1
|
Ansari MA, Deka R, Thapper A, Orthaber A. Expanding the Landscape of Phosphorous-Based Open Shell Species: Stable Mono-, Di-, and Trianionic Radicals Based on a Contorted Triphosphaalkene. Angew Chem Int Ed Engl 2024:e202415684. [PMID: 39259433 DOI: 10.1002/anie.202415684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
The stepwise reduction of the highly contorted truxene-based triphosphaalkene 1 using KC8 led to the isolation of mono-, di-, and tri-anionic species. The solid-state molecular structures of mono- and diradical anionic species were elucidated by single crystal X-ray diffractions, revealing elongated P-C bonds and a pronounced "indene" aromatization compared to the parent system. All three radical species displayed distinct Electron Paramagnetic Resonance (EPR) spectra, providing compelling evidence for the open-shell electronic configuration of both the diradical and triradical species-an observation unprecedented in any previously reported phosphorous-based anionic polyradicals. Mulliken spin density calculations revealed a dominant localization of radical spin on a single phosphorous atom in the monoanion. In the dianion, spin localization is observed on two phosphorous atoms (~34 % each), with a minor contribution from the third phosphorous (0.13 %), while the trianion demonstrates a uniform distribution of spin density (~30 %) across each phosphorous atom.
Collapse
Affiliation(s)
- Mohd Asif Ansari
- Department of Chemistry-Ångström laboratories, Uppsala University, BOX 523, 75120, Uppsala, Sweden
| | - Rajesh Deka
- Department of Chemistry-Ångström laboratories, Uppsala University, BOX 523, 75120, Uppsala, Sweden
| | - Anders Thapper
- Department of Chemistry-Ångström laboratories, Uppsala University, BOX 523, 75120, Uppsala, Sweden
| | - Andreas Orthaber
- Department of Chemistry-Ångström laboratories, Uppsala University, BOX 523, 75120, Uppsala, Sweden
| |
Collapse
|
2
|
Liu S, Li Y, Lin J, Ke Z, Grützmacher H, Su CY, Li Z. Sequential radical and cationic reactivity at separated sites within one molecule in solution. Chem Sci 2024; 15:5376-5384. [PMID: 38577367 PMCID: PMC10988588 DOI: 10.1039/d4sc00201f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
Distonic radical cations (DRCs) with spatially separated charge and radical sites are expected to show both radical and cationic reactivity at different sites within one molecule. However, such "dual" reactivity has rarely been observed in the condensed phase. Herein we report the isolation of crystalline 1λ2,3λ2-1-phosphonia-3-phosphinyl-cyclohex-4-enes 2a,b˙+, which can be considered delocalized DRCs and were completely characterized by crystallographic, spectroscopic, and computational methods. These DRCs contain a radical and cationic site with seven and six valence electrons, respectively, which are both stabilized via conjugation, yet remain spatially separated. They exhibit reactivity that differs from that of conventional radical cations (CRCs); specifically they show sequential radical and cationic reactivity at separated sites within one molecule in solution.
Collapse
Affiliation(s)
- Shihua Liu
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Yinwu Li
- School of Materials Science and Engineering, Sun Yat-Sen University 510006 Guangzhou China
| | - Jieli Lin
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, Sun Yat-Sen University 510006 Guangzhou China
| | - Hansjörg Grützmacher
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 Zürich 8093 Switzerland
| | - Cheng-Yong Su
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhongshu Li
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
3
|
Kaymak P, Yang M, Benkő Z. A quest for stable phosphonyl radicals: limitations and possibilities of carbocyclic backbones and bulky substituents. Dalton Trans 2023; 52:13930-13945. [PMID: 37753839 DOI: 10.1039/d3dt02658b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Although phosphonyl radicals play an important role as transient species in many chemical transformations, such as photoinitiated polymerisation reactions, permanently stable phosphonyl radicals are yet to be discovered. In this computational study, we aim at a conceptual understanding of the electronic effects influencing the stabilities of phosphonyl radicals through computing radical stabilisation energies (RSEs) for a large set of phosphonyl radicals with carbocyclic backbones. The studied radicals exhibit ring sizes varying from 3- to 7-membered with full saturation or different grades of unsaturation adjacent to the P-centre in an endo or exocyclic fashion. To gain deeper insight into the stabilisation effects and delocalisation, the geometrical aspects, electronic structures, and spin distributions of the radicals were scrutinised. The five-membered, fully unsaturated ring (phospholyl oxide), which has a planar structure, offers the most substantial electronic stabilisation. By embedding this ring into a more extended π-system, the possibility of gaining further stabilisation was also explored. To screen the effect of steric congestion on the stabilities of previously selected radicals toward dimerisation, a large number of bulky substituents with different sizes and shapes were systematically investigated. Our results outline that stable phosphonyl radicals seem accessible, provided that the electronic stabilisation effects are supplemented by well-designed bulky substituents.
Collapse
Affiliation(s)
- Pelin Kaymak
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary.
| | - Meng Yang
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary.
| | - Zoltán Benkő
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary.
- HUN-REN-BME Computation Driven Chemistry Research Group, H-1111 Budapest, Hungary
| |
Collapse
|
4
|
Sharma MK, Weinert HM, Li B, Wölper C, Henthorn JT, Cutsail GE, Haberhauer G, Schulz S. Syntheses and Structures of 5-Membered Heterocycles Featuring 1,2-Diphospha-1,3-Butadiene and Its Radical Anion. Angew Chem Int Ed Engl 2023; 62:e202309466. [PMID: 37582227 DOI: 10.1002/anie.202309466] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
LGa(P2 OC)cAAC 2 features a 1,2-diphospha-1,3-butadiene unit with a delocalized π-type HOMO and a π*-type LUMO according to DFT calculations. [LGa(P2 OC)cAAC][K(DB-18-c-6)] 3[K(DB-18-c-6] containing the 1,2-diphospha-1,3-butadiene radical anion 3⋅- was isolated from the reaction of 2 with KC8 and dibenzo-18-crown-6. 3 reacted with [Fc][B(C6 F5 )4 ] (Fc=ferrocenium) to 2 and with TEMPO to [L-H Ga(P2 OC)cAAC][K(DB-18-c-6)] 4[K(DB-18-c-6] containing the 1,2-diphospha-1,3-butadiene anion 4- . The solid state structures of 2, 3K(DB-18-c-6], and 4[K(DB-18-c-6] were determined by single crystal X-ray diffraction (sc-XRD).
