1
|
Yang H, Cai H, Li D, Kong Y, Feng S, Jiang X, Hu Q, He C. Molecular modification enables CO 2 electroreduction to methane on platinum surface in acidic media. Natl Sci Rev 2024; 11:nwae361. [PMID: 39660299 PMCID: PMC11631074 DOI: 10.1093/nsr/nwae361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 12/12/2024] Open
Abstract
Cu-based materials can produce hydrocarbons in CO2 electroreduction (CO2RR), but their stability still needs to be enhanced particularly in acidic media. Metallic Pt is highly stable in both acidic and alkaline media, yet rarely utilized in CO2RR, due to the competitive activity in hydrogen evolution reaction (HER). In this research, abundant thionine (Th) molecules are stably confined within Pt nanocrystals via a molecular doping strategy. The Pt surface is successfully modulated by these Th molecules, and thereby the dominant HER activity is converted to CO2RR activity. CO2 could be electroreduced to CH4 using organic molecule-modified Pt-based catalysts for the first time. Specifically, this composite catalyst maintains more than 100-hour stability in strong acid conditions (pH 1), even comparable to those state-of-the-art CO2RR catalysts. In-situ spectroscopic analysis and theoretical calculations reveal that the molecular modification can decrease the energy barrier for *COOH formation, and guarantee the sufficient local *H near Pt surface. Additionally, the *H derived from H2O dissociation is favorable for the *CO hydrogenation pathway towards *CHO, eventually leading to the formation of CH4. This strategy might be easily applied to microenvironment and interface regulation in other electrocatalytic reactions.
Collapse
Affiliation(s)
- Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Huizhu Cai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Deliang Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yan Kong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shangzhao Feng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xingxing Jiang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Wei X, Li Z, Jang H, Wang Z, Zhao X, Chen Y, Wang X, Kim MG, Liu X, Qin Q. Synergistic Effect of Grain Boundaries and Oxygen Vacancies on Enhanced Selectivity for Electrocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311136. [PMID: 38148296 DOI: 10.1002/smll.202311136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 12/28/2023]
Abstract
Dual-engineering involved of grain boundaries (GBs) and oxygen vacancies (VO) efficiently engineers the material's catalytic performance by simultaneously introducing favorable electronic and chemical properties. Herein, a novel SnO2 nanoplate is reported with simultaneous oxygen vacancies and abundant grain boundaries (V,G-SnOx/C) for promoting the highly selective conversion of CO2 to value-added formic acid. Attributing to the synergistic effect of employed dual-engineering, the V,G-SnOx/C displays highly catalytic selectivity with a maximum Faradaic efficiency (FE) of 87% for HCOOH production at -1.2 V versus RHE and FEs > 95% for all C1 products (CO and HCOOH) within all applied potential range, outperforming current state-of-the-art electrodes and the amorphous SnOx/C. Theoretical calculations combined with advanced characterizations revealed that GB induces the formation of electron-enriched Sn site, which strengthens the adsorption of *HCOO intermediate. While GBs and VO synergistically lower the reaction energy barrier, thus dramatically enhancing the intrinsic activity and selectivity toward HCOOH.
Collapse
Affiliation(s)
- Xiaoqian Wei
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Haeseong Jang
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, South Korea
| | - Zhe Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xuhao Zhao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yunfei Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xuefeng Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang, 37673, South Korea
| | - Xien Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qing Qin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
3
|
Li WJ, Lou ZX, Zhao JY, Liu PF, Yuan HY, Yang HG. Positive Valent Metal Sites in Electrochemical CO 2 Reduction Reaction. Chemphyschem 2023; 24:e202200657. [PMID: 36646629 DOI: 10.1002/cphc.202200657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/08/2022] [Indexed: 01/18/2023]
Abstract
The discovery of high-performance catalysts for the electrochemical CO2 reduction reaction (CO2 RR) has faced an enormous challenge for years. The lack of cognition about the surface active structures or centers of catalysts in complex conditions limits the development of advanced catalysts for CO2 RR. Recently, the positive valent metal sites (PVMS) are demonstrated as a kind of potential active sites, which can facilitate carbon dioxide (CO2 ) activation and conversation but are always unstable under reduction potentials. Many advanced technologies in theory and experiment have been utilized to understand and develop excellent catalysts with PVMS for CO2 RR. Here, we present an introduction of some typical catalysts with PVMS in CO2 RR and give some understanding of the activity and stability for these related catalysts.
