1
|
Zhao M, Chen S, He C, Zhou Y. Synthesis, Structure, and Properties of a Nitrogen-Boron-Nitrogen-Embedded Polycyclic π-System Containing a Pleiaheptalene Framework. Org Lett 2023. [PMID: 38015797 DOI: 10.1021/acs.orglett.3c03311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
A novel polycyclic π-system (1) featuring both a pleiaheptalene framework (a three-fused heptagon system) and nitrogen-boron-nitrogen (NBN) unit was constructed by electrophilic borylation. A combined experimental and computational study demonstrated that 1 has a highly twisted π-backbone with approximate C2 symmetry, which can undergo conformational isomerization at room temperature in contrast to pleiaheptalene. It was also found that 1 can bind the fluoride ion in the solution, which induces changes in the absorption and emission spectra.
Collapse
Affiliation(s)
- Mengna Zhao
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Shuaishuai Chen
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Chun He
- Apeloa Pharmaceutical Co., Ltd., Dongyang, Zhejiang 322118, China
| | - Yifeng Zhou
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
2
|
Ejlli B, Rominger F, Freudenberg J, Bunz UHF, Müllen K. Ring-Expanding Rearrangement of Benzo-Fused Tris-Cycloheptenylenes towards Nonplanar Polycyclic Aromatic Hydrocarbons. Chemistry 2023; 29:e202203735. [PMID: 36602008 DOI: 10.1002/chem.202203735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
A strongly twisted benzo-fused tris-cycloheptenylene, containing three dibenzosuberenone units fused to a common benzene ring, was subjected to Ramirez olefination and subsequent palladium-catalyzed Suzuki-Miyaura cross-coupling with 4-substituted phenylboronic acids. The high steric demand within the overcrowded, benzene-rich benzo-fused tris-cycloheptenylenes enforced an unprecedented 1,2-rearrangement upon π-extension during the Suzuki coupling reaction. According to crystal structure analysis, the resulting negatively curved polycyclic aromatic hydrocarbons consist of two heptagons and one octagon surrounding a central benzene ring as a result of strain release. In the solid state, the materials exhibit a blue to blue-green fluorescence with increased quantum yields and a hypsochromic shift of the emission maxima compared to their respective solutions.
Collapse
Affiliation(s)
- Barbara Ejlli
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,InnovationLab, Speyerer Strasse 4, 69115, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Centre for Advanced Materials, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
3
|
Wang J, Gámez FG, Marín-Beloqui J, Diaz-Andres A, Miao X, Casanova D, Casado J, Liu J. Synthesis of a Dicyclohepta[a,g]heptalene-Containing Polycyclic Conjugated Hydrocarbon and the Impact of Non-Alternant Topologies. Angew Chem Int Ed Engl 2023; 62:e202217124. [PMID: 36511094 DOI: 10.1002/anie.202217124] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Incorporating non-hexagonal rings into polycyclic conjugated hydrocarbons (PCHs) can significantly affect their electronic and optoelectronic properties and chemical reactivities. Here, we report the first bottom-up synthesis of a dicyclohepta[a,g]heptalene-embedded PCH (1) with four continuous heptagons, which are arranged in a "Z" shape. Compared with its structural isomer bischrysene 1 R with only hexagonal rings, compound 1 presents a distinct antiaromatic character, especially the inner heptalene core, which possesses clear antiaromatic nature. In addition, PCH 1 exhibits a narrower highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gap than its benzenoid contrast 1 R, as verified by experimental measurements and theoretical calculations. Our work reported herein not only provides a new way to synthesize novel PCHs with non-alternant topologies but also offers the possibility to tune their electronic and optical properties.
Collapse
Affiliation(s)
- Junting Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Fernando Gordillo Gámez
- Department of Physical Chemistry, University of Malaga, Campus de Teations s/n, 229071, Malaga, Spain
| | - Jose Marín-Beloqui
- Department of Physical Chemistry, University of Malaga, Campus de Teations s/n, 229071, Malaga, Spain
| | - Aitor Diaz-Andres
- Donostia International Physics Center (DIPC), 20018, Donostia, Euskadi, Spain
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018, Donostia, Euskadi, Spain.,IKERBASQUE-Basque Foundation for Science, 48009, Bilbao, Euskadi, Spain
| | - Juan Casado
- Department of Physical Chemistry, University of Malaga, Campus de Teations s/n, 229071, Malaga, Spain
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
4
|
Kato M, Kim J, Oh J, Shimizu D, Fukui N, Shinokubo H. Near-Infrared-Responsive Hydrocarbons Designed by π-Extension of Indeno[1,2,3,4-pgra]perylene at the 1,2,12-Positions. Chemistry 2023; 29:e202300249. [PMID: 36705165 DOI: 10.1002/chem.202300249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/28/2023]
Abstract
The relationship between the overall electronic structure of π-conjugated molecules and the arrangement of their constituent elements is of fundamental importance. Establishing rational design guidelines for conjugated hydrocarbons with narrow HOMO-LUMO gaps is useful to develop near-infrared (NIR) responsive dyes and redox-active materials. This study describes the synthesis and properties of three conjugated hydrocarbons, i. e., an indenonaphthoperylene, an indenoterrylene, and a diindenoterrylene. These molecules exhibit NIR absorption despite the absence of significant antiaromaticity and diradical character. Notably, the indenonaphthoperylene exhibits red-to-NIR emission in the 620-850 nm region. The indenoterrylene and the diindenoterrylene exhibit NIR absorption tailing to 870 and 940 nm, respectively. Moreover, the effect of the π-extension of indenoperylene is disclosed in order to propose guidelines for achieving a narrow HOMO-LUMO gap with negligible antiaromaticity and diradical character.
