1
|
Di Liberto G, Tosoni S. Stable, while Still Active? A DFT Study of Cu, Ag, and Au Single Atoms at the C 3N 4/TiO 2 Interface. Chemphyschem 2024; 25:e202400378. [PMID: 38726548 DOI: 10.1002/cphc.202400378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/08/2024] [Indexed: 06/21/2024]
Abstract
Hybrid DFT calculations are employed to compare the adsorption and stabilization of Cu, Ag, and Au atoms on graphitic C3N4 and on the heterojunction formed by g- C3N4 and TiO2. While Cu and Ag can be strongly chemisorbed in form of cations on g- C3N4, Au is only weakly physisorbed. On g- C3N4/TiO2, all coinage metal adatoms can be strongly chemisorbed, but, while Cu and Ag forms cations, Au form an Au- species. Ab Initio Molecular Dynamics simulations confirm that the metal adatoms on g-C3N4 are highly mobile at room temperature, while they remain confined in the interfacial spacing between C3N4 and TiO2 on the heterojunction, being both stably bound and reachable for the reactants in a catalytic cycle. Doping g- C3N4/TiO2 with metal single atoms permits thus to generate catalytic systems with tunable charge and chemical properties and improved stability with respect to bare C3N4. Moreover, the changes in the electronic structure of g- C3N4/TiO2 induced by the presence of the metal single atoms are beneficial also for photocatalytic applications.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Department of Materials Science, University of Milan-Bicocca, Via Roberto Cozzi 55, 20125, Milan, Italy
| | - Sergio Tosoni
- Department of Materials Science, University of Milan-Bicocca, Via Roberto Cozzi 55, 20125, Milan, Italy
| |
Collapse
|
2
|
Comini N, Diulus JT, Parkinson GS, Osterwalder J, Novotny Z. Stability of Iridium Single Atoms on Fe 3O 4(001) in the mbar Pressure Range. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:19097-19106. [PMID: 37791099 PMCID: PMC10544020 DOI: 10.1021/acs.jpcc.3c03097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/24/2023] [Indexed: 10/05/2023]
Abstract
Stable single metal adatoms on oxide surfaces are of great interest for future applications in the field of catalysis. We studied iridium single atoms (Ir1) supported on a Fe3O4(001) single crystal, a model system previously only studied in ultra-high vacuum, to explore their behavior upon exposure to several gases in the millibar range (up to 20 mbar) utilizing ambient-pressure X-ray photoelectron spectroscopy. The Ir1 single adatoms appear stable upon exposure to a variety of common gases at room temperature, including oxygen (O2), hydrogen (H2), nitrogen (N2), carbon monoxide (CO), argon (Ar), and water vapor. Changes in the Ir 4f binding energy suggest that Ir1 interacts not only with adsorbed and dissociated molecules but also with water/OH groups and adventitious carbon species deposited inevitably under these pressure conditions. At higher temperatures (473 K), iridium adatom encapsulation takes place in an oxidizing environment (a partial O2 pressure of 0.1 mbar). We attribute this phenomenon to magnetite growth caused by the enhanced diffusion of iron cations near the surface. These findings provide an initial understanding of the behavior of single atoms on metal oxides outside the UHV regime.
Collapse
Affiliation(s)
- Nicolo Comini
- Physik-Institut, Universität Zürich, Zürich CH-8057, Switzerland
- Swiss
Light Source, Paul Scherrer Institut, Villigen-PSI CH-5232, Switzerland
| | - J. Trey Diulus
- Physik-Institut, Universität Zürich, Zürich CH-8057, Switzerland
- Swiss
Light Source, Paul Scherrer Institut, Villigen-PSI CH-5232, Switzerland
| | | | - Jürg Osterwalder
- Physik-Institut, Universität Zürich, Zürich CH-8057, Switzerland
| | - Zbynek Novotny
- Physik-Institut, Universität Zürich, Zürich CH-8057, Switzerland
- Swiss
Light Source, Paul Scherrer Institut, Villigen-PSI CH-5232, Switzerland
- EMPA,
Laboratory for Joining Technologies and Corrosion, Swiss Federal Laboratories
for Materials, Dübendorf CH-8600, Switzerland
| |
Collapse
|
3
|
Dynamics of palladium single-atoms on graphitic carbon nitride during ethylene hydrogenation. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
Bianchetti E, Perilli D, Di Valentin C. Improving the Oxygen Evolution Reaction on Fe 3O 4(001) with Single-Atom Catalysts. ACS Catal 2023; 13:4811-4823. [PMID: 37066046 PMCID: PMC10088028 DOI: 10.1021/acscatal.3c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/15/2023] [Indexed: 04/18/2023]
Abstract
Doping magnetite surfaces with transition-metal atoms is a promising strategy to improve the catalytic performance toward the oxygen evolution reaction (OER), which governs the overall efficiency of water electrolysis and hydrogen production. In this work, we investigated the Fe3O4(001) surface as a support material for single-atom catalysts of the OER. First, we prepared and optimized models of inexpensive and abundant transition-metal atoms, such as Ti, Co, Ni, and Cu, trapped in various configurations on the Fe3O4(001) surface. Then, we studied their structural, electronic, and magnetic properties through HSE06 hybrid functional calculations. As a further step, we investigated the performance of these model electrocatalysts toward the OER, considering different possible mechanisms, in comparison with the pristine magnetite surface, on the basis of the computational hydrogen electrode model developed by Nørskov and co-workers. Cobalt-doped systems were found to be the most promising electrocatalytic systems among those considered in this work. Overpotential values (∼0.35 V) were in the range of those experimentally reported for mixed Co/Fe oxide (0.2-0.5 V).
