1
|
Veremeyko T, Barteneva NS, Vorobyev I, Ponomarev ED. The Emerging Role of Immunoglobulins and Complement in the Stimulation of Neuronal Activity and Repair: Not as Simple as We Thought. Biomolecules 2024; 14:1323. [PMID: 39456256 PMCID: PMC11506258 DOI: 10.3390/biom14101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Neurologic disorders such as traumatic brain injury, multiple sclerosis, Alzheimer's disease, and drug-resistant epilepsy have a high socioeconomic impact around the world. Current therapies for these disorders are often not effective. This creates a demand for the development of new therapeutic approaches to treat these disorders. Recent data suggest that autoreactive naturally occurring immunoglobulins produced by subsets of B cells, called B1 B cells, combined with complement, are actively involved in the processes of restoration of neuronal functions during pathological conditions and remyelination. The focus of this review is to discuss the possibility of creating specific therapeutic antibodies that can activate and fix complement to enhance neuronal survival and promote central nervous system repair after injuries associated with many types of neurodegenerative diseases.
Collapse
Affiliation(s)
- Tatyana Veremeyko
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan; (T.V.); (N.S.B.); (I.V.)
| | - Natasha S. Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan; (T.V.); (N.S.B.); (I.V.)
| | - Ivan Vorobyev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan; (T.V.); (N.S.B.); (I.V.)
- Laboratory of Cell Motility, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Eugene D. Ponomarev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan; (T.V.); (N.S.B.); (I.V.)
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
| |
Collapse
|
2
|
Garton T, Gadani SP, Gill AJ, Calabresi PA. Neurodegeneration and demyelination in multiple sclerosis. Neuron 2024; 112:3231-3251. [PMID: 38889714 PMCID: PMC11466705 DOI: 10.1016/j.neuron.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Progressive multiple sclerosis (PMS) is an immune-initiated neurodegenerative condition that lacks effective therapies. Although peripheral immune infiltration is a hallmark of relapsing-remitting MS (RRMS), PMS is associated with chronic, tissue-restricted inflammation and disease-associated reactive glial states. The effector functions of disease-associated microglia, astrocytes, and oligodendrocyte lineage cells are beginning to be defined, and recent studies have made significant progress in uncovering their pathologic implications. In this review, we discuss the immune-glia interactions that underlie demyelination, failed remyelination, and neurodegeneration with a focus on PMS. We highlight the common and divergent immune mechanisms by which glial cells acquire disease-associated phenotypes. Finally, we discuss recent advances that have revealed promising novel therapeutic targets for the treatment of PMS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Thomas Garton
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sachin P Gadani
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander J Gill
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Yao H, Tong W, Song Y, Li R, Xiang X, Cheng W, Zhou Y, He Y, Yang Y, Liu Y, Li S, Jin L. Exercise training upregulates CD55 to suppress complement-mediated synaptic phagocytosis in Parkinson's disease. J Neuroinflammation 2024; 21:246. [PMID: 39342308 PMCID: PMC11439226 DOI: 10.1186/s12974-024-03234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
The primary pathological change in Parkinson's disease (PD) is the progressive degeneration of dopaminergic neurons in the substantia nigra. Additionally, excessive microglial activation and synaptic loss are also typical features observed in PD samples. Exercise trainings have been proven to improve PD symptoms, delay the disease progression as well as affect excessive microglial synaptic phagocytosis. In this study, we established a mouse model of PD by injecting mouse-derived α-synuclein preformed fibrils (M-α-syn PFFs) into the substantia nigra, and demonstrated that treadmill exercise inhibits microglial activation and synaptic phagocytosis in striatum. Using RNA-Seq and proteomics, we also found that PD involves excessive activation of the complement pathway which is closely related to over-activation of microglia and abnormal synaptic function. More importantly, exercise training can inhibit complement levels and complement-mediated microglial phagocytosis of synapses. It is probably triggered by CD55, as we observed that CD55 in the striatum significantly increased after exercise training and up-regulation of that molecule rescued motor deficits of PD mice, accompanied with reduced microglial synaptic phagocytosis in the striatum. This research elucidated the interplay among microglia, complement, and synapses, and analyzed the effects of exercise training on these factors. Our work also suggested CD55 as a complement-relevant candidate molecule for developing therapeutic strategies of PD.
Collapse
Affiliation(s)
- Hongkai Yao
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weifang Tong
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunping Song
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Ruoyu Li
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Xuerui Xiang
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Wen Cheng
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunjiao Zhou
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yijing He
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Yang
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yunxi Liu
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Scott-Hewitt N, Mahoney M, Huang Y, Korte N, Yvanka de Soysa T, Wilton DK, Knorr E, Mastro K, Chang A, Zhang A, Melville D, Schenone M, Hartigan C, Stevens B. Microglial-derived C1q integrates into neuronal ribonucleoprotein complexes and impacts protein homeostasis in the aging brain. Cell 2024; 187:4193-4212.e24. [PMID: 38942014 DOI: 10.1016/j.cell.2024.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/08/2024] [Accepted: 05/31/2024] [Indexed: 06/30/2024]
Abstract
Neuroimmune interactions mediate intercellular communication and underlie critical brain functions. Microglia, CNS-resident macrophages, modulate the brain through direct physical interactions and the secretion of molecules. One such secreted factor, the complement protein C1q, contributes to complement-mediated synapse elimination in both developmental and disease models, yet brain C1q protein levels increase significantly throughout aging. Here, we report that C1q interacts with neuronal ribonucleoprotein (RNP) complexes in an age-dependent manner. Purified C1q protein undergoes RNA-dependent liquid-liquid phase separation (LLPS) in vitro, and the interaction of C1q with neuronal RNP complexes in vivo is dependent on RNA and endocytosis. Mice lacking C1q have age-specific alterations in neuronal protein synthesis in vivo and impaired fear memory extinction. Together, our findings reveal a biophysical property of C1q that underlies RNA- and age-dependent neuronal interactions and demonstrate a role of C1q in critical intracellular neuronal processes.
Collapse
Affiliation(s)
- Nicole Scott-Hewitt
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Matthew Mahoney
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Youtong Huang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nils Korte
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - T Yvanka de Soysa
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel K Wilton
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Emily Knorr
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kevin Mastro
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Allison Chang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Allison Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - David Melville
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Monica Schenone
- The Broad Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christina Hartigan
- The Broad Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Investigator, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Zhang C, Shi G, Meng Q, Hu R, Li Y, Hu G, Wang K, Huang M. An approach based on a combination of toxicological experiments and in silico predictions to investigate the adverse outcome pathway (AOP) of paraquat neuro-immunotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134607. [PMID: 38761765 DOI: 10.1016/j.jhazmat.2024.134607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Paraquat (PQ) exposure is strongly associated with neurotoxicity. However, research on the neurotoxicity mechanisms of PQ varies in terms of endpoints of toxic assessment, resulting in a great challenge to understand the early neurotoxic effects of PQ. In this study, we developed an adverse outcome pathway (AOP) to investigate PQ-induced neuro-immunotoxicity from an immunological perspective, combining of traditional toxicology methods and computer simulations. In vivo, PQ can microstructurally lead to an early synaptic loss in the brain mice, which is a large degree regarded as a main reason for cognitive impairment to mice behavior. Both in vitro and in vivo demonstrated synapse loss is caused by excessive activation of the complement C1q/C3-CD11b pathway, which mediates microglial phagocytosis dysfunction. Additionally, the interaction between PQ and C1q was validated by molecular simulation docking. Our findings extend the AOP framework related to PQ neurotoxicity from a neuro-immunotoxic perspective, highlighting C1q activation as the initiating event for PQ-induced neuro-immunotoxicity. In addition, downstream complement cascades induce abnormal microglial phagocytosis, resulting in reduced synaptic density and subsequent non-motor dysfunction. These findings deepen our understanding of neurotoxicity and provide a theoretical basis for ecological risk assessment of PQ.
Collapse
Affiliation(s)
- Chunhui Zhang
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Ge Shi
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Qi Meng
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Rong Hu
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Yang Li
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Guiling Hu
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Kaidong Wang
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China.
| | - Min Huang
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
6
|
Negro-Demontel L, Maleki AF, Reich DS, Kemper C. The complement system in neurodegenerative and inflammatory diseases of the central nervous system. Front Neurol 2024; 15:1396520. [PMID: 39022733 PMCID: PMC11252048 DOI: 10.3389/fneur.2024.1396520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Neurodegenerative and neuroinflammatory diseases, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis, affect millions of people globally. As aging is a major risk factor for neurodegenerative diseases, the continuous increase in the elderly population across Western societies is also associated with a rising prevalence of these debilitating conditions. The complement system, a crucial component of the innate immune response, has gained increasing attention for its multifaceted involvement in the normal development of the central nervous system (CNS) and the brain but also as a pathogenic driver in several neuroinflammatory disease states. Although complement is generally understood as a liver-derived and blood or interstitial fluid operative system protecting against bloodborne pathogens or threats, recent research, particularly on the role of complement in the healthy and diseased CNS, has demonstrated the importance of locally produced and activated complement components. Here, we provide a succinct overview over the known beneficial and pathological roles of complement in the CNS with focus on local sources of complement, including a discussion on the potential importance of the recently discovered intracellularly active complement system for CNS biology and on infection-triggered neurodegeneration.
Collapse
Affiliation(s)
- Luciana Negro-Demontel
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Adam F. Maleki
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
| |
Collapse
|
7
|
Calabrese M, Preziosa P, Scalfari A, Colato E, Marastoni D, Absinta M, Battaglini M, De Stefano N, Di Filippo M, Hametner S, Howell OW, Inglese M, Lassmann H, Martin R, Nicholas R, Reynolds R, Rocca MA, Tamanti A, Vercellino M, Villar LM, Filippi M, Magliozzi R. Determinants and Biomarkers of Progression Independent of Relapses in Multiple Sclerosis. Ann Neurol 2024; 96:1-20. [PMID: 38568026 DOI: 10.1002/ana.26913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 06/20/2024]
Abstract
Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine, Imperial College, London, UK
| | - Elisa Colato
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battaglini
- Siena Imaging S.r.l., Siena, Italy
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Owain W Howell
- Institute of Life Sciences, Swansea University Medical School, Swansea, UK
| | - Matilde Inglese
- Dipartimento di neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili - DINOGMI, University of Genova, Genoa, Italy
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Therapeutic Design Unit, Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
- Cellerys AG, Schlieren, Switzerland
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Burlington Danes, Imperial College London, London, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Agnese Tamanti
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Marco Vercellino
- Multiple Sclerosis Center & Neurologia I U, Department of Neuroscience, University Hospital AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisa Maria Villar
- Department of Immunology, Ramon y Cajal University Hospital. IRYCIS. REI, Madrid, Spain
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Magliozzi
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| |
Collapse
|
8
|
Gillani RL, Kironde EN, Whiteman S, Zwang TJ, Bacskai BJ. Instability of excitatory synapses in experimental autoimmune encephalomyelitis and the outcome for excitatory circuit inputs to individual cortical neurons. Brain Behav Immun 2024; 119:251-260. [PMID: 38552924 PMCID: PMC11298162 DOI: 10.1016/j.bbi.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/04/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Synapses are lost on a massive scale in the brain and spinal cord of people living with multiple sclerosis (PwMS), and this synaptic loss extends far beyond demyelinating lesions. Post-mortem studies show the long-term consequences of multiple sclerosis (MS) on synapses but do not inform on the early impacts of neuroinflammation on synapses that subsequently lead to synapse loss. How excitatory circuit inputs are altered across the dendritic tree of individual neurons under neuroinflammatory stress is not well understood. Here, we directly assessed the structural dynamics of labeled excitatory synapses in experimental autoimmune encephalomyelitis (EAE) as a model of immune-mediated cortical neuronal damage. We used in vivo two-photon imaging and a synthetic tissue-hydrogel super-resolution imaging technique to reveal the dynamics of excitatory synapses, map their location across the dendritic tree of individual neurons, and examine neurons at super-resolution for synaptic loss. We found that excitatory synapses are destabilized but not lost from dendritic spines in EAE, starting with the earliest imaging session before symptom onset. This led to changes in excitatory circuit inputs to individual cells. In EAE, stable synapses are replaced by synapses that appear or disappear across the imaging sessions or repeatedly change at the same location. These unstable excitatory inputs occur closer to one another in EAE than in healthy controls and are distributed across the dendritic tree. When imaged at super-resolution, we found that a small proportion of dendritic protrusions lost their presynapse and/or postsynapse. Our finding of diffuse destabilizing effects of neuroinflammation on excitatory synapses across cortical neurons may have significant functional consequences since normal dendritic spine dynamics and clustering are essential for learning and memory.
