1
|
El-Gendy AO, Ezzat S, Samad FA, Dabbous OA, Dahm J, Hamblin MR, Mohamed T. Studying the viability and growth kinetics of vancomycin-resistant Enterococcus faecalis V583 following femtosecond laser irradiation (420-465 nm). Lasers Med Sci 2024; 39:144. [PMID: 38809462 PMCID: PMC11136855 DOI: 10.1007/s10103-024-04080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Enterococcus faecalis is among the most resistant bacteria found in infected root canals. The demand for cutting-edge disinfection methods has rekindled research on photoinactivation with visible light. This study investigated the bactericidal activity of femtosecond laser irradiation against vancomycin-resistant Enterococcus faecalis V583 (VRE). The effect of parameters such as wavelength and energy density on the viability and growth kinetics of VRE was studied to design an optimized laser-based antimicrobial photoinactivation approach without any prior addition of exogenous photosensitizers. The most effective wavelengths were 430 nm and 435 nm at a fluence of 1000 J/cm2, causing a nearly 2-log reduction (98.6% and 98.3% inhibition, respectively) in viable bacterial counts. The colony-forming units and growth rate of the laser-treated cultures were progressively decreased as energy density or light dose increased at 445 nm but reached a limit at 1250 J/cm2. At a higher fluence of 2000 J/cm2, the efficacy was reduced due to a photobleaching phenomenon. Our results highlight the importance of optimizing laser exposure parameters, such as wavelength and fluence, in bacterial photoinactivation experiments. To our knowledge, this is the first study to report an optimized wavelength for the inactivation of VRE using visible femtosecond laser light.
Collapse
Affiliation(s)
- Ahmed O El-Gendy
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef, 62511, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Sarah Ezzat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Fatma Abdel Samad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ola Ali Dabbous
- Department of Medical Applications of Lasers, National Institute of Laser Enhanced Science (NILES), Cairo University, Giza, 12611, Egypt
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
2
|
Chen L, Cheng J, Wang L, Fan W, Lu Z, Zheng L. A silver metal-organic cage with antibacterial activity for wound healing. RSC Adv 2023; 13:29043-29050. [PMID: 37799305 PMCID: PMC10548531 DOI: 10.1039/d3ra04013e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023] Open
Abstract
Bacterial infection is one of the most threatening diseases in humans and can result in tissue necrosis, inflammation, and so on. Although a large number of antibacterial materials have been developed, there are still some disadvantages in this field, including decreasing antibacterial activity in the aqueous solution or a short duration of time. Herein, a metal-organic cage named Ag-TBI-TPE with excellent antibacterial activity was prepared and applied in wound healing. Owing to the photosensitive production of the toxic ROS species and the positive charge of the surface, the Ag-TBI-TPE cage exhibits high antibacterial activity, especially under UV irradiation. It could accelerate the healing process of the infected wounds in vivo with satisfactory biocompatibility and bio-safety. The results indicated that after treatment with the Ag-TBI-TPE cage, with and without UV irradiation, the healing rates of wounds infected by E. coli and S. aureus were 89.59% and 93.05%, and 83.48% and 90.84%, respectively, which were much higher than those shown by the positive control group at 51.38% and 67.74%, respectively. This study not only sheds light on a design idea for a new antibacterial material but also further expands the potential application field of metal-organic cages.