Collapse
Affiliation(s)
- Mahendra K Sharma
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Hanns M Weinert
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Bin Li
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Justin T Henthorn
- Max Planck Institute for Chemical Energy Conversion (MPI-CEC), Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion (MPI-CEC), Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Gebhard Haberhauer
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| |
Collapse
|
5
|
Sharma MK, Chabbra S, Wölper C, Weinert HM, Reijerse EJ, Schnegg A, Schulz S. Modulating the frontier orbitals of L(X)Ga-substituted diphosphenes [L(X)GaP] 2 (X = Cl, Br) and their facile oxidation to radical cations. Chem Sci 2022; 13:12643-12650. [PMID: 36519043 PMCID: PMC9645402 DOI: 10.1039/d2sc04207j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/11/2022] [Indexed: 09/19/2023] Open
Abstract
Modulating the electronic structures of main group element compounds is crucial to control their chemical reactivity. Herein we report on the synthesis, frontier orbital modulation, and one-electron oxidation of two L(X)Ga-substituted diphosphenes [L(X)GaP]2 (X = Cl 2a, Br 2b; L = HC[C(Me)N(Ar)]2, Ar = 2,6-i-Pr2C6H3). Photolysis of L(Cl)GaPCO 1 gave [L(Cl)GaP]22a, which reacted with Me3SiBr with halide exchange to [L(Br)GaP]22b. Reactions with MeNHC (MeNHC = 1,3,4,5-tetramethylimidazol-2-ylidene) gave the corresponding carbene-coordinated complexes L(X)GaPP(MeNHC)Ga(X)L (X = Cl 3a, Br 3b). DFT calculations revealed that the carbene coordination modulates the frontier orbitals (i.e. HOMO/LUMO) of diphosphenes 2a and 2b, thereby affecting the reactivity of 3a and 3b. In marked contrast to diphosphenes 2a and 2b, the cyclic voltammograms (CVs) of the carbene-coordinated complexes each show one reversible redox event at E 1/2 = -0.65 V (3a) and -0.36 V (3b), indicating their one-electron oxidation to the corresponding radical cations as was confirmed by reactions of 3a and 3b with the [FeCp2][B(C6F5)4], yielding the radical cations [L(X)GaPP(MeNHC)Ga(X)L]B(C6F5)4 (X = Cl 4a, Br 4b). The unpaired spin in 4a (79%) and 4b (80%) is mainly located at the carbene-uncoordinated phosphorus atoms as was revealed by DFT calculations and furthermore experimentally proven in reactions with n Bu3SnH, yielding the diphosphane cations [L(X)GaPHP(MeNHC)Ga(X)L]B(C6F5)4 (X = Cl 5a, Br 5b). Compounds 2-5 were fully characterized by NMR and IR spectroscopy as well as by single crystal X-ray diffraction (sc-XRD), and compounds 4a and 4b were further studied by EPR spectroscopy, while their bonding nature was investigated by DFT calculations.
Collapse
Affiliation(s)
- Mahendra K Sharma
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
| | - Sonia Chabbra
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 Mülheim an der Ruhr D-45470 Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
| | - Hanns M Weinert
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
| | - Edward J Reijerse
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 Mülheim an der Ruhr D-45470 Germany
| | - Alexander Schnegg
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 Mülheim an der Ruhr D-45470 Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199 47057 Duisburg Germany
| |
Collapse
|
6
|
Ott A, Nagy PR, Benkő Z. Stability of Carbocyclic Phosphinyl Radicals: Effect of Ring Size, Delocalization, and Sterics. Inorg Chem 2022; 61:16266-16281. [PMID: 36197796 PMCID: PMC9583709 DOI: 10.1021/acs.inorgchem.2c01968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In this computational study, we report on the stability
of cyclic
phosphinyl radicals with an aim for a systematical assessment of stabilization
effects. The radical stabilization energies (RSEs) were calculated
using isodesmic reactions for a large number of carbocyclic radicals
possessing different ring sizes and grades of unsaturation. In general,
the RSE values range from −1.2 to −14.0 kcal·mol–1, and they show practically no correlation with the
spin populations at the P-centers. The RSE values correlate with the
reaction Gibbs free energies calculated for the dimerization of the
studied simple radicals. Therefore, the more easily accessible RSE
values offer a cost-effective estimation of global stability in a
straightforward manner. To explore the effect of unsaturation on the
RSE values, delocalization energies were determined using appropriate
isodesmic reactions. Introducing unsaturations beside the P-center
into the backbone of the rings leads to an additive increase in the
magnitude of the delocalization energy (∼10, 20, and 30 kcal·mol–1, respectively, for radicals with one, two, and three
C=C bonds in the conjugation). Parallelly, the spin populations
at the P-centers also dwindle gradually by ∼0.1 e in the same
order, indicating that the lone electron delocalizes over the π-system.
Radicals containing exocyclic C=C π-bonds were also investigated,
and all of these radicals have rather similar stabilities independently
of the ring size, outlining the primary importance of the two exocyclic
π-bonds in the conjugation. Among the radicals involved in our
study, those with the best electronic stabilization are the unsaturated
three-, five-, six-, and seven-membered rings containing the maximum
number of conjugated vinyl fragments. The largest delocalization energy
of 31.5 kcal·mol–1 and the lowest obtained
spin population of 0.665 e were found for the fully unsaturated seven-membered
radical (phosphepin derivative). Importantly, the electronic stabilization
effects alone are insufficient for stabilizing the radicals in monomeric
forms epitomized by the exothermic dimerization energies (−40
to −58 kcal·mol–1). Therefore, it is
essential to apply sterically demanding bulky substituents on the
α-C-atoms. Tweaking the steric congestion enabled us to propose
radicals that are expected to be stable against dimerization and,
consequently, may be realistic target species for synthetic investigations.
The effects contributing to the stability of radicals having sterically
encumbered substituents have also been explored. To systematically evaluate the stabilization
effects, the
radical stabilization energies of various carbocyclic phosphinyl radicals
having saturated backbones or unsaturation(s) in either endocyclic
or exocyclic manner have been determined and analyzed. As the electronic
stabilization is alone insufficient to hamper the possible dimerization
of these species, the effect of several sterically demanding substituents
has been explored for the congeners with best electronic stabilizations,
thus enabling us to propose synthetically accessible candidates in
the future.
Collapse
Affiliation(s)
- Anna Ott
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Péter R Nagy
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,ELKH-BME Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Zoltán Benkő
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,ELKH-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
7
|
Rosenboom J, Chojetzki L, Suhrbier T, Rabeah J, Villinger A, Wustrack R, Bresien J, Schulz A. Radical Reactivity of the Biradical [⋅P(μ-NTer) 2 P⋅] and Isolation of a Persistent Phosphorus-Cantered Monoradical [⋅P(μ-NTer) 2 P-Et]. Chemistry 2022; 28:e202200624. [PMID: 35445770 PMCID: PMC9322606 DOI: 10.1002/chem.202200624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/06/2022]
Abstract
The activation of C-Br bonds in various bromoalkanes by the biradical [⋅P(μ-NTer)2 P⋅] (1) (Ter=2,6-bis-(2,4,6-trimethylphenyl)-phenyl) is reported, yielding trans-addition products of the type [Br-P(μ-NTer)2 P-R] (2), so-called 1,3-substituted cyclo-1,3-diphospha-2,4-diazanes. This addition reaction, which represents a new easy approach to asymmetrically substituted cyclo-1,3-diphospha-2,4-diazanes, was investigated mechanistically by different spectroscopic methods (NMR, EPR, IR, Raman); the results suggested a stepwise radical reaction mechanism, as evidenced by the in-situ detection of the phosphorus-centered monoradical [⋅P(μ-NTer)2 P-R].< To provide further evidence for the radical mechanism, [⋅P(μ-NTer)2 P-Et] (3Et⋅) was synthesized directly by reduction of the bromoethane addition product [Br-P(μ-NTer)2 P-Et] (2 a) with magnesium, resulting in the formation of the persistent phosphorus-centered monoradical [⋅P(μ-NTer)2 P-Et], which could be isolated and fully characterized, including single-crystal X-ray diffraction. Comparison of the EPR spectrum of the radical intermediate in the addition reaction with that of the synthesized new [⋅P(μ-NTer)2 P-Et] radical clearly proves the existence of radicals over the course of the reaction of biradical [⋅P(μ-NTer)2 P⋅] (1) with bromoethane. Extensive DFT and coupled cluster calculations corroborate the experimental data for a radical mechanism in the reaction of biradical [⋅P(μ-NTer)2 P⋅] with EtBr. In the field of hetero-cyclobutane-1,3-diyls, the demonstration of a stepwise radical reaction represents a new aspect and closes the gap between P-centered biradicals and P-centered monoradicals in terms of radical reactivity.