Collapse
Affiliation(s)
- Masaki Kato
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
| | - Jinseok Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and, Department of Chemistry, Yonsei University, 03722, Seoul, Korea
| | - Juwon Oh
- Spectroscopy Laboratory for Functional π-Electronic Systems and, Department of Chemistry, Yonsei University, 03722, Seoul, Korea.,Department of Chemistry and, Department of ICT Environmental Health System, Soonchunhyang University, 31538, Asan, Korea
| | - Daiki Shimizu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, 615-8510, Kyoto, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan.,PRESTO, Japan Science and Technology Agency (JST), 332-0012, Kawaguchi, Saitama, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
| |
Collapse
|
5
|
Schnitzlein M, Zhu C, Shoyama K, Würthner F. π-Extended Pleiadienes by [5+2] Annulation of 1-Boraphenalenes and ortho-Dihaloarenes. Chemistry 2022; 28:e202202053. [PMID: 35921514 PMCID: PMC9804371 DOI: 10.1002/chem.202202053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 01/05/2023]
Abstract
Palladium-catalyzed [5+2] annulation of 1-boraphenalenes with ortho-dihaloarenes afforded negatively curved π-extended pleiadienes. Two benzo[1,2-i:4,5-i']dipleiadienes (BDPs) featuring a seven-six-seven-membered ring arrangement were synthesized and investigated. Their crystal structure revealed a unique packing arrangement and theoretical calculations were employed to shed light onto the dynamic behavior of the BDP moiety and its aromaticity. Further, a naphthalene-fused pleiadiene was stitched together by oxidative cyclodehydrogenation to yield an additional five-membered ring. This formal azulene moiety led to distinct changes in optical and redox properties and increased perturbation of the aromatic system.
Collapse
Affiliation(s)
- Matthias Schnitzlein
- Institut für Organische Chemie and Center for Nanosystems Chemistry (CNC)Universität WürzburgAm Hubland97074WürzburgGermany
| | - Chongwei Zhu
- Institut für Organische Chemie and Center for Nanosystems Chemistry (CNC)Universität WürzburgAm Hubland97074WürzburgGermany
- Key Laboratory of Functional Molecular SolidsMinistry of Educationand School of Chemistry and Materials ScienceAnhui Normal UniversityWuhu241002P. R. China
| | - Kazutaka Shoyama
- Institut für Organische Chemie and Center for Nanosystems Chemistry (CNC)Universität WürzburgAm Hubland97074WürzburgGermany
| | - Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry (CNC)Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
6
|
|
7
|
Wang S, Tang M, Wu L, Bian L, Jiang L, Liu J, Tang Z, Liang Y, Liu Z. Linear Nonalternant Isomers of Acenes Fusing Multiple Azulene Units. Angew Chem Int Ed Engl 2022; 61:e202205658. [DOI: 10.1002/anie.202205658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Shangshang Wang
- Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou Zhejiang 310024 China
| | - Min Tang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou Zhejiang 310024 China
| | - Lin Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou Zhejiang 310024 China
| | - Lifang Bian
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou Zhejiang 310024 China
| | - Liang Jiang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou Zhejiang 310024 China
| | - Jiali Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou Zhejiang 310024 China
| | - Zheng‐Bin Tang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou Zhejiang 310024 China
| | - Yimin Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou Zhejiang 310024 China
| | - Zhichang Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou Zhejiang 310024 China
| |
Collapse
|
8
|
Ong A, Tao T, Jiang Q, Han Y, Ou Y, Huang KW, Chi C. Azulene‐Fused Acenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Albert Ong
- National University of Singapore Asia Research Institute Department of Chemistry SINGAPORE
| | - Tao Tao
- Nanjing University of Information Science and Technology School of Environmental Science and Engineering CHINA
| | - Qing Jiang
- National University of Singapore Asia Research Institute Department of Chemistry SINGAPORE
| | - Yi Han
- National University of Singapore Asia Research Institute Department of Chemistry SINGAPORE
| | - Yaping Ou
- National University of Singapore Asia Research Institute Department of Chemistry SINGAPORE
| | - Kuo-Wei Huang
- King Abdullah University of Science and Technology KAUST Catalysis Center and Division of Physical Science and Engineering SAUDI ARABIA
| | - Chunyan Chi
- National University of Singapore Department of Chemistry 3 Science Drive 3 117543 Singapore SINGAPORE
| |
Collapse
|
9
|
Fei Y, Liu J. Synthesis of Defective Nanographenes Containing Joined Pentagons and Heptagons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201000. [PMID: 35470978 PMCID: PMC9259726 DOI: 10.1002/advs.202201000] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Defective nanographenes containing joined pentagons and heptagons exhibit striking physicochemical properties from both experimental and theoretical perspectives compared with their pure hexagonal counterparts. Thus, the synthesis and characterization of these unique polyarenes with well-defined defective topologies have attracted increasing attention. Despite extensive research on nonalternant molecules since the last century, most studies focused on the corresponding mutagenic and carcinogenic activities. Recently, researchers have realized that the defective domain induces geometric bending and causes electronic perturbation, thus leading to significant alteration of the photophysical properties. This review discusses the synthesis and characterization of small nonalternant polycyclic hydrocarbons in the early stage and recent developments in embedding pentagon-heptagon (5-7) pairs into large carbon skeletons through in-solution chemistry.
Collapse
Affiliation(s)
- Yiyang Fei
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe University of Hong KongHong Kong999077P. R. China
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe University of Hong KongHong Kong999077P. R. China
| |
Collapse
|
10
|
Linear Nonalternant Isomers of Acenes Fusing Multiple Azulene Units. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Wu F, Ma J, Lombardi F, Fu Y, Liu F, Huang Z, Liu R, Komber H, Alexandropoulos DI, Dmitrieva E, Lohr TG, Israel N, Popov AA, Liu J, Bogani L, Feng X. Benzo-Extended Cyclohepta[def]fluorene Derivatives with Very Low-Lying Triplet States. Angew Chem Int Ed Engl 2022; 61:e202202170. [PMID: 35290699 PMCID: PMC9324097 DOI: 10.1002/anie.202202170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 12/24/2022]
Abstract
Open-shell non-alternant polycyclic hydrocarbons (PHs) are attracting increasing attention due to their promising applications in organic spintronics and quantum computing. Herein we report the synthesis of three cyclohepta[def]fluorene-based diradicaloids (1-3), by fusion of benzo rings on its periphery for the thermodynamic stabilization, as evidenced by multiple characterization techniques. Remarkably, all of them display a very narrow optical energy gap (Eg opt =0.52-0.69 eV) and persistent stability under ambient conditions (t1/2 =11.7-33.3 h). More importantly, this new type of diradicaloids possess a low-lying triplet state with an extremely small singlet-triplet energy gap, as low as 0.002 kcal mol-1 , with a clear dependence on the molecular size. This family of compounds thus offers a new route to create non-alternant open-shell PHs with high-spin ground states, and opens up novel possibilities and insights into understanding the structure-property relationships.
