1
|
Liu Q, Sun Y, He B, Chen H, Wang L, Wang G, Zhang K, Zhao X, Zhang X, Shen D, Zhang X, Cui L. Gain-of-function ANXA11 mutation cause late-onset ALS with aberrant protein aggregation, neuroinflammation and autophagy impairment. Acta Neuropathol Commun 2025; 13:2. [PMID: 39755715 DOI: 10.1186/s40478-024-01919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement. To elucidate the pathogenesis, we developed a knock-in mouse model carrying the p.P36R mutation. In both heterozygous and homozygous mutant mice, ANXA11 protein levels were comparable to those in wild-type. Both groups exhibited late-onset motor dysfunction at approximately 10 months of age, with similar survival rates to wild-type (> 24 months) and no signs of dementia. Pathological analysis revealed early abnormal aggregates in spinal cord motor neurons, cortical neurons, and muscle cells of homozygous mice. From 2 months of age, we observed mislocalized ANXA11 aggregates, SQSTM1/p62-positive inclusions, and cytoplasmic TDP-43 mislocalization, which intensified with disease progression. Importantly, mutant ANXA11 co-aggregated with TDP-43 and SQSTM1/p62-positive inclusions. Electron microscopy of the gastrocnemius muscle uncovered myofibrillar abnormalities, including sarcomeric disorganization, Z-disc dissolution, and subsarcolemmal electron-dense structures within autophagic vacuoles. Autophagic flux, initially intact at 2 months, was impaired by 9 months, as evidenced by decreased Beclin-1 and LC3BII/I levels and increased SQSTM1/p62 expression, coinciding with mTORC1 hyperactivation. Significant motor neuron loss and neuroinflammation were detected by 9 months, with marked muscle dystrophy apparent by 12 months compared to wild-type controls. These findings implicate the gain-of-function ANXA11 mutation drives late-onset motor neuron disease by early presymptomatic proteinopathy, progressive neuronal degeneration, neuroinflammation, and autophagic dysfunction.
Collapse
Affiliation(s)
- Qing Liu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China.
| | - Ye Sun
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Baodong He
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Haodong Chen
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Lijing Wang
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Gaojie Wang
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Kang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ximeng Zhao
- State Key Laboratory of Medical Molecular Biology, Mckusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, PUMC and CAMS, Beijing, China
| | - Xinzhe Zhang
- State Key Laboratory of Medical Molecular Biology, Mckusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, PUMC and CAMS, Beijing, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Xue Zhang
- State Key Laboratory of Medical Molecular Biology, Mckusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, PUMC and CAMS, Beijing, China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, PUMCH, Beijing, China.
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China.
| |
Collapse
|
2
|
Benkirane M, Bonhomme M, Morsy H, Safgren SL, Marelli C, Chaussenot A, Smedley D, Cipriani V, de Sainte-Agathe JM, Ding C, Larrieu L, Vestito L, Margot H, Lesca G, Ramond F, Castrioto A, Baux D, Verheijen J, Sansa E, Giunti P, Haetty A, Bergougnoux A, Pointaux M, Ardouin O, Van Goethem C, Vincent MC, Hadjivassiliou M, Cossée M, Rouaud T, Bartsch O, Freeman WD, Wierenga KJ, Klee EW, Vandrovcova J, Houlden H, Debant A, Koenig M. De novo and inherited monoallelic variants in TUBA4A cause ataxia and spasticity. Brain 2024; 147:3681-3689. [PMID: 38884572 DOI: 10.1093/brain/awae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024] Open
Abstract
Alpha-tubulin 4A encoding gene (TUBA4A) has been associated with familial amyotrophic lateral sclerosis and frontotemporal dementia, based on identification of likely pathogenic variants in patients from distinct amyotrophic lateral sclerosis and frontotemporal dementia cohorts. By screening a multicentric French cohort of 448 unrelated probands presenting with cerebellar ataxia, we identified ultra-rare TUBA4A missense variants, all being absent from public databases and predicted pathogenic by multiple in silico tools. In addition, gene burden analyses in the 100 000 Genomes project (100KGP) showed enrichment of TUBA4A rare variants in the inherited ataxia group compared to controls [odds ratio: 57.0847 (10.2-576.7); P = 4.02 ×10-7]. Taken together, we report 12 patients presenting with spasticity and/or cerebellar ataxia and harbouring a predicted pathogenic TUBA4A missense mutation, including five confirmed de novo cases and a mutation previously reported in a large family presenting with spastic ataxia. Cultured fibroblasts from three patients harbouring distinct TUBA4A missense showed significant alterations in microtubule organization and dynamics, providing insight of TUBA4A variants pathogenicity. Our data confirm the identification of a hereditary spastic ataxia disease gene with variable age of onset, expanding the clinical spectrum of TUBA4A associated phenotypes.
Collapse
Affiliation(s)
- Mehdi Benkirane
- Laboratoire de Génétique moléculaire, Institut Universitaire de Recherche Clinique, CHU of Montpellier, 34090 Montpellier, France
- Department of Clinical Research, PhyMedExp Univ Montpellier, CNRS UMR 9214, INSERM U1046, 34090 Montpellier, France
- Department of Medical Genetics, Laboratory of Genomics Medicine, Sorbonne University, APHP, 75006 Paris, France
| | - Marion Bonhomme
- Cell Biology Research Department, CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Heba Morsy
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | | | - Cecilia Marelli
- MMDN, Université de Montpellier, EPHE, INSERM, Montpellier, France
- Expert center for Neurogenetic Diseases, CHU of Montpellier, 34095 Montpellier, France
| | | | - Damian Smedley
- William Harvey Research Institute, Clinical Pharmacology and Precision Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Valentina Cipriani
- William Harvey Research Institute, Clinical Pharmacology and Precision Medicine, Queen Mary University of London, London EC1M 6BQ, UK
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | | | - Can Ding
- Institute of human genetics, University of Medicine Mainz, Mainz 55128, Germany
| | - Lise Larrieu
- Laboratoire de Génétique moléculaire, Institut Universitaire de Recherche Clinique, CHU of Montpellier, 34090 Montpellier, France
| | - Letizia Vestito
- William Harvey Research Institute, Clinical Pharmacology and Precision Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Henri Margot
- Department of Medical Genetics, CHU of Bordeaux, 33404 Bordeaux, France
| | - Gaetan Lesca
- Department of Medical Genetics, University Hospitals of Lyon, and Université Claude Bernard Lyon1, 69500 Lyon, France
| | - Francis Ramond
- Department of Medical Genetics, CHU of Saint-Etienne, 42055 Saint-Etienne, France
| | - Anna Castrioto
- Neurology Department, Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38706 Grenoble, France
| | - David Baux
- Laboratoire de Génétique moléculaire, Institut Universitaire de Recherche Clinique, CHU of Montpellier, 34090 Montpellier, France
- Institut des Neurosciences Montpellier, INM, INSERM, 34000 Montpellier, France
- Montpellier BioInformatics for Clinical Diagnosis (MOBIDIC), Molecular Medicine and Genomics Platform (PMMG), CHU Montpellier, 34295 Montpellier, France
| | - Jan Verheijen
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Emna Sansa
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Institute of Neurology, London WC1N 3BG, UK
| | - Paola Giunti
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Institute of Neurology, London WC1N 3BG, UK
| | - Aline Haetty
- Institut des Neurosciences Montpellier, INM, INSERM, 34000 Montpellier, France
| | - Anne Bergougnoux
- Laboratoire de Génétique moléculaire, Institut Universitaire de Recherche Clinique, CHU of Montpellier, 34090 Montpellier, France
- Department of Clinical Research, PhyMedExp Univ Montpellier, CNRS UMR 9214, INSERM U1046, 34090 Montpellier, France
| | - Morgane Pointaux
- Laboratoire de Génétique moléculaire, Institut Universitaire de Recherche Clinique, CHU of Montpellier, 34090 Montpellier, France
| | - Olivier Ardouin
- Laboratoire de Génétique moléculaire, Institut Universitaire de Recherche Clinique, CHU of Montpellier, 34090 Montpellier, France