Collapse
Affiliation(s)
- Jan Rosenboom
- Institut für Chemie, UniversitätAlbert-Einstein-Straße 3a18059RostockGermany
| | - Lukas Chojetzki
- Institut für Chemie, UniversitätAlbert-Einstein-Straße 3a18059RostockGermany
| | - Tim Suhrbier
- Institut für Chemie, UniversitätAlbert-Einstein-Straße 3a18059RostockGermany
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Alexander Villinger
- Institut für Chemie, UniversitätAlbert-Einstein-Straße 3a18059RostockGermany
| | - Ronald Wustrack
- Institut für Chemie, UniversitätAlbert-Einstein-Straße 3a18059RostockGermany
| | - Jonas Bresien
- Institut für Chemie, UniversitätAlbert-Einstein-Straße 3a18059RostockGermany
| | - Axel Schulz
- Institut für Chemie, UniversitätAlbert-Einstein-Straße 3a18059RostockGermany
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
8
|
Brehm PC, Frontera A, Streubel R. On metal coordination of neutral open-shell P-ligands focusing on phosphanoxyls, their electron residence and reactivity. Chem Commun (Camb) 2022; 58:6270-6279. [PMID: 35579028 DOI: 10.1039/d2cc01302a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature article highlights the discovery and development of phosphanoxyl complex chemistry starting from (neutral) low-coordinate phosphorus radicals and the quest of metal ligation effects. We describe synthesis and reactions of precursors, namely 2,2,6,6-tetramethylpiperidinoxyl (TEMPO) substituted phosphane tungsten(0) complexes. Trapping reactions of transient phosphanoxyl complexes, formed via thermal homolytic N-O bond cleavage, as well as their use in radical polymerisations are illustrated, thus revealing an interesting reactivity dichotomy. DFT calculations provide insight into thermal stabilities of precursors and the resulting spin density distributions (SDDs) in these reactive intermediates. Systematic studies on the dependance of the electron delocalisation in phosphanoxyl complexes have been performed examining different substitution pattern at phosphorus and different co-ligand combinations at the tungsten(0) center. Preliminary results on Mn and Fe complexes are reported.
Collapse
Affiliation(s)
- Philipp C Brehm
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Antonio Frontera
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa, 07122 Palma, Baleares, Spain
| | - Rainer Streubel
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| |
Collapse
|
9
|
Brehm PC, Müller-Feyen AS, Schnakenburg G, Streubel R. 1,3,2-Diheterophospholane complexes: access to new tuneable precursors of phosphanoxyl complexes and P-functional polymers. Dalton Trans 2022; 51:4400-4405. [PMID: 35195141 DOI: 10.1039/d2dt00027j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Synthesis of a testbed of P-H functional diheterophospholane complexes (3 and 6a,b) with no or little steric bulk at the α-position was achieved using [NEt4][WH(CO)5] as a combined reductant and complexation reagent. Reaction with TEMPO leads to P-OTEMP substituted tungsten complexes (4 and 7a,b) possessing different thermostabilities towards N-O bond cleavage. The transient phosphanoxyl complexes obtained were used for the polymerisation of styrene and acrylonitrile. DFT calculations were performed on the formation of various open-shell complexes and Loewdin spin density distributions.
Collapse
Affiliation(s)
- Philipp C Brehm
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Anne S Müller-Feyen
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Rainer Streubel
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| |
Collapse
|
10
|
Ho LP, Tamm M. Chalcogen‐Pnictogen Complexes of Anionic N‐Heterocyclic Carbenes with a Weakly Coordinating Borate Moiety. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Luong Phong Ho
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institut für Anorganische und Analytische Chemie GERMANY
| | - Matthias Tamm
- Technische Universität Braunschweig Institut für Anorganische und Analytische Chemie Hagenring 30 38106 Braunschweig GERMANY
| |
Collapse
|
11
|
Kundu S, Das B, Makol A. Phosphorus radicals and radical ions. Dalton Trans 2022; 51:12404-12426. [DOI: 10.1039/d2dt01499h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and characterization of isolable radicals of main-group elements have been a long-pursued quest. Although there has been considerable progress in this area, particularly in isolating carbon- radicals, the isolation...
Collapse
|
12
|
Zhang X, Li L, Wu Z, Zhu H, Xie Y, Schaefer HF. Heteroatom (N, P, As, Sb, Bi) Effects on the Resonance-Stabilized 2-, 3-, and 4-Picolyl Radicals. Inorg Chem 2021; 60:5860-5867. [PMID: 33770433 DOI: 10.1021/acs.inorgchem.1c00275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Important recent experimental studies have allowed the isomer-selective identification of the 2-, 3-, and 4-picolyl radicals. The picolyl radicals and their valence isoelectronic P, As, Sb, and Bi congeners are investigated here. For the three observed parent radicals, the theoretical ionization potentials agree with experiment to within 0.02 eV. Two rules are proposed for predicting vertical ionization potentials (EVIE) and relative energies. The EVIE values for these radicals will be higher when large percentages of the SOMO orbitals are distributed on the atoms with greater electronegativities. The cations of these systems were also studied along with the closed-shell methylpyridines and their P, As, Sb, and Bi analogs. The energies for the cationic species will lie lower when high percentages of π natural localized molecular orbitals occur on the more electronegative atoms. The structures of the 2- and 4-isomers strongly depend upon the heteroatoms, with the C-C linkages adopting a single-double alternating bond manner when the heteroatoms become heavier. The 3-isomers adopt roughly equal C-C bond distances with small changes from N to Bi.
Collapse
Affiliation(s)
- Xuewen Zhang
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Longfei Li
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Zeyu Wu
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Huajie Zhu
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yaoming Xie
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
13
|
Blum M, Feil CM, Nieger M, Gudat D. Synthesis and Thermally and Light Driven Cleavage of an N‐Heterocyclic Diphosphine with Inorganic Backbone. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Markus Blum
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Christoph M. Feil
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Martin Nieger
- Department of Chemistry University of Helsinki 00014 University of Helsinki Finland
| | - Dietrich Gudat
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| |
Collapse
|
14
|
Wong A, Chu J, Wu G, Telser J, Dobrovetsky R, Ménard G. Redox-Controlled Reactivity at Boron: Parallels to Frustrated Lewis/Radical Pair Chemistry. Inorg Chem 2020; 59:10343-10352. [PMID: 32643930 DOI: 10.1021/acs.inorgchem.0c01464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the synthesis of new Lewis-acidic boranes tethered to redox-active vanadium centers, (Ph2N)3V(μ-N)B(C6F5)2 (1a) and (N(CH2CH2N(C6F5))3)V(μ-N)B(C6F5)2 (1b). Redox control of the VIV/V couple resulted in switchable borane versus "hidden" boron radical reactivity, mimicking frustrated Lewis versus frustrated radical pair (FLP/FRP) chemistry, respectively. Whereas heterolytic FLP-type addition reactions were observed with the VV complex (1b) in the presence of a bulky phosphine, homolytic peroxide, or Sn-hydride bond cleavage reactions were observed with the VIV complex, [CoCp2*][(N(CH2CH2N(C6F5))3)V(μ-N)B(C6F5)2] (3b), indicative of boron radical anion character. The extent of radical character was probed by spectroscopic and computational means. Together, these results demonstrate that control of the VIV/V oxidation states allows these compounds to access reactivity observed in both FLP and FRP chemistry.