Collapse
Affiliation(s)
- Enrico Bianchetti
- Dipartimento
di Scienza dei Materiali, Università
di Milano Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Daniele Perilli
- Dipartimento
di Scienza dei Materiali, Università
di Milano Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Cristiana Di Valentin
- Dipartimento
di Scienza dei Materiali, Università
di Milano Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
- BioNanoMedicine
Center NANOMIB, Università di Milano
Bicocca, Via Raoul Follereau
3, 20900 Monza, Italy
| |
Collapse
|
5
|
Puntscher L, Daninger K, Schmid M, Diebold U, Parkinson GS. A study of Pt, Rh, Ni and Ir dispersion on anatase TiO2(101) and the role of water. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
6
|
Iemhoff A, Vennewald M, Palkovits R. Single-Atom Catalysts on Covalent Triazine Frameworks: at the Crossroad between Homogeneous and Heterogeneous Catalysis. Angew Chem Int Ed Engl 2023; 62:e202212015. [PMID: 36108176 PMCID: PMC10108136 DOI: 10.1002/anie.202212015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023]
Abstract
Heterogeneous single-site and single-atom catalysts potentially enable combining the high catalytic activity and selectivity of molecular catalysts with the easy continuous operation and recycling of solid catalysts. In recent years, covalent triazine frameworks (CTFs) found increasing attention as support materials for particulate and isolated metal species. Bearing a high fraction of nitrogen sites, they allow coordinating molecular metal species and stabilizing particulate metal species, respectively. Dependent on synthesis method and pretreatment of CTFs, materials resembling well-defined highly crosslinked polymers or materials comparable to structurally ill-defined nitrogen-containing carbons result. Accordingly, CTFs serve as model systems elucidating the interaction of single-site, single-atom and particulate metal species with such supports. Factors influencing the transition between molecular and particulate systems are discussed to allow deriving tailored catalyst systems.
Collapse
Affiliation(s)
- Andree Iemhoff
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Maurice Vennewald
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Regina Palkovits
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.,Max-Planck-Institute for Chemical Energy Conversion, Stiftstrasse 34, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
7
|
Zhang C, Bai L, Chen M, Sun X, Zhu M, Wu Q, Gao X, Zhang Q, Zheng X, Yu ZQ, Wu Y. Modulating the Site Density of Mo Single Atoms to Catch Adventitious O Atoms for Efficient H 2 O 2 Oxidation with Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208704. [PMID: 36411951 DOI: 10.1002/adma.202208704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Coordination environment and site density have great impacts on the catalytic performance for single atoms (SAs). Herein, the site density of Mo-SAs on red polymeric carbon nitrides (RPCN) is modulated via a local carbonization strategy to controllably catch adventitious O atoms from open environment. The addition of melamine derivants with hydrocarbyl chains induces local carbonization during RPCN pyrolysis. These local carbonization regions bring abundant graphitic N3C to anchor Mo-SAs, and most of Mo-SAs catch the O atoms in air, forming the O2 -covered Mo-N3 coordination. The dopants of carbon source with different structures and amounts can modulate the site density of Mo-SAs, therefore controlling the amounts of coordinated O atoms. Furthermore, coordinated O atoms around Mo-SAs construct the catalytic environment with Lewis base and gather photo-generated electrons under light. Such O-covered Mo-SAs endow RPCN materials (Mo-RPCN) with a strong ability for hydrogen abstraction, leading to the 99.51% ratio (28.8 mmol min-1 g-1 ) rate for thioanisole conversion with H2 O2 assisted advance oxidation technology. This work brings a new sight on the coordinated atoms dominant oxidation process.
Collapse
Affiliation(s)
- Congmin Zhang
- College of Chemistry and Environmental Engineering, Institute of Low-dimensional Materials Genome Initiative, Shenzhen University, Shenzhen, Guangdong, 518071, China
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lichen Bai
- College of Chemistry and Environmental Engineering, Institute of Low-dimensional Materials Genome Initiative, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Min Chen
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuejiao Sun
- College of Chemistry and Environmental Engineering, Institute of Low-dimensional Materials Genome Initiative, Shenzhen University, Shenzhen, Guangdong, 518071, China
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mengzhao Zhu
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qinglong Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaoping Gao
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Institute of Low-dimensional Materials Genome Initiative, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Yuen Wu
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
8
|
Yang H, Cheng W, Lu X, Chen Z, Liu C, Tian L, Li Z. Coupling Transition Metal Compound with Single-Atom Site for Water Splitting Electrocatalysis. CHEM REC 2023; 23:e202200237. [PMID: 36538728 DOI: 10.1002/tcr.202200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Indexed: 12/24/2022]
Abstract
Single-atom site catalysts (SACs) provide an ideal platform to identify the active centers, explore the catalytic mechanism, and establish the structure-property relationships, and thus have attracted increasing interests for electrocatalytic energy conversion. Substantial endeavors have been devoted to the construction of carbon-supported SACs, and their progress have been comprehensively reviewed. Compared with carbon-supported SACs, transition metal compounds (TMCs)-supported SACs are still in their infancy in the field of electrocatalysis. However, they have also aroused ever-increasing attention for driving electrocatalytic water splitting, and emerged as an indispensable class of SACs in recent years, predominately owing to their inherently structural features, such as rich anchoring sites, surface defects, and lattice vacancy. Herein, in this review, we have systematically summarized the recent advances of a variety of TMC supported SACs toward electrocatalytic water splitting. The advanced characterization techniques and theoretical analyses for identifying and monitoring the atomic structure of SACs are firstly manifested. Subsequently, the anchoring and stabilization mechanisms for TMC supported SACs are also highlighted. Thereafter, the advances of TMC supported SACs for driving water electrolysis are systematically unraveled.