Collapse
Affiliation(s)
- Rebecca L Gillani
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Neuroimmunology and Neuro-Infectious Diseases Division, Massachusetts General Hospital, Boston, MA, USA.
| | - Eseza N Kironde
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Sara Whiteman
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Theodore J Zwang
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Brian J Bacskai
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Ladakis DC, Vreones M, Blommer J, Harrison KL, Smith MD, Vasileiou ES, Moussa H, Ahmadi G, Ezzedin O, DuVal AL, Dewey BE, Prince JL, Fitzgerald KC, Sotirchos ES, Saidha S, Calabresi PA, Kapogiannis D, Bhargava P. Synaptic Protein Loss in Extracellular Vesicles Reflects Brain and Retinal Atrophy in People With Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200257. [PMID: 38754047 PMCID: PMC11131364 DOI: 10.1212/nxi.0000000000200257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVES To assess whether the rate of change in synaptic proteins isolated from neuronally enriched extracellular vesicles (NEVs) is associated with brain and retinal atrophy in people with multiple sclerosis (MS). METHODS People with MS were followed with serial blood draws, MRI (MRI), and optical coherence tomography (OCT) scans. NEVs were immunocaptured from plasma, and synaptopodin and synaptophysin proteins were measured using ELISA. Subject-specific rates of change in synaptic proteins, as well as brain and retinal atrophy, were determined and correlated. RESULTS A total of 50 people with MS were included, 46 of whom had MRI and 45 had OCT serially. The rate of change in NEV synaptopodin was associated with whole brain (rho = 0.31; p = 0.04), cortical gray matter (rho = 0.34; p = 0.03), peripapillary retinal nerve fiber layer (rho = 0.37; p = 0.01), and ganglion cell/inner plexiform layer (rho = 0.41; p = 0.006) atrophy. The rate of change in NEV synaptophysin was also correlated with whole brain (rho = 0.31; p = 0.04) and cortical gray matter (rho = 0.31; p = 0.049) atrophy. DISCUSSION NEV-derived synaptic proteins likely reflect neurodegeneration and may provide additional circulating biomarkers for disease progression in MS.
Collapse
Affiliation(s)
- Dimitrios C Ladakis
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Michael Vreones
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Joseph Blommer
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Kimystian L Harrison
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Matthew D Smith
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Eleni S Vasileiou
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Hussein Moussa
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Gelareh Ahmadi
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Omar Ezzedin
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Anna L DuVal
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Blake E Dewey
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Jerry L Prince
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Kathryn C Fitzgerald
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Elias S Sotirchos
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Shiv Saidha
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Peter A Calabresi
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Dimitrios Kapogiannis
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Pavan Bhargava
- From the Department of Neurology (D.C.L., K.L.H., M.D.S., E.S.V., H.M., G.A., O.E., A.L.D., B.E.D., K.C.F., E.S.S., S.S., P.A.C., P.B.), Johns Hopkins University School of Medicine; Laboratory of Clinical Investigation (M.V., J.B., D.K.), National Institute on Aging; and Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| |
Collapse
|
10
|
Wei Y, Guo J, Meng T, Gao T, Mai Y, Zuo W, Yang J. The potential application of complement inhibitors-loaded nanosystem for autoimmune diseases via regulation immune balance. J Drug Target 2024; 32:485-498. [PMID: 38491993 DOI: 10.1080/1061186x.2024.2332730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
The complement is an important arm of the innate immune system, once activated, the complement system rapidly generates large quantities of protein fragments that are potent mediators of inflammation. Recent studies have shown that over-activated complement is the main proinflammatory system of autoimmune diseases (ADs). In addition, activated complements interact with autoantibodies, immune cells exacerbate inflammation, further worsening ADs. With the increasing threat of ADs to human health, complement-based immunotherapy has attracted wide attention. Nevertheless, efficient and targeted delivery of complement inhibitors remains a significant challenge owing to their inherent poor targeting, degradability, and low bioavailability. Nanosystems offer innovative solutions to surmount these obstacles and amplify the potency of complement inhibitors. This prime aim to present the current knowledge of complement in ADs, analyse the function of complement in the pathogenesis and treatment of ADs, we underscore the current situation of nanosystems assisting complement inhibitors in the treatment of ADs. Considering technological, physiological, and clinical validation challenges, we critically appraise the challenges for successfully translating the findings of preclinical studies of these nanosystem assisted-complement inhibitors into the clinic, and future perspectives were also summarised. (The graphical abstract is by BioRender.).
Collapse
Affiliation(s)
- Yaya Wei
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jueshuo Guo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Tingting Meng
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yaping Mai
- School of Science and Technology Centers, Ningxia Medical University, Yinchuan, China
| | - Wenbao Zuo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
11
|
Beiter RM, Sheehan PW, Schafer DP. Microglia phagocytic mechanisms: Development informing disease. Curr Opin Neurobiol 2024; 86:102877. [PMID: 38631077 PMCID: PMC11162951 DOI: 10.1016/j.conb.2024.102877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Microglia are tissue-resident macrophages and professional phagocytes of the central nervous system (CNS). In development, microglia-mediated phagocytosis is important for sculpting the cellular architecture. This includes the engulfment of dead/dying cells, pruning extranumerary synapses and axons, and phagocytosing fragments of myelin sheaths. Intriguingly, these developmental phagocytic mechanisms by which microglia sculpt the CNS are now appreciated as important for eliminating synapses, myelin, and proteins during neurodegeneration. Here, we discuss parallels between neurodevelopment and neurodegeneration, which highlights how development is informing disease. We further discuss recent advances and challenges towards therapeutically targeting these phagocytic pathways and how we can leverage development to overcome these challenges.
Collapse
Affiliation(s)
- Rebecca M Beiter
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Patrick W Sheehan
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
12
|
Nataf S, Guillen M, Pays L. The Immunometabolic Gene N-Acetylglucosamine Kinase Is Uniquely Involved in the Heritability of Multiple Sclerosis Severity. Int J Mol Sci 2024; 25:3803. [PMID: 38612613 PMCID: PMC11011344 DOI: 10.3390/ijms25073803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The clinical severity of multiple sclerosis (MS), an autoimmune disorder of the central nervous system, is thought to be determined by environmental and genetic factors that have not yet been identified. In a recent genome-wide association study (GWAS), a single nucleotide polymorphism (SNP), rs10191329, has been associated with MS severity in two large independent cohorts of patients. Different approaches were followed by the authors to prioritize the genes that are transcriptionally regulated by such an SNP. It was concluded that the identified SNP regulates a group of proximal genes involved in brain resilience and cognitive abilities rather than immunity. Here, by conducting an alternative strategy for gene prioritization, we reached the opposite conclusion. According to our re-analysis, the main target of rs10191329 is N-Acetylglucosamine Kinase (NAGK), a metabolic gene recently shown to exert major immune functions via the regulation of the nucleotide-binding oligomerization domain-containing protein 2 (NOD2) pathway. To gain more insights into the immunometabolic functions of NAGK, we analyzed the currently known list of NAGK protein partners. We observed that NAGK integrates a dense network of human proteins that are involved in glucose metabolism and are highly expressed by classical monocytes. Our findings hold potentially major implications for the understanding of MS pathophysiology.
Collapse
Affiliation(s)
- Serge Nataf
- Bank of Tissues and Cells, Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, F-69003 Lyon, France
- Stem-Cell and Brain Research Institute, 18 Avenue du Doyen Lépine, F-69500 Bron, France
- Lyon-Est School of Medicine, University Claude Bernard Lyon 1, 43 Bd du 11 Novembre 1918, F-69100 Villeurbanne, France
| | - Marine Guillen
- Bank of Tissues and Cells, Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, F-69003 Lyon, France
- Stem-Cell and Brain Research Institute, 18 Avenue du Doyen Lépine, F-69500 Bron, France
| | - Laurent Pays
- Bank of Tissues and Cells, Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, F-69003 Lyon, France
- Stem-Cell and Brain Research Institute, 18 Avenue du Doyen Lépine, F-69500 Bron, France
- Lyon-Est School of Medicine, University Claude Bernard Lyon 1, 43 Bd du 11 Novembre 1918, F-69100 Villeurbanne, France
| |
Collapse
|
13
|
Nimmo J, Byrne R, Daskoulidou N, Watkins L, Carpanini S, Zelek W, Morgan B. The complement system in neurodegenerative diseases. Clin Sci (Lond) 2024; 138:387-412. [PMID: 38505993 PMCID: PMC10958133 DOI: 10.1042/cs20230513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Complement is an important component of innate immune defence against pathogens and crucial for efficient immune complex disposal. These core protective activities are dependent in large part on properly regulated complement-mediated inflammation. Dysregulated complement activation, often driven by persistence of activating triggers, is a cause of pathological inflammation in numerous diseases, including neurological diseases. Increasingly, this has become apparent not only in well-recognized neuroinflammatory diseases like multiple sclerosis but also in neurodegenerative and neuropsychiatric diseases where inflammation was previously either ignored or dismissed as a secondary event. There is now a large and rapidly growing body of evidence implicating complement in neurological diseases that cannot be comprehensively addressed in a brief review. Here, we will focus on neurodegenerative diseases, including not only the 'classical' neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, but also two other neurological diseases where neurodegeneration is a neglected feature and complement is implicated, namely, schizophrenia, a neurodevelopmental disorder with many mechanistic features of neurodegeneration, and multiple sclerosis, a demyelinating disorder where neurodegeneration is a major cause of progressive decline. We will discuss the evidence implicating complement as a driver of pathology in these diverse diseases and address briefly the potential and pitfalls of anti-complement drug therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacqui Nimmo
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Robert A.J. Byrne
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Nikoleta Daskoulidou
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Lewis M. Watkins
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Sarah M. Carpanini
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Wioleta M. Zelek
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - B. Paul Morgan
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| |
Collapse
|
14
|
Oechtering J, Stein K, Schaedelin SA, Maceski AM, Orleth A, Meier S, Willemse E, Qureshi F, Heijnen I, Regeniter A, Derfuss T, Benkert P, D'Souza M, Limberg M, Fischer-Barnicol B, Achtnichts L, Mueller S, Salmen A, Lalive PH, Bridel C, Pot C, Du Pasquier RA, Gobbi C, Wiendl H, Granziera C, Kappos L, Trendelenburg M, Leppert D, Lunemann JD, Kuhle J. Complement Activation Is Associated With Disease Severity in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200212. [PMID: 38354323 PMCID: PMC10913171 DOI: 10.1212/nxi.0000000000200212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND AND OBJECTIVES Histopathologic studies have identified immunoglobulin (Ig) deposition and complement activation as contributors of CNS tissue damage in multiple sclerosis (MS). Intrathecal IgM synthesis is associated with higher MS disease activity and severity, and IgM is the strongest complement-activating immunoglobulin. In this study, we investigated whether complement components (CCs) and complement activation products (CAPs) are increased in persons with MS, especially in those with an intrathecal IgM synthesis, and whether they are associated with disease severity and progression. METHODS CC and CAP levels were quantified in plasma and CSF of 112 patients with clinically isolated syndrome (CIS), 127 patients with MS (90 relapsing-remitting, 14 primary progressive, and 23 secondary progressive), 31 inflammatory neurologic disease, and 44 symptomatic controls from the Basel CSF databank study. Patients with CIS/MS were followed in the Swiss MS cohort study (median 6.3 years). Levels of CC/CAP between diagnosis groups were compared; in CIS/MS, associations of CC/CAP levels with intrathecal Ig synthesis, baseline Expanded Disability Status Scale (EDSS) scores, MS Severity Score (MSSS), and neurofilament light chain (NfL) levels were investigated by linear regression, adjusted for age, sex, and albumin quotient. RESULTS CSF (but not plasma) levels of C3a, C4a, Ba, and Bb were increased in patients with CIS/MS, being most pronounced in those with an additional intrathecal IgM production. In CIS, doubling of C3a and C4a in CSF was associated with 0.31 (CI 0.06-0.56; p = 0.016) and 0.32 (0.02-0.62; p = 0.041) increased EDSS scores at lumbar puncture. Similarly, doubling of C3a and Ba in CIS/MS was associated with 0.61 (0.19-1.03; p < 0.01) and 0.74 (0.18-1.31; p = 0.016) increased future MSSS. In CIS/MS, CSF levels of C3a, C4a, Ba, and Bb were associated with increased CSF NfL levels, e.g., doubling of C3a was associated with an increase of 58% (Est. 1.58; CI 1.37-1.81; p < 0.0001). DISCUSSION CNS-compartmentalized activation of the classical and alternative pathways of complement is increased in CIS/MS and associated with the presence of an intrathecal IgM production. Increased complement activation within the CSF correlates with EDSS, future MSSS, and NfL levels, supporting the concept that complement activation contributes to MS pathology and disease progression. Complement inhibition should be explored as therapeutic target to attenuate disease severity and progression in MS.