- Montpellier BioInformatics for Clinical Diagnosis (MOBIDIC), Molecular Medicine and Genomics Platform (PMMG), CHU Montpellier, 34295 Montpellier, France
| | - Charles Van Goethem
- Laboratoire de Génétique moléculaire, Institut Universitaire de Recherche Clinique, CHU of Montpellier, 34090 Montpellier, France
- Montpellier BioInformatics for Clinical Diagnosis (MOBIDIC), Molecular Medicine and Genomics Platform (PMMG), CHU Montpellier, 34295 Montpellier, France
| | - Marie-Claire Vincent
- Laboratoire de Génétique moléculaire, Institut Universitaire de Recherche Clinique, CHU of Montpellier, 34090 Montpellier, France
| | - Marios Hadjivassiliou
- Academic Department of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2HQ, UK
| | - Mireille Cossée
- Laboratoire de Génétique moléculaire, Institut Universitaire de Recherche Clinique, CHU of Montpellier, 34090 Montpellier, France
- Department of Clinical Research, PhyMedExp Univ Montpellier, CNRS UMR 9214, INSERM U1046, 34090 Montpellier, France
| | - Tiphaine Rouaud
- Department of Neurology, CHU of Nantes, 44000 Nantes, France
| | - Oliver Bartsch
- Institute of human genetics, University of Medicine Mainz, Mainz 55128, Germany
| | | | - Klaas J Wierenga
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Eric W Klee
- Department of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Anne Debant
- Cell Biology Research Department, CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Michel Koenig
- Laboratoire de Génétique moléculaire, Institut Universitaire de Recherche Clinique, CHU of Montpellier, 34090 Montpellier, France
- Department of Clinical Research, PhyMedExp Univ Montpellier, CNRS UMR 9214, INSERM U1046, 34090 Montpellier, France
| |
Collapse
|
3
|
Arseni D, Nonaka T, Jacobsen MH, Murzin AG, Cracco L, Peak-Chew SY, Garringer HJ, Kawakami I, Suzuki H, Onaya M, Saito Y, Murayama S, Geula C, Vidal R, Newell KL, Mesulam M, Ghetti B, Hasegawa M, Ryskeldi-Falcon B. Heteromeric amyloid filaments of ANXA11 and TDP-43 in FTLD-TDP type C. Nature 2024; 634:662-668. [PMID: 39260416 PMCID: PMC11485244 DOI: 10.1038/s41586-024-08024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Neurodegenerative diseases are characterized by the abnormal filamentous assembly of specific proteins in the central nervous system1. Human genetic studies have established a causal role for protein assembly in neurodegeneration2. However, the underlying molecular mechanisms remain largely unknown, which is limiting progress in developing clinical tools for these diseases. Recent advances in cryo-electron microscopy have enabled the structures of the protein filaments to be determined from the brains of patients1. All neurodegenerative diseases studied to date have been characterized by the self-assembly of proteins in homomeric amyloid filaments, including that of TAR DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) types A and B3,4. Here we used cryo-electron microscopy to determine filament structures from the brains of individuals with FTLD-TDP type C, one of the most common forms of sporadic FTLD-TDP. Unexpectedly, the structures revealed that a second protein, annexin A11 (ANXA11), co-assembles with TDP-43 in heteromeric amyloid filaments. The ordered filament fold is formed by TDP-43 residues G282/G284-N345 and ANXA11 residues L39-Y74 from their respective low-complexity domains. Regions of TDP-43 and ANXA11 that were previously implicated in protein-protein interactions form an extensive hydrophobic interface at the centre of the filament fold. Immunoblots of the filaments revealed that the majority of ANXA11 exists as an approximately 22 kDa N-terminal fragment lacking the annexin core domain. Immunohistochemistry of brain sections showed the colocalization of ANXA11 and TDP-43 in inclusions, redefining the histopathology of FTLD-TDP type C. This work establishes a central role for ANXA11 in FTLD-TDP type C. The unprecedented formation of heteromeric amyloid filaments in the human brain revises our understanding of amyloid assembly and may be of significance for the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Diana Arseni
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Takashi Nonaka
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Max H Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Laura Cracco
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ito Kawakami
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hisaomi Suzuki
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Center, Chiba, Japan
| | - Misumoto Onaya
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Center, Chiba, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | |
Collapse
|
4
|
Findlay AR. Dominantly inherited muscle disorders: understanding their complexity and exploring therapeutic approaches. Dis Model Mech 2024; 17:dmm050720. [PMID: 39501809 PMCID: PMC11574355 DOI: 10.1242/dmm.050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Treatments for disabling and life-threatening hereditary muscle disorders are finally close to becoming a reality. Research has thus far focused primarily on recessive forms of muscle disease. The gene replacement strategies that are commonly employed for recessive, loss-of-function disorders are not readily translatable to most dominant myopathies owing to the presence of a normal chromosome in each nucleus, hindering the development of novel treatments for these dominant disorders. This is largely due to their complex, heterogeneous disease mechanisms that require unique therapeutic approaches. However, as viral and RNA interference-based therapies enter clinical use, key tools are now in place to develop treatments for dominantly inherited disorders of muscle. This article will review what is known about dominantly inherited disorders of muscle, specifically their genetic basis, how mutations lead to disease, and the pathomechanistic implications for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew R Findlay
- Washington University Saint Louis, Neuromuscular Disease Center, 660 S. Euclid Ave., St Louis, MO 63110, USA
| |
Collapse
|
5
|
Snyder A, Ryan VH, Hawrot J, Lawton S, Ramos DM, Qi YA, Johnson KR, Reed X, Johnson NL, Kollasch AW, Duffy MF, VandeVrede L, Cochran JN, Miller BL, Toro C, Bielekova B, Marks DS, Yokoyama JS, Kwan JY, Cookson MR, Ward ME. An ANXA11 P93S variant dysregulates TDP-43 and causes corticobasal syndrome. Alzheimers Dement 2024; 20:5220-5235. [PMID: 38923692 PMCID: PMC11350008 DOI: 10.1002/alz.13915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Variants of uncertain significance (VUS) surged with affordable genetic testing, posing challenges for determining pathogenicity. We examine the pathogenicity of a novel VUS P93S in Annexin A11 (ANXA11) - an amyotrophic lateral sclerosis/frontotemporal dementia-associated gene - in a corticobasal syndrome kindred. Established ANXA11 mutations cause ANXA11 aggregation, altered lysosomal-RNA granule co-trafficking, and transactive response DNA binding protein of 43 kDa (TDP-43) mis-localization. METHODS We described the clinical presentation and explored the phenotypic diversity of ANXA11 variants. P93S's effect on ANXA11 function and TDP-43 biology was characterized in induced pluripotent stem cell-derived neurons alongside multiomic neuronal and microglial profiling. RESULTS ANXA11 mutations were linked to corticobasal syndrome cases. P93S led to decreased lysosome colocalization, neuritic RNA, and nuclear TDP-43 with cryptic exon expression. Multiomic microglial signatures implicated immune dysregulation and interferon signaling pathways. DISCUSSION This study establishes ANXA11 P93S pathogenicity, broadens the phenotypic spectrum of ANXA11 mutations, underscores neuronal and microglial dysfunction in ANXA11 pathophysiology, and demonstrates the potential of cellular models to determine variant pathogenicity. HIGHLIGHTS ANXA11 P93S is a pathogenic variant. Corticobasal syndrome is part of the ANXA11 phenotypic spectrum. Hybridization chain reaction fluorescence in situ hybridization (HCR FISH) is a new tool for the detection of cryptic exons due to TDP-43-related loss of splicing regulation. Microglial ANXA11 and related immune pathways are important drivers of disease. Cellular models are powerful tools for adjudicating variants of uncertain significance.