Collapse
Affiliation(s)
- Wen Jing Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhen Xin Lou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia Yue Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
4
|
Navigating CO utilization in tandem electrocatalysis of CO2. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
Ai L, Ng SF, Ong WJ. A Prospective Life Cycle Assessment of Electrochemical CO 2 Reduction to Selective Formic Acid and Ethylene. CHEMSUSCHEM 2022; 15:e202200857. [PMID: 35781794 DOI: 10.1002/cssc.202200857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Converting CO2 into valuable C1 -C2 chemicals through electrochemical CO2 reduction (ECR) has potential to remedy the ever-increasing climate problems owing to the intensification of industrial activity. In this work, cradle-to-gate life cycle assessment (LCA) was performed to quantify the environmental impacts of formic acid (FA) and ethylene production through ECR benchmarked with the conventional processes. At the midpoint level, global warming potential (GWP) effects of FA and ethylene production through ECR recorded 5.6 and 1.6-times that of the conventional process, respectively. Although ECR currently has limited environmental benefits, the incorporation of hydropower has vast potential after evaluating four sustainable electricity sources, namely hydropower, wind, solar, and biomass. Notably, ECR to FA recorded a 24 % reduction in petrochemical usage. For ethylene production, human health damage, ecosystem damage, and petrochemical use were reduced by 67, 94, and 110 %, respectively. Sensitivity analysis indicated that a sustainable energy supply chain for ECR will accelerate the development of a circular economy.
Collapse
Affiliation(s)
- Ling Ai
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Sue-Faye Ng
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, P. R. China
| |
Collapse
|
6
|
Chen C, Yu S, Yang Y, Louisia S, Roh I, Jin J, Chen S, Chen PC, Shan Y, Yang P. Exploration of the bio-analogous asymmetric C–C coupling mechanism in tandem CO2 electroreduction. Nat Catal 2022. [DOI: 10.1038/s41929-022-00844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Liu YY, Wang ZS, Liao PQ, Chen XM. A stable metal-azolate framework with cyclic tetracopper(I) clusters for highly selective electroreduction of CO2 to C2 products. Chem Asian J 2022; 17:e202200764. [PMID: 36066571 DOI: 10.1002/asia.202200764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/02/2022] [Indexed: 11/12/2022]
Abstract
It is of great significance for constructing electrocatalysts with accurate structures and compositions to pinpoint the active sites, thereby improving the C 2 products (C 2 H 4 , C 2 H 5 OH and CH 3 COOH) selectivity during electrocatalytic CO 2 reduction raction. Here, we report a tetracopper(I) cluster-based metal-organic framework that exhibits long-term stability and remarkable performance for electroreduction CO 2 towards C 2 products in an H-type cell with a maximum Faradaic efficiency (FE) of 72%, and delivers a current density of 350 mA cm -2 with a FE(C 2 ) up to 46% in a flow cell device, outperforming most of the Cu-based electrocatalysts such as Cu derivatives and Cu nanostructured materials. Importantly, no obvious degradation was observed at 350 mA cm -2 over 20 hours of continuous operation, strengthening the practicability. In-situ infrared spectroscopy analysis showed the cooperative effect of adjacent Cu(I) ions in tetracopper(I) cluster may promote the C-C coupling to generate C 2 products.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Sun Yat-Sen University, School of Chemistry, Guang Zhou, CHINA
| | | | - Pei-Qin Liao
- Sun Yat-Sen University, School of Chemistry, No. 135, Xingang Xi Road, 510275, Guangzhou, CHINA
| | | |
Collapse
|
8
|
Jiang Y, Zhong D, Wang L, Li J, Hao G, Li J, Zhao Q. Roughness Effect of Cu on Electrocatalytic CO2 Reduction towards C2H4. Chem Asian J 2022; 17:e202200380. [PMID: 35535732 DOI: 10.1002/asia.202200380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Indexed: 11/06/2022]
Abstract
Electrochemical reduction of CO 2 to produce valuable multi-carbon products is a promising avenue for promoting CO 2 conversion and achieving renewable energy storage, and it has also attracted considerable attention recently. However, the synthesis of Cu electrode with a controllable electrochemical active surface area (ECSA) to understand its role in CO 2 reduction to C 2 H 4 remains challenging. Herein, a series of Cu electrodes with different ECSA is synthesized through a simple oxidation-reduction approach. We reveal that the improved selectivity of C 2 H 4 is proportional to the ECSA of Cu in the low ECSA range, and a further increase in ECSA has a negligible effect on its selectivity. The enlarged surface area could strengthen the local pH effect near the surface of Cu electrode and suppress the generation of C 1 products as well as H 2 . The study provides a feasible strategy to rationally design electrocatalysts with high electrochemical CO 2 reduction performances.