Collapse
Affiliation(s)
- Huimin Yang
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yili, 835000, China.,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Wenjing Cheng
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yili, 835000, China.,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Xinhua Lu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Zhenyang Chen
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Chao Liu
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Lin Tian
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yili, 835000, China.,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| |
Collapse
|
9
|
Lan X, Zhao W, Fan M, Wang B, Zhang R. Local coordination atom and metal types of single-atom catalysts to regulate catalytic performance of C2H2 selective hydrogenation. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2022.118242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Removal of perfluorinated compounds at environmentally relevant concentrations on non-equivalent dual sites regulated by single-atom-strengthened biochar. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Sun X, Li H. Recent progress of Ga-based liquid metals in catalysis. RSC Adv 2022; 12:24946-24957. [PMID: 36199892 PMCID: PMC9434383 DOI: 10.1039/d2ra04795k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Within the last decade, the application of gallium-based liquid metals in catalysis has received great attention from around the world. This article provides an overview concerning Ga-based liquid metals (LMs) in energy and environmental applications, such as the catalytic synthesis of ethylene by non-petroleum routes via Pd-Ga liquid catalysts, alkane dehydrogenation via Pd-Ga or Pt-Ga catalysts, CO2 hydrogenation to methanol via Ni Ga or Pd/Ga2O3 catalysts, and catalytic degradation of CO2 via EGaIn liquid metal catalysts below 500 °C, where Ga-based liquid metal catalysts exhibit high selectivity and low energy consumption. The formation of isolated metal sites in a liquid metal matrix allows the integration of several characteristics of multiphase catalysis (particularly the operational friendliness of product separation procedures) with those of homogeneous catalysis. In the end, this article sheds light on future prospects, opportunities, and challenges of liquid metal catalysis.
Collapse
Affiliation(s)
- Xi Sun
- Dalian Institute of Chemical Physic, CAS Dalian 116023 China
| | - Hui Li
- Dalian Institute of Chemical Physic, CAS Dalian 116023 China
| |
Collapse
|
12
|
Ke S, Min X, Liu Y, Mi R, Wu X, Huang Z, Fang M. Tungsten-Based Nanocatalysts: Research Progress and Future Prospects. Molecules 2022; 27:4751. [PMID: 35897927 PMCID: PMC9329835 DOI: 10.3390/molecules27154751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
The high price of noble metal resources limits its commercial application and stimulates the potential for developing new catalysts that can replace noble metal catalysts. Tungsten-based catalysts have become the most important substitutes for noble metal catalysts because of their rich resources, friendly environment, rich valence and better adsorption enthalpy. However, some challenges still hinder the development of tungsten-based catalysts, such as limited catalytic activity, instability, difficult recovery, and so on. At present, the focus of tungsten-based catalyst research is to develop a satisfactory material with high catalytic performance, excellent stability and green environmental protection, mainly including tungsten atomic catalysts, tungsten metal nanocatalysts, tungsten-based compound nanocatalysts, and so on. In this work, we first present the research status of these tungsten-based catalysts with different sizes, existing forms, and chemical compositions, and further provide a basis for future perspectives on tungsten-based catalysts.
Collapse
Affiliation(s)
| | - Xin Min
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wasters, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China; (S.K.); (Y.L.); (R.M.); (X.W.); (Z.H.); (M.F.)
| | | | | | | | | | | |
Collapse
|
13
|
Liu Y, Han Z, Gewinner S, Schöllkopf W, Levchenko SV, Kuhlenbeck H, Roldan Cuenya B. Adatom Bonding Sites in a Nickel-Fe 3 O 4 (001) Single-Atom Model Catalyst and O 2 Reactivity Unveiled by Surface Action Spectroscopy with Infrared Free-Electron Laser Light. Angew Chem Int Ed Engl 2022; 61:e202202561. [PMID: 35502625 PMCID: PMC9400859 DOI: 10.1002/anie.202202561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 11/09/2022]
Abstract
Single-atom (SA) catalysis presently receives much attention with its promise to decrease the cost of the active material while increasing the catalyst's performance. However, key details such as the exact location of SA species and their stability are often unclear due to a lack of atomic level information. Here, we show how vibrational spectra measured with surface action spectroscopy (SAS) and density functional theory (DFT) simulations can differentiate between different adatom binding sites and determine the location of Ni and Au single atoms on Fe3 O4 (001). We reveal that Ni and Au adatoms selectively bind to surface oxygen ions which are octahedrally coordinated to Fe ions. In addition, we find that the Ni adatoms can activate O2 to superoxide in contrast to the bare surface and Ni in subsurface positions. Overall, we unveil the advantages of combining SAS and DFT for improving the understanding of single-atom catalysts.