Collapse
Affiliation(s)
- Johanna Oechtering
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Kerstin Stein
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sabine A Schaedelin
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Aleksandra M Maceski
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Annette Orleth
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Stephanie Meier
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Eline Willemse
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ferhan Qureshi
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ingmar Heijnen
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Axel Regeniter
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Tobias Derfuss
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Pascal Benkert
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marcus D'Souza
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marguerite Limberg
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Bettina Fischer-Barnicol
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lutz Achtnichts
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Stefanie Mueller
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Anke Salmen
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Patrice H Lalive
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Claire Bridel
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Caroline Pot
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Renaud A Du Pasquier
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Claudio Gobbi
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Heinz Wiendl
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Cristina Granziera
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marten Trendelenburg
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - David Leppert
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jan D Lunemann
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- From the Department of Neurology (J.O., A.M.M., A.O., S. Meier, E.W., T.D., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.); Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB) (J.O., S.A.S., A.M.M., A.O., S. Meier, E.W., T.D., P.B., M.D.S., M.L., B.F.-B., C. Granziera, L.K., D.L., J.K.), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland; Department of Neurology with Institute of Translational Neurology (K.S., H.W., J.D.L.), University Hospital 4 Münster, Germany; Clinical Trial Unit (S.A.S., P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland; Octavebio Bioscience (F.Q.), Menlo Park, CA; Division of Medical Immunology (I.H.), Laboratory Medicine, University Hospital Basel, Switzerland; Medica Laboratory (A.R.), Zürich; Department of Neurology (L.A.), Cantonal Hospital, Aarau; Department of Neurology (S. Mueller), Cantonal Hospital St. Gallen; Department of Neurology (A.S.), Inselspital, Bern University Hospital and University of Bern; Department of Clinical Neurosciences (P.H.L., C.B.), Division of Neurology; Diagnostic Department (P.H.L.), Division of Laboratory Medicine; Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, University of Geneva; Division of Neurology (C.P., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne; Neurocentre of Southern Switzerland (C. Gobbi), Multiple Sclerosis Centre, Ospedale Civico; Faculty of Biomedical Sciences (C. Gobbi), Università della Svizzera Italiana (USI), Lugano, Switzerland; Translational Imaging in Neurology (ThINk) Basel (C. Granziera), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; and Division of Internal Medicine (M.T.), University Hospital Basel and Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Olivero G, Taddeucci A, Vallarino G, Trebesova H, Roggeri A, Gagliani MC, Cortese K, Grilli M, Pittaluga A. Complement tunes glutamate release and supports synaptic impairments in an animal model of multiple sclerosis. Br J Pharmacol 2024. [PMID: 38369641 DOI: 10.1111/bph.16328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND AND PURPOSE To deepen our knowledge of the role of complement in synaptic impairment in experimental autoimmune encephalomyelitis (EAE) mice, we investigated the distribution of C1q and C3 proteins and the role of complement as a promoter of glutamate release in purified nerve endings (synaptosomes) and astrocytic processes (gliosomes) isolated from the cortex of EAE mice at the acute stage of the disease (21 ± 1 day post-immunization). EXPERIMENTAL APPROACH EAE cortical synaptosomes and gliosomes were analysed for glutamate release efficiency (measured as release of preloaded [3 H]D-aspartate ([3 H]D-ASP)), C1q and C3 protein density, and for viability and ongoing apoptosis. KEY RESULTS In healthy mice, complement releases [3 H]D-ASP from gliosomes more efficiently than from synaptosomes. The releasing activity occurs in a dilution-dependent manner and involves the reversal of the excitatory amino acid transporters (EAATs). In EAE mice, the complement-induced releasing activity is significantly reduced in cortical synaptosomes but amplified in cortical gliosomes. These adaptations are paralleled by decreased density of the EAAT2 protein in synaptosomes and increased EAAT1 staining in gliosomes. Concomitantly, PSD95, GFAP, and CD11b, but not SNAP25, proteins are overexpressed in the cortex of the EAE mice. Similarly, C1q and C3 protein immunostaining is increased in EAE cortical synaptosomes and gliosomes, although signs of ongoing apoptosis or altered viability are not detectable. CONCLUSION AND IMPLICATIONS Our results unveil a new noncanonical role of complement in the CNS of EAE mice relevant to disease progression and central synaptopathy that suggests new therapeutic targets for the management of MS.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Alice Taddeucci
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Giulia Vallarino
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Hanna Trebesova
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Alessandra Roggeri
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Maria Cristina Gagliani
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Laboratory, Università di Genova, Genoa, Italy
| | - Katia Cortese
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Laboratory, Università di Genova, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, Centre of Excellence for Biomedical Research, 3Rs Center, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
16
|
Guo Y, Endmayr V, Zekeridou A, McKeon A, Leypoldt F, Hess K, Kalinowska-Lyszczarz A, Klang A, Pakozdy A, Höftberger E, Hametner S, Haider C, De Simoni D, Peters S, Gelpi E, Röcken C, Oberndorfer S, Lassmann H, Lucchinetti CF, Höftberger R. New insights into neuropathology and pathogenesis of autoimmune glial fibrillary acidic protein meningoencephalomyelitis. Acta Neuropathol 2024; 147:31. [PMID: 38310187 PMCID: PMC10838242 DOI: 10.1007/s00401-023-02678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/06/2023] [Accepted: 12/24/2023] [Indexed: 02/05/2024]
Abstract
Anti-glial fibrillary acidic protein (GFAP) meningoencephalomyelitis (autoimmune GFAP astrocytopathy) is a new autoimmune central nervous system (CNS) disease diagnosable by the presence of anti-GFAP autoantibodies in the cerebrospinal fluid and presents as meningoencephalomyelitis in the majority of patients. Only few neuropathological reports are available and little is known about the pathogenic mechanisms. We performed a histopathological study of two autopsies and nine CNS biopsies of patients with anti-GFAP autoantibodies and found predominantly a lymphocytic and in one autopsy case a granulomatous inflammatory phenotype. Inflammatory infiltrates were composed of B and T cells, including tissue-resident memory T cells. Although obvious astrocytic damage was absent in the GFAP-staining, we found cytotoxic T cell-mediated reactions reflected by the presence of CD8+/perforin+/granzyme A/B+ cells, polarized towards astrocytes. MHC-class-I was upregulated in reactive astrocytes of all biopsies and two autopsies but not in healthy controls. Importantly, we observed a prominent immunoreactivity of astrocytes with the complement factor C4d. Finally, we provided insight into an early phase of GFAP autoimmunity in an autopsy of a pug dog encephalitis that was characterized by marked meningoencephalitis with selective astrocytic damage with loss of GFAP and AQP4 in the lesions.Our histopathological findings indicate that a cytotoxic T cell-mediated immune reaction is present in GFAP autoimmunity. Complement C4d deposition on astrocytes could either represent the cause or consequence of astrocytic reactivity. Selective astrocytic damage is prominent in the early phase of GFAP autoimmunity in a canine autopsy case, but mild or absent in subacute and chronic stages in human disease, probably due to the high regeneration potential of astrocytes. The lymphocytic and granulomatous phenotypes might reflect different stages of lesion development or patient-specific modifications of the immune response. Future studies will be necessary to investigate possible implications of pathological subtypes for clinical disease course and therapeutic strategies.
Collapse
Affiliation(s)
- Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Anastasia Zekeridou
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Andrew McKeon
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Frank Leypoldt
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein Kiel, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein and Kiel University, Kiel, Germany
| | - Katharina Hess
- Institute of Neuropathology, University Hospital Muenster, Muenster, North Rhine Westphalia, Germany
- Department of Pathology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Alicja Kalinowska-Lyszczarz
- Department of Neurology, Division of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, Poznań, Poland
| | - Andrea Klang
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Akos Pakozdy
- Internal Medicine, University Clinic for Small Animals, University of Veterinary Medicine, Vienna, Austria
| | - Elisabeth Höftberger
- Internal Medicine, University Clinic for Small Animals, University of Veterinary Medicine, Vienna, Austria
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Carmen Haider
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Désirée De Simoni
- Division of Neurology, Karl Landsteiner University of Health Sciences, University Hospital, St. Pölten, Austria
| | - Sönke Peters
- Clinic for Radiology and Neuroradiology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Ellen Gelpi
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christoph Röcken
- Department of Pathology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stefan Oberndorfer
- Division of Neurology, Karl Landsteiner University of Health Sciences, University Hospital, St. Pölten, Austria
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
17
|
Wen L, Bi D, Shen Y. Complement-mediated synapse loss in Alzheimer's disease: mechanisms and involvement of risk factors. Trends Neurosci 2024; 47:135-149. [PMID: 38129195 DOI: 10.1016/j.tins.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The complement system is increasingly recognized as a key player in the synapse loss and cognitive impairments observed in Alzheimer's disease (AD). In particular, the process of complement-dependent synaptic pruning through phagocytosis is over-activated in AD brains, driving detrimental excessive synapse elimination and contributing to synapse loss, which is the strongest neurobiological correlate of cognitive impairments in AD. Herein we review recent advances in characterizing complement-mediated synapse loss in AD, summarize the underlying mechanisms, and discuss the possible involvement of AD risk factors such as aging and various risk genes. We conclude with an overview of key questions that remain to be addressed.
