1
|
Paulo BS, Recchia MJJ, Lee S, Fergusson CH, Romanowski SB, Hernandez A, Krull N, Liu DY, Cavanagh H, Bos A, Gray CA, Murphy BT, Linington RG, Eustaquio AS. Discovery of megapolipeptins by genome mining of a Burkholderiales bacteria collection. Chem Sci 2024; 15:d4sc03594a. [PMID: 39309087 PMCID: PMC11411415 DOI: 10.1039/d4sc03594a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Burkholderiales bacteria have emerged as a promising source of structurally diverse natural products that are expected to play important ecological and industrial roles. This order ranks in the top three in terms of predicted natural product diversity from available genomes, warranting further genome sequencing efforts. However, a major hurdle in obtaining the predicted products is that biosynthetic genes are often 'silent' or poorly expressed. Here we report complementary strain isolation, genomics, metabolomics, and synthetic biology approaches to enable natural product discovery. First, we built a collection of 316 rhizosphere-derived Burkholderiales strains over the course of five years. We then selected 115 strains for sequencing using the mass spectrometry pipeline IDBac to avoid strain redundancy. After predicting and comparing the biosynthetic potential of each strain, a biosynthetic gene cluster that was silent in the native Paraburkholderia megapolitana and Paraburkholderia acidicola producers was cloned and activated by heterologous expression in a Burkholderia sp. host, yielding megapolipeptins A and B. Megapolipeptins are unusual polyketide, nonribosomal peptide, and polyunsaturated fatty acid hybrids that show low structural similarity to known natural products, highlighting the advantage of our Burkholderiales genomics-driven and synthetic biology-enabled pipeline to discover novel natural products.
Collapse
Affiliation(s)
- Bruno S Paulo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| | | | - Sanghoon Lee
- Department of Chemistry, Simon Fraser University Burnaby BC V5H 1S6 Canada
| | - Claire H Fergusson
- Department of Chemistry, Simon Fraser University Burnaby BC V5H 1S6 Canada
| | - Sean B Romanowski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| | - Antonio Hernandez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| | - Nyssa Krull
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| | - Dennis Y Liu
- Department of Chemistry, Simon Fraser University Burnaby BC V5H 1S6 Canada
| | - Hannah Cavanagh
- Department of Chemistry, Simon Fraser University Burnaby BC V5H 1S6 Canada
| | - Allyson Bos
- Department of Biological Sciences, University of New Brunswick Saint John New Brunswick E2L 4L5 Canada
| | - Christopher A Gray
- Department of Biological Sciences, University of New Brunswick Saint John New Brunswick E2L 4L5 Canada
| | - Brian T Murphy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University Burnaby BC V5H 1S6 Canada
| | - Alessandra S Eustaquio
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| |
Collapse
|
2
|
Mannaa M, Lee D, Lee HH, Han G, Kang M, Kim TJ, Park J, Seo YS. Exploring the comparative genome of rice pathogen Burkholderia plantarii: unveiling virulence, fitness traits, and a potential type III secretion system effector. FRONTIERS IN PLANT SCIENCE 2024; 15:1416253. [PMID: 38845849 PMCID: PMC11153758 DOI: 10.3389/fpls.2024.1416253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024]
Abstract
This study presents a comprehensive genomic analysis of Burkholderia plantarii, a rice pathogen that causes blight and grain rot in seedlings. The entire genome of B. plantarii KACC 18964 was sequenced, followed by a comparative genomic analysis with other available genomes to gain insights into its virulence, fitness, and interactions with rice. Multiple secondary metabolite gene clusters were identified. Among these, 12 demonstrated varying similarity levels to known clusters linked to bioactive compounds, whereas eight exhibited no similarity, indicating B. plantarii as a source of potentially novel secondary metabolites. Notably, the genes responsible for tropolone and quorum sensing were conserved across the examined genomes. Additionally, B. plantarii was observed to possess three complete CRISPR systems and a range of secretion systems, exhibiting minor variations among the analyzed genomes. Genomic islands were analyzed across the four genomes, and a detailed study of the B. plantarii KACC 18964 genome revealed 59 unique islands. These islands were thoroughly investigated for their gene contents and potential roles in virulence. Particular attention has been devoted to the Type III secretion system (T3SS), a crucial virulence factor. An in silico analysis of potential T3SS effectors identified a conserved gene, aroA. Further mutational studies, in planta and in vitro analyses validated the association between aroA and virulence in rice. Overall, this study enriches our understanding of the genomic basis of B. plantarii pathogenicity and emphasizes the potential role of aroA in virulence. This understanding may guide the development of effective disease management strategies.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Duyoung Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
| | - Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Minhee Kang
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
| | - Jungwook Park
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
3
|
Dose B, Thongkongkaew T, Zopf D, Kim HJ, Bratovanov EV, García‐Altares M, Scherlach K, Kumpfmüller J, Ross C, Hermenau R, Niehs S, Silge A, Hniopek J, Schmitt M, Popp J, Hertweck C. Multimodal Molecular Imaging and Identification of Bacterial Toxins Causing Mushroom Soft Rot and Cavity Disease. Chembiochem 2021; 22:2901-2907. [PMID: 34232540 PMCID: PMC8518961 DOI: 10.1002/cbic.202100330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 12/29/2022]
Abstract
Soft rot disease of edible mushrooms leads to rapid degeneration of fungal tissue and thus severely affects farming productivity worldwide. The bacterial mushroom pathogen Burkholderia gladioli pv. agaricicola has been identified as the cause. Yet, little is known about the molecular basis of the infection, the spatial distribution and the biological role of antifungal agents and toxins involved in this infectious disease. We combine genome mining, metabolic profiling, MALDI-Imaging and UV Raman spectroscopy, to detect, identify and visualize a complex of chemical mediators and toxins produced by the pathogen during the infection process, including toxoflavin, caryoynencin, and sinapigladioside. Furthermore, targeted gene knockouts and in vitro assays link antifungal agents to prevalent symptoms of soft rot, mushroom browning, and impaired mycelium growth. Comparisons of related pathogenic, mutualistic and environmental Burkholderia spp. indicate that the arsenal of antifungal agents may have paved the way for ancestral bacteria to colonize niches where frequent, antagonistic interactions with fungi occur. Our findings not only demonstrate the power of label-free, in vivo detection of polyyne virulence factors by Raman imaging, but may also inspire new approaches to disease control.
Collapse
Affiliation(s)
- Benjamin Dose
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Tawatchai Thongkongkaew
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - David Zopf
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) JenaMember of the Leibniz Research Alliance – Leibniz Health TechnologiesAlbert-Einstein-Straße 907745JenaGermany
| | - Hak Joong Kim
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Evgeni V. Bratovanov
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - María García‐Altares
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Jana Kumpfmüller
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Claudia Ross
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Ron Hermenau
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Sarah Niehs
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
| | - Anja Silge
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
| | - Julian Hniopek
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) JenaMember of the Leibniz Research Alliance – Leibniz Health TechnologiesAlbert-Einstein-Straße 907745JenaGermany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
| | - Jürgen Popp
- Institute of Physical Chemistry (IPC) and Abbe Center of PhotonicsHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology (IPHT) JenaMember of the Leibniz Research Alliance – Leibniz Health TechnologiesAlbert-Einstein-Straße 907745JenaGermany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection BiologyHKIBeutenbergstr. 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
4
|
Gama S, Hermenau R, Frontauria M, Milea D, Sammartano S, Hertweck C, Plass W. Iron Coordination Properties of Gramibactin as Model for the New Class of Diazeniumdiolate Based Siderophores. Chemistry 2021; 27:2724-2733. [PMID: 33006390 PMCID: PMC7898861 DOI: 10.1002/chem.202003842] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 11/10/2022]
Abstract
Gramibactin (GBT) is an archetype for the new class of diazeniumdiolate siderophores, produced by Paraburkholderia graminis, a cereal-associated rhizosphere bacterium, for which a detailed solution thermodynamic study exploring the iron coordination properties is reported. The acid-base behavior of gramibactin as well as its complexing ability toward Fe3+ was studied over a wide range of pH values (2≤pH≤11). For the latter the ligand-competition method employing EDTA was used. Only two species are formed: [Fe(GBT)]- (pH 2 to 9) and [Fe(GBT)(OH)2 ]3- (pH≥9). The formation of [Fe(GBT)]- and its occurrence in real systems was confirmed by LC-HRESIMS analysis of the bacteria culture broth extract. The sequestering ability of gramibactin was also evaluated in terms of the parameters pFe and pL0.5 . Gramibactin exhibits a higher sequestering ability toward Fe3+ than EDTA and of the same order of magnitude as hydroxamate-type microbial siderophores, but smaller than most of the catecholate-type siderophores and much higher than the most known phytosiderophores.