Collapse
Affiliation(s)
- Anthony Wong
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Jiaxiang Chu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.,School of Chemical Science, University of Chinese Academy of Sciences, Huaibei hen, Huairou District, Beijing 101408, China
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Joshua Telser
- Department of Biological, Chemical, and Physical Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Roman Dobrovetsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gabriel Ménard
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
15
|
Helling C, Cutsail GE, Weinert H, Wölper C, Schulz S. Ligand Effects on the Electronic Structure of Heteroleptic Antimony-Centered Radicals. Angew Chem Int Ed Engl 2020; 59:7561-7568. [PMID: 32048388 PMCID: PMC7216903 DOI: 10.1002/anie.202000586] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Indexed: 01/23/2023]
Abstract
We report on the structures of three unprecedented heteroleptic Sb-centered radicals [L(Cl)Ga](R)Sb. (2-R, R=B[N(Dip)CH]2 2-B, 2,6-Mes2 C6 H3 2-C, N(SiMe3 )Dip 2-N) stabilized by one electropositive metal fragment [L(Cl)Ga] (L=HC[C(Me)N(Dip)]2 , Dip=2,6-i-Pr2 C6 H3 ) and one bulky B- (2-B), C- (2-C), or N-based (2-N) substituent. Compounds 2-R are predominantly metal-centered radicals. Their electronic properties are largely influenced by the electronic nature of the ligands R, and significant delocalization of unpaired-spin density onto the ligands was observed in 2-B and 2-N. Cyclic voltammetry (CV) studies showed that 2-B undergoes a quasi-reversible one-electron reduction, which was confirmed by the synthesis of [K([2.2.2]crypt)][L(Cl)GaSbB[N(Dip)CH]2 ] ([K([2.2.2]crypt)][2-B]) containing the stibanyl anion [2-B]- , which was shown to possess significant Sb-B multiple-bonding character.
Collapse
Affiliation(s)
- Christoph Helling
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstraße 5–745117EssenGermany
| | - George E. Cutsail
- Max Planck Institute for Chemical Energy Conversion (CEC)Stiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Hanns Weinert
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstraße 5–745117EssenGermany
| | - Christoph Wölper
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstraße 5–745117EssenGermany
| | - Stephan Schulz
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstraße 5–745117EssenGermany
| |
Collapse
|
16
|
Helling C, Cutsail GE, Weinert H, Wölper C, Schulz S. Ligand Effects on the Electronic Structure of Heteroleptic Antimony‐Centered Radicals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000586] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christoph Helling
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-Essen Universitätsstraße 5–7 45117 Essen Germany
| | - George E. Cutsail
- Max Planck Institute for Chemical Energy Conversion (CEC) Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
| | - Hanns Weinert
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-Essen Universitätsstraße 5–7 45117 Essen Germany
| | - Christoph Wölper
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-Essen Universitätsstraße 5–7 45117 Essen Germany
| | - Stephan Schulz
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-Essen Universitätsstraße 5–7 45117 Essen Germany
| |
Collapse
|
17
|
Sharma MK, Blomeyer S, Glodde T, Neumann B, Stammler HG, Hinz A, van Gastel M, Ghadwal RS. Isolation of singlet carbene derived 2-phospha-1,3-butadienes and their sequential one-electron oxidation to radical cations and dications. Chem Sci 2020; 11:1975-1984. [PMID: 34123292 PMCID: PMC8148328 DOI: 10.1039/c9sc05598c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/05/2020] [Indexed: 01/05/2023] Open
Abstract
A synthetic strategy for the 2-phospha-1,3-butadiene derivatives [{(IPr)C(Ph)}P(cAACMe)] (3a) and [{(IPr)C(Ph)}P(cAACCy)] (3b) (IPr = C{(NDipp)CH}2, Dipp = 2,6-iPr2C6H3; cAACMe = C{(NDipp)CMe2CH2CMe2}; cAACCy = C{(NDipp)CMe2CH2C(Cy)}, Cy = cyclohexyl) containing a C[double bond, length as m-dash]C-P[double bond, length as m-dash]C framework has been established. Compounds 3a and 3b have a remarkably small HOMO-LUMO energy gap (3a: 5.09; 3b: 5.05 eV) with a very high-lying HOMO (-4.95 eV for each). Consequently, 3a and 3b readily undergo one-electron oxidation with the mild oxidizing agent GaCl3 to afford radical cations [{(IPr)C(Ph)}P(cAACR)]GaCl4 (R = Me 4a, Cy 4b) as crystalline solids. The main UV-vis absorption band for 4a and 4b is red-shifted with respect to that of 3a and 3b, which is associated with the SOMO related transitions. The EPR spectra of compounds 4a and 4b each exhibit a doublet due to coupling of the unpaired electron with the 31P nucleus. Further one-electron removal from the radical cations 4a and 4b is also feasible with GaCl3, affording the dications [{(IPr)C(Ph)}P(cAACR)](GaCl4)2 (R = Me 5a, Cy 5b) as yellow crystals. The molecular structures of compounds 3-5 have been determined by X-ray diffraction and analyzed by DFT calculations.
Collapse
Affiliation(s)
- Mahendra K Sharma
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| | - Sebastian Blomeyer
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| | - Timo Glodde
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| | - Alexander Hinz
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstr. 15 D-76131 Karlsruhe Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung, Molecular Theory and Spectroscopy Kaiser-Wilhelm-Platz 1 Mülheim an der Ruhr D-45470 Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| |
Collapse
|
18
|
Cui H, Xiao D, Zhang L, Ruan H, Fang Y, Zhao Y, Tan G, Zhao L, Frenking G, Driess M, Wang X. Isolable cyclic radical cations of heavy main-group elements. Chem Commun (Camb) 2020; 56:2167-2170. [DOI: 10.1039/c9cc09582a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The first stable radical cations bearing both heavy group 14 and 15 elements have been isolated and fully characterized.
Collapse
|
19
|
Sharma MK, Blomeyer S, Neumann B, Stammler HG, Hinz A, van Gastel M, Ghadwal RS. Isolation of singlet carbene derived 2-arsa-1,3-butadiene radical cations and dications. Chem Commun (Camb) 2020; 56:3575-3578. [PMID: 32104835 DOI: 10.1039/d0cc00624f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
2-Arsa-1,3-butadienes (L)As(cAACR) (L = PhC[double bond, length as m-dash]C{(NDipp)CH}2, Dipp = 2,6-iPr2C6H3; cAACR = C{(NDipp)CMe2CH2C(R)}, R = Me22a, R = cyclohexyl (Cy) 2b) and the corresponding radical cations [(L)As(cAACR)]GaCl4 (R = Me23a, Cy 3b) and dications [(L)As(cAACR)](GaCl4)2 (R = Me 4a, Cy 4b) featuring a C[double bond, length as m-dash]C-As[double bond, length as m-dash]C π-conjugated framework are reported.
Collapse
Affiliation(s)
- Mahendra K Sharma
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany.
| | - Sebastian Blomeyer
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany.
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany.
