDAR antagonists that have been evaluated as anticonvulsive agents in clinical studies, as well as in preclinical seizure models.
Collapse
Affiliation(s)
- Shravan Sivakumar
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Correspondence: (M.G.); (S.C.S.)
| | - Steven C. Schachter
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02114, USA
- Consortia for Improving Medicine with Innovation & Technology (CIMIT), Boston, MA 02114, USA
- Correspondence: (M.G.); (S.C.S.)
| |
Collapse
|
15
|
Getz AM, Ducros M, Breillat C, Lampin-Saint-Amaux A, Daburon S, François U, Nowacka A, Fernández-Monreal M, Hosy E, Lanore F, Zieger HL, Sainlos M, Humeau Y, Choquet D. High-resolution imaging and manipulation of endogenous AMPA receptor surface mobility during synaptic plasticity and learning. SCIENCE ADVANCES 2022; 8:eabm5298. [PMID: 35895810 PMCID: PMC9328687 DOI: 10.1126/sciadv.abm5298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/10/2022] [Indexed: 05/18/2023]
Abstract
Regulation of synaptic neurotransmitter receptor content is a fundamental mechanism for tuning synaptic efficacy during experience-dependent plasticity and behavioral adaptation. However, experimental approaches to track and modify receptor movements in integrated experimental systems are limited. Exploiting AMPA-type glutamate receptors (AMPARs) as a model, we generated a knock-in mouse expressing the biotin acceptor peptide (AP) tag on the GluA2 extracellular N-terminal. Cell-specific introduction of biotin ligase allows the use of monovalent or tetravalent avidin variants to respectively monitor or manipulate the surface mobility of endogenous AMPAR containing biotinylated AP-GluA2 in neuronal subsets. AMPAR immobilization precluded the expression of long-term potentiation and formation of contextual fear memory, allowing target-specific control of the expression of synaptic plasticity and animal behavior. The AP tag knock-in model offers unprecedented access to resolve and control the spatiotemporal dynamics of endogenous receptors, and opens new avenues to study the molecular mechanisms of synaptic plasticity and learning.
Collapse
Affiliation(s)
- Angela M. Getz
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, F-33000 Bordeaux, France
| | - Mathieu Ducros
- Université de Bordeaux, CNRS, INSERM, Bordeaux Imaging Center (BIC), UAR 3420, US 4, F-33000 Bordeaux, France
| | - Christelle Breillat
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, F-33000 Bordeaux, France
| | - Aurélie Lampin-Saint-Amaux
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, F-33000 Bordeaux, France
| | - Sophie Daburon
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, F-33000 Bordeaux, France
| | - Urielle François
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, F-33000 Bordeaux, France
| | - Agata Nowacka
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, F-33000 Bordeaux, France
| | - Mónica Fernández-Monreal
- Université de Bordeaux, CNRS, INSERM, Bordeaux Imaging Center (BIC), UAR 3420, US 4, F-33000 Bordeaux, France
| | - Eric Hosy
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, F-33000 Bordeaux, France
| | - Frédéric Lanore
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, F-33000 Bordeaux, France
| | - Hanna L. Zieger
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, F-33000 Bordeaux, France
| | - Matthieu Sainlos
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, F-33000 Bordeaux, France
| | - Yann Humeau
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, F-33000 Bordeaux, France
| | - Daniel Choquet
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, F-33000 Bordeaux, France
- Université de Bordeaux, CNRS, INSERM, Bordeaux Imaging Center (BIC), UAR 3420, US 4, F-33000 Bordeaux, France
- Corresponding author.
| |
Collapse
|
16
|
Lenti MV, Rossi CM, Melazzini F, Gastaldi M, Bugatti S, Rotondi M, Bianchi PI, Gentile A, Chiovato L, Montecucco C, Corazza GR, Di Sabatino A. Seronegative autoimmune diseases: A challenging diagnosis. Autoimmun Rev 2022; 21:103143. [PMID: 35840037 DOI: 10.1016/j.autrev.2022.103143] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/10/2022] [Indexed: 12/19/2022]
Abstract
Autoimmune diseases (AID) are increasingly prevalent conditions which comprise more than 100 distinct clinical entities that are responsible for a great disease burden worldwide. The early recognition of these diseases is key for preventing their complications and for tailoring proper management. In most cases, autoantibodies, regardless of their potential pathogenetic role, can be detected in the serum of patients with AID, helping clinicians in making a definitive diagnosis and allowing screening strategies for early -and sometimes pre-clinical- diagnosis. Despite their undoubted crucial role, in a minority of cases, patients with AID may not show any autoantibody, a condition that is referred to as seronegative AID. Suboptimal accuracy of the available laboratory tests, antibody absorption, immunosuppressive therapy, immunodeficiencies, antigen exhaustion, and immunosenescence are the main possible determinants of seronegative AID. Indeed, in seronegative AID, the diagnosis is more challenging and must rely on clinical features and on other available tests, often including histopathological evaluation and radiological diagnostic tests. In this review, we critically dissect, in a narrative fashion, the possible causes of seronegativity, as well as the diagnostic and management implications, in several AID including autoimmune gastritis, celiac disease, autoimmune liver disease, rheumatoid arthritis, autoimmune encephalitis, myasthenia gravis, Sjögren's syndrome, antiphospholipid syndrome, and autoimmune thyroid diseases.
Collapse
Affiliation(s)
- Marco Vincenzo Lenti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Carlo Maria Rossi
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Federica Melazzini
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Matteo Gastaldi
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | - Serena Bugatti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Unit of Rheumatology, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
| | - Paola Ilaria Bianchi
- Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Antonella Gentile
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Luca Chiovato
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
| | - Carlomaurizio Montecucco
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Unit of Rheumatology, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Gino Roberto Corazza
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, Pavia, Italy.
| |
Collapse
|
17
|
Lancaster E. Autoantibody Encephalitis: Presentation, Diagnosis, and Management. J Clin Neurol 2022; 18:373-390. [PMID: 35796263 PMCID: PMC9262450 DOI: 10.3988/jcn.2022.18.4.373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
Autoantibody encephalitis causes distinct clinical syndromes involving alterations in mentation, abnormal movements, seizures, psychiatric symptoms, sleep disruption, spasms, and neuromyotonia. The diagnoses can be confirmed by specific antibody tests, although some antibodies may be better detected in spinal fluid and others in serum. Each disorder conveys a risk of certain tumors which may inform diagnosis and be important for treatment. Autoantibodies to receptors and other neuronal membrane proteins are generally thought to be pathogenic and result in loss of function of the targets, so understanding the pharmacology of the receptors may inform our understanding of the syndromes. Patients may be profoundly ill but the syndromes usually respond to immune therapy, although there are differences in the types of immune therapy that are thought to be most effective for the various disorders.
Collapse
Affiliation(s)
- Eric Lancaster
- Department of Neurology, The University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Li R, Wang Y, Wu X, Wang J, Wei W, Li X. Neuropsychiatric lupus erythematosus with neurogenic pulmonary edema and anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor limbic encephalitis: a case report. BMC Neurol 2022; 22:222. [PMID: 35710378 PMCID: PMC9203256 DOI: 10.1186/s12883-022-02747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/10/2022] [Indexed: 12/03/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a chronic multisystem autoimmune inflammatory disease predominantly found in women of child-bearing age. Neurogenic pulmonary edema (NPE) is a recalcitrant complication that occurs after injury to the central nervous system and has an acute onset and rapid progression. Limbic encephalitis is an inflammatory encephalopathy caused by viruses, immune responses, or other factors involving the limbic system. NPE caused by SLE is rare. Case presentation Here, we report a case of a 21-year-old woman with SLE who experienced five episodes of generalized tonic–clonic seizure after headache and dyspnea. Anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) 2 antibody was tested positive in the serum and cerebrospinal fluid. Electrocardiography (EEG) indicated paroxysmal or sporadic medium amplitude theta activity. In addition, chest computed tomography (CT) showed multiple diffuse consolidations and ground-glass opacities. We finally considered a diagnosis of NPE and AMPAR limbic encephalitis. The patient's symptoms improved obviously after methylprednisolone pulse therapy and antiepileptic treatment. Conclusions NPE can be a complication of neuropsychiatric lupus erythematosus (NPSLE). AMPAR2 antibodies may be produced in NPSLE patients, especially in those with high polyclonal IgG antibody titers. More basic and clinical studies are required to confirm these observations and elucidate the pathogenicity of encephalitis-related autoantibodies in SLE patients.
Collapse
Affiliation(s)
- Rongqi Li
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, No.154 Anshan Road, Tianjin, 300052, China
| | - Yingai Wang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, No.154 Anshan Road, Tianjin, 300052, China
| | - Xiuhua Wu
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, No.154 Anshan Road, Tianjin, 300052, China
| | - Junping Wang
- Department of Radiology, Tianjin Medical University General Hospital, No.154 Anshan Road, Tianjin, 300052, China
| | - Wei Wei
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, No.154 Anshan Road, Tianjin, 300052, China
| | - Xin Li
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, No.154 Anshan Road, Tianjin, 300052, China.
| |
Collapse
|
19
|
Ni Y, Feng Y, Shen D, Chen M, Zhu X, Zhou Q, Gao Y, Liu J, Zhang Q, Shen Y, Peng L, Zeng Z, Yin D, Hu J, Chen S. Anti-IgLON5 antibodies cause progressive behavioral and neuropathological changes in mice. J Neuroinflammation 2022; 19:140. [PMID: 35690819 PMCID: PMC9188070 DOI: 10.1186/s12974-022-02520-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anti-IgLON5 disease is a rare neurological disorder associated with autoantibodies against the neuronal cell adhesion protein, IgLON5. Cellular investigations with human IgLON5 antibodies have suggested an antibody-mediated pathogenesis, but whether human IgLON5 autoantibodies can induce disease symptoms in mice is yet to be shown. Moreover, the effects of anti-IgLON5 autoantibodies on neurons and the precise molecular mechanisms in vivo remain controversial. METHODS We investigated the effects of anti-IgLON5 antibodies in vivo and evaluated their long-term effects. We used two independent passive-transfer animal models and evaluated the effects of the antibodies on mouse behaviors at different time points from day 1 until day 30 after IgG infusion. A wide range of behaviors, including tests of locomotion, coordination, memory, anxiety, depression and social interactions were established. At termination, brain tissue was analyzed for human IgG, neuronal markers, glial markers, synaptic markers and RNA sequencing. RESULTS These experiments showed that patient's anti-IgLON5 antibodies induced progressive and irreversible behavioral deficits in vivo. Notably, cognitive abnormality was supported by impaired average gamma power in the CA1 during novel object recognition testing. Accompanying brain tissue studies showed progressive increase of brain-bound human antibodies in the hippocampus of anti-IgLON5 IgG-injected mice, which persisted 30 days after the injection of patient's antibodies was stopped. Microglial and astrocyte density was increased in the hippocampus of anti-IgLON5 IgG-injected mice at Day 30. Whole-cell voltage clamp recordings proved that anti-IgLON5 antibodies affected synaptic homeostasis. Further western blot investigation of synaptic proteins revealed a reduction of presynaptic (synaptophysin) and post-synaptic (PSD95 and NMDAR1) expression in anti-IgLON5 IgG-injected mice. CONCLUSIONS Overall, our findings indicated an irreversible effect of anti-IgLON5 antibodies and supported the pathogenicity of these antibodies in vivo.