Collapse
Affiliation(s)
- Yong Jiang
- Taiyuan University of Technology, College of Chemical Engineering and Technology, CHINA
| | - Dazhong Zhong
- Taiyuan University of Technology, College of Chemical Engineering and Technology, CHINA
| | - Lei Wang
- Taiyuan University of Technology, College of Chemical Engineering and Technology, CHINA
| | - Jiayuan Li
- Taiyuan University of Technology, College of Materials Science and Engineering, CHINA
| | - Genyan Hao
- Taiyuan University of Technology, College of Chemical Engineering and Technology, CHINA
| | - Jinping Li
- Taiyuan University of Technology, College of Chemical Engineering and Technology, CHINA
| | - Qiang Zhao
- Taiyuan University of Technology, College of Chemistry and Chemical Engineering, No.79 West Yingze Street, 030024, Taiyuan, CHINA
| |
Collapse
|
9
|
Zahid A, Shah A, Shah I. Oxide Derived Copper for Electrochemical Reduction of CO 2 to C 2+ Products. NANOMATERIALS 2022; 12:nano12081380. [PMID: 35458087 PMCID: PMC9030856 DOI: 10.3390/nano12081380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 12/10/2022]
Abstract
The electrochemical reduction of carbon dioxide (CO2) on copper electrode derived from cupric oxide (CuO), named oxide derived copper (ODCu), was studied thoroughly in the potential range of −1.0 V to −1.5 V versus RHE. The CuO nanoparticles were prepared by the hydrothermal method. The ODCu electrode was used for carbon dioxide reduction and the results revealed that this electrode is highly selective for C2+ products with enhanced current density at significantly less overpotential. This catalyst shifts the selectivity towards C2+ products with the highest Faradaic efficiency up to 58% at −0.95 V. In addition, C2 product formation at the lowest onset potential of −0.1 V is achieved with the proposed catalyst. X-ray diffraction and scanning electron microscopy revealed the reduction of CuO to Cu (111) nanoparticles during the CO2 RR. The intrinsic property of the synthesized catalyst and its surface reduction are suggested to induce sites or edges for facilitating the dimerization and coupling of intermediates to ethanol and ethylene.
Collapse
Affiliation(s)
- Anum Zahid
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- Department of Chemistry, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- Correspondence: (A.S.); (I.S.)
| | - Iltaf Shah
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (A.S.); (I.S.)
| |
Collapse
|
10
|
Rehman ZU, Bilal M, Hou J, Butt FK, Ahmad J, Ali S, Hussain A. Photocatalytic CO 2 Reduction Using TiO 2-Based Photocatalysts and TiO 2 Z-Scheme Heterojunction Composites: A Review. Molecules 2022; 27:molecules27072069. [PMID: 35408467 PMCID: PMC9000641 DOI: 10.3390/molecules27072069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
Photocatalytic CO2 reduction is a most promising technique to capture CO2 and reduce it to non-fossil fuel and other valuable compounds. Today, we are facing serious environmental issues due to the usage of excessive amounts of non-renewable energy resources. In this aspect, photocatalytic CO2 reduction will provide us with energy-enriched compounds and help to keep our environment clean and healthy. For this purpose, various photocatalysts have been designed to obtain selective products and improve efficiency of the system. Semiconductor materials have received great attention and have showed good performances for CO2 reduction. Titanium dioxide has been widely explored as a photocatalyst for CO2 reduction among the semiconductors due to its suitable electronic/optical properties, availability at low cost, thermal stability, low toxicity, and high photoactivity. Inspired by natural photosynthesis, the artificial Z-scheme of photocatalyst is constructed to provide an easy method to enhance efficiency of CO2 reduction. This review covers literature in this field, particularly the studies about the photocatalytic system, TiO2 Z-scheme heterojunction composites, and use of transition metals for CO2 photoreduction. Lastly, challenges and opportunities are described to open a new era in engineering and attain good performances with semiconductor materials for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Zia Ur Rehman
- School of Physics, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China; (Z.U.R.); (M.B.); (A.H.)