Collapse
Affiliation(s)
- Yun Liu
- Department of Interface ScienceFritz-Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Zhongkang Han
- Center for Energy Science and TechnologySkolkovo Institute of Science and TechnologyBolshoy Blvd. 30/1121205MoscowRussia
| | - Sandy Gewinner
- Molecular Physics DepartmentFritz-Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Wieland Schöllkopf
- Molecular Physics DepartmentFritz-Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Sergey V. Levchenko
- Center for Energy Science and TechnologySkolkovo Institute of Science and TechnologyBolshoy Blvd. 30/1121205MoscowRussia
| | - Helmut Kuhlenbeck
- Department of Interface ScienceFritz-Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Beatriz Roldan Cuenya
- Department of Interface ScienceFritz-Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| |
Collapse
|
14
|
Liu Y, Han Z, Gewinner S, Schöllkopf W, Levchenko SV, Kuhlenbeck H, Roldan Cuenya B. Adatom Bonding Sites in a Nickel‐Fe
3
O
4
(001) Single‐Atom Model Catalyst and O
2
Reactivity Unveiled by Surface Action Spectroscopy with Infrared Free‐Electron Laser Light. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yun Liu
- Department of Interface Science Fritz-Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Germany
| | - Zhongkang Han
- Center for Energy Science and Technology Skolkovo Institute of Science and Technology Bolshoy Blvd. 30/1 121205 Moscow Russia
| | - Sandy Gewinner
- Molecular Physics Department Fritz-Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Germany
| | - Wieland Schöllkopf
- Molecular Physics Department Fritz-Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Germany
| | - Sergey V. Levchenko
- Center for Energy Science and Technology Skolkovo Institute of Science and Technology Bolshoy Blvd. 30/1 121205 Moscow Russia
| | - Helmut Kuhlenbeck
- Department of Interface Science Fritz-Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science Fritz-Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Germany
| |
Collapse
|
15
|
Hasija V, Patial S, Raizada P, Aslam Parwaz Khan A, Asiri AM, Van Le Q, Nguyen VH, Singh P. Covalent organic frameworks promoted single metal atom catalysis: Strategies and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214298] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Bac S, Mallikarjun Sharada S. CO Oxidation with Atomically Dispersed Catalysts: Insights from the Energetic Span Model. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Selin Bac
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Shaama Mallikarjun Sharada
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles California 90089, United States
| |
Collapse
|
17
|
Kraushofer F, Haager L, Eder M, Rafsanjani-Abbasi A, Jakub Z, Franceschi G, Riva M, Meier M, Schmid M, Diebold U, Parkinson GS. Single Rh Adatoms Stabilized on α-Fe 2O 3(11̅02) by Coadsorbed Water. ACS ENERGY LETTERS 2022; 7:375-380. [PMID: 35059503 PMCID: PMC8762699 DOI: 10.1021/acsenergylett.1c02405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Oxide-supported single-atom catalysts are commonly modeled as a metal atom substituting surface cation sites in a low-index surface. Adatoms with dangling bonds will inevitably coordinate molecules from the gas phase, and adsorbates such as water can affect both stability and catalytic activity. Herein, we use scanning tunneling microscopy (STM), noncontact atomic force microscopy (ncAFM), and X-ray photoelectron spectroscopy (XPS) to show that high densities of single Rh adatoms are stabilized on α-Fe2O3(11̅02) in the presence of 2 × 10-8 mbar of water at room temperature, in marked contrast to the rapid sintering observed under UHV conditions. Annealing to 50 °C in UHV desorbs all water from the substrate leaving only the OH groups coordinated to Rh, and high-resolution ncAFM images provide a direct view into the internal structure. We provide direct evidence of the importance of OH ligands in the stability of single atoms and argue that their presence should be assumed when modeling single-atom catalysis systems.
Collapse
Affiliation(s)
- Florian Kraushofer
- Institute
of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10/E134, 1040 Wien, Austria
| | - Lena Haager
- Institute
of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10/E134, 1040 Wien, Austria
| | - Moritz Eder
- Chair
of Physical Chemistry & Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Ali Rafsanjani-Abbasi
- Institute
of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10/E134, 1040 Wien, Austria
| | - Zdeněk Jakub
- Institute
of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10/E134, 1040 Wien, Austria
| | - Giada Franceschi
- Institute
of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10/E134, 1040 Wien, Austria
| | - Michele Riva
- Institute
of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10/E134, 1040 Wien, Austria
| | - Matthias Meier
- Institute
of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10/E134, 1040 Wien, Austria
| | - Michael Schmid
- Institute
of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10/E134, 1040 Wien, Austria
| | - Ulrike Diebold
- Institute
of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10/E134, 1040 Wien, Austria
| | - Gareth S. Parkinson
- Institute
of Applied Physics, TU Wien, Wiedner Hauptstraße 8-10/E134, 1040 Wien, Austria
| |
Collapse
|
18
|
Unravelling an amine-regulated crystallization crossover to prove single/multicore effects on the biomedical and environmental catalytic activity of magnetic iron oxide colloids. J Colloid Interface Sci 2021; 608:1585-1597. [PMID: 34742075 DOI: 10.1016/j.jcis.2021.10.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/20/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022]
Abstract
Elucidation of reaction mechanisms in forming nanostructures is relevant to obtain robust and affordable protocols that can lead to materials with enhanced properties and good reproducibility. Here, the formation of magnetic iron oxide monocrystalline nanoflowers in polyol solvents using N-methyldiethanolamine (NMDEA) as co-solvent has been shown to occur through a non-classical crystallization pathway. This pathway involves intermediate mesocrystals that, in addition, can be transformed into large single colloidal nanocrystals. Interestingly, the crossover of a non-classical crystallization pathway to a classical crystallization pathway can be induced by merely changing the NMDEA concentration. The key is the stability of a green rust-like intermediate complex that modulates the nucleation rate and growth of magnetite nanocrystals. The crossover separates two crystallization domains (classical and non-classical) and three basic configurations (mesocrystals, large and small colloidal nanocrystals). The above finding facilitated the synthesis of magnetic materials with different configurations to suit various engineering applications. Consequently, the effect of the single and multicore configurations of magnetic iron oxide on the biomedical (magnetic hyperthermia and enzyme immobilization) and catalytic activity (Fenton-like reactions and photo-Fenton-like processes driven by visible light irradiation) has been experimentally demonstrated.