Collapse
Affiliation(s)
- You Ni
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yifan Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Dingding Shen
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Ming Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaona Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qinming Zhou
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yining Gao
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Liu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Zhang
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China
| | - Yuntian Shen
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China
| | - Lisheng Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zike Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Dou Yin
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China. .,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, 200030, China.
| | - Sheng Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
| |
Collapse
|
20
|
Rare antibody-mediated and seronegative autoimmune encephalitis: An update. Autoimmun Rev 2022; 21:103118. [PMID: 35595048 DOI: 10.1016/j.autrev.2022.103118] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/15/2022] [Indexed: 01/14/2023]
Abstract
Paralleling advances with respect to more common antibody-mediated encephalitides, such as anti-N-methyl-D-aspartate receptor (NMDAR) and anti-leucine-rich glioma-inactivated 1 (LGI1) Ab-mediated encephalitis, the discovery and characterisation of novel antibody-mediated encephalitides accelerated over the past decade, adding further depth etiologically to the spectrum of antibody-mediated encephalitis. Herein, we review the major mechanistic, clinical features and management considerations with respect to anti-γ-aminobutyric acid B (GABAB)-, anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropinoic receptor- (AMPAR), anti-GABAA-, anti-dipeptidyl-peptidase-like protein-6 (DPPX) Ab-mediated encephalitides, delineate rarer subtypes and summarise findings to date regarding seronegative autoimmune encephalitis.
Collapse
|
21
|
Gill AJ, Venkatesan A. Pathogenic mechanisms in neuronal surface autoantibody-mediated encephalitis. J Neuroimmunol 2022; 368:577867. [DOI: 10.1016/j.jneuroim.2022.577867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 04/09/2022] [Indexed: 11/16/2022]
|
22
|
Greenlee JE, Carlson NG, Abbatemarco JR, Herdlevær I, Clardy SL, Vedeler CA. Paraneoplastic and Other Autoimmune Encephalitides: Antineuronal Antibodies, T Lymphocytes, and Questions of Pathogenesis. Front Neurol 2022; 12:744653. [PMID: 35111121 PMCID: PMC8801577 DOI: 10.3389/fneur.2021.744653] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023] Open
Abstract
Autoimmune and paraneoplastic encephalitides represent an increasingly recognized cause of devastating human illness as well as an emerging area of neurological injury associated with immune checkpoint inhibitors. Two groups of antibodies have been detected in affected patients. Antibodies in the first group are directed against neuronal cell surface membrane proteins and are exemplified by antibodies directed against the N-methyl-D-aspartate receptor (anti-NMDAR), found in patients with autoimmune encephalitis, and antibodies directed against the leucine-rich glioma-inactivated 1 protein (anti-LGI1), associated with faciobrachial dystonic seizures and limbic encephalitis. Antibodies in this group produce non-lethal neuronal dysfunction, and their associated conditions often respond to treatment. Antibodies in the second group, as exemplified by anti-Yo antibody, found in patients with rapidly progressive cerebellar syndrome, and anti-Hu antibody, associated with encephalomyelitis, react with intracellular neuronal antigens. These antibodies are characteristically found in patients with underlying malignancy, and neurological impairment is the result of neuronal death. Within the last few years, major advances have been made in understanding the pathogenesis of neurological disorders associated with antibodies against neuronal cell surface antigens. In contrast, the events that lead to neuronal death in conditions associated with antibodies directed against intracellular antigens, such as anti-Yo and anti-Hu, remain poorly understood, and the respective roles of antibodies and T lymphocytes in causing neuronal injury have not been defined in an animal model. In this review, we discuss current knowledge of these two groups of antibodies in terms of their discovery, how they arise, the interaction of both types of antibodies with their molecular targets, and the attempts that have been made to reproduce human neuronal injury in tissue culture models and experimental animals. We then discuss the emerging area of autoimmune neuronal injury associated with immune checkpoint inhibitors and the implications of current research for the treatment of affected patients.
Collapse
Affiliation(s)
- John E Greenlee
- Neurology Service, George E. Wahlen Veterans Affairs Health Care System, Salt Lake City, UT, United States.,Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - Noel G Carlson
- Department of Neurology, University of Utah, Salt Lake City, UT, United States.,Geriatric Research, Education, and Clinical Center (GRECC), George E. Wahlen Veterans Affairs Health Care System, Salt Lake City, UT, United States.,Department of Neurobiology, University of Utah, Salt Lake City, UT, United States
| | - Justin R Abbatemarco
- Department of Neurology, University of Utah, Salt Lake City, UT, United States.,Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Ida Herdlevær
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Stacey L Clardy
- Neurology Service, George E. Wahlen Veterans Affairs Health Care System, Salt Lake City, UT, United States.,Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - Christian A Vedeler
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
23
|
Miyazaki T, Takayama Y, Iwasaki M, Hatano M, Nakajima W, Ikegaya N, Yamamoto T, Tsuchimoto S, Kato H, Takahashi T. OUP accepted manuscript. Brain Commun 2022; 4:fcac023. [PMID: 35415605 PMCID: PMC8994107 DOI: 10.1093/braincomms/fcac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/11/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Presurgical identification of the epileptogenic zone is a critical determinant of seizure control following surgical resection in epilepsy. Excitatory glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor is a major component of neurotransmission. Although elevated α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor levels are observed in surgically resected brain areas of patients with epilepsy, it remains unclear whether increased α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor-mediated currents initiate epileptic discharges. We have recently developed the first PET tracer for α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor, [11C]K-2, to visualize and quantify the density of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors in living human brains. Here, we detected elevated [11C]K-2 uptake in the epileptogenic temporal lobe of patients with mesial temporal lobe epilepsy. Brain areas with high [11C]K-2 uptake are closely colocalized with the location of equivalent current dipoles estimated by magnetoencephalography or with seizure onset zones detected by intracranial electroencephalogram. These results suggest that epileptic discharges initiate from brain areas with increased α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors, providing a biological basis for epileptic discharges and an additional non-invasive option to identify the epileptogenic zone in patients with mesial temporal lobe epilepsy.
Collapse
Affiliation(s)
- Tomoyuki Miyazaki
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yutaro Takayama
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
| | - Mai Hatano
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Waki Nakajima
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Naoki Ikegaya
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Shohei Tsuchimoto
- Division of System Neuroscience, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Hiroki Kato
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Takuya Takahashi
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Correspondence to: Takuya Takahashi Department of Physiology, Yokohama City University Graduate School of Medicine Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan E-mail:
| |
Collapse
|
24
|
Ancona C, Masenello V, Tinnirello M, Toscano LM, Leo A, La Piana C, Toldo I, Nosadini M, Sartori S. Autoimmune Encephalitis and Other Neurological Syndromes With Rare Neuronal Surface Antibodies in Children: A Systematic Literature Review. Front Pediatr 2022; 10:866074. [PMID: 35515348 PMCID: PMC9067304 DOI: 10.3389/fped.2022.866074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Neuronal surface antibody syndromes (NSAS) are an expanding group of autoimmune neurological diseases, whose most frequent clinical manifestation is autoimmune encephalitis (AE). Anti-NMDAR, anti-LGI1, and anti-CASPR2 autoimmunity represent the most described forms, while other NSAS are rarer and less well-characterized, especially in children. We carried out a systematic literature review of children with rare NSAS (with antibodies targeting D2R, GABAAR, GlyR, GABABR, AMPAR, amphiphysin, mGluR5, mGluR1, DPPX, IgLON5, and neurexin-3alpha) and available individual data, to contribute to improve their clinical characterization and identification of age-specific features. Ninety-four children were included in the review (47/94 female, age range 0.2-18 years). The most frequent NSAS were anti-D2R (28/94, 30%), anti-GABAAR (23/94, 24%), and anti-GlyR (22/94, 23%) autoimmunity. The most frequent clinical syndromes were AE, including limbic and basal ganglia encephalitis (57/94, 61%; GABAAR, D2R, GABABR, AMPAR, amphiphysin, and mGluR5), and isolated epileptic syndromes (15/94, 16%; GlyR, GABAAR). With the limitations imposed by the low number of cases, the main distinctive features of our pediatric literature cohort compared to the respective NSAS in adults included: absent/lower tumor association (exception made for anti-mGluR5 autoimmunity, and most evident in anti-amphiphysin autoimmunity); loss of female preponderance (AMPAR); relatively frequent association with preceding viral encephalitis (GABAAR, D2R). Moreover, while SPS and PERM are the most frequent syndromes in adult anti-GlyR and anti-amphiphysin autoimmunity, in children isolated epileptic syndromes and limbic encephalitis appear predominant, respectively. To our knowledge, this is the first systematic review on rare pediatric NSAS. An improved characterization may aid their recognition in children.