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany.
| | - Alexander Hinz
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung, Molecular Theory and Spectroscopy, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, D-45470, Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany.
| |
Collapse
|
20
|
Sharma MK, Blomeyer S, Neumann B, Stammler H, van Gastel M, Hinz A, Ghadwal RS. Crystalline Divinyldiarsene Radical Cations and Dications. Angew Chem Int Ed Engl 2019; 58:17599-17603. [PMID: 31553520 PMCID: PMC6899687 DOI: 10.1002/anie.201909144] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/11/2019] [Indexed: 11/08/2022]
Abstract
The divinyldiarsene radical cations [{(NHC)C(Ph)}As]2 (GaCl4 ) (NHC=IPr: C{(NDipp)CH}2 3; SIPr: C{(NDipp)CH2 }2 4; Dipp=2,6-iPr2 C6 H3 ) and dications [{(NHC)C(Ph)}As]2 (GaCl4 )2 (NHC=IPr 5; SIPr 6) are readily accessible as crystalline solids on sequential one-electron oxidation of the corresponding divinyldiarsenes [{(NHC)C(Ph)}As]2 (NHC=IPr 1; SIPr 2) with GaCl3 . Compounds 3-6 have been characterized by X-ray diffraction, cyclic voltammetry, EPR/NMR spectroscopy, and UV/vis absorption spectroscopy as well as DFT calculations. The sequential removal of one electron from the HOMO, that is mainly the As-As π-bond, of 1 and 2 leads to successive elongation of the As=As bond and contraction of the C-As bonds from 1/2→3/4→5/6. The UV/vis spectrum of 3 and 4 each exhibits a strong absorption in the visible region associated with SOMO-related transitions. The EPR spectrum of 3 and 4 each shows a broadened septet owing to coupling of the unpaired electron with two 75 As (I=3/2) nuclei.
Collapse
Affiliation(s)
- Mahendra K. Sharma
- Anorganische Molekülchemie und KatalyseLehrstuhl für Anorganische Chemie und StrukturchemieCentrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Sebastian Blomeyer
- Anorganische Molekülchemie und KatalyseLehrstuhl für Anorganische Chemie und StrukturchemieCentrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Beate Neumann
- Anorganische Molekülchemie und KatalyseLehrstuhl für Anorganische Chemie und StrukturchemieCentrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Anorganische Molekülchemie und KatalyseLehrstuhl für Anorganische Chemie und StrukturchemieCentrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Maurice van Gastel
- Max-Planck-Institut für KohlenforschungMolecular Theory and SpectroscopyKaiser-Wilhelm-Platz 1Mülheim an der Ruhr45470Germany
| | - Alexander Hinz
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| | - Rajendra S. Ghadwal
- Anorganische Molekülchemie und KatalyseLehrstuhl für Anorganische Chemie und StrukturchemieCentrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| |
Collapse
|
21
|
Sharma MK, Blomeyer S, Neumann B, Stammler H, Gastel M, Hinz A, Ghadwal RS. Crystalline Divinyldiarsene Radical Cations and Dications. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mahendra K. Sharma
- Anorganische Molekülchemie und KatalyseLehrstuhl für Anorganische Chemie und StrukturchemieCentrum für Molekulare MaterialienFakultät für ChemieUniversität Bielefeld Universitätsstr. 25 33615 Bielefeld Germany
| | - Sebastian Blomeyer
- Anorganische Molekülchemie und KatalyseLehrstuhl für Anorganische Chemie und StrukturchemieCentrum für Molekulare MaterialienFakultät für ChemieUniversität Bielefeld Universitätsstr. 25 33615 Bielefeld Germany
| | - Beate Neumann
- Anorganische Molekülchemie und KatalyseLehrstuhl für Anorganische Chemie und StrukturchemieCentrum für Molekulare MaterialienFakultät für ChemieUniversität Bielefeld Universitätsstr. 25 33615 Bielefeld Germany
| | - Hans‐Georg Stammler
- Anorganische Molekülchemie und KatalyseLehrstuhl für Anorganische Chemie und StrukturchemieCentrum für Molekulare MaterialienFakultät für ChemieUniversität Bielefeld Universitätsstr. 25 33615 Bielefeld Germany
| | - Maurice Gastel
- Max-Planck-Institut für KohlenforschungMolecular Theory and Spectroscopy Kaiser-Wilhelm-Platz 1 Mülheim an der Ruhr 45470 Germany
| | - Alexander Hinz
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT) Engesserstr. 15 76131 Karlsruhe Germany
| | - Rajendra S. Ghadwal
- Anorganische Molekülchemie und KatalyseLehrstuhl für Anorganische Chemie und StrukturchemieCentrum für Molekulare MaterialienFakultät für ChemieUniversität Bielefeld Universitätsstr. 25 33615 Bielefeld Germany
| |
Collapse
|
22
|
Mondal MK, Zhang L, Feng Z, Tang S, Feng R, Zhao Y, Tan G, Ruan H, Wang X. Tricoordinate Nontrigonal Pnictogen‐Centered Radical Anions: Isolation, Characterization, and Reactivity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Manas Kumar Mondal
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Li Zhang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
- Center of Materials Science and Engineering Guangxi University of Science and Technology Liuzhou 545006 China
| | - Zhongtao Feng
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Shuxuan Tang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Rui Feng
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Gengwen Tan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| |
Collapse
|
23
|
Mondal MK, Zhang L, Feng Z, Tang S, Feng R, Zhao Y, Tan G, Ruan H, Wang X. Tricoordinate Nontrigonal Pnictogen‐Centered Radical Anions: Isolation, Characterization, and Reactivity. Angew Chem Int Ed Engl 2019; 58:15829-15833. [DOI: 10.1002/anie.201910139] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/02/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Manas Kumar Mondal
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Li Zhang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
- Center of Materials Science and Engineering Guangxi University of Science and Technology Liuzhou 545006 China
| | - Zhongtao Feng
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Shuxuan Tang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Rui Feng
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Gengwen Tan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| |
Collapse
|
24
|
Chen C, Hu Z, Li J, Ruan H, Zhao Y, Tan G, Song Y, Wang X. Isolable Lanthanide Metal Complexes of a Phosphorus-Centered Radical. Inorg Chem 2019; 59:2111-2115. [DOI: 10.1021/acs.inorgchem.9b01950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Zhaobo Hu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Jing Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Gengwen Tan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - You Song
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
25
|
Abbenseth J, Delony D, Neben MC, Würtele C, de Bruin B, Schneider S. Interconversion of Phosphinyl Radical and Phosphinidene Complexes by Proton Coupled Electron Transfer. Angew Chem Int Ed Engl 2019; 58:6338-6341. [PMID: 30840783 PMCID: PMC6519162 DOI: 10.1002/anie.201901470] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Indexed: 12/04/2022]
Abstract
The isolable complex [Os(PHMes*)H(PNP)] (Mes*=2,4,6-t Bu3 C6 H3 ; PNP=N{CHCHPt Bu2 }2 ) exhibits high phosphinyl radical character. This compound offers access to the phosphinidene complex [Os(PMes*)H(PNP)] by P-H proton coupled electron transfer (PCET). The P-H bond dissociation energy (BDE) was determined by isothermal titration calorimetry and supporting DFT computations. The phosphinidene product exhibits electrophilic reactivity as demonstrated by intramolecular C-H activation.