Collapse
Affiliation(s)
- Lang Wen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Danlei Bi
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yong Shen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
18
|
Gillani RL, Kironde EN, Whiteman S, Zwang TJ, Bacskai BJ. Instability of excitatory synapses in experimental autoimmune encephalomyelitis and the outcome for excitatory circuit inputs to individual cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576662. [PMID: 38328177 PMCID: PMC10849614 DOI: 10.1101/2024.01.23.576662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Synapses are lost on a massive scale in the brain and spinal cord of people living with multiple sclerosis (PwMS), and this synaptic loss extends far beyond demyelinating lesions. Post-mortem studies show the long-term consequences of multiple sclerosis (MS) on synapses but do not inform on the early impacts of neuroinflammation on synapses that subsequently lead to synapse loss. How excitatory circuit inputs are altered across the dendritic tree of individual neurons under neuroinflammatory stress is not well understood. Here, we directly assessed the structural dynamics of labeled excitatory synapses in experimental autoimmune encephalomyelitis (EAE) as a model of immune-mediated cortical neuronal damage. We used in vivo two-photon imaging and a synthetic tissue-hydrogel super-resolution imaging technique to reveal the dynamics of excitatory synapses, map their location across the dendritic tree of individual neurons, and examine neurons at super-resolution for synaptic loss. We found that excitatory synapses are destabilized but not lost from dendritic spines in EAE, starting with the earliest imaging session before symptom onset. This led to dramatic changes in excitatory circuit inputs to individual cells. In EAE, stable synapses are replaced by synapses that appear or disappear across the imaging sessions or repeatedly change at the same location. These unstable excitatory inputs occur closer to one another in EAE than in healthy controls and are distributed across the dendritic tree. When imaged at super-resolution, we found that a small proportion of dendritic protrusions lost their presynapse and/or postsynapse. Our finding of diffuse destabilizing effects of neuroinflammation on excitatory synapses across cortical neurons may have significant functional consequences since normal dendritic spine dynamics and clustering are essential for learning and memory.
Collapse
|
19
|
Hong S, Weerasinghe-Mudiyanselage PDE, Kang S, Moon C, Shin T. Retinal transcriptome profiling identifies novel candidate genes associated with visual impairment in a mouse model of multiple sclerosis. Anim Cells Syst (Seoul) 2023; 27:219-233. [PMID: 37808551 PMCID: PMC10552570 DOI: 10.1080/19768354.2023.2264354] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Visual impairment is occasionally observed in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Although uveitis and optic neuritis have been reported in MS and EAE, the precise mechanisms underlying the pathogenesis of these visual impairments remain poorly understood. This study aims to identify differentially expressed genes (DEGs) in the retinas of mice with EAE to identify genes that may be implicated in EAE-induced visual impairment. Fourteen adult mice were injected with myelin oligodendrocyte glycoprotein35-55 to induce the EAE model. Transcriptomes of retinas with EAE were analyzed by RNA-sequencing. Gene expression analysis revealed 347 DEGs in the retinas of mice with EAE: 345 were upregulated, and 2 were downregulated (adjusted p-value < 0.05 and absolute log2 fold change > 1). Gene ontology (GO) analysis showed that the upregulated genes in the retinas of mice with EAE were primarily related to immune responses, responses to external biotic stimuli, defense responses, and leukocyte-mediated immunity in the GO biological process. The expression of six upregulated hub genes (c1qb, ctss, itgam, itgb2, syk, and tyrobp) from the STRING analysis and the two significantly downregulated DEGs (hapln1 and ndst4) were validated by reverse transcription-quantitative polymerase chain reaction. In addition, gene set enrichment analysis showed that the negatively enriched gene sets in EAE-affected retinas were associated with the neuronal system and phototransduction cascade. This study provides novel molecular evidence for visual impairments in EAE and indicates directions for further research to elucidate the mechanisms of these visual impairments in MS.
Collapse
Affiliation(s)
- Sungmoo Hong
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Poornima D. E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
20
|
Shang J, Ma C, Ding H, Gu G, Zhang J, Wang M, Fang K, Wei Z, Feng S. Development and validation of a differentiation-related signature based on single-cell RNA sequencing data of immune cells in spinal cord injury. Heliyon 2023; 9:e19853. [PMID: 37809933 PMCID: PMC10559254 DOI: 10.1016/j.heliyon.2023.e19853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/02/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Background After spinal cord injury (SCI), the native immune surveillance function of the central nervous system is activated, resulting in a substantial infiltration of immune cells into the affected tissue. While numerous studies have explored the transcriptome data following SCI and revealed certain diagnostic biomarkers, there remains a paucity of research pertaining the identification of immune subtypes and molecular markers related to the immune system post-spinal cord injury using single-cell sequencing data of immune cells. Methods The researchers conducted an analysis of spinal cord samples obtained at three time points (3,10, and 21 days) following SCI using the GSE159638 dataset. The SCI subsets were delineated through pseudo-time analysis, and differentiation related genes were identified after principal component analysis (PCA), cell clustering, and annotation techniques. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were employed to assess the differentiation-related genes (DRGs) across different subsets. The molecular subtypes of SCI were determined using consensus clustering analysis. To further explore and validate the correlation between the molecular subtypes and the immune microenvironment, the CIBERSORT algorithm was employed. High-value diagnostic gene markers were identified using LASSO regression, and their diagnostic sensitivity was assessed using receiver operating characteristic curves (ROC) and quantitative real-time polymerase chain reaction (qRT-PCR). Results Three SCI subsets were obtained, and differentiation-related genes were characterized. Within these subsets, two distinct molecular subtypes, namely C1 and C2, were identified. These subtypes demonstrated significant variations in terms of immune cell infiltration levels and the expression of immune checkpoint genes. Through further analysis, three candidate biomarkers (C1qa, Lgals3 and Cd63) were identified and subsequently validated. Conclusions Our study revealed a diverse immune microenvironment in SCI samples, highlighting the potential significance of C1qa, Lgals3 and Cd63 as immune biomarkers for diagnosing SCI. Moreover, the identification of immune checkpoints corresponding to the two molecular subtypes suggests their potential as targets for immunotherapy to enhance SCI repair in future interventions.
Collapse
Affiliation(s)
- Jun Shang
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Orthopaedics, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Chao Ma
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Han Ding
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangjin Gu
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianping Zhang
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and the Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ke Fang
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhijian Wei
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqing Feng
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Orthopaedics, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| |
Collapse
|
21
|
Ou Z, Zhao M, Xu Y, Wu Y, Qin L, Fang L, Xu H, Chen J. Huangqi Guizhi Wuwu decoction promotes M2 microglia polarization and synaptic plasticity via Sirt1/NF-κB/NLRP3 pathway in MCAO rats. Aging (Albany NY) 2023; 15:10031-10056. [PMID: 37650573 PMCID: PMC10599726 DOI: 10.18632/aging.204989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
Huangqi Guizhi Wuwu decoction (HGWD) has been demonstrated to ameliorate cerebral ischemia-reperfusion injury in clinical application. Nevertheless, the exact mechanisms of HGWD have not been conclusively elucidated. This study aimed to investigate the potential role and mechanism of HGWD on neurological deficits in a rat model of middle cerebral artery occlusion (MCAO). Our results showed that HGWD significantly alleviated neurological deficits in MCAO rats, evidenced by high mNSS score, reduced cerebral infarction area, and improved brain pathological injury. Besides, HGWD reduced the levels of TNF-α, IL-1β, IL-6, SOD, MDA and GSH in the brain tissue. Further study suggested that HGWD promoted microglia polarization towards M2 by inhibiting M1 activation (Iba1+/CD16+, iNOS) and enhancing M2 activation (Iba1+/CD206+, Arg-1). Additionally, HGWD increased dendritic spine density and enhanced levels of synapse marker proteins (PSD95, Synapsin I). HGWD also up-regulated Sirt1 expression while inhibited p-NF-κB, NLRP3, ASC, and cleaved caspase-1 level in the hippocampus of MCAO rats. Sirt1 specific inhibitor EX527 notably weakened the neuroprotective efficacy of HGWD against cerebral ischemia, and significantly abolished its modulation on microglia polarization and synaptic plasticity in vivo. Collectively, our findings suggested that HGWD ameliorated neuronal injury in ischemic stroke by modulating M2 microglia polarization and synaptic plasticity, at least partially, via regulating Sirt1/NF-κB/NLRP3 pathway, further supporting HGWD as a potential therapy for neuroprotection after ischemic stroke.
Collapse
Affiliation(s)
- Zhijie Ou
- Department of Neurology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu, China
| | - Min Zhao
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Ying Xu
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yan Wu
- Department of Neurology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu, China
| | - Lina Qin
- Department of Neurology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu, China
| | - Li Fang
- Department of Neurology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu, China
| | - Hong Xu
- Department of Neurology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu, China
| | - Juping Chen
- Department of Neurology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu, China
| |
Collapse
|
22
|
Michailidou I, Fluiter K, Boziki M, Grigoriadis N, Baas F. Editorial: Complement in nervous system disease. Front Cell Neurosci 2023; 17:1268023. [PMID: 37614913 PMCID: PMC10442514 DOI: 10.3389/fncel.2023.1268023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Affiliation(s)
- Iliana Michailidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kees Fluiter
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
23
|
Magliozzi R, Howell OW, Calabrese M, Reynolds R. Meningeal inflammation as a driver of cortical grey matter pathology and clinical progression in multiple sclerosis. Nat Rev Neurol 2023:10.1038/s41582-023-00838-7. [PMID: 37400550 DOI: 10.1038/s41582-023-00838-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
Growing evidence from cerebrospinal fluid samples and post-mortem brain tissue from individuals with multiple sclerosis (MS) and rodent models indicates that the meninges have a key role in the inflammatory and neurodegenerative mechanisms underlying progressive MS pathology. The subarachnoid space and associated perivascular spaces between the membranes of the meninges are the access points for entry of lymphocytes, monocytes and macrophages into the brain parenchyma, and the main route for diffusion of inflammatory and cytotoxic molecules from the cerebrospinal fluid into the brain tissue. In addition, the meningeal spaces act as an exit route for CNS-derived antigens, immune cells and metabolites. A number of studies have demonstrated an association between chronic meningeal inflammation and a more severe clinical course of MS, suggesting that the build-up of immune cell aggregates in the meninges represents a rational target for therapeutic intervention. Therefore, understanding the precise cell and molecular mechanisms, timing and anatomical features involved in the compartmentalization of inflammation within the meningeal spaces in MS is vital. Here, we present a detailed review and discussion of the cellular, molecular and radiological evidence for a role of meningeal inflammation in MS, alongside the clinical and therapeutic implications.
Collapse
Affiliation(s)
- Roberta Magliozzi
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Owain W Howell
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
- Institute of Life Sciences, Swansea University, Swansea, UK
| | - Massimiliano Calabrese
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Richard Reynolds
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
24
|
Distéfano-Gagné F, Bitarafan S, Lacroix S, Gosselin D. Roles and regulation of microglia activity in multiple sclerosis: insights from animal models. Nat Rev Neurosci 2023:10.1038/s41583-023-00709-6. [PMID: 37268822 DOI: 10.1038/s41583-023-00709-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/04/2023]
Abstract
As resident macrophages of the CNS, microglia are critical immune effectors of inflammatory lesions and associated neural dysfunctions. In multiple sclerosis (MS) and its animal models, chronic microglial inflammatory activity damages myelin and disrupts axonal and synaptic activity. In contrast to these detrimental effects, the potent phagocytic and tissue-remodelling capabilities of microglia support critical endogenous repair mechanisms. Although these opposing capabilities have long been appreciated, a precise understanding of their underlying molecular effectors is only beginning to emerge. Here, we review recent advances in our understanding of the roles of microglia in animal models of MS and demyelinating lesions and the mechanisms that underlie their damaging and repairing activities. We also discuss how the structured organization and regulation of the genome enables complex transcriptional heterogeneity within the microglial cell population at demyelinating lesions.