Collapse
Affiliation(s)
- Sofia Gama
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität JenaHumboldtstr 807743JenaGermany
- New address: Department of Analytical ChemistryFaculty of ChemistryUniversity of BialystokCiolkowskiego 1K, 15–245BialystokPoland
| | - Ron Hermenau
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstr 11a07745JenaGermany
| | - Mariachiara Frontauria
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität JenaHumboldtstr 807743JenaGermany
| | - Demetrio Milea
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversità degli Studi di MessinaV.le F. Stagno d'Alcontres, 3198166MessinaItaly
| | - Silvio Sammartano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversità degli Studi di MessinaV.le F. Stagno d'Alcontres, 3198166MessinaItaly
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstr 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität JenaHumboldtstr 807743JenaGermany
| |
Collapse
|
5
|
Dashti Y, Nakou IT, Mullins AJ, Webster G, Jian X, Mahenthiralingam E, Challis GL. Discovery and Biosynthesis of Bolagladins: Unusual Lipodepsipeptides from Burkholderia gladioli Clinical Isolates*. Angew Chem Int Ed Engl 2020; 59:21553-21561. [PMID: 32780452 PMCID: PMC7756342 DOI: 10.1002/anie.202009110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 01/01/2023]
Abstract
Two Burkholderia gladioli strains isolated from the lungs of cystic fibrosis patients were found to produce unusual lipodepsipeptides containing a unique citrate-derived fatty acid and a rare dehydro-β-alanine residue. The gene cluster responsible for their biosynthesis was identified by bioinformatics and insertional mutagenesis. In-frame deletions and enzyme activity assays were used to investigate the functions of several proteins encoded by the biosynthetic gene cluster, which was found in the genomes of about 45 % of B. gladioli isolates, suggesting that its metabolic products play an important role in the growth and/or survival of the species. The Chrome Azurol S assay indicated that these metabolites bind ferric iron, which suppresses their production when added to the growth medium. Moreover, a gene encoding a TonB-dependent ferric-siderophore receptor is adjacent to the biosynthetic genes, suggesting that these metabolites may function as siderophores in B. gladioli.
Collapse
Affiliation(s)
- Yousef Dashti
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Current address: The Centre for Bacterial Cell BiologyBiosciences InstituteMedical SchoolNewcastle UniversityNewcastle upon TyneNE2 4AXUK
| | - Ioanna T. Nakou
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Alex J. Mullins
- Microbiomes, Microbes and Informatics GroupOrganisms and Environment DivisionSchool of BiosciencesCardiff UniversityCardiffCF103 ATUK
| | - Gordon Webster
- Microbiomes, Microbes and Informatics GroupOrganisms and Environment DivisionSchool of BiosciencesCardiff UniversityCardiffCF103 ATUK
| | - Xinyun Jian
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryCV4 7ALUK
| | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics GroupOrganisms and Environment DivisionSchool of BiosciencesCardiff UniversityCardiffCF103 ATUK
| | - Gregory L. Challis
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryCV4 7ALUK
- Department of Biochemistry and Molecular Biology, ARC Centre of Excellence for Innovations in Peptide and Protein ScienceMonash UniversityClaytonVIC3800Australia
| |
Collapse
|
6
|
Dose B, Ross C, Niehs SP, Scherlach K, Bauer JP, Hertweck C. Food‐Poisoning Bacteria Employ a Citrate Synthase and a Type II NRPS To Synthesize Bolaamphiphilic Lipopeptide Antibiotics**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Benjamin Dose
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Claudia Ross
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Sarah P. Niehs
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Johanna P. Bauer
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstrasse 11a 07745 Jena Germany
- Faculty of Biological Sciences Friedrich Schiller University Jena 07743 Jena Germany
| |
Collapse
|
7
|
Dose B, Ross C, Niehs SP, Scherlach K, Bauer JP, Hertweck C. Food-Poisoning Bacteria Employ a Citrate Synthase and a Type II NRPS To Synthesize Bolaamphiphilic Lipopeptide Antibiotics*. Angew Chem Int Ed Engl 2020; 59:21535-21540. [PMID: 32780428 PMCID: PMC7756705 DOI: 10.1002/anie.202009107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 12/21/2022]
Abstract
Mining the genome of the food-spoiling bacterium Burkholderia gladioli pv. cocovenenans revealed five nonribosomal peptide synthetase (NRPS) gene clusters, including an orphan gene locus (bol). Gene inactivation and metabolic profiling linked the bol gene cluster to novel bolaamphiphilic lipopeptides with antimycobacterial activity. A combination of chemical analysis and bioinformatics elucidated the structures of bolagladin A and B, lipocyclopeptides featuring an unusual dehydro-β-alanine enamide linker fused to an unprecedented tricarboxylic fatty acid tail. Through a series of targeted gene deletions, we proved the involvement of a designated citrate synthase (CS), priming ketosynthases III (KS III), a type II NRPS, including a novel desaturase for enamide formation, and a multimodular NRPS in generating the cyclopeptide. Network analyses revealed the evolutionary origin of the CS and identified cryptic CS/NRPS gene loci in various bacterial genomes.