Collapse
Affiliation(s)
- Josh Abbenseth
- Georg-August-Universität GöttingenInstitut für Anorganische ChemieTammannstraße 437077GöttingenGermany
| | - Daniel Delony
- Georg-August-Universität GöttingenInstitut für Anorganische ChemieTammannstraße 437077GöttingenGermany
| | - Marc C. Neben
- Georg-August-Universität GöttingenInstitut für Anorganische ChemieTammannstraße 437077GöttingenGermany
| | - Christian Würtele
- Georg-August-Universität GöttingenInstitut für Anorganische ChemieTammannstraße 437077GöttingenGermany
| | - Bas de Bruin
- Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA)Science Park 9041098XHAmsterdamThe Netherlands
| | - Sven Schneider
- Georg-August-Universität GöttingenInstitut für Anorganische ChemieTammannstraße 437077GöttingenGermany
| |
Collapse
|
26
|
Abbenseth J, Delony D, Neben MC, Würtele C, de Bruin B, Schneider S. Interconversion of Phosphinyl Radical and Phosphinidene Complexes by Proton Coupled Electron Transfer. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Josh Abbenseth
- Georg-August-Universität GöttingenInstitut für Anorganische Chemie Tammannstraße 4 37077 Göttingen Germany
| | - Daniel Delony
- Georg-August-Universität GöttingenInstitut für Anorganische Chemie Tammannstraße 4 37077 Göttingen Germany
| | - Marc C. Neben
- Georg-August-Universität GöttingenInstitut für Anorganische Chemie Tammannstraße 4 37077 Göttingen Germany
| | - Christian Würtele
- Georg-August-Universität GöttingenInstitut für Anorganische Chemie Tammannstraße 4 37077 Göttingen Germany
| | - Bas de Bruin
- Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Sven Schneider
- Georg-August-Universität GöttingenInstitut für Anorganische Chemie Tammannstraße 4 37077 Göttingen Germany
| |
Collapse
|
27
|
Haiduc I. Review: Inverse coordination. Inorganic open and cyclic nitrogen heteroatom molecules as coordination centers. A survey of molecular topologies. J COORD CHEM 2019. [DOI: 10.1080/00958972.2018.1556393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ionel Haiduc
- Facultatea de Chimie, Universitatea Babeş-Bolyai, Cluj-Napoca, Romania
| |
Collapse
|
28
|
Sharma MK, Rottschäfer D, Blomeyer S, Neumann B, Stammler HG, van Gastel M, Hinz A, Ghadwal RS. Diphosphene radical cations and dications with a π-conjugated C 2P 2C 2-framework. Chem Commun (Camb) 2019; 55:10408-10411. [PMID: 31403648 DOI: 10.1039/c9cc04701h] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and characterization of the crystalline diphosphene radical cations [{(NHC)C(Ph)}P]2(GaCl4) (NHC = IPr = C{(NDipp)CH}23, SIPr = C{(NDipp)CH2}24; Dipp = 2,6-iPr2C6H3) and dications [{(NHC)C(Ph)}P]2(GaCl4)2 (NHC = IPr 5, SIPr 6) featuring a π-conjugated C2P2C2-framework has been reported.
Collapse
Affiliation(s)
- Mahendra K Sharma
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Electron paramagnetic resonance study of the radiation damage in phosphoryethanolamine single crystal. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.07.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Chu J, Carroll TG, Wu G, Telser J, Dobrovetsky R, Ménard G. Probing Hydrogen Atom Transfer at a Phosphorus(V) Oxide Bond Using a "Bulky Hydrogen Atom" Surrogate: Analogies to PCET. J Am Chem Soc 2018; 140:15375-15383. [PMID: 30382703 DOI: 10.1021/jacs.8b09063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recent computational studies suggest that the phosphate support in the commercial vanadium phosphate oxide (VPO) catalyst may play a critical role in initiating butane C-H bond activation through a mechanism termed reduction-coupled oxo activation (ROA) similar to proton-coupled electron transfer (PCET); however, no experimental evidence exists to support this mechanism. Herein, we present molecular model compounds, (Ph2N)3V═N-P(O)Ar2 (Ar = C6F5 (2a), Ph (2b)), which are reactive to both weak H atom donors and a Me3Si• (a "bulky hydrogen atom" surrogate) donor, 1,4-bis(trimethylsilyl)pyrazine. While the former reaction led to product decomposition, the latter resulted in the isolation of the reduced, silylated complexes (Ph2N)3V-N═P(OSiMe3)Ar2 (3a/b). Detailed analyses of possible reaction pathways, involving the isolation and full characterization of potential stepwise square-scheme intermediates, as well as the determination of minimum experimentally and computationally derived thermochemical values, are described. We find that stepwise electron transfer (ET) + silylium transfer (ST) or concerted EST mechanisms are most likely. This study provides the first experimental evidence supporting a ROA mechanism and may inform future studies in homogeneous or heterogeneous C-H activation chemistry, as well as open up a possible new avenue for main group/transition metal cooperative redox reactivity.
Collapse
Affiliation(s)
- Jiaxiang Chu
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
| | - Timothy G Carroll
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
| | - Guang Wu
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
| | - Joshua Telser
- Department of Biological, Chemical, and Physical Sciences , Roosevelt University , Chicago , Illinois 60605 , United States
| | - Roman Dobrovetsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences , Tel Aviv University , Tel Aviv 69978 , Israel
| | - Gabriel Ménard
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
| |
Collapse
|
31
|
Carroll TG, Garwick R, Wu G, Ménard G. A Mono-, Di-, and Trivanadocene Phosphorus Oxide Series: Synthesis, Magnetism, and Chemical/Electrochemical Properties. Inorg Chem 2018; 57:11543-11551. [PMID: 30141915 DOI: 10.1021/acs.inorgchem.8b01585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this Article, we outline the synthesis of B(C6F5)3-coordinated mono-, di-, and trivanadocene phosphorus oxide complexes, Cp2VOP(OB(C6F5)3)Ph2 (2), (Cp2VO)2P(OB(C6F5)3)Ph (3), and (Cp2VO)3P(OB(C6F5)3) (4), respectively (Cp = η5-cyclopentadienyl). The complexes were synthesized from the known reagents, Cp2VF and Ph2P(O)OSiMe3 (for 2) or PhP(O)(OSiMe3)2 (for 3) or (Me3SiO)3PO (for 4), via Me3SiF elimination and in the presence of B(C6F5)3. The multimetallic complexes (3 and 4) could not be synthesized without the capping B(C6F5)3 Lewis acid, whereas the uncapped version of 2, Cp2VOP(O)Ph2 (1), has previously been reported by us. Spectroscopic and crystallographic analyses of 2-4 support an increasingly Lewis basic P═O bond upon substitution of -Ph for -OVCp2 fragments (2-4). The increased metal nuclearity also results in increasingly reducing complexes as evidenced by cyclic voltammetry (CV). Magnetic measurements (SQUID) further revealed high-spin complexes with negligible magnetic exchange between V centers. Chemical oxidation of 2 with 0.5 equiv of [Ag][B(C6F5)4] resulted in a ligand rearrangement reaction producing the VIV product, Cp2V(OP(OB(C6F5)3)Ph2)2 (7). In contrast, the oxidation of 4 with the trityl salt, [Ph3C][B(C6F5)4], resulted in the isolation of a mixed-valent VIII/VIV dimetallic species, (Cp2VO2P(OB(C6F5)3)OVCp2 (9). Both oxidations likely produce the [Cp2V][B(C6F5)4] byproduct and evidence for its formation is presented. The synthesis and characterization of the mono- and dimetallic species, Cp2VOP(OBPh3)Ph2 (8) and (Cp2VO)2P(OB(C6F5)3)OSiMe3 (5), is also reported.