Collapse
|
19
|
Yang J, Wang Z, Huang CX, Zhang Y, Zhang Q, Chen C, Du J, Zhou X, Zhang Y, Zhou H, Wang L, Zheng X, Gu L, Yang LM, Wu Y. Compressive Strain Modulation of Single Iron Sites on Helical Carbon Support Boosts Electrocatalytic Oxygen Reduction. Angew Chem Int Ed Engl 2021; 60:22722-22728. [PMID: 34402159 DOI: 10.1002/anie.202109058] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/06/2021] [Indexed: 11/08/2022]
Abstract
Designing and modulating the local structure of metal sites is the key to gain the unique selectivity and high activity of single metal site catalysts. Herein, we report strain engineering of curved single atomic iron-nitrogen sites to boost electrocatalytic activity. First, a helical carbon structure with abundant high-curvature surface is realized by carbonization of helical polypyrrole that is templated from self-assembled chiral surfactants. The high-curvature surface introduces compressive strain on the supported Fe-N4 sites. Consequently, the curved Fe-N4 sites with 1.5 % compressed Fe-N bonds exhibit downshifted d-band center than the planar sites. Such a change can weaken the bonding strength between the oxygenated intermediates and metal sites, resulting a much smaller energy barrier for oxygen reduction. Catalytic tests further demonstrate that a kinetic current density of 7.922 mA cm-2 at 0.9 V vs. RHE is obtained in alkaline media for curved Fe-N4 sites, which is 31 times higher than that for planar ones. Our findings shed light on modulating the local three-dimensional structure of single metal sites and boosting the catalytic activity via strain engineering.
Collapse
Affiliation(s)
- Jia Yang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Graphene Engineering Laboratory, Anhui University, Hefei, Anhui, 230601, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhiyuan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chun-Xiang Huang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yida Zhang
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Cai Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Junyi Du
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ying Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huang Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lingxiao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Ming Yang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yuen Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
20
|
Yang J, Wang Z, Huang C, Zhang Y, Zhang Q, Chen C, Du J, Zhou X, Zhang Y, Zhou H, Wang L, Zheng X, Gu L, Yang L, Wu Y. Compressive Strain Modulation of Single Iron Sites on Helical Carbon Support Boosts Electrocatalytic Oxygen Reduction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jia Yang
- Institutes of Physical Science and Information Technology Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui Graphene Engineering Laboratory Anhui University Hefei Anhui 230601 China
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhiyuan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Chun‐Xiang Huang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education Hubei Key Laboratory of Materials Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Yida Zhang
- National Synchrotron Radiation Laboratory (NSRL) University of Science and Technology of China Hefei Anhui 230029 China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Cai Chen
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Junyi Du
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Ying Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Huang Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Lingxiao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory (NSRL) University of Science and Technology of China Hefei Anhui 230029 China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Ming Yang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education Hubei Key Laboratory of Materials Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Yuen Wu
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
21
|
Piccolo L. Restructuring effects of the chemical environment in metal nanocatalysis and single-atom catalysis. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Doherty F, Goldsmith BR. Rhodium Single‐Atom Catalysts on Titania for Reverse Water Gas Shift Reaction Explored by First Principles Mechanistic Analysis and Compared to Nanoclusters. ChemCatChem 2021. [DOI: 10.1002/cctc.202100292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Francis Doherty
- Department of Chemical Engineering University of Michigan 2300 Hayward St. Ann Arbor MI 48109-2136 USA
- Catalysis Science and Technology Institute University of Michigan 2300 Hayward St. Ann Arbor MI 48109-2136 USA
| | - Bryan R. Goldsmith
- Department of Chemical Engineering University of Michigan 2300 Hayward St. Ann Arbor MI 48109-2136 USA
- Catalysis Science and Technology Institute University of Michigan 2300 Hayward St. Ann Arbor MI 48109-2136 USA
| |
Collapse
|
23
|
Huang A, Cao Y, Delima RS, Ji T, Jansonius RP, Johnson NJJ, Hunt C, He J, Kurimoto A, Zhang Z, Berlinguette CP. Electrolysis Can Be Used to Resolve Hydrogenation Pathways at Palladium Surfaces in a Membrane Reactor. JACS AU 2021; 1:336-343. [PMID: 34467297 PMCID: PMC8395666 DOI: 10.1021/jacsau.0c00051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 06/13/2023]
Abstract
For common hydrogenation chemistries that occur at high temperatures (where H2 is adsorbed and activated at the same surface which the substrate must also adsorb for reaction), there is often little consensus on how the reactions (e.g., hydro(deoxy)genation) actually occur. We demonstrate here that an electrocatalytic palladium membrane reactor (ePMR) can be used to study hydrogenation reaction mechanisms at ambient temperatures, where the catalyst does not necessarily undergo structural reorganization. The ePMR uses electrolysis and a hydrogen-selective palladium membrane to deliver reactive hydrogen to a catalyst surface in an adjacent compartment for reaction with an organic substrate. This process forms the requisite metal-hydride surface for hydrogenation chemistry, but at ambient temperature and pressure, and without a H2 source. We demonstrate the utility of this analytical tool by studying the hydrogenation of benzaldehyde at palladium nanocubes with dimensions of 13-24 nm. This experimental design enabled us to resolve that the alcohol product forms at the facial sites, whereas the hydrodeoxygenation step occurs at edge sites. These observations enabled us to develop the first site-specific definition of how a carbonyl species undergoes hydro(deoxy)genation.