Collapse
Affiliation(s)
- Benjamin Dose
- Leibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
| | - Claudia Ross
- Leibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
| | - Sarah P. Niehs
- Leibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
| | - Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
| | - Johanna P. Bauer
- Leibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstrasse 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
8
|
Dashti Y, Nakou IT, Mullins AJ, Webster G, Jian X, Mahenthiralingam E, Challis GL. Discovery and Biosynthesis of Bolagladins: Unusual Lipodepsipeptides from
Burkholderia gladioli
Clinical Isolates**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yousef Dashti
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Current address: The Centre for Bacterial Cell Biology Biosciences Institute Medical School Newcastle University Newcastle upon Tyne NE2 4AX UK
| | - Ioanna T. Nakou
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Alex J. Mullins
- Microbiomes, Microbes and Informatics Group Organisms and Environment Division School of Biosciences Cardiff University Cardiff CF103 AT UK
| | - Gordon Webster
- Microbiomes, Microbes and Informatics Group Organisms and Environment Division School of Biosciences Cardiff University Cardiff CF103 AT UK
| | - Xinyun Jian
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Warwick Integrative Synthetic Biology Centre University of Warwick Coventry CV4 7AL UK
| | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics Group Organisms and Environment Division School of Biosciences Cardiff University Cardiff CF103 AT UK
| | - Gregory L. Challis
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Warwick Integrative Synthetic Biology Centre University of Warwick Coventry CV4 7AL UK
- Department of Biochemistry and Molecular Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science Monash University Clayton VIC 3800 Australia
| |
Collapse
|
9
|
Niehs SP, Dose B, Richter S, Pidot SJ, Dahse H, Stinear TP, Hertweck C. Mining Symbionts of a Spider‐Transmitted Fungus Illuminates Uncharted Biosynthetic Pathways to Cytotoxic Benzolactones. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sarah P. Niehs
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Chemistry and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
| | - Benjamin Dose
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Chemistry and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
| | - Sophie Richter
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Chemistry and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
| | - Sacha J. Pidot
- Department of Microbiology and Immunology Doherty Institute 792 Elizabeth Street Melbourne 3000 Australia
| | | | - Timothy P. Stinear
- Department of Microbiology and Immunology Doherty Institute 792 Elizabeth Street Melbourne 3000 Australia
| | - Christian Hertweck
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Chemistry and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
- Faculty of Biological Sciences Friedrich Schiller University Jena 07743 Jena Germany
| |
Collapse
|
10
|
Niehs SP, Dose B, Richter S, Pidot SJ, Dahse H, Stinear TP, Hertweck C. Mining Symbionts of a Spider-Transmitted Fungus Illuminates Uncharted Biosynthetic Pathways to Cytotoxic Benzolactones. Angew Chem Int Ed Engl 2020; 59:7766-7771. [PMID: 32040253 PMCID: PMC7318616 DOI: 10.1002/anie.201916007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 11/17/2022]
Abstract
A spider-transmitted fungus (Rhizopus microsporus) that was isolated from necrotic human tissue was found to harbor endofungal bacteria (Burkholderia sp.). Metabolic profiling of the symbionts revealed a complex of cytotoxic agents (necroximes). Their structures were characterized as oxime-substituted benzolactone enamides with a peptidic side chain. The potently cytotoxic necroximes are also formed in symbiosis with the fungal host and could have contributed to the necrosis. Genome sequencing and computational analyses revealed a novel modular PKS/NRPS assembly line equipped with several non-canonical domains. Based on gene-deletion mutants, we propose a biosynthetic model for bacterial benzolactones. We identified specific traits that serve as genetic handles to find related salicylate macrolide pathways (lobatamide, oximidine, apicularen) in various other bacterial genera. Knowledge of the biosynthetic pathway enables biosynthetic engineering and genome-mining approaches.