Collapse
Affiliation(s)
- Félix Distéfano-Gagné
- Axe Neuroscience, Centre de Recherche du CHU de Québec - Université Laval, Québec, Québec, Canada
- Département de Médecine Moléculaire de la Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Sara Bitarafan
- Axe Neuroscience, Centre de Recherche du CHU de Québec - Université Laval, Québec, Québec, Canada
- Département de Médecine Moléculaire de la Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Steve Lacroix
- Axe Neuroscience, Centre de Recherche du CHU de Québec - Université Laval, Québec, Québec, Canada
- Département de Médecine Moléculaire de la Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - David Gosselin
- Axe Neuroscience, Centre de Recherche du CHU de Québec - Université Laval, Québec, Québec, Canada.
- Département de Médecine Moléculaire de la Faculté de Médecine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
25
|
Chung HY, Wickel J, Hahn N, Mein N, Schwarzbrunn M, Koch P, Ceanga M, Haselmann H, Baade-Büttner C, von Stackelberg N, Hempel N, Schmidl L, Groth M, Andreas N, Götze J, Coldewey SM, Bauer M, Mawrin C, Dargvainiene J, Leypoldt F, Steinke S, Wang ZQ, Hust M, Geis C. Microglia mediate neurocognitive deficits by eliminating C1q-tagged synapses in sepsis-associated encephalopathy. SCIENCE ADVANCES 2023; 9:eabq7806. [PMID: 37235660 DOI: 10.1126/sciadv.abq7806] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe and frequent complication of sepsis causing delirium, coma, and long-term cognitive dysfunction. We identified microglia and C1q complement activation in hippocampal autopsy tissue of patients with sepsis and increased C1q-mediated synaptic pruning in a murine polymicrobial sepsis model. Unbiased transcriptomics of hippocampal tissue and isolated microglia derived from septic mice revealed an involvement of the innate immune system, complement activation, and up-regulation of lysosomal pathways during SAE in parallel to neuronal and synaptic damage. Microglial engulfment of C1q-tagged synapses could be prevented by stereotactic intrahippocampal injection of a specific C1q-blocking antibody. Pharmacologically targeting microglia by PLX5622, a CSF1-R inhibitor, reduced C1q levels and the number of C1q-tagged synapses, protected from neuronal damage and synapse loss, and improved neurocognitive outcome. Thus, we identified complement-dependent synaptic pruning by microglia as a crucial pathomechanism for the development of neuronal defects during SAE.
Collapse
Affiliation(s)
- Ha-Yeun Chung
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
| | - Jonathan Wickel
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
| | - Nina Hahn
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
| | - Nils Mein
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Meike Schwarzbrunn
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Philipp Koch
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena 07745, Germany
| | - Mihai Ceanga
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Holger Haselmann
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Carolin Baade-Büttner
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Nikolai von Stackelberg
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Nina Hempel
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Lars Schmidl
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Marco Groth
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena 07745, Germany
| | - Nico Andreas
- Institute of Immunology, Jena University Hospital, Jena 07743, Germany
| | - Juliane Götze
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena 07747, Germany
- Septomics Research Center, Jena University Hospital, Jena 07745, Germany
| | - Sina M Coldewey
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena 07747, Germany
- Septomics Research Center, Jena University Hospital, Jena 07745, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena 07747, Germany
| | - Christian Mawrin
- Department of Neuropathology, University of Magdeburg, Magdeburg, Germany
- Section of Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07749, Germany
| | | | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry, UKSH, Kiel/Lübeck, Germany
- Department of Neurology, Christian-Albrechts University, Kiel 24105, Germany
| | - Stephan Steinke
- Department Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena 07745, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena 07745, Germany
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Michael Hust
- Department Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Christian Geis
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
| |
Collapse
|
26
|
Coutinho Costa VG, Araújo SES, Alves-Leon SV, Gomes FCA. Central nervous system demyelinating diseases: glial cells at the hub of pathology. Front Immunol 2023; 14:1135540. [PMID: 37261349 PMCID: PMC10227605 DOI: 10.3389/fimmu.2023.1135540] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
Inflammatory demyelinating diseases (IDDs) are among the main causes of inflammatory and neurodegenerative injury of the central nervous system (CNS) in young adult patients. Of these, multiple sclerosis (MS) is the most frequent and studied, as it affects about a million people in the USA alone. The understanding of the mechanisms underlying their pathology has been advancing, although there are still no highly effective disease-modifying treatments for the progressive symptoms and disability in the late stages of disease. Among these mechanisms, the action of glial cells upon lesion and regeneration has become a prominent research topic, helped not only by the discovery of glia as targets of autoantibodies, but also by their role on CNS homeostasis and neuroinflammation. In the present article, we discuss the participation of glial cells in IDDs, as well as their association with demyelination and synaptic dysfunction throughout the course of the disease and in experimental models, with a focus on MS phenotypes. Further, we discuss the involvement of microglia and astrocytes in lesion formation and organization, remyelination, synaptic induction and pruning through different signaling pathways. We argue that evidence of the several glia-mediated mechanisms in the course of CNS demyelinating diseases supports glial cells as viable targets for therapy development.
Collapse
Affiliation(s)
| | - Sheila Espírito-Santo Araújo
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Soniza Vieira Alves-Leon
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
27
|
Wen L, Yang X, Wu Z, Fu S, Zhan Y, Chen Z, Bi D, Shen Y. The complement inhibitor CD59 is required for GABAergic synaptic transmission in the dentate gyrus. Cell Rep 2023; 42:112349. [PMID: 37027303 DOI: 10.1016/j.celrep.2023.112349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Complement-dependent microglia pruning of excitatory synapses has been widely reported in physiological and pathological conditions, with few reports concerning pruning of inhibitory synapses or direct regulation of synaptic transmission by complement components. Here, we report that loss of CD59, an important endogenous inhibitor of the complement system, leads to compromised spatial memory performance. Furthermore, CD59 deficiency impairs GABAergic synaptic transmission in the hippocampal dentate gyrus (DG). This depends on regulation of GABA release triggered by Ca2+ influx through voltage-gated calcium channels (VGCCs) rather than inhibitory synaptic pruning by microglia. Notably, CD59 colocalizes with inhibitory pre-synaptic terminals and regulates SNARE complex assembly. Together, these results demonstrate that the complement regulator CD59 plays an important role in normal hippocampal function.
Collapse
Affiliation(s)
- Lang Wen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoli Yang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zujun Wu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Shumei Fu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yaxi Zhan
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zuolong Chen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215000, China
| | - Danlei Bi
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yong Shen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
28
|
Davé VA, Klein RS. The multitaskers of the brain: Glial responses to viral infections and associated post-infectious neurologic sequelae. Glia 2023; 71:803-818. [PMID: 36334073 PMCID: PMC9931640 DOI: 10.1002/glia.24294] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022]
Abstract
Many viral infections cause acute and chronic neurologic diseases which can lead to degeneration of cortical functions. While neurotropic viruses that gain access to the central nervous system (CNS) may induce brain injury directly via infection of neurons or their supporting cells, they also alter brain function via indirect neuroimmune mechanisms that may disrupt the blood-brain barrier (BBB), eliminate synapses, and generate neurotoxic astrocytes and microglia that prevent recovery of neuronal circuits. Non-neuroinvasive, neurovirulent viruses may also trigger aberrant responses in glial cells, including those that interfere with motor and sensory behaviors, encoding of memories and executive function. Increasing evidence from human and animal studies indicate that neuroprotective antiviral responses that amplify levels of innate immune molecules dysregulate normal neuroimmune processes, even in the absence of neuroinvasion, which may persist after virus is cleared. In this review, we discuss how select emerging and re-emerging RNA viruses induce neuroimmunologic responses that lead to dysfunction of higher order processes including visuospatial recognition, learning and memory, and motor control. Identifying therapeutic targets that return the neuroimmune system to homeostasis is critical for preventing virus-induced neurodegenerative disorders.
Collapse
Affiliation(s)
- Veronica A Davé
- Center for Neuroimmunology & Neuroinfectious Diseases, Departments of Medicine, Pathology & Immunology, Neurosciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robyn S Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Departments of Medicine, Pathology & Immunology, Neurosciences, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
29
|
Dadashkhan S, Mirmotalebisohi SA, Poursheykhi H, Sameni M, Ghani S, Abbasi M, Kalantari S, Zali H. Deciphering crucial genes in multiple sclerosis pathogenesis and drug repurposing: A systems biology approach. J Proteomics 2023; 280:104890. [PMID: 36966969 DOI: 10.1016/j.jprot.2023.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 04/10/2023]
Abstract
This study employed systems biology and high-throughput technologies to analyze complex molecular components of MS pathophysiology, combining data from multiple omics sources to identify potential biomarkers and propose therapeutic targets and repurposed drugs for MS treatment. This study analyzed GEO microarray datasets and MS proteomics data using geWorkbench, CTD, and COREMINE to identify differentially expressed genes associated with MS disease. Protein-protein interaction networks were constructed using Cytoscape and its plugins, and functional enrichment analysis was performed to identify crucial molecules. A drug-gene interaction network was also created using DGIdb to propose medications. This study identified 592 differentially expressed genes (DEGs) associated with MS disease using GEO, proteomics, and text-mining datasets. 37 DEGs were found to be important by topographical network studies, and 6 were identified as the most significant for MS pathophysiology. Additionally, we proposed six drugs that target these key genes. Crucial molecules identified in this study were dysregulated in MS and likely play a key role in the disease mechanism, warranting further research. Additionally, we proposed repurposing certain FDA-approved drugs for MS treatment. Our in silico results were supported by previous experimental research on some of the target genes and drugs. SIGNIFICANCE: As the long-lasting investigations continue to discover new pathological territories in neurodegeneration, here we apply a systems biology approach to determine multiple sclerosis's molecular and pathophysiological origin and identify multiple sclerosis crucial genes that contribute to candidating new biomarkers and proposing new medications.
Collapse
Affiliation(s)
- Sadaf Dadashkhan
- Molecular Medicine Research Centre, Universitätsklinikum Jena, Jena, Germany; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Poursheykhi
- Department of New Scientist, Faculty of Medical Sciences, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Sameni
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Ghani
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sima Kalantari
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Wang J, Chen HS, Li HH, Wang HJ, Zou RS, Lu XJ, Wang J, Nie BB, Wu JF, Li S, Shan BC, Wu PF, Long LH, Hu ZL, Chen JG, Wang F. Microglia-dependent excessive synaptic pruning leads to cortical underconnectivity and behavioral abnormality following chronic social defeat stress in mice. Brain Behav Immun 2023; 109:23-36. [PMID: 36581303 DOI: 10.1016/j.bbi.2022.12.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Synapse loss in medial prefrontal cortex (mPFC) has been implicated in stress-related mood disorders, such as depression. However, the exact effect of synapse elimination in the depression and how it is triggered are largely unknown. Through repeated longitudinal imaging of mPFC in the living brain, we found both presynaptic and postsynaptic components were declined, together with the impairment of synapse remodeling and cross-synaptic signal transmission in the mPFC during chronic stress. Meanwhile, chronic stress also induced excessive microglia phagocytosis, leading to engulfment of excitatory synapses. Further investigation revealed that the elevated complement C3 during the stress acted as the tag of synapses to be eliminated by microglia. Besides, chronic stress induced a reduction of the connectivity between the mPFC and neighbor regions. C3 knockout mice displayed significant reduction of synaptic pruning and alleviation of disrupted functional connectivity in mPFC, resulting in more resilience to chronic stress. These results indicate that complement-mediated excessive microglia phagocytosis in adulthood induces synaptic dysfunction and cortical hypo-connectivity, leading to stress-related behavioral abnormality.