Collapse
Affiliation(s)
- Aoxue Huang
- Department
of Chemistry, The University of British
Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Yang Cao
- Department
of Chemistry, The University of British
Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- Stewart
Blusson Quantum Matter Institute, The University
of British Columbia, 2355 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Roxanna S. Delima
- Stewart
Blusson Quantum Matter Institute, The University
of British Columbia, 2355 East Mall, Vancouver, BC V6T 1Z4, Canada
- Department
of Chemical & Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Tengxiao Ji
- Department
of Chemistry, The University of British
Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ryan P. Jansonius
- Department
of Chemistry, The University of British
Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Noah J. J. Johnson
- Department
of Chemistry, The University of British
Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Camden Hunt
- Department
of Chemistry, The University of British
Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- Stewart
Blusson Quantum Matter Institute, The University
of British Columbia, 2355 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jingfu He
- Department
of Chemistry, The University of British
Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Aiko Kurimoto
- Department
of Chemistry, The University of British
Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Zishuai Zhang
- Department
of Chemistry, The University of British
Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Curtis P. Berlinguette
- Department
of Chemistry, The University of British
Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- Stewart
Blusson Quantum Matter Institute, The University
of British Columbia, 2355 East Mall, Vancouver, BC V6T 1Z4, Canada
- Department
of Chemical & Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
- Canadian
Institute for Advanced Research (CIFAR), 661 University Avenue, Toronto, M5G 1M1 Ontario, Canada
| |
Collapse
|
24
|
Xue Q, Zhang Z, Ng BKY, Zhao P, Lo BTW. Recent Advances in the Engineering of Single-Atom Catalysts Through Metal-Organic Frameworks. Top Curr Chem (Cham) 2021; 379:11. [PMID: 33544294 DOI: 10.1007/s41061-021-00324-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/06/2021] [Indexed: 11/25/2022]
Abstract
This mini-review highlights some recent progress in the engineering of single-atom catalysts (SACs) through metal-organic frameworks (MOFs) and derivatives. The inherent molecular and chemical specificities within the MOFs and derivatives can offer stabilisation of the SACs with high atomic isolation and dispersion. As MOFs are often considered an infinite array of self-assembled molecular catalysts, specifically designed structures can provide further functionalities to suit the needs of different catalytic applications. In brief, we can divide the preparation approaches into three main categories: (1) fabrication onto functional groups of the ligands, (2) fabrication onto Lewis acid sites of nodal centres, and (3) synthesis via a pyrolysis-mediated technique. Through these approaches, strong metal-support interactions can be established to aid the fine-tuning of the catalytic properties. We also discuss how recent progress in the development of state-of-the-art microscopic, spectroscopic, and crystallographic techniques has enabled scientists to elucidate the structure-activity relationship.
Collapse
Affiliation(s)
- Qi Xue
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen Hi-tech Industrial Park, Shenzhen, 518000, China.,State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zixuan Zhang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Bryan K Y Ng
- Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Pu Zhao
- Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Benedict T W Lo
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen Hi-tech Industrial Park, Shenzhen, 518000, China. .,State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
25
|
Grumelli D, Wiegmann T, Barja S, Reikowski F, Maroun F, Allongue P, Balajka J, Parkinson GS, Diebold U, Kern K, Magnussen OM. Electrochemical Stability of the Reconstructed Fe 3 O 4 (001) Surface. Angew Chem Int Ed Engl 2020; 59:21904-21908. [PMID: 32729209 DOI: 10.1002/anie.202008785] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Indexed: 11/11/2022]
Abstract
Establishing the atomic-scale structure of metal-oxide surfaces during electrochemical reactions is a key step to modeling this important class of electrocatalysts. Here, we demonstrate that the characteristic (√2×√2)R45° surface reconstruction formed on (001)-oriented magnetite single crystals is maintained after immersion in 0.1 M NaOH at 0.20 V vs. Ag/AgCl and we investigate its dependence on the electrode potential. We follow the evolution of the surface using in situ and operando surface X-ray diffraction from the onset of hydrogen evolution, to potentials deep in the oxygen evolution reaction (OER) regime. The reconstruction remains stable for hours between -0.20 and 0.60 V and, surprisingly, is still present at anodic current densities of up to 10 mA cm-2 and strongly affects the OER kinetics. We attribute this to a stabilization of the Fe3 O4 bulk by the reconstructed surface. At more negative potentials, a gradual and largely irreversible lifting of the reconstruction is observed due to the onset of oxide reduction.