Collapse
Affiliation(s)
- Fupeng Wu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | | | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research01069DresdenGermany
| | - Zhijie Huang
- Department of MaterialsUniversity of OxfordOxfordOX1 3PHUK
| | - Renxiang Liu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e. V.Hohe Straße 601069DresdenGermany
| | | | - Evgenia Dmitrieva
- Leibniz Institute for Solid State and Materials Research01069DresdenGermany
| | - Thorsten G. Lohr
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Noel Israel
- Leibniz Institute for Solid State and Materials Research01069DresdenGermany
| | - Alexey A. Popov
- Leibniz Institute for Solid State and Materials Research01069DresdenGermany
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe University of Hong KongPokfulam RoadHong KongChina
| | - Lapo Bogani
- Department of MaterialsUniversity of OxfordOxfordOX1 3PHUK
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
- Max Planck Institute of Microstructure PhysicsWeinberg 206120HalleGermany
| |
Collapse
|
12
|
Wu F, Ma J, Lombardi F, Fu Y, Liu F, Huang Z, Liu R, Komber H, Alexandropoulos DI, Dmitrieva E, Lohr TG, Israel N, Popov AA, Liu J, Bogani L, Feng X. Benzo‐Extended Cyclohepta[
def
]fluorene Derivatives with Very Low‐Lying Triplet States. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fupeng Wu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | | | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research 01069 Dresden Germany
| | - Zhijie Huang
- Department of Materials University of Oxford Oxford OX1 3PH UK
| | - Renxiang Liu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e. V. Hohe Straße 6 01069 Dresden Germany
| | | | - Evgenia Dmitrieva
- Leibniz Institute for Solid State and Materials Research 01069 Dresden Germany
| | - Thorsten G. Lohr
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | - Noel Israel
- Leibniz Institute for Solid State and Materials Research 01069 Dresden Germany
| | - Alexey A. Popov
- Leibniz Institute for Solid State and Materials Research 01069 Dresden Germany
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Lapo Bogani
- Department of Materials University of Oxford Oxford OX1 3PH UK
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
- Max Planck Institute of Microstructure Physics Weinberg 2 06120 Halle Germany
| |
Collapse
|
13
|
Harimoto T, Ishigaki Y. Redox‐Active Hydrocarbons: Isolation and Structural Determination of Cationic States toward Advanced Response Systems. Chempluschem 2022; 87:e202200013. [DOI: 10.1002/cplu.202200013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Takashi Harimoto
- Hokkaido University: Hokkaido Daigaku Department of Chemistry, Faculty of Science JAPAN
| | - Yusuke Ishigaki
- Hokkaido University: Hokkaido Daigaku Department of Chemistry, Faculty of Science North 10, West 8, North-ward 060-0810 Sapporo JAPAN
| |
Collapse
|
14
|
Wang J, Shen C, Zhang G, Gan F, Ding Y, Qiu H. Transformation of Crowded Oligoarylene into Perylene‐Cored Chiral Nanographene by Sequential Oxidative Cyclization and 1,2‐Phenyl Migration. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinghao Wang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Guoli Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Fuwei Gan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yongle Ding
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
15
|
Schnitzlein M, Mützel C, Shoyama K, Farrell JM, Würthner F. PAHs Containing both Heptagon and Pentagon: Corannulene Extension by [5+2] Annulation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Matthias Schnitzlein
- Institut für Organische Chemie and Center for Nanosystems Chemistry (CNC) Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Carina Mützel
- Institut für Organische Chemie and Center for Nanosystems Chemistry (CNC) Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie and Center for Nanosystems Chemistry (CNC) Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Jeffrey M. Farrell
- Institut für Organische Chemie and Center for Nanosystems Chemistry (CNC) Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry (CNC) Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
16
|
Wang J, Shen C, Zhang G, Gan F, Ding Y, Qiu H. Transformation of Crowded Oligoarylene into Perylene-Cored Chiral Nanographene by Sequential Oxidative Cyclization and 1,2-Phenyl Migration. Angew Chem Int Ed Engl 2021; 61:e202115979. [PMID: 34854182 DOI: 10.1002/anie.202115979] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 01/07/2023]
Abstract
Synthetic innovation for constructing sophisticated nanographenes is of fundamental significance for a variety of advanced applications. Herein, we report a distinctive method to prepare π-extended chiral nanographenes with 29 benzenoid rings and two helical breaches from a highly crowded perylene-cored oligoarylene precursor. Under Scholl's conditions, the reaction predominantly involves the regioselective and sequential cyclization in the peri- and bay regions of the perylene core, and the complanation of the 1-phenyl[5]helicene intermediate module via 1,2-phenyl migration. The resulting chiral nanographenes are configurationally stable at 180 °C due to the high diastereomerization barriers of ca. 45 kcal mol-1 . These molecules also possess globally delocalized π-systems with low HOMO/LUMO gaps, leading to nearly panchromatic absorption, intensive electronic circular dichroism signals and deep-red circularly polarized luminescence.