Collapse
Affiliation(s)
- Ji Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Hong-Sheng Chen
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Hou-Hong Li
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Hua-Jie Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Ruo-Si Zou
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Xiao-Jia Lu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin-Bin Nie
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Feng Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao-Ci Shan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Fei Wu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Li-Hong Long
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Zhuang-Li Hu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Jian-Guo Chen
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Fang Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, 430030 Wuhan, China.
| |
Collapse
|
31
|
Hirose S, Wang S, Jaggi U, Matundan HH, Kato M, Song XY, Molesworth-Kenyon SJ, Lausch RN, Ghiasi H. IL-17A expression by both T cells and non-T cells contribute to HSV-IL-2-induced CNS demyelination. Front Immunol 2023; 14:1102486. [PMID: 36817487 PMCID: PMC9931899 DOI: 10.3389/fimmu.2023.1102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Previously we reported that a recombinant HSV-1 expressing murine IL-2 (HSV-IL-2) causes CNS demyelination in different strains of mice and in a T cell-dependent manner. Since TH17 cells have been implicated in CNS pathology, in the present study, we looked into the effects of IL-17A-/- and three of its receptors on HSV-IL-2-induced CNS demyelination. IL-17A-/- mice did not develop CNS demyelination, while IL-17RA-/-, IL-17RC-/-, IL-17RD-/- and IL-17RA-/-RC-/- mice developed CNS demyelination. Adoptive transfer of T cells from wild-type (WT) mice to IL-17A-/- mice or T cells from IL-17A-/- mice to Rag-/- mice induced CNS demyelination in infected mice. Adoptive T cell experiments suggest that both T cells and non-T cells expressing IL-17A contribute to HSV-IL-2-induced CNS demyelination with no difference in the severity of demyelination between the two groups of IL-17A producing cells. IL-6, IL-10, or TGFβ did not contribute to CNS demyelination in infected mice. Transcriptome analysis between IL-17A-/- brain and spinal cord of infected mice with and without T cell transfer from WT mice revealed that "neuron projection extension involved in neuron projection guidance" and "ensheathment of neurons" pathways were associated with CNS demyelination. Collectively, the results indicate the importance of IL-17A in CNS demyelination and the possible involvement of more than three of IL-17 receptors in CNS demyelination.
Collapse
Affiliation(s)
- Satoshi Hirose
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Shaohui Wang
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ujjaldeep Jaggi
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Harry H. Matundan
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mihoko Kato
- Department of Biology, Pomona College, Claremont, CA, United States
| | - Xue-Ying Song
- Applied Genomics, Computation, and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | | - Robert N. Lausch
- Department of Microbiology and Immunology, University of South Alabama, College of Medicine, Mobile, Al, United States
| | - Homayon Ghiasi
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
32
|
Schwarz K, Schmitz F. Synapse Dysfunctions in Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24021639. [PMID: 36675155 PMCID: PMC9862173 DOI: 10.3390/ijms24021639] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system (CNS) affecting nearly three million humans worldwide. In MS, cells of an auto-reactive immune system invade the brain and cause neuroinflammation. Neuroinflammation triggers a complex, multi-faceted harmful process not only in the white matter but also in the grey matter of the brain. In the grey matter, neuroinflammation causes synapse dysfunctions. Synapse dysfunctions in MS occur early and independent from white matter demyelination and are likely correlates of cognitive and mental symptoms in MS. Disturbed synapse/glia interactions and elevated neuroinflammatory signals play a central role. Glutamatergic excitotoxic synapse damage emerges as a major mechanism. We review synapse/glia communication under normal conditions and summarize how this communication becomes malfunctional during neuroinflammation in MS. We discuss mechanisms of how disturbed glia/synapse communication can lead to synapse dysfunctions, signaling dysbalance, and neurodegeneration in MS.
Collapse
|
33
|
Espírito-Santo S, Coutinho V, Alcantara Gomes F. Synaptic pathology in multiple sclerosis: a role for Nogo-A signaling in astrocytes? Neural Regen Res 2023; 18:127-128. [PMID: 35799527 PMCID: PMC9241403 DOI: 10.4103/1673-5374.340407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
34
|
Evans R, Watkins LM, Hawkins K, Santiago G, Demetriou C, Naughton M, Dittmer M, Rees MI, Fitzgerald D, Morgan BP, Neal JW, Howell OW. Complement activation and increased anaphylatoxin receptor expression are associated with cortical grey matter lesions and the compartmentalised inflammatory response of multiple sclerosis. Front Cell Neurosci 2023; 17:1094106. [PMID: 37032838 PMCID: PMC10073739 DOI: 10.3389/fncel.2023.1094106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/07/2023] [Indexed: 04/11/2023] Open
Abstract
Background The extent of cortical pathology is an important determinant of multiple sclerosis (MS) severity. Cortical demyelination and neurodegeneration are related to inflammation of the overlying leptomeninges, a more inflammatory CSF milieu and with parenchymal microglia and astroglia activation. These are all components of the compartmentalised inflammatory response. Compartmentalised inflammation is a feature of progressive MS, which is not targeted by disease modifying therapies. Complement is differentially expressed in the MS CSF and complement, and complement receptors, are associated with demyelination and neurodegeneration. Methods To better understand if complement activation in the leptomeninges is associated with underlying cortical demyelination, inflammation, and microglial activation, we performed a neuropathological study of progressive MS (n = 22, 14 females), neuroinflammatory (n = 8), and non-neurological disease controls (n = 10). We then quantified the relative extent of demyelination, connective tissue inflammation, complement, and complement receptor positive microglia/macrophages. Results Complement was elevated at the leptomeninges, subpial, and within and around vessels of the cortical grey matter. The extent of complement C1q immunoreactivity correlated with connective tissue infiltrates, whilst activation products C4d, Bb, and C3b associated with grey matter demyelination, and C3a receptor 1+ and C5a receptor 1+ microglia/macrophages closely apposed C3b labelled cells. The density of C3a receptor 1+ and C5a receptor 1+ cells was increased at the expanding edge of subpial and leukocortical lesions. C5a receptor 1+ cells expressed TNFα, iNOS and contained puncta immunoreactive for proteolipid protein, neurofilament and synaptophysin, suggesting their involvement in grey matter lesion expansion. Interpretation The presence of products of complement activation at the brain surfaces, their association with the extent of underlying pathology and increased complement anaphylatoxin receptor positive microglia/macrophages at expanding cortical grey matter lesions, could represent a target to modify compartmentalised inflammation and cortical demyelination.
Collapse
Affiliation(s)
- Rhian Evans
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Lewis M. Watkins
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Kristen Hawkins
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Gabriella Santiago
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Constantinos Demetriou
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Michelle Naughton
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Marie Dittmer
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Mark I. Rees
- Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| | - Denise Fitzgerald
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - B. Paul Morgan
- School of Medicine, UK Dementia Research Institute Cardiff and Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - James W. Neal
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
| | - Owain W. Howell
- Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea, United Kingdom
- *Correspondence: Owain W. Howell,
| |
Collapse
|
35
|
Mey GM, Mahajan KR, DeSilva TM. Neurodegeneration in multiple sclerosis. WIREs Mech Dis 2023; 15:e1583. [PMID: 35948371 PMCID: PMC9839517 DOI: 10.1002/wsbm.1583] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 01/31/2023]
Abstract
Axonal loss in multiple sclerosis (MS) is a key component of disease progression and permanent neurologic disability. MS is a heterogeneous demyelinating and neurodegenerative disease of the central nervous system (CNS) with varying presentation, disease courses, and prognosis. Immunomodulatory therapies reduce the frequency and severity of inflammatory demyelinating events that are a hallmark of MS, but there is minimal therapy to treat progressive disease and there is no cure. Data from patients with MS, post-mortem histological analysis, and animal models of demyelinating disease have elucidated patterns of MS pathogenesis and underlying mechanisms of neurodegeneration. MRI and molecular biomarkers have been proposed to identify predictors of neurodegeneration and risk factors for disease progression. Early signs of axonal dysfunction have come to light including impaired mitochondrial trafficking, structural axonal changes, and synaptic alterations. With sustained inflammation as well as impaired remyelination, axons succumb to degeneration contributing to CNS atrophy and worsening of disease. These studies highlight the role of chronic demyelination in the CNS in perpetuating axonal loss, and the difficulty in promoting remyelination and repair amidst persistent inflammatory insult. Regenerative and neuroprotective strategies are essential to overcome this barrier, with early intervention being critical to rescue axonal integrity and function. The clinical and basic research studies discussed in this review have set the stage for identifying key propagators of neurodegeneration in MS, leading the way for neuroprotective therapeutic development. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Gabrielle M. Mey
- Department of NeurosciencesLerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve UniversityClevelandOhioUSA
| | - Kedar R. Mahajan
- Department of NeurosciencesLerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve UniversityClevelandOhioUSA
- Mellen Center for MS Treatment and ResearchNeurological Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Tara M. DeSilva
- Department of NeurosciencesLerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
36
|
Zhang W, Chen Y, Pei H. C1q and central nervous system disorders. Front Immunol 2023; 14:1145649. [PMID: 37033981 PMCID: PMC10076750 DOI: 10.3389/fimmu.2023.1145649] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
C1q is a crucial component of the complement system, which is activated through the classical pathway to perform non-specific immune functions, serving as the first line of defense against pathogens. C1q can also bind to specific receptors to carry out immune and other functions, playing a vital role in maintaining immune homeostasis and normal physiological functions. In the developing central nervous system (CNS), C1q functions in synapse formation and pruning, serving as a key player in the development and homeostasis of neuronal networks in the CNS. C1q has a close relationship with microglia and astrocytes, and under their influence, C1q may contribute to the development of CNS disorders. Furthermore, C1q can also have independent effects on neurological disorders, producing either beneficial or detrimental outcomes. Most of the evidence for these functions comes from animal models, with some also from human specimen studies. C1q is now emerging as a promising target for the treatment of a variety of diseases, and clinical trials are already underway for CNS disorders. This article highlights the role of C1q in CNS diseases, offering new directions for the diagnosis and treatment of these conditions.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Emergency Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of General Practice, Xingyang Sishui Central Health Center, Zhengzhou, China
| | - Yuan Chen
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Pei
- Department of Emergency Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Hui Pei,
| |
Collapse
|
37
|
De Vito F, Balletta S, Caioli S, Musella A, Guadalupi L, Vanni V, Fresegna D, Bassi MS, Gilio L, Sanna K, Gentile A, Bruno A, Dolcetti E, Buttari F, Pavone L, Furlan R, Finardi A, Perlas E, Hornstein E, Centonze D, Mandolesi G. MiR-142-3p is a Critical Modulator of TNF-mediated Neuronal Toxicity in Multiple Sclerosis. Curr Neuropharmacol 2023; 21:2567-2582. [PMID: 37021418 PMCID: PMC10616916 DOI: 10.2174/1570159x21666230404103914] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND TNF-dependent synaptotoxicity contributes to the neuronal damage occurring in patients with Multiple Sclerosis (pwMS) and its mouse model Experimental Autoimmune Encephalomyelitis (EAE). Here, we investigated miR-142-3p, a synaptotoxic microRNA induced by inflammation in EAE and MS, as a potential downstream effector of TNF signalling. METHODS Electrophysiological recordings, supported by molecular, biochemical and histochemical analyses, were performed to explore TNF-synaptotoxicity in the striatum of EAE and healthy mice. MiR-142 heterozygous (miR-142 HE) mice and/or LNA-anti miR-142-3p strategy were used to verify the TNF-miR-142-3p axis hypothesis. The cerebrospinal fluid (CSF) of 151 pwMS was analysed to evaluate possible correlation between TNF and miR-142-3p levels and their impact on clinical parameters (e.g. progression index (PI), age-related clinical severity (gARMSS)) and MRI measurements at diagnosis (T0). RESULTS High levels of TNF and miR-142-3p were detected in both EAE striatum and MS-CSF. The TNF-dependent glutamatergic alterations were prevented in the inflamed striatum of EAE miR-142 HE mice. Accordingly, TNF was ineffective in healthy striatal slices incubated with LNA-anti miR- 142-3p. However, both preclinical and clinical data did not validate the TNF-miR-142-3p axis hypothesis, suggesting a permissive neuronal role of miR-142-3p on TNF-signalling. Clinical data showed a negative impact of each molecule on disease course and/or brain lesions and unveiled that their high levels exert a detrimental synergistic effect on disease activity, PI and white matter lesion volume. CONCLUSION We propose miR-142-3p as a critical modulator of TNF-mediated neuronal toxicity and suggest a detrimental synergistic action of these molecules on MS pathology.