Collapse
Affiliation(s)
- Linlin Chen
- QuanZhou Medical College Quanzhou Fujian 362000 China
| | - Jing Cheng
- QuanZhou Medical College Quanzhou Fujian 362000 China
| | - Longjie Wang
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University Kunming 650091 China
| | - Wenwen Fan
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University Kunming 650091 China
| | - Zhixiang Lu
- School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Liyan Zheng
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University Kunming 650091 China
| |
Collapse
|
3
|
Li X, Xu Y, Ouyang D, Ye K, Chen Y, Li Q, Xia Q, Wu X, Yang Y. Copper- and Iodine-Doped Nanozymes with Simulated Enzyme Activity and Efficient Antifungal Activity against Candida albicans. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Cao Y, Yin J, Shi Y, Cheng J, Fang Y, Huang C, Yu W, Liu M, Yang Z, Zhou H, Liu H, Wang J, Zhao G. Starch and chitosan-based antibacterial dressing for infected wound treatment via self-activated NO release strategy. Int J Biol Macromol 2022; 220:1177-1187. [PMID: 36030977 DOI: 10.1016/j.ijbiomac.2022.08.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022]
Abstract
In this work, a positively charged chitosan-grafted-polyarginine (CS-N-PArg) as the macro-molecular NO donor, and a negatively charged acetalated starch (AcSt-O-PAsp) as a glucose donor, have been synthesized. To achieve the multi-enzymatic cascade system for local generation of self-supply glucose to increase the H2O2 concentration for the subsequent oxidization of L-Arg into NO, the designed positively charged CS-N-PArg, negatively charged AcSt-O-PAsp, glucoamylase (GA) and glucose oxidase (GOx) are absorbed and assembled in the pore of the gelatin sponge via electrostatic interaction to establish a smart antibacterial dressings (CS/St + GOx/GA). Once stimulated by Escherichia coli (E. coli)-infected wounds (a slightly acidic environment), the cascade reaction system can sequentially induce to generate glucose, H2O2 and NO, which exhibits a meaningful alternative idea for a high-performance antibacterial therapy.
Collapse
Affiliation(s)
- Yufei Cao
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Juanjuan Yin
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Yuting Shi
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Ju Cheng
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Yu Fang
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Congshu Huang
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Wenwen Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China
| | - Mingsheng Liu
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Zheng Yang
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Haicun Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China
| | - Hongbin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China
| | - Jianrong Wang
- Department of Oral Health, Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730050, PR China.
| | - Guanghui Zhao
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
5
|
Thomas-Moore BA, Del Valle CA, Field RA, Marín MJ. Recent advances in nanoparticle-based targeting tactics for antibacterial photodynamic therapy. Photochem Photobiol Sci 2022; 21:1111-1131. [PMID: 35384638 PMCID: PMC9287206 DOI: 10.1007/s43630-022-00194-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/23/2022] [Indexed: 12/21/2022]
Abstract
Abstract The rise of antibacterial drug resistance means treatment options are becoming increasingly limited. We must find ways to tackle these hard-to-treat drug-resistant and biofilm infections. With the lack of new antibacterial drugs (such as antibiotics) reaching the clinics, research has switched focus to exploring alternative strategies. One such strategy is antibacterial photodynamic therapy (aPDT), a system that relies on light, oxygen, and a non-toxic dye (photosensitiser) to generate cytotoxic reactive oxygen species. This technique has already been shown capable of handling both drug-resistant and biofilm infections but has limited clinical approval to date, which is in part due to the low bioavailability and selectivity of hydrophobic photosensitisers. Nanotechnology-based techniques have the potential to address the limitations of current aPDT, as already well-documented in anti-cancer PDT. Here, we review recent advances in nanoparticle-based targeting tactics for aPDT. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Brydie A Thomas-Moore
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
- Norwich Research Park Innovation Centre, Iceni Glycoscience Ltd, Colney Lane, Norwich, NR4 7GJ, UK.
| | - Carla Arnau Del Valle
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Robert A Field
- Norwich Research Park Innovation Centre, Iceni Glycoscience Ltd, Colney Lane, Norwich, NR4 7GJ, UK
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - María J Marín
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
6
|
Su X, Liu R, Li Y, Han T, Zhang Z, Niu N, Kang M, Fu S, Wang D, Wang D, Tang BZ. Aggregation-Induced Emission-Active Poly(phenyleneethynylene)s for Fluorescence and Raman Dual-Modal Imaging and Drug-Resistant Bacteria Killing. Adv Healthc Mater 2021; 10:e2101167. [PMID: 34606177 DOI: 10.1002/adhm.202101167] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Poly(phenyleneethynylene) (PPE) is a widely used functional conjugated polymer with applications ranging from organic optoelectronics and fluorescence sensors to optical imaging and theranostics. However, the fluorescence efficiency of PPE in aggregate states is generally not as good as their solution states, which greatly compromises their performance in fluorescence-related applications. Herein, a series of PPE derivatives with typical aggregation-induced emission (AIE) properties is designed and synthesized. In these PPEs, the diethylamino-substituted tetraphenylethene units function as the long-wavelength AIE source and the alkyl side chains serve as the functionalization site. The obtained AIE-active PPEs with large π-conjugation show strong aggregate-state fluorescence, interesting self-assembly behaviors, inherently enhanced alkyne vibrations in the Raman-silent region of cells, and efficient antibacterial activities. The PPE nanoparticles with good cellular uptake capability can clearly and sensitively visualize the tumor region and residual tumors via their fluorescence and Raman signals, respectively, to benefit the precise tumor resection surgery. After post-functionalization, the obtained PPE-based polyelectrolyte can preferentially image bacteria over mammalian cells and possesses efficient photodynamic killing capability against Gram-positive and drug-resistant bacteria. This work provides a feasible design strategy for developing functional conjugated polymers with multimodal imaging capability as well as photodynamic antimicrobial ability.