- School of Environmental Science and Engineering, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Muhammad Bilal
- School of Physics, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China; (Z.U.R.); (M.B.); (A.H.)
- School of Environmental Science and Engineering, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Jianhua Hou
- School of Physics, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China; (Z.U.R.); (M.B.); (A.H.)
- School of Environmental Science and Engineering, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China
- Guangling College, Yangzhou University, Yangzhou 225009, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
- Correspondence: (J.H.); (F.K.B.)
| | - Faheem K. Butt
- Department of Physics, Division of Science and Technology, University of Education Lahore, Lahore 54000, Pakistan; (J.A.); (S.A.)
- Correspondence: (J.H.); (F.K.B.)
| | - Junaid Ahmad
- Department of Physics, Division of Science and Technology, University of Education Lahore, Lahore 54000, Pakistan; (J.A.); (S.A.)
| | - Saif Ali
- Department of Physics, Division of Science and Technology, University of Education Lahore, Lahore 54000, Pakistan; (J.A.); (S.A.)
| | - Asif Hussain
- School of Physics, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China; (Z.U.R.); (M.B.); (A.H.)
- School of Environmental Science and Engineering, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
11
|
Wang X, Jiao Y, Li L, Zheng Y, Qiao S. Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xuesi Wang
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Yan Jiao
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Laiquan Li
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Yao Zheng
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Shi‐Zhang Qiao
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
12
|
Wang X, Jiao Y, Li L, Zheng Y, Qiao SZ. Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angew Chem Int Ed Engl 2021; 61:e202114253. [PMID: 34825452 DOI: 10.1002/anie.202114253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/07/2022]
Abstract
We demonstrate a widely applicable method to alter the adsorption configuration of multi-carbon containing reactants by no catalyst engineering but simply adjusting the local reaction environment of the catalyst surface. Using electrocatalytic acetone to propane hydrogenation (APH) as a model reaction and common commercial Pt/Pt-based materials as catalysts, we found local H+ concentration can significantly influence the adsorption mode of acetone reactant, for example, in vertical or flat mode, and target product selectivity. Electrocatalytic measurement combined with in situ spectroscopic characterizations reveals that the vertically adsorbed acetone is favorable for propane production while the flatly adsorbed mode suppresses the reaction. DFT calculations indicate that the H coverage on catalyst surface plays a decisive role in the adsorption configuration of acetone. The increased local acidity can facilitate the adsorption configuration of acetone from flat to vertical mode and suppress the competing hydrogen evaluation reaction, which consequently enhances the APH selectivity.