Collapse
Affiliation(s)
| | - Sara Balletta
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Silvia Caioli
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion University of Rome San Raffaele, Rome, Italy
| | - Livia Guadalupi
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | | | - Luana Gilio
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Krizia Sanna
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | | | - Antonio Bruno
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ettore Dolcetti
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Luigi Pavone
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Roberto Furlan
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Finardi
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Emerald Perlas
- Mouse Biology Unit, European Molecular Biology Laboratory, Monterotondo Scalo, Rome, Italy
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Diego Centonze
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion University of Rome San Raffaele, Rome, Italy
| |
Collapse
|
38
|
Piskorowski RA, Chevaleyre V. Hippocampal area CA2: interneuron disfunction during pathological states. Front Neural Circuits 2023; 17:1181032. [PMID: 37180763 PMCID: PMC10174260 DOI: 10.3389/fncir.2023.1181032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Hippocampal area CA2 plays a critical role in social recognition memory and has unique cellular and molecular properties that distinguish it from areas CA1 and CA3. In addition to having a particularly high density of interneurons, the inhibitory transmission in this region displays two distinct forms of long-term synaptic plasticity. Early studies on human hippocampal tissue have reported unique alteration in area CA2 with several pathologies and psychiatric disorders. In this review, we present recent studies revealing changes in inhibitory transmission and plasticity of area CA2 in mouse models of multiple sclerosis, autism spectrum disorder, Alzheimer's disease, schizophrenia and the 22q11.2 deletion syndrome and propose how these changes could underly deficits in social cognition observed during these pathologies.
Collapse
Affiliation(s)
- Rebecca A. Piskorowski
- Université Paris Cité, INSERM UMRS 1266, Institute of Psychiatry and Neuroscience of Paris, GHU Paris Psychiatrie et Neurosciences, Paris, France
- Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR 8246, INSERM U1130, Sorbonne Université, Paris, France
- *Correspondence: Rebecca A. Piskorowski,
| | - Vivien Chevaleyre
- Université Paris Cité, INSERM UMRS 1266, Institute of Psychiatry and Neuroscience of Paris, GHU Paris Psychiatrie et Neurosciences, Paris, France
- Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR 8246, INSERM U1130, Sorbonne Université, Paris, France
| |
Collapse
|
39
|
Transcriptome Profiling in the Hippocampi of Mice with Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2022; 23:ijms232314829. [PMID: 36499161 PMCID: PMC9738199 DOI: 10.3390/ijms232314829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), approximates the key histopathological, clinical, and immunological features of MS. Hippocampal dysfunction in MS and EAE causes varying degrees of cognitive and emotional impairments and synaptic abnormalities. However, the molecular alterations underlying hippocampal dysfunctions in MS and EAE are still under investigation. The purpose of this study was to identify differentially expressed genes (DEGs) in the hippocampus of mice with EAE in order to ascertain potential genes associated with hippocampal dysfunction. Gene expression in the hippocampus was analyzed by RNA-sequencing and validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Gene expression analysis revealed 1202 DEGs; 1023 were upregulated and 179 were downregulated in the hippocampus of mice with EAE (p-value < 0.05 and fold change >1.5). Gene ontology (GO) analysis showed that the upregulated genes in the hippocampi of mice with EAE were associated with immune system processes, defense responses, immune responses, and regulation of immune responses, whereas the downregulated genes were related to learning or memory, behavior, and nervous system processes in the GO biological process. The expressions of hub genes from the search tool for the retrieval of interacting genes/proteins (STRING) analysis were validated by RT-qPCR. Additionally, gene set enrichment analysis showed that the upregulated genes in the hippocampus were associated with inflammatory responses: interferon-γ responses, allograft rejection, interferon-α responses, IL6_JAK_STAT3 signaling, inflammatory responses, complement, IL2_STAT5 signaling, TNF-α signaling via NF-κB, and apoptosis, whereas the downregulated genes were related to synaptic plasticity, dendritic development, and development of dendritic spine. This study characterized the transcriptome pattern in the hippocampi of mice with EAE and signaling pathways underpinning hippocampal dysfunction. However, further investigation is needed to determine the applicability of these findings from this rodent model to patients with MS. Collectively, these results indicate directions for further research to understand the mechanisms behind hippocampal dysfunction in EAE.
Collapse
|
40
|
Voskuhl RR, MacKenzie-Graham A. Chronic experimental autoimmune encephalomyelitis is an excellent model to study neuroaxonal degeneration in multiple sclerosis. Front Mol Neurosci 2022; 15:1024058. [PMID: 36340686 PMCID: PMC9629273 DOI: 10.3389/fnmol.2022.1024058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/30/2022] [Indexed: 08/19/2023] Open
Abstract
Animal models of multiple sclerosis (MS), specifically experimental autoimmune encephalomyelitis (EAE), have been used extensively to develop anti-inflammatory treatments. However, the similarity between MS and one particular EAE model does not end at inflammation. MS and chronic EAE induced in C57BL/6 mice using myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 share many neuropathologies. Beyond both having white matter lesions in spinal cord, both also have widespread neuropathology in the cerebral cortex, hippocampus, thalamus, striatum, cerebellum, and retina/optic nerve. In this review, we compare neuropathologies in each of these structures in MS with chronic EAE in C57BL/6 mice, and find evidence that this EAE model is well suited to study neuroaxonal degeneration in MS.
Collapse
Affiliation(s)
- Rhonda R. Voskuhl
- UCLA MS Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | |
Collapse
|
41
|
Saez-Calveras N, Brewster AL, Stuve O. The validity of animal models to explore the pathogenic role of the complement system in multiple sclerosis: A review. Front Mol Neurosci 2022; 15:1017484. [PMID: 36311030 PMCID: PMC9606595 DOI: 10.3389/fnmol.2022.1017484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Animal models of multiple sclerosis (MS) have been extensively used to characterize the disease mechanisms in MS, as well as to identify potential pharmacologic targets for this condition. In recent years, the immune complement system has gained increased attention as an important effector in the pathogenesis of MS. Evidence from histological, serum, and CSF studies of patients supports an involvement of complement in both relapsing-remitting and progressive MS. In this review, we discuss the history and advances made on the use of MS animal models to profile the effects of the complement system in this condition. The first studies that explored the complement system in the context of MS used cobra venom factor (CVF) as a complement depleting agent in experimental autoimmune encephalomyelitis (EAE) Lewis rats. Since then, multiple mice and rat models of MS have revealed a role of C3 and the alternative complement cascade in the opsonization and phagocytosis of myelin by microglia and myeloid cells. Studies using viral vectors, genetic knockouts and pharmacologic complement inhibitors have also shown an effect of complement in synaptic loss. Antibody-mediated EAE models have revealed an involvement of the C1 complex and the classical complement as an effector of the humoral response in this disease. C1q itself may also be involved in modulating microglia activation and oligodendrocyte differentiation in these animals. In addition, animal and in vitro models have revealed that multiple complement factors may act as modulators of both the innate and adaptive immune responses. Finally, evidence gathered from mice models suggests that the membrane attack complex (MAC) may even exert protective roles in the chronic stages of EAE. Overall, this review summarizes the importance of MS animal models to better characterize the role of the complement system and guide future therapeutic approaches in this condition.
Collapse
Affiliation(s)
- Nil Saez-Calveras
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, Parkland Hospital, Dallas, TX, United States
| | - Amy L. Brewster
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, VA North Texas Health Care System, Dallas, TX, United States
- Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Olaf Stuve,
| |
Collapse
|
42
|
Huiskamp M, Kiljan S, Kulik S, Witte ME, Jonkman LE, Gjm Bol J, Schenk GJ, Hulst HE, Tewarie P, Schoonheim MM, Geurts JJ. Inhibitory synaptic loss drives network changes in multiple sclerosis: An ex vivo to in silico translational study. Mult Scler 2022; 28:2010-2019. [PMID: 36189828 PMCID: PMC9574900 DOI: 10.1177/13524585221125381] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background: Synaptic and neuronal loss contribute to network dysfunction and disability
in multiple sclerosis (MS). However, it is unknown whether excitatory or
inhibitory synapses and neurons are more vulnerable and how their losses
impact network functioning. Objective: To quantify excitatory and inhibitory synapses and neurons and to investigate
how synaptic loss affects network functioning through computational
modeling. Methods: Using immunofluorescent staining and confocal microscopy, densities of
glutamatergic and GABAergic synapses and neurons were compared between
post-mortem MS and non-neurological control cases. Then, a corticothalamic
biophysical model was employed to study how MS-induced excitatory and
inhibitory synaptic loss affect network functioning. Results: In layer VI of normal-appearing MS cortex, excitatory and inhibitory synaptic
densities were significantly lower than controls (reductions up to 14.9%),
but demyelinated cortex showed larger losses of inhibitory synapses (29%).
In our computational model, reducing inhibitory synapses impacted the
network most, leading to a disinhibitory increase in neuronal activity and
connectivity. Conclusion: In MS, excitatory and inhibitory synaptic losses were observed, predominantly
for inhibitory synapses in demyelinated cortex. Inhibitory synaptic loss
affected network functioning most, leading to increased neuronal activity
and connectivity. As network disinhibition relates to cognitive impairment,
inhibitory synaptic loss seems particularly relevant in MS.
Collapse
Affiliation(s)
- Marijn Huiskamp
- Anatomy and Neurosciences, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Svenja Kiljan
- Anatomy and Neurosciences, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Shanna Kulik
- Anatomy and Neurosciences, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Maarteen E Witte
- Molecular Cell Biology and Inflammation, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Anatomy and Neurosciences, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - John Gjm Bol
- Anatomy and Neurosciences, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Geert J Schenk
- Anatomy and Neurosciences, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Hanneke E Hulst
- Anatomy and Neurosciences, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands/Health, Medical and Neuropsychology Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Prejaas Tewarie
- Neurology, MS center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands/Clinical Neurophysiology and MEG Center, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Menno M Schoonheim
- Anatomy and Neurosciences, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Jeroen Jg Geurts
- Anatomy and Neurosciences, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Saez-Calveras N, Stuve O. The role of the complement system in Multiple Sclerosis: A review. Front Immunol 2022; 13:970486. [PMID: 36032156 PMCID: PMC9399629 DOI: 10.3389/fimmu.2022.970486] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
The complement system has been involved in the pathogenesis of multiple neuroinflammatory and neurodegenerative conditions. In this review, we evaluated the possible role of complement activation in multiple sclerosis (MS) with a focus in progressive MS, where the disease pathogenesis remains to be fully elucidated and treatment options are limited. The evidence for the involvement of the complement system in the white matter plaques and gray matter lesions of MS stems from immunohistochemical analysis of post-mortem MS brains, in vivo serum and cerebrospinal fluid biomarker studies, and animal models of Experimental Autoimmune Encephalomyelitis (EAE). Complement knock-out studies in these animal models have revealed that this system may have a “double-edge sword” effect in MS. On the one hand, complement proteins may aid in promoting the clearance of myelin degradation products and other debris through myeloid cell-mediated phagocytosis. On the other, its aberrant activation may lead to demyelination at the rim of progressive MS white matter lesions as well as synapse loss in the gray matter. The complement system may also interact with known risk factors of MS, including as Epstein Barr Virus (EBV) infection, and perpetuate the activation of CNS self-reactive B cell populations. With the mounting evidence for the involvement of complement in MS, the development of complement modulating therapies for this condition is appealing. Herein, we also reviewed the pharmacological complement inhibitors that have been tested in MS animal models as well as in clinical trials for other neurologic diseases. The potential use of these agents, such as the C5-binding antibody eculizumab in MS will require a detailed understanding of the role of the different complement effectors in this disease and the development of better CNS delivery strategies for these compounds.