Collapse
Affiliation(s)
- Jinghao Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guoli Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Fuwei Gan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yongle Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
17
|
Kato M, Fukui N, Shinokubo H. Indeno[1,2,3,4-pqra]Perylene: A Medium-Sized Aromatic Hydrocarbon Exhibiting Full-Range Visible-Light Absorption. Chemistry 2021; 28:e202103647. [PMID: 34787346 DOI: 10.1002/chem.202103647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 11/11/2022]
Abstract
We report the synthesis and properties of indeno[1,2,3,4-pqra]perylene, which was prepared by the fusion of one anthracene unit with one naphthalene unit via three carbon-carbon bonds. The synthetic route through two-fold C-H arylation enabled not only the synthesis of unsubstituted indenoperylene, but also rapid access to its arylated derivatives on the gram scale. Indenoperylene is a medium-sized aromatic hydrocarbon with the composition C24 H12 that is isomeric to coronene. Nevertheless, its absorption covers the entire visible region owing to its small HOMO-LUMO gap. Furthermore, indenoperylene exhibits high stability despite the absence of peripheral substituents. We propose that the unique electronic structure of indenoperylene originates from the coexistence of an electron-withdrawing subunit (benzoaceanthrylene) and an electron-donating subunit (perylene). The electronic properties of indenoperylene were modulated via post-functionalization through regioselective bromination. The current research demonstrates that indenoperylene is a promising candidate as a main skeleton for near-infrared-responsive and redox-active materials.
Collapse
Affiliation(s)
- Masaki Kato
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
18
|
Chaolumen, Stepek IA, Yamada KE, Ito H, Itami K. Construction of Heptagon-Containing Molecular Nanocarbons. Angew Chem Int Ed Engl 2021; 60:23508-23532. [PMID: 33547701 DOI: 10.1002/anie.202100260] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Molecular nanocarbons containing heptagonal rings have attracted increasing interest due to their dynamic behavior, electronic properties, aromaticity, and solid-state packing. Heptagon incorporation can not only induce negative curvature within nanocarbon scaffolds, but also confer significantly altered properties through interaction with adjacent non-hexagonal rings. Despite the disclosure of several beautiful examples in recent years, synthetic strategies toward heptagon-embedded molecular nanocarbons remain relatively limited due to the intrinsic challenges of heptagon formation and incorporation into polyarene frameworks. In this Review, recent advances in solution-mediated and surface-assisted synthesis of heptagon-containing molecular nanocarbons, as well as the intriguing properties of these frameworks, will be discussed.
Collapse
Affiliation(s)
- Chaolumen
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Iain A Stepek
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Keigo E Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Institute of Chemistry, Academia Sinica, Nankang, Taipei, 115, Taiwan, R.O.C
| |
Collapse
|
19
|
Medel MA, Cruz CM, Miguel D, Blanco V, Morcillo SP, Campaña AG. Chiral Distorted Hexa-peri-hexabenzocoronenes Bearing a Nonagon-Embedded Carbohelicene. Angew Chem Int Ed Engl 2021; 60:22051-22056. [PMID: 34329498 PMCID: PMC8518755 DOI: 10.1002/anie.202109310] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 01/29/2023]
Abstract
A new family of chiral saddle-helix hybrid nanographenes is reported. The first hexa-peri-hexabenzocoronene (HBC) analogues bearing a nine-membered carbocycle are presented. Furthermore, for the first time, π-extended carbo[n]helicenes containing a nine-membered ring as part of the helical moiety have been synthesized. The combination of a [5]helicene moiety and a nonagon ring in a single chiral motif induces a tremendous distortion from planarity into the nanographenic structures compared to other saddle-helix hybrids such as heptagon- and octagon-containing π-extended carbo[5]helicenes. In fact, the interplanar angle of the two terminal rings reaches the largest angle (134.8°) of a carbohelicene reported to date, thus being by far the most twisted helicene yet prepared. Photophysical properties evaluation showed improved absorption dissymmetry factors (|gabs |=4.2×10-3 ) in the new family of nonagon-containing π-extended carbo[5]helicenes.
Collapse
Affiliation(s)
- Miguel A. Medel
- Departamento de Química OrgánicaUnidad de Excelencia de Química (UEQ)Facultad de CienciasUniversidad de Granada18071GranadaSpain
| | - Carlos M. Cruz
- Department of ChemistryFaculty of ScienceUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Delia Miguel
- Departamento de FisicoquímicaFacultad de Farmacia, UEQUniversidad de Granada18071GranadaSpain
| | - Victor Blanco
- Departamento de Química OrgánicaUnidad de Excelencia de Química (UEQ)Facultad de CienciasUniversidad de Granada18071GranadaSpain
| | - Sara P. Morcillo
- Departamento de Química OrgánicaUnidad de Excelencia de Química (UEQ)Facultad de CienciasUniversidad de Granada18071GranadaSpain
| | - Araceli G. Campaña
- Departamento de Química OrgánicaUnidad de Excelencia de Química (UEQ)Facultad de CienciasUniversidad de Granada18071GranadaSpain
| |
Collapse
|
20
|
Medel MA, Cruz CM, Miguel D, Blanco V, Morcillo SP, Campaña AG. Chiral Distorted Hexa‐
peri
‐hexabenzocoronenes Bearing a Nonagon‐Embedded Carbohelicene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Miguel A. Medel
- Departamento de Química Orgánica Unidad de Excelencia de Química (UEQ) Facultad de Ciencias Universidad de Granada 18071 Granada Spain
| | - Carlos M. Cruz
- Department of Chemistry Faculty of Science University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Delia Miguel
- Departamento de Fisicoquímica Facultad de Farmacia, UEQ Universidad de Granada 18071 Granada Spain
| | - Victor Blanco
- Departamento de Química Orgánica Unidad de Excelencia de Química (UEQ) Facultad de Ciencias Universidad de Granada 18071 Granada Spain
| | - Sara P. Morcillo
- Departamento de Química Orgánica Unidad de Excelencia de Química (UEQ) Facultad de Ciencias Universidad de Granada 18071 Granada Spain
| | - Araceli G. Campaña
- Departamento de Química Orgánica Unidad de Excelencia de Química (UEQ) Facultad de Ciencias Universidad de Granada 18071 Granada Spain
| |
Collapse
|
21
|
Yang X, Rominger F, Mastalerz M. Contorted Heteroannulated Tetraareno[a,d,j,m]coronenes. Chemistry 2021; 27:14345-14352. [PMID: 34374459 PMCID: PMC8596641 DOI: 10.1002/chem.202102112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/06/2022]
Abstract
Fused polycyclic aromatic compounds are interesting materials for organic electronics applications. To fine-tune photophysical or electrochemical properties, either various substituents can be attached or heteroatoms (such as N or S) can be incorporated into the fused aromatic backbone. Coronenes and heterocoronenes are promising compounds in this respect. Up until now, the possibilities for varying the attached fused heteroaromatics at the coronene core were quite limited, and realizing both electron-withdrawing and -donating rings at the same time was very difficult. Here, a series of pyridine, anisole and thiophene annulated tetraareno[a,d,j,m]coronenes has been synthesized by a facile two-step route that is a combination of Suzuki-Miyaura cross-coupling and a following cyclization step, starting from three different diarenoperylene dibromides. The contorted molecular π-planes of the obtained cata-condensed tetraarenocoronenes were analyzed by single-crystal X-ray crystallography, and the photophysical and electrochemical properties were systematically investigated by UV/Vis spectroscopy and cyclovoltammetry.