Collapse
Affiliation(s)
- Allison Snyder
- Neurogenetics BranchNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Veronica H. Ryan
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- National Institute of General Medical SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - James Hawrot
- Neurogenetics BranchNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Sydney Lawton
- Neurogenetics BranchNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Daniel M. Ramos
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
| | - Y. Andy Qi
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
| | - Kory R. Johnson
- Intramural Bioinformatics CoreNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Xylena Reed
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
| | - Nicholas L. Johnson
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- DataTecnica LLCWashingtonDistrict of ColumbiaUSA
| | - Aaron W. Kollasch
- Department of Systems BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Megan F. Duffy
- Cell Biology and Gene Expression SectionLaboratory of Neurogenetics, National Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Lawren VandeVrede
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | - Bruce L. Miller
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Camilo Toro
- Undiagnosed Diseases ProgramNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Bibiana Bielekova
- Neuroimmunological Diseases SectionNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Debora S. Marks
- Department of Systems BiologyHarvard Medical SchoolBostonMassachusettsUSA
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Jennifer S. Yokoyama
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Justin Y. Kwan
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Mark R. Cookson
- Cell Biology and Gene Expression SectionLaboratory of Neurogenetics, National Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Michael E. Ward
- Neurogenetics BranchNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
6
|
Clayton EL, Huggon L, Cousin MA, Mizielinska S. Synaptopathy: presynaptic convergence in frontotemporal dementia and amyotrophic lateral sclerosis. Brain 2024; 147:2289-2307. [PMID: 38451707 PMCID: PMC11224618 DOI: 10.1093/brain/awae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Frontotemporal dementia and amyotrophic lateral sclerosis are common forms of neurodegenerative disease that share overlapping genetics and pathologies. Crucially, no significantly disease-modifying treatments are available for either disease. Identifying the earliest changes that initiate neuronal dysfunction is important for designing effective intervention therapeutics. The genes mutated in genetic forms of frontotemporal dementia and amyotrophic lateral sclerosis have diverse cellular functions, and multiple disease mechanisms have been proposed for both. Identification of a convergent disease mechanism in frontotemporal dementia and amyotrophic lateral sclerosis would focus research for a targetable pathway, which could potentially effectively treat all forms of frontotemporal dementia and amyotrophic lateral sclerosis (both familial and sporadic). Synaptopathies are diseases resulting from physiological dysfunction of synapses, and define the earliest stages in multiple neuronal diseases, with synapse loss a key feature in dementia. At the presynapse, the process of synaptic vesicle recruitment, fusion and recycling is necessary for activity-dependent neurotransmitter release. The unique distal location of the presynaptic terminal means the tight spatio-temporal control of presynaptic homeostasis is dependent on efficient local protein translation and degradation. Recently, numerous publications have shown that mutations associated with frontotemporal dementia and amyotrophic lateral sclerosis present with synaptopathy characterized by presynaptic dysfunction. This review will describe the complex local signalling and membrane trafficking events that occur at the presynapse to facilitate neurotransmission and will summarize recent publications linking frontotemporal dementia/amyotrophic lateral sclerosis genetic mutations to presynaptic function. This evidence indicates that presynaptic synaptopathy is an early and convergent event in frontotemporal dementia and amyotrophic lateral sclerosis and illustrates the need for further research in this area, to identify potential therapeutic targets with the ability to impact this convergent pathomechanism.
Collapse
Affiliation(s)
- Emma L Clayton
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| | - Laura Huggon
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sarah Mizielinska
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| |
Collapse
|
7
|
Arseni D, Nonaka T, Jacobsen MH, Murzin AG, Cracco L, Peak-Chew SY, Garringer HJ, Kawakami I, Suzuki H, Onaya M, Saito Y, Murayama S, Geula C, Vidal R, Newell KL, Mesulam M, Ghetti B, Hasegawa M, Ryskeldi-Falcon B. Heteromeric amyloid filaments of ANXA11 and TDP-43 in FTLD-TDP Type C. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600403. [PMID: 38979278 PMCID: PMC11230283 DOI: 10.1101/2024.06.25.600403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Neurodegenerative diseases are characterised by the abnormal filamentous assembly of specific proteins in the central nervous system 1 . Human genetic studies established a causal role for protein assembly in neurodegeneration 2 . However, the underlying molecular mechanisms remain largely unknown, which is limiting progress in developing clinical tools for these diseases. Recent advances in electron cryo-microscopy (cryo-EM) have enabled the structures of the protein filaments to be determined from patient brains 1 . All diseases studied to date have been characterised by the self-assembly of a single intracellular protein in homomeric amyloid filaments, including that of TAR DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) Types A and B 3,4 . Here, we used cryo-EM to determine filament structures from the brains of individuals with FTLD-TDP Type C, one of the most common forms of sporadic FTLD-TDP. Unexpectedly, the structures revealed that a second protein, annexin A11 (ANXA11), co-assembles with TDP-43 in heteromeric amyloid filaments. The ordered filament fold is formed by TDP-43 residues G282/284-N345 and ANXA11 residues L39-L74 from their respective low-complexity domains (LCDs). Regions of TDP-43 and ANXA11 previously implicated in protein-protein interactions form an extensive hydrophobic interface at the centre of the filament fold. Immunoblots of the filaments revealed that the majority of ANXA11 exists as a ∼22 kDa N-terminal fragment (NTF) lacking the annexin core domain. Immunohistochemistry of brain sections confirmed the co-localisation of ANXA11 and TDP-43 in inclusions, redefining the histopathology of FTLD-TDP Type C. This work establishes a central role for ANXA11 in FTLD-TDP Type C. The unprecedented formation of heteromeric amyloid filaments in human brain revises our understanding of amyloid assembly and may be of significance for the pathogenesis of neurodegenerative diseases.
Collapse
|
8
|
Upton C, Healey J, Rothnie AJ, Goddard AD. Insights into membrane interactions and their therapeutic potential. Arch Biochem Biophys 2024; 755:109939. [PMID: 38387829 DOI: 10.1016/j.abb.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Recent research into membrane interactions has uncovered a diverse range of therapeutic opportunities through the bioengineering of human and non-human macromolecules. Although the majority of this research is focussed on fundamental developments, emerging studies are showcasing promising new technologies to combat conditions such as cancer, Alzheimer's and inflammatory and immune-based disease, utilising the alteration of bacteriophage, adenovirus, bacterial toxins, type 6 secretion systems, annexins, mitochondrial antiviral signalling proteins and bacterial nano-syringes. To advance the field further, each of these opportunities need to be better understood, and the therapeutic models need to be further optimised. Here, we summarise the knowledge and insights into several membrane interactions and detail their current and potential uses therapeutically.