Collapse
Affiliation(s)
- Claudio Ancona
- Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - Valentina Masenello
- Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - Matteo Tinnirello
- Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - Luca Mattia Toscano
- Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - Andrea Leo
- Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - Chiara La Piana
- Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - Irene Toldo
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - Margherita Nosadini
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy.,Neuroimmunology Group, Paediatric Research Institute "Città della Speranza", Padova, Italy
| | - Stefano Sartori
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy.,Neuroimmunology Group, Paediatric Research Institute "Città della Speranza", Padova, Italy
| |
Collapse
|
25
|
Abstract
Limbic encephalitis (LE) is a clinical syndrome defined by subacutely evolving limbic signs and symptoms with structural and functional evidence of mediotemporal damage in the absence of a better explanation than an autoimmune (or paraneoplastic) cause. There are features common to all forms of LE. In recent years, antibody(ab)-defined subtypes have been established. They are distinct regarding underlying pathophysiologic processes, clinical and magnetic resonance imaging courses, cerebrospinal fluid signatures, treatment responsivity, and likelihood of a chronic course. With immunotherapy, LE with abs against surface antigens has a better outcome than LE with abs to intracellular antigens. Diagnostic and treatment challenges are, on the one hand, to avoid overlooking and undertreatment and, on the other hand, to avoid overdiagnoses and overtreatment. LE can be conceptualized as a model disease for the consequences of new onset mediotemporal damage by different mechanisms in adult life. It may be studied as an example of mediotemporal epileptogenesis.
Collapse
Affiliation(s)
- Christian G Bien
- Department of Epileptology (Krankenhaus Mara), Bielefeld University, Bielefeld, Germany; Laboratory Krone, Bad Salzuflen, Germany.
| |
Collapse
|
26
|
Zhang Z, Fan S, Ren H, Zhou L, Guan H. Clinical characteristics and prognosis of anti-alpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic acid receptor encephalitis. BMC Neurol 2021; 21:490. [PMID: 34915865 PMCID: PMC8678635 DOI: 10.1186/s12883-021-02520-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Encephalitis associated with antibodies against alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) is an extremely rare type of antibody-mediated encephalitis. This research aims to investigate the clinical characteristics and prognosis of anti-AMPAR encephalitis. METHODS This retrospective study enrolled nine patients with anti-AMPAR encephalitis. Demographic information, clinical manifestations, laboratory and radiological findings, treatment and response were collected and analyzed. These patients were followed up with an average period of 72 weeks to gather prognostic information. RESULTS Nine patients (7 females and 2 males) were enrolled with a mean age at disease onset of 59 years old. Three clinical pictures, including limbic encephalitis (n = 7; 78%), pure amnesia (n = 1; 11%) and fulminant encephalitis (n = 1; 11%) were identified. New symptoms of dysphagia and deafness were identified in the clinical spectrum of anti-AMPAR encephalitis. All patients had positive blood AMPAR antibodies, and six of them (67%) had paired positive antibodies in cerebrospinal fluid (CSF). Brain magnetic resonance imaging (MRI) was abnormal in 75% of the patients with no specific patterns recognized. Six patients (67%) had tumors, including lung cancers and thymomas. After immunotherapy and oncotherapy, partial improvement of neurological symptoms was observed among all 6 patients with available records during their hospitalization. After a mean follow-up of 72 weeks, 3 patients had marked decrease of modified Rankin Scale (mRS) score, 1 patient had unchanged mRS score, 4 patients died and the other one was lost. CONCLUSIONS Anti-AMPAR encephalitis mainly presents as limbic encephalitis, and is paraneoplastic in 67% of cases. Thus, intensive screening for tumors is recommended for all anti-AMPAR patients. Although patients showed a good short-term therapeutic response, the overall prognosis was not satisfactory.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Neurology, Peking Union Medical College Hospital, Beijing and Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Siyuan Fan
- Department of Neurology, Peking Union Medical College Hospital, Beijing and Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Haitao Ren
- Department of Neurology, Peking Union Medical College Hospital, Beijing and Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lixin Zhou
- Department of Neurology, Peking Union Medical College Hospital, Beijing and Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Hongzhi Guan
- Department of Neurology, Peking Union Medical College Hospital, Beijing and Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
27
|
Abstract
The realization that autoantibodies can contribute to dysfunction of the brain has brought about a paradigm shift in neurological diseases over the past decade, offering up important novel diagnostic and therapeutic opportunities. Detection of specific autoantibodies to neuronal or glial targets has resulted in a better understanding of central nervous system autoimmunity and in the reclassification of some diseases previously thought to result from infectious, 'idiopathic' or psychogenic causes. The most prominent examples, such as aquaporin 4 autoantibodies in neuromyelitis optica or NMDAR autoantibodies in encephalitis, have stimulated an entire field of clinical and experimental studies on disease mechanisms and immunological abnormalities. Also, these findings inspired the search for additional autoantibodies, which has been very successful to date and has not yet reached its peak. This Review summarizes this rapid development at a point in time where preclinical studies have started delivering fundamental new data for mechanistic understanding, where new technologies are being introduced into this field, and - most importantly - where the first specifically tailored immunotherapeutic approaches are emerging.
Collapse
Affiliation(s)
- Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany.
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
28
|
Abstract
Fluorescence imaging techniques play a pivotal role in our understanding of the nervous system. The emergence of various super-resolution microscopy methods and specialized fluorescent probes enables direct insight into neuronal structure and protein arrangements in cellular subcompartments with so far unmatched resolution. Super-resolving visualization techniques in neurons unveil a novel understanding of cytoskeletal composition, distribution, motility, and signaling of membrane proteins, subsynaptic structure and function, and neuron-glia interaction. Well-defined molecular targets in autoimmune and neurodegenerative disease models provide excellent starting points for in-depth investigation of disease pathophysiology using novel and innovative imaging methodology. Application of super-resolution microscopy in human brain samples and for testing clinical biomarkers is still in its infancy but opens new opportunities for translational research in neurology and neuroscience. In this review, we describe how super-resolving microscopy has improved our understanding of neuronal and brain function and dysfunction in the last two decades.
Collapse
Affiliation(s)
- Christian Werner
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
29
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 267] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
30
|
GluA3 autoantibodies induce alterations in dendritic spine and behavior in mice. Brain Behav Immun 2021; 97:89-101. [PMID: 34246733 DOI: 10.1016/j.bbi.2021.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/08/2021] [Accepted: 07/03/2021] [Indexed: 12/22/2022] Open
Abstract
Autoantibodies targeting the GluA3 subunit of AMPA receptors (AMPARs) have been found in patients with Rasmussen's encephalitis and different types of epilepsy and were associated with the presence of learning and attention deficits. Our group recently identified the presence of anti-GluA3 immunoglobulin G (IgG) in about 25% of patients with frontotemporal dementia (FTD), thus suggesting a novel pathogenetic role also in chronic neurodegenerative diseases. However, the in vivo behavioral, molecular and morphological effects induced these antibodies are still unexplored. We injected anti-GluA3 IgG purified from the serum of FTD patients, or control IgG, in mice by intracerebroventricular infusion. Biochemical analyses showed a reduction of synaptic levels of GluA3-containing AMPARs in the prefrontal cortex (PFC), and not in the hippocampus. Accordingly, animals injected with anti-GluA3 IgG showed significant changes in recognition memory and impairments in social behavior and in social cognitive functions. As visualized by confocal imaging, functional outcomes were paralleled by profound alterations of dendritic spine morphology in the PFC. All observed behavioral, molecular and morphological alterations were transient and not detected 10-14 days from anti-GluA3 IgG injection. Overall, our in vivo preclinical data provide novel insights into autoimmune encephalitis associated with anti-GluA3 IgG and indicate an additional pathological mechanism affecting the excitatory synapses in FTD patients carrying anti-GluA3 IgG that could contribute to clinical symptoms.
Collapse
|
31
|
Multimodal electrophysiological analyses reveal that reduced synaptic excitatory neurotransmission underlies seizures in a model of NMDAR antibody-mediated encephalitis. Commun Biol 2021; 4:1106. [PMID: 34545200 PMCID: PMC8452639 DOI: 10.1038/s42003-021-02635-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022] Open
Abstract
Seizures are a prominent feature in N-Methyl-D-Aspartate receptor antibody (NMDAR antibody) encephalitis, a distinct neuro-immunological disorder in which specific human autoantibodies bind and crosslink the surface of NMDAR proteins thereby causing internalization and a state of NMDAR hypofunction. To further understand ictogenesis in this disorder, and to test a potential treatment compound, we developed an NMDAR antibody mediated rat seizure model that displays spontaneous epileptiform activity in vivo and in vitro. Using a combination of electrophysiological and dynamic causal modelling techniques we show that, contrary to expectation, reduction of synaptic excitatory, but not inhibitory, neurotransmission underlies the ictal events through alterations in the dynamical behaviour of microcircuits in brain tissue. Moreover, in vitro application of a neurosteroid, pregnenolone sulphate, that upregulates NMDARs, reduced established ictal activity. This proof-of-concept study highlights the complexity of circuit disturbances that may lead to seizures and the potential use of receptor-specific treatments in antibody-mediated seizures and epilepsy.
Collapse
|
32
|
Henley JM, Nair JD, Seager R, Yucel BP, Woodhall G, Henley BS, Talandyte K, Needs HI, Wilkinson KA. Kainate and AMPA receptors in epilepsy: Cell biology, signalling pathways and possible crosstalk. Neuropharmacology 2021; 195:108569. [PMID: 33915142 DOI: 10.1016/j.neuropharm.2021.108569] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/13/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
Epilepsy is caused when rhythmic neuronal network activity escapes normal control mechanisms, resulting in seizures. There is an extensive and growing body of evidence that the onset and maintenance of epilepsy involves alterations in the trafficking, synaptic surface expression and signalling of kainate and AMPA receptors (KARs and AMPARs). The KAR subunit GluK2 and AMPAR subunit GluA2 are key determinants of the properties of their respective assembled receptors. Both subunits are subject to extensive protein interactions, RNA editing and post-translational modifications. In this review we focus on the cell biology of GluK2-containing KARs and GluA2-containing AMPARs and outline how their regulation and dysregulation is implicated in, and affected by, seizure activity. Further, we discuss role of KARs in regulating AMPAR surface expression and plasticity, and the relevance of this to epilepsy. This article is part of the special issue on 'Glutamate Receptors - Kainate receptors'.