Collapse
Affiliation(s)
- Xuan Yang
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
22
|
|
23
|
Zou Y, Han Y, Wu S, Hou X, Chow CHE, Wu J. Scholl Reaction of Perylene-Based Polyphenylene Precursors under Different Conditions: Formation of Hexagon or Octagon? Angew Chem Int Ed Engl 2021; 60:17654-17663. [PMID: 34002913 DOI: 10.1002/anie.202105427] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 12/19/2022]
Abstract
A planar dibenzo-peri-hexacene derivative (2) was synthesized via FeCl3 -mediated Scholl reaction from a cyclopenta-fused perylene (CP) based polyphenylene precursor (1). However, an unexpected octagon-containing, negatively curved molecule (3) was obtained in nearly quantitative yield when 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and methanesulfonic acid (MeSO3 H) were used. Similar results were observed when two smaller-sized precursors containing one (4) or two CP units (5) were tested. X-ray crystallographic analysis also revealed that there is no close π-π stacking between neighboring π-conjugated skeletons. DFT calculations suggest a radical cation mechanism in the presence of FeCl3 while an arenium ion pathway for the DDQ/MeSO3 H mediated Scholl reaction, which can well explain the selective formation of hexagons and octagons under different conditions. The obtained compounds showed tunable optical and electrochemical properties.
Collapse
Affiliation(s)
- Ya Zou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Shaofei Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Xudong Hou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Chi Hao Eugene Chow
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
24
|
Zou Y, Han Y, Wu S, Hou X, Chow CHE, Wu J. Scholl Reaction of Perylene‐Based Polyphenylene Precursors under Different Conditions: Formation of Hexagon or Octagon? Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105427] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ya Zou
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yi Han
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Shaofei Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Xudong Hou
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Chi Hao Eugene Chow
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Jishan Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
25
|
Yang X, Rominger F, Mastalerz M. Benzo-Fused Perylene Oligomers with up to 13 Linearly Annulated Rings. Angew Chem Int Ed Engl 2021; 60:7941-7946. [PMID: 33460231 PMCID: PMC8048933 DOI: 10.1002/anie.202017062] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Indexed: 01/24/2023]
Abstract
The longer acenes with more than six linearly fused six-membered rings are still fascinating chemists and physicists because of their unique photophysical properties and their high potential for organic electronics applications. Unfortunately, with increasing size (seven and more rings) these compounds rapidly lose chemical stability. Besides kinetic and chemical stabilization approaches introducing either bulky or electron-withdrawing groups or both, such systems also have been stabilized by peri-annulation. Although strictly spoken, these peri-annulated compounds are no longer real acenes, they have fascinating properties as well. Herein, we describe the first synthesis of a new series of peri-annulated acenes with up to 13 linearly fused rings, which is unprecedented till date. Furthermore, this new series contains perylene units connected through benzene rings along their [b,k]edges, responsible for unique absorption and emission properties.
Collapse
Affiliation(s)
- Xuan Yang
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Michael Mastalerz
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
26
|
Yang X, Rominger F, Mastalerz M. Benzo‐Fused Perylene Oligomers with up to 13 Linearly Annulated Rings. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xuan Yang
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
27
|
Full J, Panchal SP, Götz J, Krause A, Nowak‐Król A. Modular Synthesis of Organoboron Helically Chiral Compounds: Cutouts from Extended Helices. Angew Chem Int Ed Engl 2021; 60:4350-4357. [PMID: 33244880 PMCID: PMC7898935 DOI: 10.1002/anie.202014138] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/25/2020] [Indexed: 11/12/2022]
Abstract
Two types of helically chiral compounds bearing one and two boron atoms were synthesized by a modular approach. Formation of the helical scaffolds was executed by the introduction of boron to flexible biaryl and triaryl derived from small achiral building blocks. All-ortho-fused azabora[7]helicenes feature exceptional configurational stability, blue or green fluorescence with quantum yields (Φfl ) of 18-24 % in solution, green or yellow solid-state emission (Φfl up to 23 %), and strong chiroptical response with large dissymmetry factors of up to 1.12×10-2 . Azabora[9]helicenes consisting of angularly and linearly fused rings are blue emitters exhibiting Φfl of up to 47 % in CH2 Cl2 and 25 % in the solid state. As revealed by the DFT calculations, their P-M interconversion pathway is more complex than that of H1. Single-crystal X-ray analysis shows clear differences in the packing arrangement of methyl and phenyl derivatives. These molecules are proposed as primary structures of extended helices.