Collapse
Affiliation(s)
- Calum Upton
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Joseph Healey
- Nanosyrinx, The Venture Centre, University of Warwick Science Park, Coventry, CV4 7EZ, UK
| | - Alice J Rothnie
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Alan D Goddard
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
9
|
Yamashita S, Takahashi Y, Hashimoto J, Murakami A, Nakamura R, Katsuno M, Izumi R, Suzuki N, Warita H, Aoki M. Nationwide survey of patients with multisystem proteinopathy in Japan. Ann Clin Transl Neurol 2024; 11:938-945. [PMID: 38287512 PMCID: PMC11021623 DOI: 10.1002/acn3.52011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
OBJECTIVE Multisystem proteinopathy (MSP) is an inherited disorder in which protein aggregates with TAR DNA-binding protein of 43 kDa form in multiple organs. Mutations in VCP, HNRNPA2B1, HNRNPA1, SQSTM1, MATR3, and ANXA11 are causative for MSP. This study aimed to conduct a nationwide epidemiological survey based on the diagnostic criteria established by the Japan MSP study group. METHODS We conducted a nationwide epidemiological survey by administering primary and secondary questionnaires among 6235 specialists of the Japanese Society of Neurology. RESULTS In the primary survey, 47 patients with MSP were identified. In the secondary survey of 27 patients, inclusion body myopathy was the most common initial symptom (74.1%), followed by motor neuron disease (11.1%), frontotemporal dementia (FTD, 7.4%), and Paget's disease of bone (PDB, 7.4%), with no cases of parkinsonism. Inclusion body myopathy occurred most frequently during the entire course of the disease (81.5%), followed by motor neuron disease (25.9%), PDB (18.5%), FTD (14.8%), and parkinsonism (3.7%). Laboratory findings showed a high frequency of elevated serum creatine kinase levels and abnormalities on needle electromyography, muscle histology, brain magnetic resonance imaging, and perfusion single-photon emission computed tomography. INTERPRETATION The low frequency of FTD and PDB may suggest that FTD and PDB may be widely underdiagnosed and undertreated in clinical practice.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Department of NeurologyGraduate School of Medical Sciences, Kumamoto UniversityKumamotoJapan
- Department of NeurologyInternational University of Health and Welfare Narita HospitalNaritaJapan
| | - Yuji Takahashi
- Department of NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Jun Hashimoto
- Department of Orthopaedic SurgeryNational Hospital Organization Osaka Minami Medical CenterOsakaJapan
| | - Ayuka Murakami
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Ryoichi Nakamura
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
- Department of NeurologyAichi Medical University School of MedicineNagakuteAichiJapan
| | - Masahisa Katsuno
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
- Department of Clinical Research EducationNagoya University Graduate School of MedicineNagoyaJapan
| | - Rumiko Izumi
- Department of NeurologyTohoku University Graduate School of MedicineSendaiJapan
| | - Naoki Suzuki
- Department of NeurologyTohoku University Graduate School of MedicineSendaiJapan
| | - Hitoshi Warita
- Department of NeurologyTohoku University Graduate School of MedicineSendaiJapan
| | - Masashi Aoki
- Department of NeurologyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
10
|
Klickstein JA, Johnson MA, Antonoudiou P, Maguire J, Paulo JA, Gygi SP, Weihl C, Raman M. ALS-related p97 R155H mutation disrupts lysophagy in iPSC-derived motor neurons. Stem Cell Reports 2024; 19:366-382. [PMID: 38335961 PMCID: PMC10937112 DOI: 10.1016/j.stemcr.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
Mutations in the AAA+ ATPase p97 cause multisystem proteinopathy 1, which includes amyotrophic lateral sclerosis; however, the pathogenic mechanisms that contribute to motor neuron loss remain obscure. Here, we use two induced pluripotent stem cell models differentiated into spinal motor neurons to investigate how p97 mutations perturb the motor neuron proteome. Using quantitative proteomics, we find that motor neurons harboring the p97 R155H mutation have deficits in the selective autophagy of lysosomes (lysophagy). p97 R155H motor neurons are unable to clear damaged lysosomes and have reduced viability. Lysosomes in mutant motor neurons have increased pH compared with wild-type cells. The clearance of damaged lysosomes involves UBXD1-p97 interaction, which is disrupted in mutant motor neurons. Finally, inhibition of the ATPase activity of p97 using the inhibitor CB-5083 rescues lysophagy defects in mutant motor neurons. These results add to the evidence that endo-lysosomal dysfunction is a key aspect of disease pathogenesis in p97-related disorders.
Collapse
Affiliation(s)
- Jacob A Klickstein
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA
| | - Michelle A Johnson
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA
| | | | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Chris Weihl
- Department of Neurology, Washington University at St. Louis, St. Louis, MO
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA.
| |
Collapse
|
11
|
Snyder A, Ryan VH, Hawrot J, Lawton S, Ramos DM, Qi YA, Johnson K, Reed X, Johnson NL, Kollasch AW, Duffy M, VandeVrede L, Cochran JN, Miller BL, Toro C, Bielekova B, Yokoyama JS, Marks DS, Kwan JY, Cookson MR, Ward ME. An ANXA11 P93S variant dysregulates TDP-43 and causes corticobasal syndrome. RESEARCH SQUARE 2023:rs.3.rs-3462973. [PMID: 37886540 PMCID: PMC10602153 DOI: 10.21203/rs.3.rs-3462973/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
As genetic testing has become more accessible and affordable, variants of uncertain significance (VUS) are increasingly identified, and determining whether these variants play causal roles in disease is a major challenge. The known disease-associated Annexin A11 (ANXA11) mutations result in ANXA11 aggregation, alterations in lysosomal-RNA granule co-trafficking, and TDP-43 mis-localization and present as amyotrophic lateral sclerosis or frontotemporal dementia. We identified a novel VUS in ANXA11 (P93S) in a kindred with corticobasal syndrome and unique radiographic features that segregated with disease. We then queried neurodegenerative disorder clinic databases to identify the phenotypic spread of ANXA11 mutations. Multi-modal computational analysis of this variant was performed and the effect of this VUS on ANXA11 function and TDP-43 biology was characterized in iPSC-derived neurons. Single-cell sequencing and proteomic analysis of iPSC-derived neurons and microglia were used to determine the multiomic signature of this VUS. Mutations in ANXA11 were found in association with clinically diagnosed corticobasal syndrome, thereby establishing corticobasal syndrome as part of ANXA11 clinical spectrum. In iPSC-derived neurons expressing mutant ANXA11, we found decreased colocalization of lysosomes and decreased neuritic RNA as well as decreased nuclear TDP-43 and increased formation of cryptic exons compared to controls. Multiomic assessment of the P93S variant in iPSC-derived neurons and microglia indicates that the pathogenic omic signature in neurons is modest compared to microglia. Additionally, omic studies reveal that immune dysregulation and interferon signaling pathways in microglia are central to disease. Collectively, these findings identify a new pathogenic variant in ANXA11, expand the range of clinical syndromes caused by ANXA11 mutations, and implicate both neuronal and microglia dysfunction in ANXA11 pathophysiology. This work illustrates the potential for iPSC-derived cellular models to revolutionize the variant annotation process and provides a generalizable approach to determining causality of novel variants across genes.