Collapse
Affiliation(s)
- Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK; Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.
| | - Jithin D Nair
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Richard Seager
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Busra P Yucel
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Gavin Woodhall
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Benjamin S Henley
- Faculty of Medical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Karolina Talandyte
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Hope I Needs
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
33
|
Song Y, Chen S, Gao J, Lu J, Xu W, Lin X, Chen J. Case Report: Coexistence of Anti-AMPA Receptor Encephalitis and Positive Biomarkers of Alzheimer's Disease. Front Neurol 2021; 12:673347. [PMID: 34276536 PMCID: PMC8283122 DOI: 10.3389/fneur.2021.673347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Anti–α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor encephalitis is a rare autoimmune disease that is characterized by acute cognitive impairment, mental symptoms, and seizures. The high comorbidity rate between anti–AMPA receptor (AMPAR) encephalitis and other somatic diseases, such as malignancy, has revealed the possibility of potential copathogenesis. However, there have not yet been reports about anti-AMPAR encephalitis with concomitant cerebrospinal fluid (CSF) biomarkers consistent with Alzheimer disease (AD). Herein, we present the case of an elderly male patient with autoimmune encephalitis (AE) presenting with anti–AMPA1-R and anti–AMPA2-R antibodies, as well as CSF biomarkers of AD. The patient was hospitalized with acute memory decline for 1 week. Anti–AMPA1-R and anti–AMPA2-R antibodies were positively detected in CSF, and the anti–AMPA2-R antibody was also present in the serum. Additionally, the biomarkers of AD were concurrently present in CSF (Aβ1−42 = 245.70 pg/mL, t-Tau = 894.48 pg/mL, p-Tau = 78.66 pg/mL). After administering a combined treatment of intravenous immunoglobulin and glucocorticoids, the patient recovered significantly, and his cognitive function achieved a sustained remission during 2 months' follow-up. This case raises the awareness of a possible interaction between AE and changes of CSF biomarkers. We speculated that the existence of AMPAR antibodies can induce changes of CSF, and other pathological alterations. This present report highlights that a potential relationship exists among AE and provides a warning when making the diagnosis of AD.
Collapse
Affiliation(s)
- Yu Song
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ju Gao
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Lu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Landa J, Guasp M, Míguez-Cabello F, Guimarães J, Mishima T, Oda F, Zipp F, Krajinovic V, Fuhr P, Honnorat J, Titulaer M, Simabukuro M, Planagumà J, Martínez-Hernández E, Armangué T, Saiz A, Gasull X, Soto D, Graus F, Sabater L, Dalmau J. Encephalitis with Autoantibodies against the Glutamate Kainate Receptors GluK2. Ann Neurol 2021; 90:101-117. [PMID: 33949707 DOI: 10.1002/ana.26098] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The objective of this study was to report the identification of antibodies against the glutamate kainate receptor subunit 2 (GluK2-abs) in patients with autoimmune encephalitis, and describe the clinical-immunological features and antibody effects. METHODS Two sera from 8 patients with similar rat brain immunostaining were used to precipitate the antigen from neuronal cultures. A cell-based assay (CBA) with GluK2-expressing HEK293 cells was used to assess 596 patients with different neurological disorders, and 23 healthy controls. GluK2-ab effects were determined by confocal microscopy in cultured neurons and electrophysiology in GluK2-expressing HEK293 cells. RESULTS Patients' antibodies precipitated GluK2. GluK2 antibody-specificity was confirmed by CBA, immunoprecipitation, GluK2-immunoabsorption, and GluK2 knockout brain immunohistochemistry. In 2 of 8 samples, antibodies reacted with additional GluK2 epitopes present in GluK1 or GluK3; in both, the reactivity was abrogated after GluK2 immuno-absorption. Six of 8 patients developed acute encephalitis and clinical or magnetic resonance imaging (MRI) features of predominant cerebellar involvement (4 presenting as cerebellitis, which in 2 patients caused obstructive hydrocephalus), and 2 patients had other syndromes (1 with cerebellar symptoms). One of the samples showed mild reactivity with non-kainate receptors (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors [AMPAR] and N-methyl-D-aspartate receptors [NMDAR]) leading to identify 6 additional cases with GluK2-abs among patients with anti-AMPAR (5/71) or anti-NMDAR encephalitis (1/73). GluK2-abs internalized GluK2 in HEK293 cells and neurons; these antibody-effects were reversible in neurons. A significant reduction of GluK2-mediated currents was observed in cells treated with patients' GluK2 serum following the time frame of antibody-mediated GluK2 internalization. INTERPRETATION GluK2-abs associate with an encephalitis with prominent clinicoradiological cerebellar involvement. The antibody effects are predominantly mediated by internalization of GluK2. ANN NEUROL 2021;90:107-123.
Collapse
Affiliation(s)
- Jon Landa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mar Guasp
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Service of Neurology, Hospital Clinic, Barcelona, Spain
| | - Federico Míguez-Cabello
- Neurophysiology Laboratory, Department of Biomedicine, School of Medicine, Neuroscience Institute, University of Barcelona, Barcelona, Spain
| | - Joana Guimarães
- Neurology Department, Centro Hospitalar Universitário São João, Clinical Neurosciences and Mental Health Department, Faculty of Medicine, Porto, Portugal
| | | | - Fumiko Oda
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Frauke Zipp
- Neurology Department, Focus Program Translational Neurosciences (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Vladimir Krajinovic
- University Hospital for Infectious Diseases "Dr. Fran Mihaljevic", Zagreb, Croatia
| | - Peter Fuhr
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Jerome Honnorat
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Synatac Team, NeuroMyoGene Institute, INSERM U1217/CNRS UMR5310, University Claude Bernard, Villeurbanne, France
| | - Maarten Titulaer
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mateus Simabukuro
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Jesus Planagumà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Eugenia Martínez-Hernández
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Service of Neurology, Hospital Clinic, Barcelona, Spain
| | - Thais Armangué
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Neuroimmunology Unit, Neurology Service, Sant Joan de Déu Children's Hospital, University of Barcelona, Barcelona, Spain
| | - Albert Saiz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Service of Neurology, Hospital Clinic, Barcelona, Spain
| | - Xavier Gasull
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Neurophysiology Laboratory, Department of Biomedicine, School of Medicine, Neuroscience Institute, University of Barcelona, Barcelona, Spain
| | - David Soto
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Neurophysiology Laboratory, Department of Biomedicine, School of Medicine, Neuroscience Institute, University of Barcelona, Barcelona, Spain
| | - Francesc Graus
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Lidia Sabater
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Josep Dalmau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Service of Neurology, Hospital Clinic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
35
|
Zhang TY, Cai MT, Zheng Y, Lai QL, Shen CH, Qiao S, Zhang YX. Anti-Alpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor Encephalitis: A Review. Front Immunol 2021; 12:652820. [PMID: 34093540 PMCID: PMC8175895 DOI: 10.3389/fimmu.2021.652820] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/05/2021] [Indexed: 11/23/2022] Open
Abstract
Anti-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) encephalitis, a rare subtype of autoimmune encephalitis, was first reported by Lai et al. The AMPAR antibodies target against extracellular epitopes of the GluA1 or GluA2 subunits of the receptor. AMPARs are expressed throughout the central nervous system, especially in the hippocampus and other limbic regions. Anti-AMPAR encephalitis was more common in middle-aged women and most patients had an acute or subacute onset. Limbic encephalitis, a classic syndrome of anti-AMPAR encephalitis, was clinically characterized by a subacute disturbance of short-term memory loss, confusion, abnormal behavior and seizure. Magnetic resonance imaging often showed T2/fluid-attenuated inversion-recovery hyperintensities in the bilateral medial temporal lobe. For suspected patients, paired serum and cerebrospinal fluid (CSF) testing with cell-based assay were recommended. CSF specimen was preferred given its higher sensitivity. Most patients with anti-AMPAR encephalitis were complicated with tumors, such as thymoma, small cell lung cancer, breast cancer, and ovarian cancer. First-line treatments included high-dose steroids, intravenous immunoglobulin and plasma exchange. Second-line treatments, including rituximab and cyclophosphamide, can be initiated in patients who were non-reactive to first-line treatment. Most patients with anti-AMPAR encephalitis showed a partial neurologic response to immunotherapy.
Collapse
Affiliation(s)
- Tian-Yi Zhang
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Meng-Ting Cai
- Department of Neurology, Second Affiliated Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Yang Zheng
- Department of Neurology, Second Affiliated Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Qi-Lun Lai
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Chun-Hong Shen
- Department of Neurology, Second Affiliated Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Song Qiao
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Yin-Xi Zhang
- Department of Neurology, Second Affiliated Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Ricken G, Zrzavy T, Macher S, Altmann P, Troger J, Falk KK, Kiefer A, Fichtenbaum A, Mitulovic G, Kubista H, Wandinger KP, Rommer P, Bartsch T, Berger T, Weber J, Leypoldt F, Höftberger R. Autoimmune Global Amnesia as Manifestation of AMPAR Encephalitis and Neuropathologic Findings. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/4/e1019. [PMID: 34016735 PMCID: PMC8142837 DOI: 10.1212/nxi.0000000000001019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/23/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To report an unusual clinical phenotype of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) encephalitis and describe associated neuropathologic findings. METHODS We retrospectively investigated 3 AMPAR encephalitis patients with autoimmune global hippocampal amnesia using comprehensive cognitive and neuropsychologic assessment, antibody testing by in-house tissue-based and cell-based assays, and neuropathologic analysis of brain autopsy tissue including histology and immunohistochemistry. RESULTS Three patients presented with acute-to-subacute global amnesia without affection of cognitive performance, attention, concentration, or verbal function. None of the patients had epileptic seizures, change of behavior, personality changes, or psychiatric symptoms. The MRI was normal in 1 patient and showed increased fluid-attenuated inversion recovery/T2 signal in the hippocampus in the other 2 patients. Two patients showed complete remission after immunotherapy. The one patient who did not improve had an underlying adenocarcinoma of the lung and died 3.5 months after disease onset because of tumor progression. Neuropathologic analysis of the brain autopsy revealed unilateral hippocampal sclerosis accompanied by mild inflammatory infiltrates, predominantly composed of T lymphocytes, and decrease of AMPAR immunoreactivity. CONCLUSION AMPAR antibodies usually associate with limbic encephalitis but may also present with immune responsive, acute-to-subacute, isolated hippocampal dysfunction without overt inflammatory CSF or MRI changes.