Collapse
Affiliation(s)
- Julian Full
- Institut für Anorganische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Santosh P. Panchal
- Institut für Anorganische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Julian Götz
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Ana‐Maria Krause
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Agnieszka Nowak‐Król
- Institut für Anorganische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
28
|
Medel MA, Tapia R, Blanco V, Miguel D, Morcillo SP, Campaña AG. Octagon-Embedded Carbohelicene as a Chiral Motif for Circularly Polarized Luminescence Emission of Saddle-Helix Nanographenes. Angew Chem Int Ed Engl 2021; 60:6094-6100. [PMID: 33337575 DOI: 10.1002/anie.202015368] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 12/17/2022]
Abstract
We report a new family of hexa-peri-hexabenzocoronene (HBC)-based helical nanographenes incorporating π-extended carbo[5]helicenes bearing an octagonal carbocycle. This family represents a new kind of highly distorted saddle-helix hybrid nanographenes. For the first time, the eight-membered ring becomes a constituent of both a carbo[5]helicene and a HBC and thus, the negative curvature is responsible for twisting both units. This novel chiral motif, namely, oct-[5]helicene results in the largest torsion angle recorded so far for a carbo[5]helicene (θ=79.5°), as it has been suggested by DFT-calculations and confirmed by X-ray crystallography. Consequently, the barriers of isomerization become exceptionally high for a [5]helicene unsubstituted in the fjord region since neither racemization nor decomposition were observed at 200 °C for 1 or 3 during 5 h. Therefore, racemic resolutions allowed subsequent chiroptical studies showing the ECD and CPL responses of this novel family of chiral nanographenes.
Collapse
Affiliation(s)
- Miguel A Medel
- Departamento de Química Orgánica, Unidad de Excelencia de Química (UEQ), Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Rubén Tapia
- Departamento de Química Orgánica, Unidad de Excelencia de Química (UEQ), Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Victor Blanco
- Departamento de Química Orgánica, Unidad de Excelencia de Química (UEQ), Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Delia Miguel
- Departamento de Fisicoquímica, Facultad de Farmacia, UEQ, Universidad de Granada, Granada, Spain
| | - Sara P Morcillo
- Departamento de Química Orgánica, Unidad de Excelencia de Química (UEQ), Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Araceli G Campaña
- Departamento de Química Orgánica, Unidad de Excelencia de Química (UEQ), Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| |
Collapse
|
29
|
Medel MA, Tapia R, Blanco V, Miguel D, Morcillo SP, Campaña AG. Octagon‐Embedded Carbohelicene as a Chiral Motif for Circularly Polarized Luminescence Emission of Saddle‐Helix Nanographenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015368] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Miguel A. Medel
- Departamento de Química Orgánica Unidad de Excelencia de Química (UEQ) Facultad de Ciencias Universidad de Granada 18071 Granada Spain
| | - Rubén Tapia
- Departamento de Química Orgánica Unidad de Excelencia de Química (UEQ) Facultad de Ciencias Universidad de Granada 18071 Granada Spain
| | - Victor Blanco
- Departamento de Química Orgánica Unidad de Excelencia de Química (UEQ) Facultad de Ciencias Universidad de Granada 18071 Granada Spain
| | - Delia Miguel
- Departamento de Fisicoquímica Facultad de Farmacia, UEQ Universidad de Granada Granada Spain
| | - Sara P. Morcillo
- Departamento de Química Orgánica Unidad de Excelencia de Química (UEQ) Facultad de Ciencias Universidad de Granada 18071 Granada Spain
| | - Araceli G. Campaña
- Departamento de Química Orgánica Unidad de Excelencia de Química (UEQ) Facultad de Ciencias Universidad de Granada 18071 Granada Spain
| |
Collapse
|
30
|
Full J, Panchal SP, Götz J, Krause A, Nowak‐Król A. Modulare Synthese helikal‐chiraler Organobor‐Verbindungen: Ausschnitte verlängerter Helices. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014138] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Julian Full
- Institut für Anorganische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Santosh P. Panchal
- Institut für Anorganische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Julian Götz
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Ana‐Maria Krause
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Agnieszka Nowak‐Król
- Institut für Anorganische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
31
|
Abstract
Nanographenes (NGs) have recently emerged as new carbon materials. Their nanoscale size results in a size-dependent quantum confinement effect, opening the band gap by a few eV. This energy gap allows NGs to be applied as optical materials. This property has attracted researchers across multiple scientific fields. The photophysical properties of NGs can be manipulated by introducing organic groups onto their basal planes and/or into their edges. In addition, the integration of organic functional groups into NGs results in NG-based hybrid materials. These features make the post-synthetic modification of NGs an active research area. As obtainable information on chemically functionalized NGs is limited owing to their nonstoichiometry and structural uncertainty, their structural characterization requires a combination of multiple spectroscopic methods. Therefore, information on the characterization procedures of recently published chemically functionalized NGs is of value for advancing the field of NG-based hybrid materials. The present review focuses on the structural characterization of chemically functionalized NGs. It is hoped that this review will help to advance this field.
Collapse
Affiliation(s)
- Ryo Sekiya
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
32
|
Zhu C, Shoyama K, Würthner F. Conformation and Aromaticity Switching in a Curved Non-Alternant sp 2 Carbon Scaffold. Angew Chem Int Ed Engl 2020; 59:21505-21509. [PMID: 32815658 PMCID: PMC7756343 DOI: 10.1002/anie.202010077] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/19/2020] [Indexed: 01/19/2023]
Abstract
A curved sp2 carbon scaffold containing fused pentagon and heptagon units (1) was synthesized by Pd-catalyzed [5+2] annulation from a 3,9-diboraperylene precursor and shows two reversible oxidation processes at low redox potential, accompanied by a butterfly-like motion. Stepwise oxidation produced radical cation 1.+ and dication 12+ . In the crystal structure, 1 exhibits a chiral cisoid conformation and partial π-overlap between the enantiomers. For the radical cation 1.+ , a less curved cisoid conformation is observed with a π-dimer-type arrangement. 12+ adopts a more planar structure with transoid conformation and slip-stacked π-overlap with closest neighbors. We also observed an intermolecular mixed-valence complex of 1⋅(1.+ )3 that has a huge trigonal unit cell [(1)72 (SbF6 )54 ⋅(hexane)101 ] and hexagonal columnar stacks. In addition to the conformational change, the aromaticity of 1 changes from localized to delocalized, as demonstrated by AICD and NICS(1)zz calculations.