Collapse
Affiliation(s)
- Doris Grumelli
- Instituto Nacional de Investigaciones Fisicoquimcas Teoricas y Aplicadas, Universidad Nacional de La Plata, CONICET, La Plata, Argentine
| | | | - Sara Barja
- Departamento de Física de Materiales, Centro de Física de Materiales, University of the Basque Country (UPV/EHU-CSIC), Donostia-San Sebastián, Spain.,Donostia International Physics Center (DIPC), Donostia-San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | | - Fouad Maroun
- Laboratoire de Physique de la Matière Condensée, CNRS, IP Paris, 91128, Palaiseau, France
| | - Philippe Allongue
- Laboratoire de Physique de la Matière Condensée, CNRS, IP Paris, 91128, Palaiseau, France
| | - Jan Balajka
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | | | | | - Klaus Kern
- Max Planck Institute for Solid State Research, Stuttgart, Germany.,Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | | |
Collapse
|
26
|
Grumelli D, Wiegmann T, Barja S, Reikowski F, Maroun F, Allongue P, Balajka J, Parkinson GS, Diebold U, Kern K, Magnussen OM. Electrochemical Stability of the Reconstructed Fe
3
O
4
(001) Surface. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Doris Grumelli
- Instituto Nacional de Investigaciones Fisicoquimcas Teoricas y Aplicadas Universidad Nacional de La Plata, CONICET La Plata Argentine
| | | | - Sara Barja
- Departamento de Física de Materiales Centro de Física de Materiales University of the Basque Country (UPV/EHU-CSIC) Donostia-San Sebastián Spain
- Donostia International Physics Center (DIPC) Donostia-San Sebastián Spain
- IKERBASQUE Basque Foundation for Science Bilbao Spain
| | | | - Fouad Maroun
- Laboratoire de Physique de la Matière Condensée CNRS, IP Paris 91128 Palaiseau France
| | - Philippe Allongue
- Laboratoire de Physique de la Matière Condensée CNRS, IP Paris 91128 Palaiseau France
| | - Jan Balajka
- Institute of Applied Physics TU Wien Vienna Austria
| | | | | | - Klaus Kern
- Max Planck Institute for Solid State Research Stuttgart Germany
- Ecole Polytechnique Fédérale de Lausanne Switzerland
| | | |
Collapse
|
27
|
Xu Y, Chu M, Liu F, Wang X, Liu Y, Cao M, Gong J, Luo J, Lin H, Li Y, Zhang Q. Revealing the Correlation between Catalytic Selectivity and the Local Coordination Environment of Pt Single Atom. NANO LETTERS 2020; 20:6865-6872. [PMID: 32786220 DOI: 10.1021/acs.nanolett.0c02940] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Single atom catalysts (SACs) have recently attracted great attention in heterogeneous catalysis and have been regarded as ideal models for investigating the strong interaction between metal and support. Despite the huge progress over the past decade, the deep understanding on the structure-performance correlation of SACs at a single atom level still remains to be a great challenge. In this study, we demonstrate that the variation in the coordination number of the Pt single atom can significantly promote the propylene selectivity during propyne semihydrogenation (PSH) for the first time. Specifically, the propylene selectivity greatly increases from 65.4% to 94.1% as the coordination number of Pt-O increases from ∼3.4 to ∼5, whereas the variation in the coordination number of Pt-O slightly influences the turnover frequency values of SACs. We anticipate that the present work may deepen the understanding on the structure-performance of SACs and also promote the fundamental research in single atom catalysis.
Collapse
Affiliation(s)
- Yong Xu
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Jiangsu 215123, China
| | - Mingyu Chu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Jiangsu 215123, China
| | - Fangfang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Jiangsu 215123, China
| | - Xuchun Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Jiangsu 215123, China
| | - Yu Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Jiangsu 215123, China
| | - Muhan Cao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Jiangsu 215123, China
| | - Jin Gong
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Jiangsu 215123, China
| | - Jun Luo
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Haiping Lin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Jiangsu 215123, China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Jiangsu 215123, China
| | - Qiao Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Jiangsu 215123, China
| |
Collapse
|
28
|
Recent advances in single-atom catalysts and single-atom alloys: opportunities for exploring the uncharted phase space in-between. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Liang J, Lin J, Liu J, Wang X, Zhang T, Li J. Dual Metal Active Sites in an Ir
1
/FeO
x
Single‐Atom Catalyst: A Redox Mechanism for the Water‐Gas Shift Reaction. Angew Chem Int Ed Engl 2020; 59:12868-12875. [DOI: 10.1002/anie.201914867] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/24/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Jin‐Xia Liang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science Guizhou Education University Guiyang 550018 China
| | - Jian Lin
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jingyue Liu
- Department of Physics Arizona State University Tempe AZ 85287 USA
| | - Xiaodong Wang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Tao Zhang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Tsinghua University Beijing 100084 China
- Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
30
|
Liang J, Lin J, Liu J, Wang X, Zhang T, Li J. Dual Metal Active Sites in an Ir
1
/FeO
x
Single‐Atom Catalyst: A Redox Mechanism for the Water‐Gas Shift Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jin‐Xia Liang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science Guizhou Education University Guiyang 550018 China
| | - Jian Lin
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jingyue Liu
- Department of Physics Arizona State University Tempe AZ 85287 USA
| | - Xiaodong Wang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Tao Zhang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Tsinghua University Beijing 100084 China
- Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
31
|
Franceschi G, Kraushofer F, Meier M, Parkinson GS, Schmid M, Diebold U, Riva M. A Model System for Photocatalysis: Ti-Doped α-Fe 2O 3(11̅02) Single-Crystalline Films. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:3753-3764. [PMID: 32421058 PMCID: PMC7222102 DOI: 10.1021/acs.chemmater.9b04908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Hematite (α-Fe2O3) is one of the most investigated anode materials for photoelectrochemical water splitting. Its efficiency improves by doping with Ti, but the underlying mechanisms are not understood. One hurdle is separating the influence of doping on conductivity, surface states, and morphology, which all affect performance. To address this complexity, one needs well-defined model systems. We build such a model system by growing single-crystalline, atomically flat Ti-doped α-Fe2O3(11̅02) films by pulsed laser deposition (PLD). We characterize their surfaces, combining in situ scanning tunneling microscopy (STM) with density functional theory (DFT), and reveal how dilute Ti impurities modify the atomic-scale structure of the surface as a function of the oxygen chemical potential and Ti content. Ti preferentially substitutes subsurface Fe and causes a local restructuring of the topmost surface layers. Based on the experimental quantification of Ti-induced surface modifications and the structural model we have established, we propose a strategy that can be used to separate the effects of Ti-induced modifications to the surface atomic and electronic structures and bulk conductivity on the reactivity of Ti-doped hematite.