Collapse
Affiliation(s)
- Gerda Ricken
- From the Division of Neuropathology and Neurochemistry (G.R., A.F., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z., S.M., P.A., P.R., T. Berger), Medical University of Vienna, Austria; Department of Neurology (J.T., J.W.), Klinikum Klagenfurt, Austria; Institute of Clinical Chemistry (K.K.F., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck, Germany; Institute of Pathology (A.K.), Klinikum Klagenfurt, Austria; Clinical Department of Laboratory Medicine (A.F., G.M.), Proteomics Core Facility, Medical University Vienna, Austria; Center of Physiology and Pharmacology (H.K.), Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria; and Department of Neurology (T. Bartsch, F.L.), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Tobias Zrzavy
- From the Division of Neuropathology and Neurochemistry (G.R., A.F., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z., S.M., P.A., P.R., T. Berger), Medical University of Vienna, Austria; Department of Neurology (J.T., J.W.), Klinikum Klagenfurt, Austria; Institute of Clinical Chemistry (K.K.F., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck, Germany; Institute of Pathology (A.K.), Klinikum Klagenfurt, Austria; Clinical Department of Laboratory Medicine (A.F., G.M.), Proteomics Core Facility, Medical University Vienna, Austria; Center of Physiology and Pharmacology (H.K.), Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria; and Department of Neurology (T. Bartsch, F.L.), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Stefan Macher
- From the Division of Neuropathology and Neurochemistry (G.R., A.F., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z., S.M., P.A., P.R., T. Berger), Medical University of Vienna, Austria; Department of Neurology (J.T., J.W.), Klinikum Klagenfurt, Austria; Institute of Clinical Chemistry (K.K.F., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck, Germany; Institute of Pathology (A.K.), Klinikum Klagenfurt, Austria; Clinical Department of Laboratory Medicine (A.F., G.M.), Proteomics Core Facility, Medical University Vienna, Austria; Center of Physiology and Pharmacology (H.K.), Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria; and Department of Neurology (T. Bartsch, F.L.), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Patrick Altmann
- From the Division of Neuropathology and Neurochemistry (G.R., A.F., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z., S.M., P.A., P.R., T. Berger), Medical University of Vienna, Austria; Department of Neurology (J.T., J.W.), Klinikum Klagenfurt, Austria; Institute of Clinical Chemistry (K.K.F., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck, Germany; Institute of Pathology (A.K.), Klinikum Klagenfurt, Austria; Clinical Department of Laboratory Medicine (A.F., G.M.), Proteomics Core Facility, Medical University Vienna, Austria; Center of Physiology and Pharmacology (H.K.), Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria; and Department of Neurology (T. Bartsch, F.L.), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Johannes Troger
- From the Division of Neuropathology and Neurochemistry (G.R., A.F., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z., S.M., P.A., P.R., T. Berger), Medical University of Vienna, Austria; Department of Neurology (J.T., J.W.), Klinikum Klagenfurt, Austria; Institute of Clinical Chemistry (K.K.F., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck, Germany; Institute of Pathology (A.K.), Klinikum Klagenfurt, Austria; Clinical Department of Laboratory Medicine (A.F., G.M.), Proteomics Core Facility, Medical University Vienna, Austria; Center of Physiology and Pharmacology (H.K.), Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria; and Department of Neurology (T. Bartsch, F.L.), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Kim Kristin Falk
- From the Division of Neuropathology and Neurochemistry (G.R., A.F., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z., S.M., P.A., P.R., T. Berger), Medical University of Vienna, Austria; Department of Neurology (J.T., J.W.), Klinikum Klagenfurt, Austria; Institute of Clinical Chemistry (K.K.F., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck, Germany; Institute of Pathology (A.K.), Klinikum Klagenfurt, Austria; Clinical Department of Laboratory Medicine (A.F., G.M.), Proteomics Core Facility, Medical University Vienna, Austria; Center of Physiology and Pharmacology (H.K.), Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria; and Department of Neurology (T. Bartsch, F.L.), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andreas Kiefer
- From the Division of Neuropathology and Neurochemistry (G.R., A.F., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z., S.M., P.A., P.R., T. Berger), Medical University of Vienna, Austria; Department of Neurology (J.T., J.W.), Klinikum Klagenfurt, Austria; Institute of Clinical Chemistry (K.K.F., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck, Germany; Institute of Pathology (A.K.), Klinikum Klagenfurt, Austria; Clinical Department of Laboratory Medicine (A.F., G.M.), Proteomics Core Facility, Medical University Vienna, Austria; Center of Physiology and Pharmacology (H.K.), Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria; and Department of Neurology (T. Bartsch, F.L.), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andreas Fichtenbaum
- From the Division of Neuropathology and Neurochemistry (G.R., A.F., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z., S.M., P.A., P.R., T. Berger), Medical University of Vienna, Austria; Department of Neurology (J.T., J.W.), Klinikum Klagenfurt, Austria; Institute of Clinical Chemistry (K.K.F., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck, Germany; Institute of Pathology (A.K.), Klinikum Klagenfurt, Austria; Clinical Department of Laboratory Medicine (A.F., G.M.), Proteomics Core Facility, Medical University Vienna, Austria; Center of Physiology and Pharmacology (H.K.), Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria; and Department of Neurology (T. Bartsch, F.L.), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Goran Mitulovic
- From the Division of Neuropathology and Neurochemistry (G.R., A.F., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z., S.M., P.A., P.R., T. Berger), Medical University of Vienna, Austria; Department of Neurology (J.T., J.W.), Klinikum Klagenfurt, Austria; Institute of Clinical Chemistry (K.K.F., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck, Germany; Institute of Pathology (A.K.), Klinikum Klagenfurt, Austria; Clinical Department of Laboratory Medicine (A.F., G.M.), Proteomics Core Facility, Medical University Vienna, Austria; Center of Physiology and Pharmacology (H.K.), Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria; and Department of Neurology (T. Bartsch, F.L.), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Helmut Kubista
- From the Division of Neuropathology and Neurochemistry (G.R., A.F., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z., S.M., P.A., P.R., T. Berger), Medical University of Vienna, Austria; Department of Neurology (J.T., J.W.), Klinikum Klagenfurt, Austria; Institute of Clinical Chemistry (K.K.F., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck, Germany; Institute of Pathology (A.K.), Klinikum Klagenfurt, Austria; Clinical Department of Laboratory Medicine (A.F., G.M.), Proteomics Core Facility, Medical University Vienna, Austria; Center of Physiology and Pharmacology (H.K.), Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria; and Department of Neurology (T. Bartsch, F.L.), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Klaus-Peter Wandinger
- From the Division of Neuropathology and Neurochemistry (G.R., A.F., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z., S.M., P.A., P.R., T. Berger), Medical University of Vienna, Austria; Department of Neurology (J.T., J.W.), Klinikum Klagenfurt, Austria; Institute of Clinical Chemistry (K.K.F., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck, Germany; Institute of Pathology (A.K.), Klinikum Klagenfurt, Austria; Clinical Department of Laboratory Medicine (A.F., G.M.), Proteomics Core Facility, Medical University Vienna, Austria; Center of Physiology and Pharmacology (H.K.), Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria; and Department of Neurology (T. Bartsch, F.L.), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Paulus Rommer
- From the Division of Neuropathology and Neurochemistry (G.R., A.F., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z., S.M., P.A., P.R., T. Berger), Medical University of Vienna, Austria; Department of Neurology (J.T., J.W.), Klinikum Klagenfurt, Austria; Institute of Clinical Chemistry (K.K.F., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck, Germany; Institute of Pathology (A.K.), Klinikum Klagenfurt, Austria; Clinical Department of Laboratory Medicine (A.F., G.M.), Proteomics Core Facility, Medical University Vienna, Austria; Center of Physiology and Pharmacology (H.K.), Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria; and Department of Neurology (T. Bartsch, F.L.), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thorsten Bartsch
- From the Division of Neuropathology and Neurochemistry (G.R., A.F., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z., S.M., P.A., P.R., T. Berger), Medical University of Vienna, Austria; Department of Neurology (J.T., J.W.), Klinikum Klagenfurt, Austria; Institute of Clinical Chemistry (K.K.F., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck, Germany; Institute of Pathology (A.K.), Klinikum Klagenfurt, Austria; Clinical Department of Laboratory Medicine (A.F., G.M.), Proteomics Core Facility, Medical University Vienna, Austria; Center of Physiology and Pharmacology (H.K.), Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria; and Department of Neurology (T. Bartsch, F.L.), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas Berger
- From the Division of Neuropathology and Neurochemistry (G.R., A.F., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z., S.M., P.A., P.R., T. Berger), Medical University of Vienna, Austria; Department of Neurology (J.T., J.W.), Klinikum Klagenfurt, Austria; Institute of Clinical Chemistry (K.K.F., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck, Germany; Institute of Pathology (A.K.), Klinikum Klagenfurt, Austria; Clinical Department of Laboratory Medicine (A.F., G.M.), Proteomics Core Facility, Medical University Vienna, Austria; Center of Physiology and Pharmacology (H.K.), Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria; and Department of Neurology (T. Bartsch, F.L.), University Hospital Schleswig-Holstein, Kiel, Germany.