Collapse
Affiliation(s)
- Timothy G Carroll
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
| | - Rachel Garwick
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
| | - Guang Wu
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
| | - Gabriel Ménard
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
| |
Collapse
|
32
|
Ishida S, Hirakawa F, Iwamoto T. A Series of Two-Coordinate Group-15 Element (P, As, Sb, Bi) Centered Radicals Having Bulky Alkyl Groups. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shintaro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Fumiya Hirakawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
33
|
Wang W, Xu CQ, Fang Y, Zhao Y, Li J, Wang X. An Isolable Diphosphene Radical Cation Stabilized by Three-Center Three-Electron π-Bonding with Chromium: End-On versus Side-On Coordination. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenqing Wang
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Cong-Qiao Xu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Tsinghua University; Beijing 100084 China
| | - Yong Fang
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Tsinghua University; Beijing 100084 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| |
Collapse
|
34
|
Wang W, Xu CQ, Fang Y, Zhao Y, Li J, Wang X. An Isolable Diphosphene Radical Cation Stabilized by Three-Center Three-Electron π-Bonding with Chromium: End-On versus Side-On Coordination. Angew Chem Int Ed Engl 2018; 57:9419-9424. [DOI: 10.1002/anie.201805115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Wenqing Wang
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Cong-Qiao Xu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Tsinghua University; Beijing 100084 China
| | - Yong Fang
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Tsinghua University; Beijing 100084 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| |
Collapse
|
35
|
Carroll TG, Garwick R, Telser J, Wu G, Ménard G. Synthesis, Characterization, and Electrochemical Analyses of Vanadocene Tetrametaphosphate and Phosphinate Derivatives. Organometallics 2018. [DOI: 10.1021/acs.organomet.7b00797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Timothy G. Carroll
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Rachel Garwick
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Gabriel Ménard
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
36
|
Fang Y, Zhang L, Cheng C, Zhao Y, Abe M, Tan G, Wang X. Experimental Observation of Thermally Excited Triplet States of Heavier Group 15 Element Centered Diradical Dianions. Chemistry 2018; 24:3156-3160. [DOI: 10.1002/chem.201706060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Yong Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 P. R. China
| | - Li Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 P. R. China
| | - Cheng Cheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 P. R. China
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Japan
| | - Gengwen Tan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 P. R. China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 P. R. China
| |
Collapse
|
37
|
From stable Sb- and Bi-centered radicals to a compound with a Ga=Sb double bond. Nat Commun 2018; 9:87. [PMID: 29311607 PMCID: PMC5758792 DOI: 10.1038/s41467-017-02581-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/12/2017] [Indexed: 11/22/2022] Open
Abstract
Neutral stibinyl and bismuthinyl radicals are typically short-lived, reactive species. Here we show the synthesis and solid-state structures of two stable stibinyl [L(Cl)Ga]2Sb· 1 and bismuthinyl radicals [L(I)Ga]2Bi· 4, which are stabilized by electropositive metal centers. Their description as predominantly metal-centered radicals is consistent with the results of NMR, EPR, SQUID, and DFT studies. The Lewis-acidic character of the Ga ligands allow for significant electron delocalization of the Sb- and Bi- unpaired radical onto the ligand. Single-electron reduction of [L(Cl)Ga]2Sb· gave LGaSbGa(Cl)L 5, the first compound containing a Ga=Sb double bond. The π-bonding contribution is estimated to 9.56 kcal mol−1 by NMR spectroscopy. The bonding situation and electronic structure is analyzed by quantum mechanical computations, revealing significant π backdonation from the Sb to the Ga atom. The formation of 5 illustrates the high-synthetic potential of 1 for the formation of new compounds with unusual electronic structures. Radicals of heavy main-group elements represent important intermediates in chemical synthesis, yet few have been isolated. Here the authors stabilize neutral stibinyl and bismuthinyl radicals using gallium-based ligands, and reduce the former to afford a Ga=Sb double bond-containing complex.
Collapse
|
38
|
Li T, Tan G, Cheng C, Zhao Y, Zhang L, Wang X. Syntheses, structures and theoretical calculations of stable triarylarsine radical cations. Chem Commun (Camb) 2018; 54:1493-1496. [DOI: 10.1039/c7cc09544a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two stable triarylarsine radical cation salts have been synthesized and fully characterized by X-ray crystallography and EPR spectroscopy.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210023
| | - Gengwen Tan
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210023
| | - Cheng Cheng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210023
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210023
| | - Li Zhang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210023
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210023
| |
Collapse
|
39
|
Schulz A. Group 15 biradicals: synthesis and reactivity of cyclobutane-1,3-diyl and cyclopentane-1,3-diyl analogues. Dalton Trans 2018; 47:12827-12837. [DOI: 10.1039/c8dt03038c] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Synthesis, structure and reactivity of cyclobutane-1,3-diyl and cyclopentane-1,3-diyl analogues are discussed along with their application as molecular switches or reagents to activate or trap small molecules with single or multiple bonds.
Collapse
Affiliation(s)
- Axel Schulz
- Institut für Chemie
- Abteilung Anorganische Chemie
- Universität Rostock
- 18059 Rostock
- Germany
| |
Collapse
|
40
|
Gu L, Zheng Y, Haldón E, Goddard R, Bill E, Thiel W, Alcarazo M. α-Radical Phosphines: Synthesis, Structure, and Reactivity. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lianghu Gu
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstr 2 37077 Göttingen Germany
| | - Yiying Zheng
- Max-Planck-Institut für Kohlenforschung; Kaiser Wilhelm Platz 1 45470 Mülheim an der Ruhr Germany
| | - Estela Haldón
- Max-Planck-Institut für Kohlenforschung; Kaiser Wilhelm Platz 1 45470 Mülheim an der Ruhr Germany
| | - Richard Goddard
- Max-Planck-Institut für Kohlenforschung; Kaiser Wilhelm Platz 1 45470 Mülheim an der Ruhr Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion; Stiftstrasse 34-36 45470 Mülheim an der Ruhr Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung; Kaiser Wilhelm Platz 1 45470 Mülheim an der Ruhr Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstr 2 37077 Göttingen Germany
| |
Collapse
|
41
|
Gu L, Zheng Y, Haldón E, Goddard R, Bill E, Thiel W, Alcarazo M. α-Radical Phosphines: Synthesis, Structure, and Reactivity. Angew Chem Int Ed Engl 2017; 56:8790-8794. [PMID: 28544330 DOI: 10.1002/anie.201704185] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Indexed: 11/08/2022]
Abstract
A series of phosphines featuring a persistent radical were synthesized in two steps by condensation of dialkyl-/diarylchlorophosphines with stable cyclic (alkyl)(amino)carbenes (cAACs) followed by one-electron reduction of the corresponding cationic intermediates. Structural, spectroscopic, and computational data indicate that the spin density in these phosphines is mainly localized on the original carbene carbon from the cAAC fragment; thus, it remains in the α-position with respect to the central phosphorus atom. The potential of these α-radical phosphines to serve as spin-labeled ligands is demonstrated through the preparation of several AuI derivatives, which were also structurally characterized by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Lianghu Gu
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Yiying Zheng
- Max-Planck-Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Estela Haldón
- Max-Planck-Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Richard Goddard
- Max-Planck-Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| |
Collapse
|
42
|
Melaimi M, Jazzar R, Soleilhavoup M, Bertrand G. Cyclische Alkylaminocarbene (CAACs): Neues von guten Bekannten. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702148] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Mohand Melaimi
- UCSD-CNRS Joint Research Chemistry Laboratory, UMI 3555, Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093-0358 USA
| | - Rodolphe Jazzar
- UCSD-CNRS Joint Research Chemistry Laboratory, UMI 3555, Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093-0358 USA
| | - Michèle Soleilhavoup
- UCSD-CNRS Joint Research Chemistry Laboratory, UMI 3555, Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093-0358 USA
| | - Guy Bertrand
- UCSD-CNRS Joint Research Chemistry Laboratory, UMI 3555, Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093-0358 USA
| |
Collapse
|
43
|
Melaimi M, Jazzar R, Soleilhavoup M, Bertrand G. Cyclic (Alkyl)(amino)carbenes (CAACs): Recent Developments. Angew Chem Int Ed Engl 2017; 56:10046-10068. [DOI: 10.1002/anie.201702148] [Citation(s) in RCA: 507] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Mohand Melaimi
- UCSD-CNRS Joint Research Chemistry Laboratory, UMI 3555, Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093-0358 USA
| | - Rodolphe Jazzar
- UCSD-CNRS Joint Research Chemistry Laboratory, UMI 3555, Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093-0358 USA
| | - Michèle Soleilhavoup
- UCSD-CNRS Joint Research Chemistry Laboratory, UMI 3555, Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093-0358 USA
| | - Guy Bertrand
- UCSD-CNRS Joint Research Chemistry Laboratory, UMI 3555, Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093-0358 USA
| |
Collapse
|
44
|
Asami SS, Ishida S, Iwamoto T, Suzuki K, Yamashita M. Isolation and Characterization of Radical Anions Derived from a Boryl-Substituted Diphosphene. Angew Chem Int Ed Engl 2017; 56:1658-1662. [PMID: 28106347 DOI: 10.1002/anie.201611762] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Indexed: 11/08/2022]
Abstract
Radical anions of a diphosphene with two boryl substituents were isolated and characterized by single-crystal X-ray diffraction, electron spin resonance (ESR), and UV/Vis absorption spectroscopy as well as DFT calculations. Structural analysis of the radical anions revealed an elongation of the P=P bond and a contraction of the B-P bonds relative to the neutral diphosphene. The UV/Vis spectra of these radical anions showed a strong absorption in the visible region, which was assigned to SOMO-related transitions on the basis of DFT calculations. The ESR spectra revealed that the hyperfine coupling constant with the phosphorus nuclei is the smallest that has been reported thus far. The results of the DFT calculations furthermore suggest that this should be attributed to a soaking of electron spin to the vacant p orbitals of the boryl substituents.