Collapse
Affiliation(s)
- Giada Franceschi
- Institute
of Applied Physics, TU Wien, Wiedner Hauptstraβe 8-10/E134, 1040 Wien, Austria
| | - Florian Kraushofer
- Institute
of Applied Physics, TU Wien, Wiedner Hauptstraβe 8-10/E134, 1040 Wien, Austria
| | - Matthias Meier
- Institute
of Applied Physics, TU Wien, Wiedner Hauptstraβe 8-10/E134, 1040 Wien, Austria
- Faculty
of Physics and Center for Computational Materials Science, University of Vienna, Sensengasse 8, 1090 Wien, Austria
| | - Gareth S. Parkinson
- Institute
of Applied Physics, TU Wien, Wiedner Hauptstraβe 8-10/E134, 1040 Wien, Austria
| | - Michael Schmid
- Institute
of Applied Physics, TU Wien, Wiedner Hauptstraβe 8-10/E134, 1040 Wien, Austria
| | - Ulrike Diebold
- Institute
of Applied Physics, TU Wien, Wiedner Hauptstraβe 8-10/E134, 1040 Wien, Austria
| | - Michele Riva
- Institute
of Applied Physics, TU Wien, Wiedner Hauptstraβe 8-10/E134, 1040 Wien, Austria
| |
Collapse
|
32
|
Bi Q, Yuan X, Lu Y, Wang D, Huang J, Si R, Sui M, Huang F. One-Step High-Temperature-Synthesized Single-Atom Platinum Catalyst for Efficient Selective Hydrogenation. RESEARCH 2020; 2020:9140841. [PMID: 32426729 PMCID: PMC7206892 DOI: 10.34133/2020/9140841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/22/2020] [Indexed: 12/27/2022]
Abstract
Although single-atom catalysts significantly improve the atom utilization efficiency, the multistep preparation procedures are complicated and difficult to control. Herein, we demonstrate that one-step in situ synthesis of the single-atom Pt anchored in single-crystal MoC (Pt1/MoC) by using facile and controllable arc-discharge strategy under extreme conditions. The high temperature (up to 4000°C) provides the sufficient energy for atom dispersion and overall stability by forming thermodynamically favourable metal-support interactions. The high-temperature-stabilized Pt1/MoC exhibits outstanding performance and excellent thermal stability as durable catalyst for selective quinoline hydrogenation. The initial turnover frequency of 3710 h-1 is greater than those of previously reported samples by an order of magnitude under 2 MPa H2 at 100°C. The catalyst also shows broad scope activity toward hydrogenation containing unsaturated groups of C=C, C=N, and C=O. The facile, one-step, and fast arc-discharge method provides an effective avenue for single-atom catalyst fabrication that is conventionally challenging.
Collapse
Affiliation(s)
- Qingyuan Bi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xiaotao Yuan
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yue Lu
- Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Dong Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jian Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Manling Sui
- Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
33
|
Yuk SF, Collinge G, Nguyen MT, Lee MS, Glezakou VA, Rousseau R. Selective acetylene hydrogenation over single metal atoms supported on Fe3O4(001): A first-principle study. J Chem Phys 2020; 152:154703. [DOI: 10.1063/1.5142748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Simuck F. Yuk
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Greg Collinge
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Manh-Thuong Nguyen
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Mal-Soon Lee
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Vassiliki-Alexandra Glezakou
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Roger Rousseau
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| |
Collapse
|
34
|
Wang C, Tissot H, Stenlid JH, Kaya S, Weissenrieder J. High-Density Isolated Fe 1O 3 Sites on a Single-Crystal Cu 2O(100) Surface. J Phys Chem Lett 2019; 10:7318-7323. [PMID: 31713426 DOI: 10.1021/acs.jpclett.9b02979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single-atom catalysts have recently been subject to considerable attention within applied catalysis. However, complications in the preparation of well-defined single-atom model systems have hampered efforts to determine the reaction mechanisms underpinning the reported activity. By means of an atomic layer deposition method utilizing the steric hindrance of the ligands, isolated Fe1O3 motifs were grown on a single-crystal Cu2O(100) surface at densities up to 0.21 sites per surface unit cell. Ambient pressure X-ray photoelectron spectroscopy shows a strong metal-support interaction with Fe in a chemical state close to 3+. Results from scanning tunneling microscopy and density functional calculations demonstrate that isolated Fe1O3 is exclusively formed and occupies a single site per surface unit cell, coordinating to two oxygen atoms from the Cu2O lattice and another through abstraction from O2. The isolated Fe1O3 motif is active for CO oxidation at 473 K. The growth method holds promise for extension to other catalytic systems.
Collapse
Affiliation(s)
- Chunlei Wang
- Material Physics, School of Engineering Sciences , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Heloise Tissot
- Material Physics, School of Engineering Sciences , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Joakim Halldin Stenlid
- Department of Physics, Albanova University Center , Stockholm University , SE-106 91 Stockholm , Sweden
- Applied Physical Chemistry, Department of Chemistry , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Sarp Kaya
- Koç University TUPRAS Energy Center , 34450 Istanbul , Turkey
- Chemistry Department , Koç University , 34450 Istanbul , Turkey
| | - Jonas Weissenrieder
- Material Physics, School of Engineering Sciences , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| |
Collapse
|