| | - Jörg Weber
- From the Division of Neuropathology and Neurochemistry (G.R., A.F., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z., S.M., P.A., P.R., T. Berger), Medical University of Vienna, Austria; Department of Neurology (J.T., J.W.), Klinikum Klagenfurt, Austria; Institute of Clinical Chemistry (K.K.F., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck, Germany; Institute of Pathology (A.K.), Klinikum Klagenfurt, Austria; Clinical Department of Laboratory Medicine (A.F., G.M.), Proteomics Core Facility, Medical University Vienna, Austria; Center of Physiology and Pharmacology (H.K.), Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria; and Department of Neurology (T. Bartsch, F.L.), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Frank Leypoldt
- From the Division of Neuropathology and Neurochemistry (G.R., A.F., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z., S.M., P.A., P.R., T. Berger), Medical University of Vienna, Austria; Department of Neurology (J.T., J.W.), Klinikum Klagenfurt, Austria; Institute of Clinical Chemistry (K.K.F., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck, Germany; Institute of Pathology (A.K.), Klinikum Klagenfurt, Austria; Clinical Department of Laboratory Medicine (A.F., G.M.), Proteomics Core Facility, Medical University Vienna, Austria; Center of Physiology and Pharmacology (H.K.), Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria; and Department of Neurology (T. Bartsch, F.L.), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Romana Höftberger
- From the Division of Neuropathology and Neurochemistry (G.R., A.F., R.H.), Department of Neurology, Medical University of Vienna, Austria; Department of Neurology (T.Z., S.M., P.A., P.R., T. Berger), Medical University of Vienna, Austria; Department of Neurology (J.T., J.W.), Klinikum Klagenfurt, Austria; Institute of Clinical Chemistry (K.K.F., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck, Germany; Institute of Pathology (A.K.), Klinikum Klagenfurt, Austria; Clinical Department of Laboratory Medicine (A.F., G.M.), Proteomics Core Facility, Medical University Vienna, Austria; Center of Physiology and Pharmacology (H.K.), Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria; and Department of Neurology (T. Bartsch, F.L.), University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
37
|
Wang K, Shi Y, Du Q, Zhang RR, Wu H, Qiao S, Liu X. Clinical Review and Prognostic Analysis of α-Amino-3-Hydroxy-5-Methyl-4-Isoxazole Propionate Receptor-Associated Encephalitis. Front Neurol 2021; 12:665229. [PMID: 34054708 PMCID: PMC8155358 DOI: 10.3389/fneur.2021.665229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/09/2021] [Indexed: 01/15/2023] Open
Abstract
Purpose: Autoimmune encephalitis (AE) is a heterogeneous neurological autoimmune disorder associated with cognitive and psychiatric symptoms. It can be divided into several subtypes based on autoantibodies. Anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor encephalitis (AMPAR-E) is one of the recently discovered AE subtypes, usually manifesting limbic encephalitis and with a good prognosis. Considering AMPAR-E has been described for the first time, only a few cases with similar antibodies have been reported clinically. We aimed to clarify the clinical course and prognosis of the disease in the light of previous reports. Patients and Methods: We collected data on the diagnosis and treatment of six cases of AMPAR-E, diagnosed at the Qilu Hospital of Shandong University in the past 5 years. We retrospectively analyzed the clinical characteristics of the patients and performed a follow-up of the disease. Results: The patients often presented with limbic encephalitis, which sometimes coexisted with tumors. In addition, immunotherapy had a significant effect on the disease. The clinical outcome was related to factors such as the age of onset, timing of treatment, and presence of tumors. Conclusion: In conclusion, specific antibody tests should be performed as early as possible in suspected cases. Clinicians should actively administer immunotherapy and the management of the co-tumor. In addition, repeat antibody tests and image examinations following discharge from the hospital guide the maintenance protocol of immunotherapy.
Collapse
Affiliation(s)
- Kemo Wang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanting Shi
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qianwen Du
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ran-Ran Zhang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huaikuan Wu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Shan Qiao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xuewu Liu
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Epilepsy, Shandong University, Jinan, China
| |
Collapse
|
38
|
Ryding M, Gamre M, Nissen MS, Nilsson AC, Okarmus J, Poulsen AAE, Meyer M, Blaabjerg M. Neurodegeneration Induced by Anti-IgLON5 Antibodies Studied in Induced Pluripotent Stem Cell-Derived Human Neurons. Cells 2021; 10:cells10040837. [PMID: 33917676 PMCID: PMC8068068 DOI: 10.3390/cells10040837] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Anti-IgLON5 disease is a progressive neurological disorder associated with autoantibodies against a neuronal cell adhesion molecule, IgLON5. In human postmortem brain tissue, the neurodegeneration and accumulation of hyperphosphorylated tau (p-tau) are found. Whether IgLON5 antibodies induce neurodegeneration or neurodegeneration provokes an immune response causing inflammation and antibody formation remains to be elucidated. We investigated the effects of anti-IgLON5 antibodies on human neurons. Human neural stem cells were differentiated for 14–48 days and exposed from Days 9 to 14 (short-term) or Days 13 to 48 (long-term) to either (i) IgG from a patient with confirmed anti-IgLON5 antibodies or (ii) IgG from healthy controls. The electrical activity of neurons was quantified using multielectrode array assays. Cultures were immunostained for β-tubulin III and p-tau and counterstained with 4′,6-Diamidine-2′-phenylindole dihydrochloride (DAPI). To study the impact on synapses, cultures were also immunostained for the synaptic proteins postsynaptic density protein 95 (PSD95) and synaptophysin. A lactate dehydrogenase release assay and nuclei morphology analysis were used to assess cell viability. Cultures exposed to anti-IgLON5 antibodies showed reduced neuronal spike rate and synaptic protein content, and the proportion of neurons with degenerative appearance including p-tau (T205)-positive neurons was higher when compared to cultures exposed to control IgG. In addition, cell death was increased in cultures exposed to anti-IgLON5 IgG for 21 days. In conclusion, pathological anti-IgLON5 antibodies induce neurodegenerative changes and cell death in human neurons. This supports the hypothesis that autoantibodies may induce the neurodegenerative changes found in patients with anti-IgLON5-mediated disease. Furthermore, this study highlights the potential use of stem cell-based in vitro models for investigations of antibody-mediated diseases. As anti-IgLON5 disease is heterogeneous, more studies with different IgLON5 antibody samples tested on human neurons are needed.
Collapse
Affiliation(s)
- Matias Ryding
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.R.); (M.G.); (J.O.); (M.M.)
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark; (M.S.N.); (A.A.E.P.)
| | - Mattias Gamre
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.R.); (M.G.); (J.O.); (M.M.)
| | - Mette S. Nissen
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark; (M.S.N.); (A.A.E.P.)
- Department of Clinical Research, Odense University Hospital, 5000 Odense, Denmark
| | - Anna C. Nilsson
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark;
| | - Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.R.); (M.G.); (J.O.); (M.M.)
| | - Anne A. E. Poulsen
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark; (M.S.N.); (A.A.E.P.)
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.R.); (M.G.); (J.O.); (M.M.)
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark; (M.S.N.); (A.A.E.P.)
- Department of Clinical Research, Odense University Hospital, 5000 Odense, Denmark
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Morten Blaabjerg
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.R.); (M.G.); (J.O.); (M.M.)
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark; (M.S.N.); (A.A.E.P.)
- Department of Clinical Research, Odense University Hospital, 5000 Odense, Denmark
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Correspondence: ; Tel.: +45-2068-3863
| |
Collapse
|
39
|
Cisani F, Olivero G, Usai C, Van Camp G, Maccari S, Morley-Fletcher S, Pittaluga AM. Antibodies Against the NH 2-Terminus of the GluA Subunits Affect the AMPA-Evoked Releasing Activity: The Role of Complement. Front Immunol 2021; 12:586521. [PMID: 33717067 PMCID: PMC7952438 DOI: 10.3389/fimmu.2021.586521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/15/2021] [Indexed: 01/31/2023] Open
Abstract
Antibodies recognizing the amino-terminal domain of receptor subunit proteins modify the receptor efficiency to controlling transmitter release in isolated nerve endings (e.g., synaptosomes) indirectly confirming their presence in these particles but also allowing to speculate on their subunit composition. Western blot analysis and confocal microscopy unveiled the presence of the GluA1, GluA2, GluA3, and GluA4 receptor subunits in cortical synaptosomes. Functional studies confirmed the presence of presynaptic release-regulating AMPA autoreceptors in these terminals, whose activation releases [3H]D-aspartate ([3H]D-Asp, here used as a marker of glutamate) in a NBQX-dependent manner. The AMPA autoreceptors traffic in a constitutive manner, since entrapping synaptosomes with the pep2-SVKI peptide (which interferes with the GluA2-GRIP1/PICK1 interaction) amplified the AMPA-evoked releasing activity, while the inactive pep2-SVKE peptide was devoid of activity. Incubation of synaptosomes with antibodies recognizing the NH2 terminus of the GluA2 and the GluA3 subunits increased, although to a different extent, the GluA2 and 3 densities in synaptosomal membranes, also amplifying the AMPA-evoked glutamate release in a NBQX-dependent fashion. We then analyzed the releasing activity of complement (1:300) from both treated and untreated synaptosomes and found that the complement-induced overflow occurred in a DL-t-BOA-sensitive, NBQX-insensitive fashion. We hypothesized that anti-GluA/GluA complexes in neuronal membranes could trigger the classic pathway of activation of the complement, modifying its releasing activity. Accordingly, the complement-evoked release of [3H]D-Asp from antiGluA2 and anti-GluA3 antibody treated synaptosomes was significantly increased when compared to untreated terminals and facilitation was prevented by omitting the C1q component of the immunocomplex. Antibodies recognizing the NH2 terminus of the GluA1 or the GluA4 subunits failed to affect both the AMPA and the complement-evoked tritium overflow. Our results suggest the presence of GluA2/GluA3-containing release-regulating AMPA autoreceptors in cortical synaptosomes. Incubation of synaptosomes with commercial anti-GluA2 or anti-GluA3 antibodies amplifies the AMPA-evoked exocytosis of glutamate through a complement-independent pathway, involving an excessive insertion of AMPA autoreceptors in plasma membranes but also affects the complement-dependent releasing activity, by promoting the classic pathway of activation of the immunocomplex. Both events could be relevant to the development of autoimmune diseases typified by an overproduction of anti-GluA subunits.