Collapse
Affiliation(s)
- Allison Snyder
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke
| | - Veronica H Ryan
- Center for Alzheimer's and Related Dementias, National Institutes of Health
| | - James Hawrot
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke
| | - Sydney Lawton
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke
| | - Daniel M Ramos
- Center for Alzheimer's and Related Dementias, National Institutes of Health
| | - Y Andy Qi
- Center for Alzheimer's and Related Dementias, National Institutes of Health
| | - Kory Johnson
- Intramural Bioinformatics, National Institute of Neurological Disorders and Stroke
| | - Xylena Reed
- Center for Alzheimer's and Related Dementias, National Institutes of Health
| | | | | | - Megan Duffy
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging
| | - Lawren VandeVrede
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco
| | | | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco
| | - Camilo Toro
- Undiagnosed Diseases Program, National Human Genome Research Institute
| | - Bibiana Bielekova
- Neuroimmunological Diseases Section, National Institute of Allergy and Infectious Disease
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston
| | - Justin Y Kwan
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging
| | - Michael E Ward
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke
| |
Collapse
|
12
|
Wang H, Guan L, Deng M. Recent progress of the genetics of amyotrophic lateral sclerosis and challenges of gene therapy. Front Neurosci 2023; 17:1170996. [PMID: 37250416 PMCID: PMC10213321 DOI: 10.3389/fnins.2023.1170996] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the degeneration of motor neurons in the brain and spinal cord. The causes of ALS are not fully understood. About 10% of ALS cases were associated with genetic factors. Since the discovery of the first familial ALS pathogenic gene SOD1 in 1993 and with the technology advancement, now over 40 ALS genes have been found. Recent studies have identified ALS related genes including ANXA11, ARPP21, CAV1, C21ORF2, CCNF, DNAJC7, GLT8D1, KIF5A, NEK1, SPTLC1, TIA1, and WDR7. These genetic discoveries contribute to a better understanding of ALS and show the potential to aid the development of better ALS treatments. Besides, several genes appear to be associated with other neurological disorders, such as CCNF and ANXA11 linked to FTD. With the deepening understanding of the classic ALS genes, rapid progress has been made in gene therapies. In this review, we summarize the latest progress on classical ALS genes and clinical trials for these gene therapies, as well as recent findings on newly discovered ALS genes.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - LiPing Guan
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
13
|
Natera‐de Benito D, Olival J, Garcia‐Cabau C, Jou C, Roldan M, Codina A, Expósito‐Escudero J, Batlle C, Carrera‐García L, Ortez C, Salvatella X, Palau F, Nascimento A, Hoenicka J. Common pathophysiology for ANXA11 disorders caused by aspartate 40 variants. Ann Clin Transl Neurol 2023; 10:408-425. [PMID: 36651622 PMCID: PMC10014011 DOI: 10.1002/acn3.51731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Mutations in ANXA11 cause amyotrophic lateral sclerosis (ALS) and have recently been identified as a cause of multisystem proteinopathy and adult-onset muscular dystrophy. These conditions are adult-onset diseases and result from the substitution of Aspartate 40 (Asp40) for an apolar residue in the intrinsically disordered domain (IDD) of ANXA11. Some ALS-related variants are known to affect ANXA11 IDD; however, the mechanism by which the myopathy occurs is unknown. METHODS Genetic analysis was performed using WES-trio. For the study of variant pathogenicity, we used recombinant proteins, muscle biopsy, and fibroblasts. RESULTS Here we describe an individual with severe and rapidly progressive childhood-onset oculopharyngeal muscular dystrophy who carries a new ANXA11 variant at position Asp40 (p.Asp40Ile; c.118_119delGAinsAT). p.Asp40Ile is predicted to enhance the aggregation propensity of ANXA11 to a greater extent than other changes affecting this residue. In vitro studies using recombinant ANXA11p.Asp40Ile showed abnormal phase separation and confirmed this variant is more aggregation-prone than the ALS-associated variant ANXA11p.Asp40Gly . The study of the patient's fibroblasts revealed defects in stress granules dynamics and clearance, and muscle histopathology showed a myopathic pattern with ANXA11 protein aggregates. Super-resolution imaging showed aggregates expressed as pearl strips or large complex structures in the sarcoplasm, and as layered subsarcolemmal chains probably reflecting ANXA11 multifunctionality. INTERPRETATION We demonstrate common pathophysiology for disorders associated with ANXA11 Asp40 allelic variants. Clinical phenotypes may result from different deleterious impacts of variants upon ANXA11 stability against aggregation, and differential muscle or motor neuron dysfunction expressed as a temporal and tissue-specific continuum.
Collapse
Affiliation(s)
- Daniel Natera‐de Benito
- Neuromuscular Unit, Department of NeurologyHospital Sant Joan de DéuBarcelona08950Spain
- Applied Research in Neuromuscular DiseasesInstitut de Recerca Sant Joan de DéuBarcelona08950Spain
| | - Jonathan Olival
- Laboratory of Neurogenetics and Molecular Medicine – IPERInstitut de Recerca Sant Joan de Déu08950BarcelonaSpain
| | - Carla Garcia‐Cabau
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and TechnologyBarcelona08029Spain
| | - Cristina Jou
- Applied Research in Neuromuscular DiseasesInstitut de Recerca Sant Joan de DéuBarcelona08950Spain
- Department of PathologyHospital Sant Joan de DéuBarcelona08950Spain
| | - Mònica Roldan
- Confocal Microscopy and Cellular Imaging UnitInstitut de Recerca Sant Joan de DéuBarcelona08950Spain
- Department of Genetics and Developmental Medicine – IPERHospital Sant Joan de DéuBarcelona08950Spain
| | - Anna Codina
- Applied Research in Neuromuscular DiseasesInstitut de Recerca Sant Joan de DéuBarcelona08950Spain
| | - Jessica Expósito‐Escudero
- Neuromuscular Unit, Department of NeurologyHospital Sant Joan de DéuBarcelona08950Spain
- Applied Research in Neuromuscular DiseasesInstitut de Recerca Sant Joan de DéuBarcelona08950Spain
| | - Cristina Batlle
- Laboratory of Neurogenetics and Molecular Medicine – IPERInstitut de Recerca Sant Joan de Déu08950BarcelonaSpain
| | - Laura Carrera‐García
- Neuromuscular Unit, Department of NeurologyHospital Sant Joan de DéuBarcelona08950Spain
- Applied Research in Neuromuscular DiseasesInstitut de Recerca Sant Joan de DéuBarcelona08950Spain
| | - Carlos Ortez
- Neuromuscular Unit, Department of NeurologyHospital Sant Joan de DéuBarcelona08950Spain
- Applied Research in Neuromuscular DiseasesInstitut de Recerca Sant Joan de DéuBarcelona08950Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER)ISCIIIBarcelonaSpain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and TechnologyBarcelona08029Spain
- ICREABarcelona08010Spain
| | - Francesc Palau
- Laboratory of Neurogenetics and Molecular Medicine – IPERInstitut de Recerca Sant Joan de Déu08950BarcelonaSpain
- Department of Genetics and Developmental Medicine – IPERHospital Sant Joan de DéuBarcelona08950Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER)ISCIIIBarcelonaSpain
- Division of Pediatrics, Faculty of Medicine and Health SciencesUniversity of BarcelonaBarcelona08007Spain
- ERN ITHACABarcelona08950Spain
| | - Andrés Nascimento
- Neuromuscular Unit, Department of NeurologyHospital Sant Joan de DéuBarcelona08950Spain
- Applied Research in Neuromuscular DiseasesInstitut de Recerca Sant Joan de DéuBarcelona08950Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER)ISCIIIBarcelonaSpain
| | - Janet Hoenicka
- Laboratory of Neurogenetics and Molecular Medicine – IPERInstitut de Recerca Sant Joan de Déu08950BarcelonaSpain
- Center for Biomedical Research Network on Rare Diseases (CIBERER)ISCIIIBarcelonaSpain
| |
Collapse
|
14
|
Chompoopong P, Oskarsson B, Madigan NN, Mirman I, Martinez-Thompson JM, Liewluck T, Milone M. Multisystem proteinopathies (MSPs) and MSP-like disorders: Clinical-pathological-molecular spectrum. Ann Clin Transl Neurol 2023; 10:632-643. [PMID: 36861178 PMCID: PMC10109322 DOI: 10.1002/acn3.51751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVES Mutations in VCP, HNRNPA2B1, HNRNPA1, and SQSTM1, encoding RNA-binding proteins or proteins in quality-control pathways, cause multisystem proteinopathies (MSP). They share pathological findings of protein aggregation and clinical combinations of inclusion body myopathy (IBM), neurodegeneration [motor neuron disorder (MND)/frontotemporal dementia (FTD)], and Paget disease of bone (PDB). Subsequently, additional genes were linked to similar but not full clinical-pathological spectrum (MSP-like disorders). We aimed to define the phenotypic-genotypic spectrum of MSP and MSP-like disorders at our institution, including long-term follow-up features. METHODS We searched the Mayo Clinic database (January 2010-June 2022) to identify patients with mutations in MSP and MSP-like disorders causative genes. Medical records were reviewed. RESULTS Thirty-one individuals (27 families) had pathogenic mutations in: VCP (n = 17), SQSTM1 + TIA1 (n = 5), TIA1 (n = 5), MATR3, HNRNPA1, HSPB8, and TFG (n = 1, each). Myopathy occurred in all but 2 VCP-MSP patients with disease onset at age 52 (median). Weakness pattern was limb-girdle in 12/15 VCP-MSP and HSPB8 patient, and distal-predominant in other MSP and MSP-like disorders. Twenty/24 muscle biopsies showed rimmed vacuolar myopathy. MND and FTD occurred in 5 (4 VCP, 1 TFG) and 4 (3 VCP, 1 SQSTM1 + TIA1) patients, respectively. PDB manifested in 4 VCP-MSP. Diastolic dysfunction occurred in 2 VCP-MSP. After 11.5 years (median) from symptom onset, 15 patients ambulated without gait-aids; loss of ambulation (n = 5) and death (n = 3) were recorded only in VCP-MSP. INTERPRETATION VCP-MSP was the most common disorder; rimmed vacuolar myopathy was the most frequent manifestation; distal-predominant weakness occurred frequently in non-VCP-MSP; and cardiac involvement was observed only in VCP-MSP.