Collapse
Affiliation(s)
- Chongwei Zhu
- Institut für Organische Chemie and Center for Nanosystems Chemistry (CNC)Universität WürzburgAm Hubland97074WürzburgGermany
| | - Kazutaka Shoyama
- Institut für Organische Chemie and Center for Nanosystems Chemistry (CNC)Universität WürzburgAm Hubland97074WürzburgGermany
| | - Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry (CNC)Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
33
|
Kirschbaum T, Rominger F, Mastalerz M. An Isosteric Triaza Analogue of a Polycyclic Aromatic Hydrocarbon Monkey Saddle. Chemistry 2020; 26:14560-14564. [PMID: 32539193 PMCID: PMC7756504 DOI: 10.1002/chem.202002826] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 01/06/2023]
Abstract
Since a few years, the interest in negatively-curved fused polycyclic aromatic hydrocarbons (PAHs) has significantly increased. Recently, the first chiral negatively-curved PAH with the topology of a monkey saddle was introduced. Herein the synthesis of its triaza congener is reported. The influence of this CH↔N exchange on photophysical and electrochemical properties is studied as well as the isomerization process of the enantiomers. The aza analogue has a significantly higher inversion barrier, which makes it easier to handle at room temperature. All experimental results are underpinned by theoretical DFT calculations.
Collapse
Affiliation(s)
- Tobias Kirschbaum
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Michael Mastalerz
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
34
|
Zhu C, Shoyama K, Würthner F. Conformation and Aromaticity Switching in a Curved Non‐Alternant sp
2
Carbon Scaffold. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010077] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Chongwei Zhu
- Institut für Organische Chemie and Center for Nanosystems Chemistry (CNC) Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie and Center for Nanosystems Chemistry (CNC) Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry (CNC) Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
35
|
Pigulski B, Shoyama K, Würthner F. NIR-Absorbing π-Extended Azulene: Non-Alternant Isomer of Terrylene Bisimide. Angew Chem Int Ed Engl 2020; 59:15908-15912. [PMID: 32441847 PMCID: PMC7540366 DOI: 10.1002/anie.202005376] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 11/11/2022]
Abstract
The first planar π-extended azulene that retains aromaticity of odd-membered rings was synthesized by [3+3] peri-annulation of two naphthalene imides at both long-edge sides of azulene. Using bromination and subsequent nucleophilic substitution by methoxide and morpholine, selective functionalization of the π-extended azulene was achieved. Whilst these new azulenes can be regarded as isomers of terrylene bisimide they exhibit entirely different properties, which include very narrow optical and electrochemical gaps. DFT, TD-DFT, as well as nucleus-independent chemical shift calculations were applied to explain the structural and functional properties of these new π scaffolds. Furthermore, X-ray crystallography confirmed the planarity of the reported π-scaffolds and aromaticity of their azulene moiety.
Collapse
Affiliation(s)
- Bartłomiej Pigulski
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| |
Collapse
|
36
|
Elbert SM, Haidisch A, Kirschbaum T, Rominger F, Zschieschang U, Klauk H, Mastalerz M. 2,7,11,16-Tetra-tert-Butyl Tetraindenopyrene Revisited by an "Inverse" Synthetic Approach. Chemistry 2020; 26:10585-10590. [PMID: 32314830 PMCID: PMC7496754 DOI: 10.1002/chem.202001555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Indexed: 11/30/2022]
Abstract
A new synthetic route to tetraindenopyrene (TIP)—a bowl‐shaped cut‐out structure of C70—is reported. The key step in this approach is a fourfold palladium‐catalyzed C−H activation that increases the yield more than 50 times in comparison to the approach originally described by Scott and co‐workers. Besides examination of its optoelectronic properties and study of its aggregation in solution, TIP was also re‐investigated by dispersion‐corrected DFT methods, which showed that dispersion interactions significantly increase the bowl‐to‐bowl inversion barrier. Furthermore, TIP was used as a semiconductor in p‐channel thin‐film transistors (TFTs).
Collapse
Affiliation(s)
- Sven M Elbert
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Anika Haidisch
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Tobias Kirschbaum
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Ute Zschieschang
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Hagen Klauk
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
37
|
Pigulski B, Shoyama K, Würthner F. NIR‐Absorbing π‐Extended Azulene: Non‐Alternant Isomer of Terrylene Bisimide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bartłomiej Pigulski
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
38
|
Krug CK, Nieckarz D, Fan Q, Szabelski P, Gottfried JM. The Macrocycle versus Chain Competition in On-Surface Polymerization: Insights from Reactions of 1,3-Dibromoazulene on Cu(111). Chemistry 2020; 26:7647-7656. [PMID: 32031714 PMCID: PMC7318695 DOI: 10.1002/chem.202000486] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 12/21/2022]
Abstract
Ring/chain competition in oligomerization reactions represents a long‐standing topic of synthetic chemistry and was treated extensively for solution reactions but is not well‐understood for the two‐dimensional confinement of surface reactions. Here, the kinetic and thermodynamic principles of ring/chain competition in on‐surface synthesis are addressed by scanning tunneling microscopy, X‐ray photoelectron spectroscopy, and Monte Carlo simulations applied to azulene‐based organometallic oligomers on Cu(111). Analysis of experiments and simulations reveals how the ring/chain ratio can be controlled through variation of coverage and temperature. At room temperature, non‐equilibrium conditions prevail and kinetic control leads to preferential formation of the entropically favored chains. In contrast, high‐temperature equilibrium conditions are associated with thermodynamic control, resulting in increased yields of the energetically favored rings. The optimum conditions for ring formation include the lowest possible temperature within the regime of thermodynamic control and a low coverage. The general implications are discussed and compared to the solution case.