Collapse
Affiliation(s)
- Francesca Cisani
- Pharmacology and Toxicology Section, Department of Pharmacy, DIFAR, Genoa, Italy
| | - Guendalina Olivero
- Pharmacology and Toxicology Section, Department of Pharmacy, DIFAR, Genoa, Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council, Genoa, Italy
| | - Gilles Van Camp
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- International Associated Laboratory (LIA), “Prenatal Stress and Neurodegenerative Diseases”, University of Lille – CNRS, UGSF UMR 8576/Sapienza University of Rome and IRCCS Neuromed, Lille, France
| | - Stefania Maccari
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- International Associated Laboratory (LIA), “Prenatal Stress and Neurodegenerative Diseases”, University of Lille – CNRS, UGSF UMR 8576/Sapienza University of Rome and IRCCS Neuromed, Lille, France
- Department of Science and Medical - Surgical Biotechnology, University Sapienza of Rome, Rome, Italy
| | - Sara Morley-Fletcher
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- International Associated Laboratory (LIA), “Prenatal Stress and Neurodegenerative Diseases”, University of Lille – CNRS, UGSF UMR 8576/Sapienza University of Rome and IRCCS Neuromed, Lille, France
| | - Anna Maria Pittaluga
- Pharmacology and Toxicology Section, Department of Pharmacy, DIFAR, Genoa, Italy
- IRCCS San Martino Hospital, Genova, Italy
| |
Collapse
|
40
|
NMDA and AMPA Receptor Autoantibodies in Brain Disorders: From Molecular Mechanisms to Clinical Features. Cells 2021; 10:cells10010077. [PMID: 33466431 PMCID: PMC7824909 DOI: 10.3390/cells10010077] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
The role of autoimmunity in central nervous system (CNS) disorders is rapidly expanding. In the last twenty years, different types of autoantibodies targeting subunits of ionotropic glutamate receptors have been found in a variety of patients affected by brain disorders. Several of these antibodies are directed against NMDA receptors (NMDAR), mostly in autoimmune encephalitis, whereas a growing field of research has identified antibodies against AMPA receptor (AMPAR) subunits in patients with different types of epilepsy or frontotemporal dementia. Several in vitro and in vivo studies performed in the last decade have dramatically improved our understanding of the molecular and functional effects induced by both NMDAR and AMPAR autoantibodies at the excitatory glutamatergic synapse and, consequently, their possible role in the onset of clinical symptoms. In particular, the method by which autoantibodies can modulate the localization at synapses of specific target subunits leading to functional impairments and behavioral alterations has been well addressed in animal studies. Overall, these preclinical studies have opened new avenues for the development of novel pharmacological treatments specifically targeting the synaptic activation of ionotropic glutamate receptors.
Collapse
|
41
|
Kao YC, Lin MI, Weng WC, Lee WT. Neuropsychiatric Disorders Due to Limbic Encephalitis: Immunologic Aspect. Int J Mol Sci 2020; 22:ijms22010389. [PMID: 33396564 PMCID: PMC7795533 DOI: 10.3390/ijms22010389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022] Open
Abstract
Limbic encephalitis (LE) is a rare cause of encephalitis presenting as an acute and subacute onset of neuropsychiatric manifestations, particularly with memory deficits and confusion as core features, along with seizure occurrence, movement disorders, or autonomic dysfunctions. LE is caused by neuronal antibodies targeting the cellular surface, synaptic, and intracellular antigens, which alter the synaptic transmission, especially in the limbic area. Immunologic mechanisms involve antibodies, complements, or T-cell-mediated immune responses in different degree according to different autoantibodies. Sensitive cerebrospinal fluid markers of LE are unavailable, and radiographic findings may not reveal a typical mesiotemporal involvement at neurologic presentations; therefore, a high clinical index of suspicions is pivotal, and a neuronal antibody testing is necessary to make early diagnosis. Some patients have concomitant tumors, causing paraneoplastic LE; therefore, tumor survey and treatment are required in addition to immunotherapy. In this study, a review on the molecular and immunologic aspects of LE was conducted to gain awareness of its peculiarity, which we found quite different from our knowledge on traditional psychiatric illness.
Collapse
Affiliation(s)
- Yu-Chia Kao
- Department of Pediatrics, E-Da Hospital, Kaohsiung 82445, Taiwan;
| | - Ming-I Lin
- Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan;
| | - Wen-Chin Weng
- Department of Pediatrics, National Taiwan University Hospital, Taipei 100226, Taiwan;
- Department of Pediatrics, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| | - Wang-Tso Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei 100226, Taiwan;
- Department of Pediatrics, National Taiwan University College of Medicine, Taipei 100233, Taiwan
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei 100233, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 71545); Fax: +886-2-23147450
| |
Collapse
|
42
|
Diagnostic Value of Structural and Functional Neuroimaging in Autoimmune Epilepsy. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:8894213. [PMID: 33380947 PMCID: PMC7752299 DOI: 10.1155/2020/8894213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/14/2020] [Accepted: 12/02/2020] [Indexed: 01/15/2023]
Abstract
Epilepsy is a common nervous system disease, which affects about 70 million people all over the world. In 2017, the International League Against Epilepsy (ILAE) considered immune factors as its independent cause, and the concept of autoimmune epilepsy (AE) was widely accepted. Early diagnosis and timely treatment can effectively improve the prognosis of the disease. However, due to the diversity of clinical manifestations, the expensive cost of autoantibody detection, and the increased prevalence in Western China, the difficulty for clinicians in early diagnosis and treatment has increased. Fortunately, convenient and fast imaging examinations are expected to help even more. The imaging manifestations of AE patients were characteristic, especially the combined application of structural and functional neuroimaging, which improved the diagnostic value of imaging. In this paper, several common autoantibodies associated with AE and their structure and function changes in neuroimaging were reviewed to provide help for neurologists to achieve the goal of precision medicine.
Collapse
|
43
|
Sleep disorders in autoimmune encephalitis. Lancet Neurol 2020; 19:1010-1022. [PMID: 33212053 DOI: 10.1016/s1474-4422(20)30341-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022]
Abstract
Sleep disorders in people with autoimmune encephalitis have received little attention, probably overshadowed by the presence of other neurological and psychiatric symptoms in this group of conditions. However, sleep disorders are frequent, often severe, and usually persist beyond the acute disease stage, interfering with patients' recovery and quality of life. Because autoimmune encephalitis can affect any brain network involved in sleep initiation and regulation, all types of sleep disorders can occur, with varying distinct associations, frequency, and intensity. Anti-IgLON5 and anti-NMDA receptor encephalitis exemplify two diseases in which sleep disorders are prominent. In anti-IgLON5 disease, sleep disorders were the core symptoms that led to the description of this disease, whereas in anti-NMDA receptor encephalitis, sleep disorders vary according to the disease stage along with other neuropsychiatric symptoms. Comprehensive, systematic, multicentre studies are needed to characterise sleep disorders and their mechanisms in autoimmune encephalitis.
Collapse
|
44
|
Gibson LL, McKeever A, Coutinho E, Finke C, Pollak TA. Cognitive impact of neuronal antibodies: encephalitis and beyond. Transl Psychiatry 2020; 10:304. [PMID: 32873782 PMCID: PMC7463161 DOI: 10.1038/s41398-020-00989-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/22/2022] Open
Abstract
Cognitive dysfunction is a common feature of autoimmune encephalitis. Pathogenic neuronal surface antibodies are thought to mediate distinct profiles of cognitive impairment in both the acute and chronic phases of encephalitis. In this review, we describe the cognitive impairment associated with each antibody-mediated syndrome and, using evidence from imaging and animal studies, examine how the nature of the impairment relates to the underlying neuroimmunological and receptor-based mechanisms. Neuronal surface antibodies, particularly serum NMDA receptor antibodies, are also found outside of encephalitis although the clinical significance of this has yet to be fully determined. We discuss evidence highlighting their prevalence, and association with cognitive outcomes, in a number of common disorders including cancer and schizophrenia. We consider mechanisms, including blood-brain barrier dysfunction, which could determine the impact of these antibodies outside encephalitis and account for much of the clinical heterogeneity observed.
Collapse
Affiliation(s)
- L. L. Gibson
- grid.13097.3c0000 0001 2322 6764Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - A. McKeever
- grid.5335.00000000121885934University of Cambridge, Cambridge, UK
| | - E. Coutinho
- grid.13097.3c0000 0001 2322 6764Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,grid.13097.3c0000 0001 2322 6764MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - C. Finke
- grid.6363.00000 0001 2218 4662Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany ,grid.7468.d0000 0001 2248 7639Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - T. A. Pollak
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
45
|
Campelo T, Augusto E, Chenouard N, de Miranda A, Kouskoff V, Camus C, Choquet D, Gambino F. AMPAR-Dependent Synaptic Plasticity Initiates Cortical Remapping and Adaptive Behaviors during Sensory Experience. Cell Rep 2020; 32:108097. [PMID: 32877679 PMCID: PMC7487777 DOI: 10.1016/j.celrep.2020.108097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 11/28/2022] Open
Abstract
Cortical plasticity improves behaviors and helps recover lost functions after injury. However, the underlying synaptic mechanisms remain unclear. In mice, we show that trimming all but one whisker enhances sensory responses from the spared whisker in the barrel cortex and occludes whisker-mediated synaptic potentiation (w-Pot) in vivo. In addition, whisker-dependent behaviors that are initially impaired by single-whisker experience (SWE) rapidly recover when associated cortical regions remap. Cross-linking the surface GluA2 subunit of AMPA receptors (AMPARs) suppresses the expression of w-Pot, presumably by blocking AMPAR surface diffusion, in mice with all whiskers intact, indicating that synaptic potentiation in vivo requires AMPAR trafficking. We use this approach to demonstrate that w-Pot is required for SWE-mediated strengthening of synaptic inputs and initiates the recovery of previously learned skills during the early phases of SWE. Taken together, our data reveal that w-Pot mediates cortical remapping and behavioral improvement upon partial sensory deafferentation.
Collapse
Affiliation(s)
- Tiago Campelo
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Elisabete Augusto
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Nicolas Chenouard
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Aron de Miranda
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Vladimir Kouskoff
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Come Camus
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France; University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, 33000 Bordeaux, France.
| | - Frédéric Gambino
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
46
|
Neuroimmunological antibody-mediated encephalitis and implications for diagnosis and therapy in neuropsychiatry. Acta Neuropsychiatr 2020; 32:177-185. [PMID: 31791436 DOI: 10.1017/neu.2019.50] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The past decade has seen a surge of reports and investigations into cases of autoimmune-mediated encephalitis. The increasing recognition of these disorders is especially of relevance to the fields of neurology and psychiatry. Autoimmune encephalitis involves antibodies against synaptic receptors, neuronal cell surface proteins and intracellular targets. These disorders feature prominent symptoms of cognitive impairment and behavioural changes, often associated with the presence of seizures. Early in the clinical course, autoimmune encephalitis may manifest as psychiatric symptoms of psychosis and involve psychiatry as an initial point of contact. Although commonly associated with malignancy, these disorders can present in the absence of an inciting neoplasm. The identification of autoimmune encephalitis is of clinical importance as a large proportion of individuals experience a response to immunotherapy. This review focuses on the current state of knowledge on n-methyl-d-aspartate (NMDA) receptor-associated encephalitis and limbic encephalitis, the latter predominantly involving antibodies against the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, the γ-aminobutyric acid (GABA)B receptor and leucine-rich glioma-inactivated 1 (LGI1) protein. In addition, we briefly describe anti-dopamine D2 receptor encephalitis. A summary of the literature will focus on common clinical presentations and course, diagnostic approaches and response to treatment. Since a substantial proportion of patients with autoimmune encephalitis exhibit symptoms of psychosis, the relevance of this disorder to theories of psychosis and schizophrenia will also be discussed.