Collapse
Affiliation(s)
- Shun-Suke Asami
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Shintaro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Katsunori Suzuki
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Makoto Yamashita
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan.,Research Development Initiative, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, T, okyo, 112-8551, Japan
| |
Collapse
|
45
|
Asami SS, Ishida S, Iwamoto T, Suzuki K, Yamashita M. Isolation and Characterization of Radical Anions Derived from a Boryl-Substituted Diphosphene. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611762] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shun-suke Asami
- Department of Applied Chemistry; Faculty of Science and Engineering; Chuo University; 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Shintaro Ishida
- Department of Chemistry; Graduate School of Science; Tohoku University; Sendai 980-8578 Japan
| | - Takeaki Iwamoto
- Department of Chemistry; Graduate School of Science; Tohoku University; Sendai 980-8578 Japan
| | - Katsunori Suzuki
- Department of Applied Chemistry; Faculty of Science and Engineering; Chuo University; 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Makoto Yamashita
- Department of Applied Chemistry; Graduate School of Engineering; Nagoya University; Furo-cho, Chikusa-ku, Nagoya Aichi 464-8603 Japan
- Research Development Initiative; Chuo University; 1-13-27 Kasuga, Bunkyo-ku, T okyo 112-8551 Japan
| |
Collapse
|
46
|
Fischbach U, Trincado M, Grützmacher H. Oxidative formation of phosphinyl radicals from a trigonal pyramidal terminal phosphide Rh(i) complex, with an unusually long Rh–P bond. Dalton Trans 2017; 46:3443-3448. [PMID: 28217796 DOI: 10.1039/c7dt00070g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A coordinatively saturated triolefinic rhodium(i) complex, bearing a terminal pyramidal phosphido ligand, generates phosphinyl radical species under oxidative conditions.
Collapse
Affiliation(s)
| | - M. Trincado
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
| | | |
Collapse
|
47
|
Courtemanche MA, Transue WJ, Cummins CC. Phosphinidene Reactivity of a Transient Vanadium P≡N Complex. J Am Chem Soc 2016; 138:16220-16223. [PMID: 27958729 DOI: 10.1021/jacs.6b10545] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Toward the preparation of a coordination complex of the heterodiatomic molecule PN, P≡N-V(N[tBu]Ar)3 (1, Ar = 3,5-Me2C6H3), we report the use of ClPA (A = C14H10, anthracene) as a formal source of phosphorus(I) in its reaction with Na[NV(N[tBu]Ar)3] (Na[4]) to yield trimeric cyclo-triphosphane [PNV(N[tBu]Ar)3]3 (3) with a core composed exclusively of phosphorus and nitrogen. In the presence of NapS2 (peri-1,8-naphthalene disulfide), NapS2P-NV(N[tBu]Ar)3 (6) is instead generated in 80% yield, suggesting trapping of transient 1. Upon mild heating, 3 readily fragments into dimeric [PNV(N[tBu]Ar)3]2 (2), while in the presence of bis(trimethylsilyl)acetylene or cis-4-octene, the respective phosphirene (Ar[tBu]N)3VN-PC2(SiMe3)2 (7) or phosphirane (Ar[tBu]N)3VN-P(C8H16) (8) compounds are generated. Kinetic data were found to be consistent with unimolecular decay of 3, and [2+1]-cycloaddition with radical clocks ruled out a triplet intermediate, consistent with intermediate 1 reacting as a singlet phosphinidene. In addition, both 7 and 8 were shown to reversibly exchange cis-4-octene and bis(trimethylsilyl)acetylene, serving as formal sources of 1, a reactivity manifold traditionally reserved for transition metals.
Collapse
Affiliation(s)
- Marc-André Courtemanche
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Wesley J Transue
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
48
|
Li T, Wei H, Fang Y, Wang L, Chen S, Zhang Z, Zhao Y, Tan G, Wang X. Elusive Antimony-Centered Radical Cations: Isolation, Characterization, Crystal Structures, and Reactivity Studies. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tao Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Houjia Wei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Yong Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Lei Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Sheng Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Zaichao Zhang
- School of Chemistry and Chemical Engineering; Huaiyin Normal University; Huai'an 223300 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Gengwen Tan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| |
Collapse
|
49
|
Li T, Wei H, Fang Y, Wang L, Chen S, Zhang Z, Zhao Y, Tan G, Wang X. Elusive Antimony-Centered Radical Cations: Isolation, Characterization, Crystal Structures, and Reactivity Studies. Angew Chem Int Ed Engl 2016; 56:632-636. [DOI: 10.1002/anie.201610334] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/23/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Tao Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Houjia Wei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Yong Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Lei Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Sheng Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Zaichao Zhang
- School of Chemistry and Chemical Engineering; Huaiyin Normal University; Huai'an 223300 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Gengwen Tan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| |
Collapse
|
50
|
Majhi PK, Koner A, Schnakenburg G, Kelemen Z, Nyulászi L, Streubel R. Application of Imidazole-2-thione Substituents in Low-Coordinate Phosphorus Chemistry - Probing the Scope. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600703] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Paresh Kumar Majhi
- Institut fur Anorganische Chemie der Rheinischen Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Abhishek Koner
- Institut fur Anorganische Chemie der Rheinischen Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Gregor Schnakenburg
- Institut fur Anorganische Chemie der Rheinischen Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Zsolt Kelemen
- Department of Inorganic and Analytical Chemistry; Budapest University of Technology and Economics; Szt Gellért tér 4 1111 Budapest Hungary
| | - László Nyulászi
- Department of Inorganic and Analytical Chemistry; Budapest University of Technology and Economics; Szt Gellért tér 4 1111 Budapest Hungary
| | - Rainer Streubel
- Institut fur Anorganische Chemie der Rheinischen Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|