Collapse
Affiliation(s)
| | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Igal Mirman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Teerin Liewluck
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
15
|
Lacomis D. What Is in the Myopathy Literature? J Clin Neuromuscul Dis 2023; 24:130-139. [PMID: 36809200 DOI: 10.1097/cnd.0000000000000440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
ABSTRACT This update begins with the results of a positive trial of intravenous immunoglobulin in dermatomyositis and a study of molecular and morphologic patterns in inclusion body myositis that may explain treatment refractoriness. Single center reports of muscular sarcoidosis and immune-mediated necrotizing myopathy follow. There is also a report of caveolae-associated protein 4 antibodies as a potential biomarker and cause of immune rippling muscle disease. The remainder covers updates on muscular dystrophies as well as congenital and inherited metabolic myopathies with an emphasis on genetic testing. Rare dystrophies, including one involving ANXA11 mutations and a series on oculopharyngodistal myopathy, are discussed.
Collapse
Affiliation(s)
- David Lacomis
- Departments of Neurology and Pathology (Neuropathology), University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
16
|
Zhang X, Gao J, Chi C, Zhao Z, Chan P, Ma J. An atypical ALS with PSP-like symptoms caused by ANXA11 p.D40G mutation: A case report and literature review. Front Neurol 2023; 14:1086264. [PMID: 36873447 PMCID: PMC9978770 DOI: 10.3389/fneur.2023.1086264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023] Open
Abstract
Background ANXA11 mutations were first reported to be associated with amyotrophic lateral sclerosis (ALS) in 2017. Several studies have investigated the prevalence of ANXA11 mutations in different populations, while less is known about the spectrum of phenotypes and the genotype-phenotype correlation with this gene mutation. Case presentation Here, we report a 74-year-old man who was initially diagnosed with progressive supranuclear palsy (PSP) because of repeated falls, slight upward gaze palsy, and mild cognitive dysfunction at the onset. He finally turned out to be ALS with more and more prominent limb weakness and atrophy, together with the evidence of chronic neurogenic change and ongoing denervation on electromyography. Brain magnetic resonance imaging showed extensive cortical atrophy. A missense mutation c.119A > G (p.D40G) on the ANXA11 gene was identified using whole-exome sequencing, which confirmed the diagnosis of ALS. We performed a systematic review of the literature about ALS-relevant cases with ANXA11 mutations and identified 68 affected subjects and 29 variants with the ANXA11 gene. We summarized the phenotypes of ANXA11 mutations and the clinical characteristics of nine patients harboring the ANXA11 p.D40G variant including our case. Conclusions The phenotype of ANXA11-related cases is heterogeneous, and most cases showed typical ALS, while some could also have the characteristics of frontotemporal dementia (FTD) and PSP, even inclusion body myopathies (hIBM) occurred in familial ALS (FALS). Our patient presented with ALS with a co-morbid PSP-like symptom (ALS-PSP) phenotype, which has not been reported. Except for our patient, the remaining eight patients with the ANXA11 p.D40G variant presented with a classical ALS phenotype without cognitive impairment.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Baoding No.1 Central Hospital, Baoding, China
| | - Juan Gao
- Department of Neurology, Baoding No.1 Central Hospital, Baoding, China
| | - Chunling Chi
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenzhen Zhao
- Department of Geriatrics Center, Shenyang No.4 People's Hospital of China Medical University, Shenyang, China
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jinghong Ma
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Garret M, Pestronk A. Sarcoidosis, granulomas and myopathy syndromes: A clinical-pathology review. J Neuroimmunol 2022; 373:577975. [PMID: 36228383 DOI: 10.1016/j.jneuroim.2022.577975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
Abstract
Muscle involvement in sarcoidosis is common by pathologic analysis, but symptomatic disorders are less frequent. Sarcoidosis-related muscle pathology includes non-caseating granulomas, muscle fiber changes that are diffuse or anatomically related to granulomas, and perimysial connective tissue with histiocyte-associated damage. The mechanisms by which granulomas form, enlarge and damage muscle tissues are incompletely understood. Sarcoidosis-related clinical syndromes with muscle involvement include: chronic myopathies with proximal weakness; nodular disorders; subacute onset disorders involving proximal or eye muscles; myalgia or fatigue syndromes; and, possibly, inclusion body myositis-like disorders. Corticosteroid treatment may benefit some syndromes, but clinical trials are necessary.
Collapse
Affiliation(s)
- Mark Garret
- Departments of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alan Pestronk
- Departments of Neurology, Washington University School of Medicine, Saint Louis, MO, USA; Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
18
|
Sung W, Nahm M, Lim SM, Noh MY, Lee S, Hwang SM, Kim YH, Park J, Oh KW, Ki CS, Kim YE, Kim SH. Clinical and genetic characteristics of amyotrophic lateral sclerosis patients with ANXA11 variants. Brain Commun 2022; 4:fcac299. [PMID: 36458208 PMCID: PMC9707645 DOI: 10.1093/braincomms/fcac299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/26/2022] [Accepted: 11/16/2022] [Indexed: 08/12/2023] Open
Abstract
Increasing genetic evidence supports the hypothesis that variants in the annexin A11 gene (ANXA11 ) contribute to amyotrophic lateral sclerosis pathogenesis. Therefore, we studied the clinical aspects of sporadic amyotrophic lateral sclerosis patients carrying ANXA11 variants. We also implemented functional experiments to verify the pathogenicity of the hotspot variants associated with amyotrophic lateral sclerosis-frontotemporal dementia. Korean patients diagnosed with amyotrophic lateral sclerosis (n = 882) underwent genetic evaluations through next-generation sequencing, which identified 16 ANXA11 variants in 26 patients. We analysed their clinical features, such as the age of onset, progression rate, initial symptoms and cognitive status. To evaluate the functional significance of the ANXA11 variants in amyotrophic lateral sclerosis-frontotemporal dementia pathology, we additionally utilized patient fibroblasts carrying frontotemporal dementia-linked ANXA11 variants (p.P36R and p.D40G ) to perform a series of in vitro studies, including calcium imaging, stress granule dynamics and protein translation. The frequency of the pathogenic or likely pathogenic variants of ANXA11 was 0.3% and the frequency of variants classified as variants of unknown significance was 2.6%. The patients with variants in the low-complexity domain presented unique clinical features, including late-onset, a high prevalence of amyotrophic lateral sclerosis-frontotemporal dementia, a fast initial progression rate and a high tendency for bulbar-onset compared with patients carrying variants in the C-terminal repeated annexin homology domains. In addition, functional studies using amyotrophic lateral sclerosis-frontotemporal dementia patient fibroblasts revealed that the ANXA11 variants p.P36R and p.D40G impaired intracellular calcium homeostasis, stress granule disassembly and protein translation. This study suggests that the clinical manifestations of amyotrophic lateral sclerosis and amyotrophic lateral sclerosis-frontotemporal dementia spectrum patients with ANXA11 variants could be distinctively characterized depending upon the location of the variant.