Collapse
|
47
|
Crisp SJ, Dixon CL, Jacobson L, Chabrol E, Irani SR, Leite MI, Leschziner G, Slaght SJ, Vincent A, Kullmann DM. Glycine receptor autoantibodies disrupt inhibitory neurotransmission. Brain 2020; 142:3398-3410. [PMID: 31591639 PMCID: PMC6821286 DOI: 10.1093/brain/awz297] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Chloride-permeable glycine receptors have an important role in fast inhibitory neurotransmission in the spinal cord and brainstem. Human immunoglobulin G (IgG) autoantibodies to glycine receptors are found in a substantial proportion of patients with progressive encephalomyelitis with rigidity and myoclonus, and less frequently in other variants of stiff person syndrome. Demonstrating a pathogenic role of glycine receptor autoantibodies would help justify the use of immunomodulatory therapies and provide insight into the mechanisms involved. Here, purified IgGs from four patients with progressive encephalomyelitis with rigidity and myoclonus or stiff person syndrome, and glycine receptor autoantibodies, were observed to disrupt profoundly glycinergic neurotransmission. In whole-cell patch clamp recordings from cultured rat spinal motor neurons, glycinergic synaptic currents were almost completely abolished following incubation in patient IgGs. Most human autoantibodies targeting other CNS neurotransmitter receptors, such as N-methyl-d-aspartate (NMDA) receptors, affect whole cell currents only after several hours incubation and this effect has been shown to be the result of antibody-mediated crosslinking and internalization of receptors. By contrast, we observed substantial reductions in glycinergic currents with all four patient IgG preparations with 15 min of exposure to patient IgGs. Moreover, monovalent Fab fragments generated from the purified IgG of three of four patients also profoundly reduced glycinergic currents compared with control Fab-IgG. We conclude that human glycine receptor autoantibodies disrupt glycinergic neurotransmission, and also suggest that the pathogenic mechanisms include direct antagonistic actions on glycine receptors.
Collapse
Affiliation(s)
- Sarah J Crisp
- UCL Institute of Neurology, University College London, London, UK
| | | | - Leslie Jacobson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Elodie Chabrol
- UCL Institute of Neurology, University College London, London, UK
| | - Sarosh R Irani
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - M Isabel Leite
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Guy Leschziner
- Department of Neurology, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Department of Clinical Neuroscience, King's College London, London, UK
| | - Sean J Slaght
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Angela Vincent
- UCL Institute of Neurology, University College London, London, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
48
|
Wright SK, Wilson MA, Walsh R, Lo WB, Mundil N, Agrawal S, Philip S, Seri S, Greenhill SD, Woodhall GL. Abolishing spontaneous epileptiform activity in human brain tissue through AMPA receptor inhibition. Ann Clin Transl Neurol 2020; 7:883-890. [PMID: 32426918 PMCID: PMC7318092 DOI: 10.1002/acn3.51030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 11/20/2022] Open
Abstract
Objective The amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) is increasingly recognized as a therapeutic target in drug‐refractory pediatric epilepsy. Perampanel (PER) is a non‐competitive AMPAR antagonist, and pre‐clinical studies have shown the AMPAR‐mediated anticonvulsant effects of decanoic acid (DEC), a major medium‐chain fatty acid provided in the medium‐chain triglyceride ketogenic diet. Methods Using brain tissue resected from children with intractable epilepsy, we recorded the effects of PER and DEC in vitro. Results We found resected pediatric epilepsy tissue exhibits spontaneous epileptic activity in vitro, and showed that DEC and PER inhibit this epileptiform activity in local field potential recordings as well as excitatory synaptic transmission. Interpretation This study confirms AMPAR antagonists inhibit epileptiform discharges in brain tissue resected in a wide range of pediatric epilepsies.
Collapse
Affiliation(s)
- Sukhvir K Wright
- Aston Neuroscience Institute, School of Life and Health Sciences, Aston University, Birmingham, UK.,Department of Paediatric Neurology, The Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Max A Wilson
- Aston Neuroscience Institute, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Richard Walsh
- Department of Paediatric Neurosurgery, The Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - William B Lo
- Department of Paediatric Neurosurgery, The Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Nilesh Mundil
- Department of Paediatric Neurosurgery, The Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Shakti Agrawal
- Department of Paediatric Neurology, The Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Sunny Philip
- Department of Paediatric Neurology, The Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Stefano Seri
- Aston Neuroscience Institute, School of Life and Health Sciences, Aston University, Birmingham, UK.,Department of Clinical Neurophysiology, The Birmingham Women's and Children's Hospital, NHS Foundation Trust, Birmingham, UK
| | - Stuart D Greenhill
- Aston Neuroscience Institute, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Gavin L Woodhall
- Aston Neuroscience Institute, School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
49
|
Wesselingh R, Butzkueven H, Buzzard K, Tarlinton D, O'Brien TJ, Monif M. Seizures in autoimmune encephalitis: Kindling the fire. Epilepsia 2020; 61:1033-1044. [DOI: 10.1111/epi.16515] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Robb Wesselingh
- Department of Neurosciences Central Clinical School Faculty of Medicine, Nursing, and Health Sciences Monash University Melbourne Victoria Australia
- Department of Neurology Alfred Health Melbourne Victoria Australia
| | - Helmut Butzkueven
- Department of Neurosciences Central Clinical School Faculty of Medicine, Nursing, and Health Sciences Monash University Melbourne Victoria Australia
- Department of Neurology Alfred Health Melbourne Victoria Australia
| | - Katherine Buzzard
- Department of Neurology Melbourne Health Parkville Victoria Australia
- Department of Neurology Eastern Health Box Hill Victoria Australia
| | - David Tarlinton
- Department of Immunology Central Clinical School Faculty of Medicine, Nursing, and Health Sciences Monash University Melbourne Victoria Australia
| | - Terence J. O'Brien
- Department of Neurosciences Central Clinical School Faculty of Medicine, Nursing, and Health Sciences Monash University Melbourne Victoria Australia
- Department of Neurology Alfred Health Melbourne Victoria Australia
| | - Mastura Monif
- Department of Neurosciences Central Clinical School Faculty of Medicine, Nursing, and Health Sciences Monash University Melbourne Victoria Australia
- Department of Neurology Alfred Health Melbourne Victoria Australia
- Department of Neurology Melbourne Health Parkville Victoria Australia
| |
Collapse
|
50
|
Yi JH, Whitcomb DJ, Park SJ, Martinez-Perez C, Barbati SA, Mitchell SJ, Cho K. M1 muscarinic acetylcholine receptor dysfunction in moderate Alzheimer's disease pathology. Brain Commun 2020; 2:fcaa058. [PMID: 32766549 PMCID: PMC7391992 DOI: 10.1093/braincomms/fcaa058] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/03/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023] Open
Abstract
Aggregation of amyloid beta and loss of cholinergic innervation in the brain are predominant components of Alzheimer’s disease pathology and likely underlie cognitive impairment. Acetylcholinesterase inhibitors are one of the few treatment options for Alzheimer’s disease, where levels of available acetylcholine are enhanced to counteract the cholinergic loss. However, these inhibitors show limited clinical efficacy. One potential explanation for this is a concomitant dysregulation of cholinergic receptors themselves as a consequence of the amyloid beta pathology. We tested this hypothesis by examining levels of M1 muscarinic acetylcholine receptors in the temporal cortex from seven Alzheimer’s disease and seven non-disease age-matched control brain tissue samples (control: 85 ± 2.63 years old, moderate Alzheimer’s disease: 84 ± 2.32 years old, P-value = 0.721; eight female and six male patients). The samples were categorized into two groups: ‘control’ (Consortium to Establish a Registry for Alzheimer’s Disease diagnosis of ‘No Alzheimer’s disease’, and Braak staging pathology of I–II) and ‘moderate Alzheimer’s disease’ (Consortium to Establish a Registry for Alzheimer’s Disease diagnosis of ‘possible/probable Alzheimer’s disease’, and Braak staging pathology of IV). We find that in comparison to age-matched controls, there is a loss of M1 muscarinic acetylcholine receptors in moderate Alzheimer’s disease tissue (control: 2.17 ± 0.27 arbitrary units, n = 7, Mod-AD: 0.83 ± 0.16 arbitrary units, n = 7, two-tailed t-test, t = 4.248, P = 0.00113). Using a functional rat cortical brain slice model, we find that postsynaptic muscarinic acetylcholine receptor function is dysregulated by aberrant amyloid beta-mediated activation of metabotropic glutamate receptor 5. Crucially, blocking metabotropic glutamate receptor 5 restores muscarinic acetylcholine receptor function and object recognition memory in 5XFAD transgenic mice. This indicates that the amyloid beta-mediated activation of metabotropic glutamate receptor 5 negatively regulates muscarinic acetylcholine receptor and illustrates the importance of muscarinic acetylcholine receptors as a potential disease-modifying target in the moderate pathological stages of Alzheimer’s disease.
Collapse
Affiliation(s)
- Jee Hyun Yi
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS1 3NY, UK
| | - Daniel J Whitcomb
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS1 3NY, UK
| | - Se Jin Park
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 130-701, Korea
| | - Celia Martinez-Perez
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS1 3NY, UK
| | - Saviana A Barbati
- UK Dementia Research Institute at King's College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Scott J Mitchell
- UK Dementia Research Institute at King's College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Kwangwook Cho
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS1 3NY, UK.,UK Dementia Research Institute at King's College London, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| |
Collapse
|