Collapse
Affiliation(s)
- Sarah P. Niehs
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Chemistry and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
| | - Benjamin Dose
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Chemistry and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
| | - Sophie Richter
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Chemistry and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
| | - Sacha J. Pidot
- Department of Microbiology and ImmunologyDoherty Institute792 Elizabeth StreetMelbourne3000Australia
| | | | - Timothy P. Stinear
- Department of Microbiology and ImmunologyDoherty Institute792 Elizabeth StreetMelbourne3000Australia
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Chemistry and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
11
|
Sieber S, Daeppen C, Jenul C, Mannancherril V, Eberl L, Gademann K. Biosynthesis and Structure–Activity Relationship Investigations of the Diazeniumdiolate Antifungal Agent Fragin. Chembiochem 2020; 21:1587-1592. [DOI: 10.1002/cbic.201900755] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Simon Sieber
- Department of ChemistryUniversity of Zürich Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Christophe Daeppen
- Department of ChemistryUniversity of Zürich Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Christian Jenul
- Institute of Plant BiologyUniversity of Zürich Zollikerstrasse 107 8008 Zürich Switzerland
| | - Vidya Mannancherril
- Department of ChemistryUniversity of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Leo Eberl
- Institute of Plant BiologyUniversity of Zürich Zollikerstrasse 107 8008 Zürich Switzerland
| | - Karl Gademann
- Department of ChemistryUniversity of Zürich Winterthurerstrasse 190 8057 Zürich Switzerland
| |
Collapse
|
12
|
Wang M, Niikura H, He H, Daniel‐Ivad P, Ryan KS. Biosynthesis of the N–N‐Bond‐Containing Compound
l
‐Alanosine. Angew Chem Int Ed Engl 2020; 59:3881-3885. [DOI: 10.1002/anie.201913458] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/30/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Menghua Wang
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Haruka Niikura
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Hai‐Yan He
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Phillip Daniel‐Ivad
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Katherine S. Ryan
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
13
|
Wang M, Niikura H, He H, Daniel‐Ivad P, Ryan KS. Biosynthesis of the N–N‐Bond‐Containing Compound
l
‐Alanosine. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Menghua Wang
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Haruka Niikura
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Hai‐Yan He
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Phillip Daniel‐Ivad
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| | - Katherine S. Ryan
- Department of Chemistry The University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
14
|
Ng TL, McCallum ME, Zheng CR, Wang JX, Wu KJY, Balskus EP. The l-Alanosine Gene Cluster Encodes a Pathway for Diazeniumdiolate Biosynthesis. Chembiochem 2019; 21:1155-1160. [PMID: 31643127 DOI: 10.1002/cbic.201900565] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 12/29/2022]
Abstract
N-Nitroso-containing natural products are bioactive metabolites with antibacterial and anticancer properties. In particular, compounds containing the diazeniumdiolate (N-nitrosohydroxylamine) group display a wide range of bioactivities ranging from cytotoxicity to metal chelation. Despite the importance of this structural motif, knowledge of its biosynthesis is limited. Herein we describe the discovery of a biosynthetic gene cluster in Streptomyces alanosinicus ATCC 15710 responsible for producing the diazeniumdiolate natural product l-alanosine. Gene disruption and stable isotope feeding experiments identified essential biosynthetic genes and revealed the source of the N-nitroso group. Additional biochemical characterization of the biosynthetic enzymes revealed that the non-proteinogenic amino acid l-2,3-diaminopropionic acid (l-Dap) is synthesized and loaded onto a free-standing peptidyl carrier protein (PCP) domain in l-alanosine biosynthesis, which we propose may be a mechanism of handling unstable intermediates generated en route to the diazeniumdiolate. These discoveries will facilitate efforts to determine the biochemistry of diazeniumdiolate formation.
Collapse
Affiliation(s)
- Tai L Ng
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Monica E McCallum
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Christine R Zheng
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Jennifer X Wang
- Small Molecule Mass Spectrometry Facility, Faculty of Arts and Sciences Division of Science, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA
| | - Kelvin J Y Wu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|