Collapse
Affiliation(s)
- Xuesi Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yan Jiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Laiquan Li
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yao Zheng
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
13
|
Dongare S, Singh N, Bhunia H, Bajpai PK, Das AK. Electrochemical Reduction of Carbon Dioxide to Ethanol: A Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202102829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saudagar Dongare
- Department of Chemical Engineering Thapar Institute of Engineering and Technology (Deemed to be University) Patiala 147004 Punjab India
| | - Neetu Singh
- Department of Chemical Engineering Thapar Institute of Engineering and Technology (Deemed to be University) Patiala 147004 Punjab India
| | - Haripada Bhunia
- Department of Chemical Engineering Thapar Institute of Engineering and Technology (Deemed to be University) Patiala 147004 Punjab India
| | - Pramod K. Bajpai
- Ex-Distinguished Professor Department of Chemical Engineering Thapar Institute of Engineering and Technology (Deemed to be University) Patiala 147004 Punjab India
- Present address: G-1 Ekta Apartment 120/912 Ranjeet Nagar Kanpur 208005 Uttar Pradesh India
| | - Asit Kumar Das
- Head, Refinery R&D and Process Development, Reliance Industries Limited Jamnagar 361142 Gujarat India
| |
Collapse
|
14
|
Han Y, Zhu S, Xu S, Niu X, Xu Z, Zhao R, Wang Q. Understanding Structure‐activity Relationship on Metal‐Organic‐Framework‐Derived Catalyst for CO
2
Electroreduction to C
2
Products. ChemElectroChem 2021. [DOI: 10.1002/celc.202100942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yunxi Han
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Shuaikang Zhu
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Shuang Xu
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Xiaopo Niu
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Zhihong Xu
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Rong Zhao
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Qingfa Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| |
Collapse
|
15
|
Yao D, Tang C, Vasileff A, Zhi X, Jiao Y, Qiao SZ. The Controllable Reconstruction of Bi-MOFs for Electrochemical CO 2 Reduction through Electrolyte and Potential Mediation. Angew Chem Int Ed Engl 2021; 60:18178-18184. [PMID: 34240788 DOI: 10.1002/anie.202104747] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/07/2022]
Abstract
Monitoring and controlling the reconstruction of materials under working conditions is crucial for the precise identification of active sites, elucidation of reaction mechanisms, and rational design of advanced catalysts. Herein, a Bi-based metal-organic framework (Bi-MOF) for electrochemical CO2 reduction is selected as a case study. In situ Raman spectra combined with ex situ electron microscopy reveal that the intricate reconstruction of the Bi-MOF can be controlled using two steps: 1) electrolyte-mediated dissociation and conversion of Bi-MOF to Bi2 O2 CO3 , and 2) potential-mediated reduction of Bi2 O2 CO3 to Bi. The intentionally reconstructed Bi catalyst exhibits excellent activity, selectivity, and durability for formate production, and the unsaturated surface Bi atoms formed during reconstruction become the active sites. This work emphasizes the significant impact of pre-catalyst reconstruction under working conditions and provides insight into the design of highly active and stable electrocatalysts through the regulation of these processes.
Collapse
Affiliation(s)
- Dazhi Yao
- Centre for Materials in Energy and Catalysis, School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Cheng Tang
- Centre for Materials in Energy and Catalysis, School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Anthony Vasileff
- Centre for Materials in Energy and Catalysis, School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xing Zhi
- Centre for Materials in Energy and Catalysis, School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yan Jiao
- Centre for Materials in Energy and Catalysis, School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shi-Zhang Qiao
- Centre for Materials in Energy and Catalysis, School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
16
|
Yao D, Tang C, Vasileff A, Zhi X, Jiao Y, Qiao S. The Controllable Reconstruction of Bi‐MOFs for Electrochemical CO
2
Reduction through Electrolyte and Potential Mediation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dazhi Yao
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Cheng Tang
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Anthony Vasileff
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Xing Zhi
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Yan Jiao
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Shi‐Zhang Qiao
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
17
|
Li H, Liu T, Wei P, Lin L, Gao D, Wang G, Bao X. High‐Rate CO
2
Electroreduction to C
2+
Products over a Copper‐Copper Iodide Catalyst. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102657] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hefei Li
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tianfu Liu
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Pengfei Wei
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Long Lin
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Dunfeng Gao
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Xinhe Bao
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
18
|
Li H, Liu T, Wei P, Lin L, Gao D, Wang G, Bao X. High-Rate CO 2 Electroreduction to C 2+ Products over a Copper-Copper Iodide Catalyst. Angew Chem Int Ed Engl 2021; 60:14329-14333. [PMID: 33837619 DOI: 10.1002/anie.202102657] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/22/2021] [Indexed: 01/08/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR) to multicarbon hydrocarbon and oxygenate (C2+ ) products with high energy density and wide availability is of great importance, as it provides a promising way to achieve the renewable energy storage and close the carbon cycle. Herein we design a Cu-CuI composite catalyst with abundant Cu0 /Cu+ interfaces by physically mixing Cu nanoparticles and CuI powders. The composite catalyst achieves a remarkable C2+ partial current density of 591 mA cm-2 at -1.0 V vs. reversible hydrogen electrode in a flow cell, substantially higher than Cu (329 mA cm-2 ) and CuI (96 mA cm-2 ) counterparts. Induced by alkaline electrolyte and applied potential, the Cu-CuI composite catalyst undergoes significant reconstruction under CO2 RR conditions. The high-rate C2+ production over Cu-CuI is ascribed to the presence of residual Cu+ and adsorbed iodine species which improve CO adsorption and facilitate C-C coupling.