Collapse
Affiliation(s)
- Claudio K Krug
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Damian Nieckarz
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Pl. M.C. Skłodowskiej 3, Lublin, 20-031, Poland
| | - Qitang Fan
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Paweł Szabelski
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Pl. M.C. Skłodowskiej 3, Lublin, 20-031, Poland
| | - J Michael Gottfried
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| |
Collapse
|
39
|
Han Y, Xue Z, Li G, Gu Y, Ni Y, Dong S, Chi C. Formation of Azulene‐Embedded Nanographene: Naphthalene to Azulene Rearrangement During the Scholl Reaction. Angew Chem Int Ed Engl 2020; 59:9026-9031. [DOI: 10.1002/anie.201915327] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/10/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Yi Han
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Zibo Xue
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Guangwu Li
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yanwei Gu
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yong Ni
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Shaoqiang Dong
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Chunyan Chi
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| |
Collapse
|
40
|
Han Y, Xue Z, Li G, Gu Y, Ni Y, Dong S, Chi C. Formation of Azulene‐Embedded Nanographene: Naphthalene to Azulene Rearrangement During the Scholl Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915327] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yi Han
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Zibo Xue
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Guangwu Li
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yanwei Gu
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yong Ni
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Shaoqiang Dong
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Chunyan Chi
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| |
Collapse
|
41
|
Ma J, Fu Y, Dmitrieva E, Liu F, Komber H, Hennersdorf F, Popov AA, Weigand JJ, Liu J, Feng X. Helical Nanographenes Containing an Azulene Unit: Synthesis, Crystal Structures, and Properties. Angew Chem Int Ed Engl 2020; 59:5637-5642. [PMID: 31867754 PMCID: PMC7155134 DOI: 10.1002/anie.201914716] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 11/09/2022]
Abstract
Three unprecedented helical nanographenes (1, 2, and 3) containing an azulene unit are synthesized. The resultant helical structures are unambiguously confirmed by X‐ray crystallographic analysis. The embedded azulene unit in 2 possesses a record‐high twisting degree (16.1°) as a result of the contiguous steric repulsion at the helical inner rim. Structural analysis in combination with theoretical calculations reveals that these helical nanographenes manifest a global aromatic structure, while the inner azulene unit exhibits weak antiaromatic character. Furthermore, UV/Vis‐spectral measurements reveal that superhelicenes 2 and 3 possess narrow energy gaps (2: 1.88 eV; 3: 2.03 eV), as corroborated by cyclic voltammetry and supported by density functional theory (DFT) calculations. The stable oxidized and reduced states of 2 and 3 are characterized by in‐situ EPR/Vis–NIR spectroelectrochemistry. Our study provides a novel synthetic strategy for helical nanographenes containing azulene units as well as their associated structures and physical properties.
Collapse
Affiliation(s)
- Ji Ma
- Centre for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Yubin Fu
- Centre for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Evgenia Dmitrieva
- Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069, Dresden, Germany
| | - Felix Hennersdorf
- Chair of Inorganic Molecular Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Jan J Weigand
- Chair of Inorganic Molecular Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xinliang Feng
- Centre for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
42
|
Ma J, Fu Y, Dmitrieva E, Liu F, Komber H, Hennersdorf F, Popov AA, Weigand JJ, Liu J, Feng X. Helical Nanographenes Containing an Azulene Unit: Synthesis, Crystal Structures, and Properties. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914716] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ji Ma
- Centre for Advancing Electronics Dresden (cfaed) Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Yubin Fu
- Centre for Advancing Electronics Dresden (cfaed) Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Evgenia Dmitrieva
- Leibniz Institute for Solid State and Materials Research 01069 Dresden Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research 01069 Dresden Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e. V. Hohe Straße 6 01069 Dresden Germany
| | - Felix Hennersdorf
- Chair of Inorganic Molecular Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Alexey A. Popov
- Leibniz Institute for Solid State and Materials Research 01069 Dresden Germany
| | - Jan J. Weigand
- Chair of Inorganic Molecular Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Xinliang Feng
- Centre for Advancing Electronics Dresden (cfaed) Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| |
Collapse
|
43
|
Zhang X, Huang Y, Zhang J, Meng W, Peng Q, Kong R, Xiao Z, Liu J, Huang M, Yi Y, Chen L, Fan Q, Lin G, Liu Z, Zhang G, Jiang L, Zhang D. Dicyclohepta[
ijkl
,
uvwx
]rubicene with Two Pentagons and Two Heptagons as a Stable and Planar Non‐benzenoid Nanographene. Angew Chem Int Ed Engl 2020; 59:3529-3533. [DOI: 10.1002/anie.201914416] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Xi‐Sha Zhang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Yan‐Ying Huang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Jing Zhang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Meng
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Qian Peng
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Ruirui Kong
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Zhenwei Xiao
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Jie Liu
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Miaofei Huang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Liangliang Chen
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Qingrui Fan
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Gaobo Lin
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Zitong Liu
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Lang Jiang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
44
|
Zhang X, Huang Y, Zhang J, Meng W, Peng Q, Kong R, Xiao Z, Liu J, Huang M, Yi Y, Chen L, Fan Q, Lin G, Liu Z, Zhang G, Jiang L, Zhang D. Dicyclohepta[
ijkl
,
uvwx
]rubicene with Two Pentagons and Two Heptagons as a Stable and Planar Non‐benzenoid Nanographene. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914416] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xi‐Sha Zhang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Yan‐Ying Huang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Jing Zhang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Meng
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Qian Peng
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Ruirui Kong
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Zhenwei Xiao
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Jie Liu
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Miaofei Huang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Liangliang Chen
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Qingrui Fan
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Gaobo Lin
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Zitong Liu
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Lang Jiang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|