Collapse
Affiliation(s)
- Nil Saez-Calveras
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, Veterans Affairs (VA) North Texas Health Care System, Dallas, TX, United States
- *Correspondence: Olaf Stuve,
| |
Collapse
|
44
|
Liu Q, Huang Y, Duan M, Yang Q, Ren B, Tang F. Microglia as Therapeutic Target for Radiation-Induced Brain Injury. Int J Mol Sci 2022; 23:8286. [PMID: 35955439 PMCID: PMC9368164 DOI: 10.3390/ijms23158286] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Radiation-induced brain injury (RIBI) after radiotherapy has become an increasingly important factor affecting the prognosis of patients with head and neck tumor. With the delivery of high doses of radiation to brain tissue, microglia rapidly transit to a pro-inflammatory phenotype, upregulate phagocytic machinery, and reduce the release of neurotrophic factors. Persistently activated microglia mediate the progression of chronic neuroinflammation, which may inhibit brain neurogenesis leading to the occurrence of neurocognitive disorders at the advanced stage of RIBI. Fully understanding the microglial pathophysiology and cellular and molecular mechanisms after irradiation may facilitate the development of novel therapy by targeting microglia to prevent RIBI and subsequent neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qun Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Yan Huang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Mengyun Duan
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Qun Yang
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Boxu Ren
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
45
|
Li C, Wang Y, Xing Y, Han J, Zhang Y, Zhang A, Hu J, Hua Y, Bai Y. Regulation of microglia phagocytosis and potential involvement of exercise. Front Cell Neurosci 2022; 16:953534. [PMID: 35959472 PMCID: PMC9357882 DOI: 10.3389/fncel.2022.953534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/29/2022] [Indexed: 12/11/2022] Open
Abstract
Microglia are considered the main phagocytic cells in the central nervous system, remodeling neural circuits by pruning synapses during development. Microglial phagocytosis is also a crucial process in maintaining adult brain homeostasis and clearing potential toxic factors, which are recognized to be associated with neurodegenerative and neuroinflammatory disorders. For example, microglia can engulf amyloid-β plaques, myelin debris, apoptotic cells, and extracellular harmful substances by expressing a variety of specific receptors on the cell surface or by reprogramming intracellular glucose and lipid metabolism processes. Furthermore, physical exercise has been implicated to be one of the non-pharmaceutical treatments for various nervous system diseases, which is closely related to neuroplasticity and microglia functions including proliferation, activation, and phagocytosis. This review focuses on the central regulatory mechanisms related to microglia phagocytosis and the potential role of exercise training in this process.
Collapse
Affiliation(s)
- Congqin Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong Wang
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, China
| | - Ying Xing
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Han
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yuqian Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Anjing Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yulong Bai
| |
Collapse
|
46
|
Zuo M, Fettig NM, Bernier LP, Pössnecker E, Spring S, Pu A, Ma XI, Lee DS, Ward LA, Sharma A, Kuhle J, Sled JG, Pröbstel AK, MacVicar BA, Osborne LC, Gommerman JL, Ramaglia V. Age-dependent gray matter demyelination is associated with leptomeningeal neutrophil accumulation. JCI Insight 2022; 7:e158144. [PMID: 35536649 PMCID: PMC9309059 DOI: 10.1172/jci.insight.158144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
People living with multiple sclerosis (MS) experience episodic CNS white matter lesions instigated by autoreactive T cells. With age, patients with MS show evidence of gray matter demyelination and experience devastating nonremitting symptomology. What drives progression is unclear and studying this has been hampered by the lack of suitable animal models. Here, we show that passive experimental autoimmune encephalomyelitis (EAE) induced by an adoptive transfer of young Th17 cells induced a nonremitting clinical phenotype that was associated with persistent leptomeningeal inflammation and cortical pathology in old, but not young, SJL/J mice. Although the quantity and quality of T cells did not differ in the brains of old versus young EAE mice, an increase in neutrophils and a decrease in B cells were observed in the brains of old mice. Neutrophils were also found in the leptomeninges of a subset of progressive MS patient brains that showed evidence of leptomeningeal inflammation and subpial cortical demyelination. Taken together, our data show that while Th17 cells initiate CNS inflammation, subsequent clinical symptoms and gray matter pathology are dictated by age and associated with other immune cells, such as neutrophils.
Collapse
Affiliation(s)
- Michelle Zuo
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Naomi M. Fettig
- Department of Microbiology and Immunology and Life Sciences Institute, and
| | - Louis-Philippe Bernier
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elisabeth Pössnecker
- Multiple Sclerosis Center & Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Neurology, Biomedicine, and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Shoshana Spring
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Annie Pu
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Xianjie I. Ma
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Dennis S.W. Lee
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Lesley A. Ward
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Anshu Sharma
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jens Kuhle
- Multiple Sclerosis Center & Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Neurology, Biomedicine, and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - John G. Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Katrin Pröbstel
- Multiple Sclerosis Center & Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Neurology, Biomedicine, and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Brian A. MacVicar
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa C. Osborne
- Department of Microbiology and Immunology and Life Sciences Institute, and
| | | | - Valeria Ramaglia
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Weerasinghe-Mudiyanselage PDE, Ang MJ, Kang S, Kim JS, Moon C. Structural Plasticity of the Hippocampus in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:3349. [PMID: 35328770 PMCID: PMC8955928 DOI: 10.3390/ijms23063349] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Neuroplasticity is the capacity of neural networks in the brain to alter through development and rearrangement. It can be classified as structural and functional plasticity. The hippocampus is more susceptible to neuroplasticity as compared to other brain regions. Structural modifications in the hippocampus underpin several neurodegenerative diseases that exhibit cognitive and emotional dysregulation. This article reviews the findings of several preclinical and clinical studies about the role of structural plasticity in the hippocampus in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In this study, literature was surveyed using Google Scholar, PubMed, Web of Science, and Scopus, to review the mechanisms that underlie the alterations in the structural plasticity of the hippocampus in neurodegenerative diseases. This review summarizes the role of structural plasticity in the hippocampus for the etiopathogenesis of neurodegenerative diseases and identifies the current focus and gaps in knowledge about hippocampal dysfunctions. Ultimately, this information will be useful to propel future mechanistic and therapeutic research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Poornima D. E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Mary Jasmin Ang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
- College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Philippines
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| |
Collapse
|
48
|
Ahmed SM, Fransen NL, Touil H, Michailidou I, Huitinga I, Gommerman JL, Bar-Or A, Ramaglia V. Accumulation of meningeal lymphocytes correlates with white matter lesion activity in progressive multiple sclerosis. JCI Insight 2022; 7:151683. [PMID: 35104246 PMCID: PMC8983127 DOI: 10.1172/jci.insight.151683] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Subpial cortical demyelination is an important component of multiple sclerosis (MS) pathology contributing to disease progression, yet mechanism(s) underlying its development remain unclear. Compartmentalized inflammation involving the meninges may drive this type of injury. Given recent findings identifying substantial white matter (WM) lesion activity in patients with progressive MS, elucidating whether and how WM lesional activity relates to meningeal inflammation and subpial cortical injury is of interest. Using postmortem FFPE tissue blocks (range, 5-72 blocks; median, 30 blocks) for each of 27 patients with progressive MS, we assessed the relationship between meningeal inflammation, the extent of subpial cortical demyelination, and the state of subcortical WM lesional activity. Meningeal accumulations of T cells and B cells, but not myeloid cells, were spatially adjacent to subpial cortical lesions, and greater immune cell accumulation was associated with larger subpial lesion areas. Patients with a higher extent of meningeal inflammation harbored a greater proportion of active and mixed active/inactive WM lesions and an overall lower proportion of inactive and remyelinated WM lesions. Our findings support the involvement of meningeal lymphocytes in subpial cortical injury and point to a potential link between inflammatory subpial cortical demyelination and pathological mechanisms occurring in the subcortical WM.
Collapse
Affiliation(s)
- Shanzeh M. Ahmed
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Nina L. Fransen
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Meibergdreef, Amsterdam, Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hanane Touil
- Department of Neurology and Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Iliana Michailidou
- Department of Clinical Genetics, Leiden University Medical Center, Einthovenweg, Leiden, Netherlands
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Meibergdreef, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | | | - Amit Bar-Or
- Department of Neurology and Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Valeria Ramaglia
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Bebo BF, Allegretta M, Landsman D, Zackowski KM, Brabazon F, Kostich WA, Coetzee T, Ng AV, Marrie RA, Monk KR, Bar-Or A, Whitacre CC. Pathways to cures for multiple sclerosis: A research roadmap. Mult Scler 2022; 28:331-345. [PMID: 35236198 PMCID: PMC8948371 DOI: 10.1177/13524585221075990] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Multiple Sclerosis (MS) is a growing global health challenge affecting nearly 3 million people. Progress has been made in the understanding and treatment of MS over the last several decades, but cures remain elusive. The National MS Society is focused on achieving cures for MS. Objectives: Cures for MS will be hastened by having a roadmap that describes knowledge gaps, milestones, and research priorities. In this report, we share the Pathways to Cures Research Roadmap and recommendations for strategies to accelerate the development of MS cures. Methods: The Roadmap was developed through engagement of scientific thought leaders and people affected by MS from North America and the United Kingdom. It also included the perspectives of over 300 people living with MS and was endorsed by many leading MS organizations. Results: The Roadmap consist of three distinct but overlapping cure pathways: (1) stopping the MS disease process, (2) restoring lost function by reversing damage and symptoms, and (3) ending MS through prevention. Better alignment and focus of global resources on high priority research questions are also recommended. Conclusions: We hope the Roadmap will inspire greater collaboration and alignment of global resources that accelerate scientific breakthroughs leading to cures for MS.
Collapse
Affiliation(s)
- Bruce F Bebo
- National Multiple Sclerosis Society 733 3rd Ave New York, NY 10017 USA
| | - Mark Allegretta
- National Multiple Sclerosis Society 733 3rd Ave New York, NY 10017 USA
| | - Douglas Landsman
- National Multiple Sclerosis Society 733 3rd Ave New York, NY 10017 USA
| | - Kathy M Zackowski
- National Multiple Sclerosis Society 733 3rd Ave New York, NY 10017 USA
| | - Fiona Brabazon
- National Multiple Sclerosis Society 733 3rd Ave New York, NY 10017 USA
| | - Walter A Kostich
- National Multiple Sclerosis Society 733 3rd Ave New York, NY 10017 USA
| | - Timothy Coetzee
- National Multiple Sclerosis Society 733 3rd Ave New York, NY 10017 USA
| | | | - Ruth Ann Marrie
- Department of Internal Medicine (Neurology), University of Manitoba, Winnipeg, MB, Canada
| | - Kelly R Monk
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Amit Bar-Or
- Center for Neuroinflammation and Neurotherapeutics, Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
50
|
Zelek WM, Morgan BP. Targeting complement in neurodegeneration: challenges, risks, and strategies. Trends Pharmacol Sci 2022; 43:615-628. [DOI: 10.1016/j.tips.2022.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
|