Collapse
Affiliation(s)
- Wonjae Sung
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Su Min Lim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Sanggon Lee
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Jinseok Park
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Ki-Wook Oh
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | | | - Young-Eun Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Lee J, Cho H, Kwon I. Phase separation of low-complexity domains in cellular function and disease. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1412-1422. [PMID: 36175485 PMCID: PMC9534829 DOI: 10.1038/s12276-022-00857-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
In this review, we discuss the ways in which recent studies of low-complexity (LC) domains have challenged our understanding of the mechanisms underlying cellular organization. LC sequences, long believed to function in the absence of a molecular structure, are abundant in the proteomes of all eukaryotic organisms. Over the past decade, the phase separation of LC domains has emerged as a fundamental mechanism driving dynamic multivalent interactions of many cellular processes. We review the key evidence showing the role of phase separation of individual proteins in organizing cellular assemblies and facilitating biological function while implicating the dynamics of phase separation as a key to biological validity and functional utility. We also highlight the evidence showing that pathogenic LC proteins alter various phase separation-dependent interactions to elicit debilitating human diseases, including cancer and neurodegenerative diseases. Progress in understanding the biology of phase separation may offer useful hints toward possible therapeutic interventions to combat the toxicity of pathogenic proteins.
Collapse
Affiliation(s)
- Jiwon Lee
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.
| | - Ilmin Kwon
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.
| |
Collapse
|
20
|
Wang Y, Duan X, Zhou X, Wang R, Zhang X, Cao Z, Wang X, Zhou Z, Sun Y, Peng D. ANXA11 mutations are associated with amyotrophic lateral sclerosis–frontotemporal dementia. Front Neurol 2022; 13:886887. [PMID: 36226077 PMCID: PMC9549789 DOI: 10.3389/fneur.2022.886887] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background The Annexin A11 (ANXA11) gene has been newly identified as a causative gene of amyotrophic lateral sclerosis (ALS) with or without frontotemporal dementia (FTD). The current study aimed to investigate the ANXA11 mutations in a Chinese ALS–FTD or FTD cohort. Methods We included ten probands/patients with suspected ALS–FTD or FTD. Mutational analysis of ANXA11 was performed through Next Generation Sequencing (NGS) and Sanger sequencing. We collected and reviewed clinical presentation, neuropsychology test results, brain-imaging findings, and electrophysiological examination findings. Results In total, six probands presented with ALS–FTD, and four with behavior variant FTD (bv-FTD). We identified a non-synonymous heterozygous mutation (c.119A>G, p.D40G) of ANXA11 in proband 1, which is associated with ALS. However, this is the first report of the mutation causing ALS–FTD. Proband 1 started with abnormal behavior and progressed to classic upper motor nervous disease. Magnetic resonance imaging (MRI) showed significant bilateral temporal lobe atrophy and bilateral hyperintensities along the corticospinal tracts.18F-AV45-PET imaging showed negative amyloid deposits. Conclusion ANXA11-related diseases have high clinical and genetic heterogeneity. Our study confirmed the contribution of ANXA11 mutations to ALS–FTD. The ANXA11 mutations established a complex genotype–phenotype correlation in ALS–FTD. Our research further elucidated the genetic mechanism of ALS–FTD and contributed to setting the foundation of future targeted therapy.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Xiaohui Duan
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Xiao Zhou
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Renbin Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Xiangfei Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | | | | | - Zhi Zhou
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Yu Sun
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Dantao Peng
| |
Collapse
|
21
|
Johari M, Papadimas G, Papadopoulos C, Xirou S, Kanavaki A, Chrysanthou-Piterou M, Rusanen S, Savarese M, Hackman P, Udd B. Adult-onset dominant muscular dystrophy in Greek families caused by Annexin A11. Ann Clin Transl Neurol 2022; 9:1660-1667. [PMID: 36134701 PMCID: PMC9539373 DOI: 10.1002/acn3.51665] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Mutations in the prion‐like domain of RNA binding proteins cause dysfunctional stress responses and associated aggregate pathology in patients with neurogenic and myopathic phenotypes. Recently, mutations in ANXA11 have been reported in patients with amyotrophic lateral sclerosis and multisystem proteinopathy. Here we studied families with an autosomal dominant muscle disease caused by ANXA11:c.118G > T;p.D40Y. Methods We performed deep phenotyping and exome sequencing of patients from four large Greek families, including seven affected individuals with progressive muscle disease but no family history of multi‐organ involvement or ALS. Results In our study, all patients presented with an autosomal dominant muscular dystrophy without any Paget disease of bone nor signs of frontotemporal dementia or Parkinson's disease. Histopathological analysis showed rimmed vacuoles with annexin A11 accumulations. Electron microscopy analysis showed myofibrillar abnormalities with disorganization of the sarcomeric structure and Z‐disc dissolution, and subsarcolemmal autophagic material with myeloid formations. Molecular genetic analysis revealed ANXA11:c.118G > T;p.D40Y segregating with the phenotype. Interpretation Although the pathogenic mechanisms associated with p.D40Y mutation in the prion‐like domain of Annexin A11 need to be further clarified, our study provides robust and clear genetic evidence to support the expansion of the phenotypic spectrum of ANXA11.
Collapse
Affiliation(s)
- Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - George Papadimas
- Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Papadopoulos
- Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Xirou
- Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Margarita Chrysanthou-Piterou
- Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Salla Rusanen
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.,Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
22
|
Xu F, Huang S, Li XY, Lin J, Feng X, Xie S, Wang Z, Li X, Zhu J, Lai H, Xu Y, Huang X, Yao X, Wang C. Identification of TARDBP Gly298Ser as a founder mutation for amyotrophic lateral sclerosis in Southern China. BMC Med Genomics 2022; 15:173. [PMID: 35932023 PMCID: PMC9356425 DOI: 10.1186/s12920-022-01327-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/30/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by predominant impairment of upper and lower motor neurons. Over 50 TARDBP mutations have been reported in both familial (FALS) and sporadic ALS (SALS). Some mutations in TARDBP, e.g. A382T and G294V, have genetic founder effects in certain geographic regions. However, such prevalence and founder effect have not been reported in Chinese. METHODS Whole-exome sequencing (WES) was performed in 16 Chinese FALS patients, followed by Sanger sequencing for the TARDBP p.Gly298Ser mutation (G298S) in 798 SALS patients and 1,325 controls. Haplotype analysis using microsatellites flanking TARDBP was conducted in the G298S-carrying patients and noncarriers. The geographic distribution and phenotypic correlation of the TARDBP mutations reported worldwide were reviewed. RESULTS WES detected the TARDBP G298S mutation in 8 FALS patients, and Sanger sequencing found additional 8 SALS cases, but no controls, carrying this mutation. All the 16 cases came from Southern China, and 7 of these patients shared the 117-286-257-145-246-270 allele for the D1S2736-D1S1151-D1S2667-D1S489-D1S434-D1S2697 markers, which was not found in the 92 non-carrier patients (0/92) (p < 0.0001) and 65 age-matched and neurologically normal individuals (0/65) (p < 0.0001). The A382T and G298S mutations were prevalent in Europeans and Eastern Asians, respectively. Additionally, carriers for the M337V mutation are dominated by bulbar onset with a long survival, whereas those for G298S are dominated by limb onset with a short survival. CONCLUSIONS Some prevalent TARDBP mutations are distributed in a geographic pattern and related to clinical profiles. TARDBP G298S mutation is a founder mutation in the Southern Chinese ALS population.