Collapse
Affiliation(s)
- Hefei Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianfu Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Pengfei Wei
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Lin
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dunfeng Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
19
|
Li M, Ma Y, Chen J, Lawrence R, Luo W, Sacchi M, Jiang W, Yang J. Residual Chlorine Induced Cationic Active Species on a Porous Copper Electrocatalyst for Highly Stable Electrochemical CO 2 Reduction to C 2. Angew Chem Int Ed Engl 2021; 60:11487-11493. [PMID: 33683786 DOI: 10.1002/anie.202102606] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical carbon dioxide (CO2 ) reduction reaction (CO2 RR) is an attractive approach to deal with the emission of CO2 and to produce valuable fuels and chemicals in a carbon-neutral way. Many efforts have been devoted to boost the activity and selectivity of high-value multicarbon products (C2+ ) on Cu-based electrocatalysts. However, Cu-based CO2 RR electrocatalysts suffer from poor catalytic stability mainly due to the structural degradation and loss of active species under CO2 RR condition. To date, most reported Cu-based electrocatalysts present stabilities over dozens of hours, which limits the advance of Cu-based electrocatalysts for CO2 RR. Herein, a porous chlorine-doped Cu electrocatalyst exhibits high C2+ Faradaic efficiency (FE) of 53.8 % at -1.00 V versus reversible hydrogen electrode (VRHE ). Importantly, the catalyst exhibited an outstanding catalytic stability in long-term electrocatalysis over 240 h. Experimental results show that the chlorine-induced stable cationic Cu0 /Cu+ species and the well-preserved structure with abundant active sites are critical to the high FE of C2+ in the long-term run of electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Minhan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yuanyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW, 2522, Australia
| | | | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Marco Sacchi
- Department of Chemistry, University of Surrey, UK
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China.,Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China.,Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
20
|
Li M, Ma Y, Chen J, Lawrence R, Luo W, Sacchi M, Jiang W, Yang J. Residual Chlorine Induced Cationic Active Species on a Porous Copper Electrocatalyst for Highly Stable Electrochemical CO
2
Reduction to C
2+. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102606] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Minhan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials International Joint Laboratory for Advanced Fiber and Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Yuanyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials International Joint Laboratory for Advanced Fiber and Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute Australian Institute of Innovative Materials, Innovation Campus University of Wollongong Wollongong NSW 2522 Australia
| | | | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials International Joint Laboratory for Advanced Fiber and Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | | | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials International Joint Laboratory for Advanced Fiber and Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
- Institute of Functional Materials Donghua University Shanghai 201620 China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials International Joint Laboratory for Advanced Fiber and Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
- Institute of Functional Materials Donghua University Shanghai 201620 China
| |
Collapse
|
21
|
Wang J, Cheng C, Huang B, Cao J, Li L, Shao Q, Zhang L, Huang X. Grain-Boundary-Engineered La 2CuO 4 Perovskite Nanobamboos for Efficient CO 2 Reduction Reaction. NANO LETTERS 2021; 21:980-987. [PMID: 33448862 DOI: 10.1021/acs.nanolett.0c04004] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electroreduction of carbon dioxide (CO2RR) has been regarded as a promising approach to realize the production of useful fuels and to decrease greenhouse gas levels simultaneously, where high-efficiency catalysts are required. Herein, we report La2CuO4 nanobamboo (La2CuO4 NBs) perovskite with rich twin boundaries showing a high Faraday efficiency (FE) of 60% toward ethylene (C2H4), whereas bulk La2CuO4 exhibits a FECO of 91%. X-ray absorption spectroscopy (XAS) reveals that the Cu in La2CuO4 NBs is in the Cu2+ state, and no obvious change can be observed during the catalytic process, as monitored by in situ XAS. Density functional theory calculations reveal that the superior FEC2H4 of La2CuO4 NBs originates from the active (113) surfaces with intrinsic strain. The formation of gap states annihilates the electron transfer barrier of C-C coupling, resulting in the high FEC2H4. This work provides a new perspective for developing efficient perovskite catalysts via grain boundary engineering.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Chen Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu 215123, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Jianlei Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Leigang Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|