Collapse
Affiliation(s)
- Fanxi Xu
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, No.45 Changchun Street, Beijing, 100053, China
| | - Sen Huang
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xu-Ying Li
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, No.45 Changchun Street, Beijing, 100053, China.,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jianing Lin
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiuli Feng
- National Human Genome Center in Beijing, Beijing, China
| | - Shu Xie
- National Human Genome Center in Beijing, Beijing, China
| | - Zhanjun Wang
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, No.45 Changchun Street, Beijing, 100053, China
| | - Xian Li
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, No.45 Changchun Street, Beijing, 100053, China
| | - Junge Zhu
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, No.45 Changchun Street, Beijing, 100053, China
| | - Hong Lai
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, No.45 Changchun Street, Beijing, 100053, China
| | - Yanming Xu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Xusheng Huang
- Department of Neurology of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaoli Yao
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Chaodong Wang
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, No.45 Changchun Street, Beijing, 100053, China.
| |
Collapse
|
23
|
Korb M, Peck A, Alfano LN, Berger KI, James MK, Ghoshal N, Healzer E, Henchcliffe C, Khan S, Mammen PPA, Patel S, Pfeffer G, Ralston SH, Roy B, Seeley WW, Swenson A, Mozaffar T, Weihl C, Kimonis V, Fanganiello R, Lee G, Mahoney RP, Diaz-Manera J, Evangelista T, Freimer M, Lloyd TE, Keung B, Kushlaf H, Milone M, Needham M, Palmio J, Stojkovic T, Villar-Quiles RN, Wang LH, Wicklund MP, Singer FR, Jones M, Miller BL, Ahmad Sajjadi S, Obenaus A, Geschwind MD, Al-Chalabi A, Wymer J, Chen N, Kompoliti K, Wang SC, Boissoneault CA, Cruz-Coble B, Garand KL, Rinholen AJ, Tabor-Gray L, Rosenfeld J, Guo M, Peck N. Development of a standard of care for patients with valosin-containing protein associated multisystem proteinopathy. Orphanet J Rare Dis 2022; 17:23. [PMID: 35093159 PMCID: PMC8800193 DOI: 10.1186/s13023-022-02172-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/16/2022] [Indexed: 02/08/2023] Open
Abstract
Valosin-containing protein (VCP) associated multisystem proteinopathy (MSP) is a rare inherited disorder that may result in multisystem involvement of varying phenotypes including inclusion body myopathy, Paget’s disease of bone (PDB), frontotemporal dementia (FTD), parkinsonism, and amyotrophic lateral sclerosis (ALS), among others. An international multidisciplinary consortium of 40+ experts in neuromuscular disease, dementia, movement disorders, psychology, cardiology, pulmonology, physical therapy, occupational therapy, speech and language pathology, nutrition, genetics, integrative medicine, and endocrinology were convened by the patient advocacy organization, Cure VCP Disease, in December 2020 to develop a standard of care for this heterogeneous and under-diagnosed disease. To achieve this goal, working groups collaborated to generate expert consensus recommendations in 10 key areas: genetic diagnosis, myopathy, FTD, PDB, ALS, Charcot Marie Tooth disease (CMT), parkinsonism, cardiomyopathy, pulmonology, supportive therapies, nutrition and supplements, and mental health. In April 2021, facilitated discussion of each working group’s conclusions with consensus building techniques enabled final agreement on the proposed standard of care for VCP patients. Timely referral to a specialty neuromuscular center is recommended to aid in efficient diagnosis of VCP MSP via single-gene testing in the case of a known familial VCP variant, or multi-gene panel sequencing in undifferentiated cases. Additionally, regular and ongoing multidisciplinary team follow up is essential for proactive screening and management of secondary complications. The goal of our consortium is to raise awareness of VCP MSP, expedite the time to accurate diagnosis, define gaps and inequities in patient care, initiate appropriate pharmacotherapies and supportive therapies for optimal management, and elevate the recommended best practices guidelines for multidisciplinary care internationally.
Collapse
|
24
|
Benson BC, Shaw PJ, Azzouz M, Highley JR, Hautbergue GM. Proteinopathies as Hallmarks of Impaired Gene Expression, Proteostasis and Mitochondrial Function in Amyotrophic Lateral Sclerosis. Front Neurosci 2022; 15:783624. [PMID: 35002606 PMCID: PMC8733206 DOI: 10.3389/fnins.2021.783624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/26/2021] [Indexed: 01/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. As with the majority of neurodegenerative diseases, the pathological hallmarks of ALS involve proteinopathies which lead to the formation of various polyubiquitylated protein aggregates in neurons and glia. ALS is a highly heterogeneous disease, with both familial and sporadic forms arising from the convergence of multiple disease mechanisms, many of which remain elusive. There has been considerable research effort invested into exploring these disease mechanisms and in recent years dysregulation of RNA metabolism and mitochondrial function have emerged as of crucial importance to the onset and development of ALS proteinopathies. Widespread alterations of the RNA metabolism and post-translational processing of proteins lead to the disruption of multiple biological pathways. Abnormal mitochondrial structure, impaired ATP production, dysregulation of energy metabolism and calcium homeostasis as well as apoptosis have been implicated in the neurodegenerative process. Dysfunctional mitochondria further accumulate in ALS motor neurons and reflect a wider failure of cellular quality control systems, including mitophagy and other autophagic processes. Here, we review the evidence for RNA and mitochondrial dysfunction as some of the earliest critical pathophysiological events leading to the development of ALS proteinopathies, explore their relative pathological contributions and their points of convergence with other key disease mechanisms. This review will focus primarily on mutations in genes causing four major types of ALS (C9ORF72, SOD1, TARDBP/TDP-43, and FUS) and in protein homeostasis genes (SQSTM1, OPTN, VCP, and UBQLN2) as well as sporadic forms of the disease. Finally, we will look to the future of ALS research and how an improved understanding of central mechanisms underpinning proteinopathies might inform research directions and have implications for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Bridget C Benson
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Mimoun Azzouz
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| | - J Robin Highley
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| | - Guillaume M Hautbergue
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
25
|
Nedelsky NB, Taylor JP. Pathological phase transitions in ALS-FTD impair dynamic RNA-protein granules. RNA (NEW YORK, N.Y.) 2022; 28:97-113. [PMID: 34706979 PMCID: PMC8675280 DOI: 10.1261/rna.079001.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The genetics of human disease serves as a robust and unbiased source of insight into human biology, both revealing fundamental cellular processes and exposing the vulnerabilities associated with their dysfunction. Over the last decade, the genetics of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have epitomized this concept, as studies of ALS-FTD-causing mutations have yielded fundamental discoveries regarding the role of biomolecular condensation in organizing cellular contents while implicating disturbances in condensate dynamics as central drivers of neurodegeneration. Here we review this genetic evidence, highlight its intersection with patient pathology, and discuss how studies in model systems have revealed a role for aberrant condensation in neuronal dysfunction and death. We detail how multiple, distinct types of disease-causing mutations promote pathological phase transitions that disturb the dynamics and function of ribonucleoprotein (RNP) granules. Dysfunction of RNP granules causes pleiotropic defects in RNA metabolism and can drive the evolution of these structures to end-stage pathological inclusions characteristic of ALS-FTD. We propose that aberrant phase transitions of these complex condensates in cells provide a parsimonious explanation for the widespread cellular abnormalities observed in ALS as well as certain histopathological features that characterize late-stage disease.
Collapse
Affiliation(s)
- Natalia B Nedelsky
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|