Collapse
Affiliation(s)
- Xiang Su
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
| | - Ruihua Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences Nankai University Tianjin 300071 China
| | - Ying Li
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Ting Han
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Zhijun Zhang
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Niu Niu
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Miaomiao Kang
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Shuang Fu
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Deliang Wang
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Dong Wang
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| |
Collapse
|
7
|
Li X, Wu X, Yuan T, Zhu J, Yang Y. Influence of the iodine content of nitrogen- and iodine-doped carbon dots as a peroxidase mimetic nanozyme exhibiting antifungal activity against C. albicans. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Sowa A, Höing A, Dobrindt U, Knauer SK, Galstyan A, Voskuhl J. Umbelliferone Decorated Water-soluble Zinc(II) Phthalocyanines - In Vitro Phototoxic Antimicrobial Anti-cancer Agents. Chemistry 2021; 27:14672-14680. [PMID: 34324228 PMCID: PMC8596868 DOI: 10.1002/chem.202102255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 11/10/2022]
Abstract
In this contribution we report on the synthesis, characterization and application of water-soluble zinc(II) phthalocyanines, which are decorated with four or eight umbelliferone moieties for photodynamic therapy (PDT). These compounds are linked peripherally to zinc(II) phthalocyanine by a triethylene glycol linker attached to pyridines, leading to cationic pyridinium units, able to increase the water solubility of the system. Beside their photophysical properties they were analyzed concerning their cellular distribution in human hepatocyte carcinoma (HepG2) cells as well as their phototoxicity towards HepG2 cells, Gram-positive (S. aureus strain 3150/12 and B. subtilis strain DB104) and Gram-negative bacteria (E. coli strain UTI89 and E. coli strain Nissle 1917). At low light doses and concentrations, they exhibit superb antimicrobial activity against Gram-positive bacteria as well as anti-tumor activity against HepG2. They are even capable to inactivate Gram-negative bacteria, whereas the dark toxicity remains low. These unique water-soluble compounds can be regarded as all-in-one type photosensitizers with broad applications ranges in the future.
Collapse
Affiliation(s)
- Andrea Sowa
- Institute of Chemistry (Organic chemistry)University of Duisburg-EssenUniversitätsstraße 745117EssenGermany
| | - Alexander Höing
- Department of Molecular Biology II Center for Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstrasse 545117EssenGermany
| | - Ulrich Dobrindt
- Institute of HygieneWestfälische Wilhelms-Universität MünsterMendelstraße 748149MünsterGermany
| | - Shirley K. Knauer
- Department of Molecular Biology II Center for Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstrasse 545117EssenGermany
| | - Anzhela Galstyan
- Center for Soft NanoscienceWestfälische Wilhelms-Universität MünsterBusso-Peus-Straße 1048149MünsterGermany
| | - Jens Voskuhl
- Institute of Chemistry (Organic chemistry)University of Duisburg-EssenUniversitätsstraße 745117EssenGermany
| |
Collapse
|
9
|
Hashemzadeh A, Drummen GPC, Avan A, Darroudi M, Khazaei M, Khajavian R, Rangrazi A, Mirzaei M. When metal-organic framework mediated smart drug delivery meets gastrointestinal cancers. J Mater Chem B 2021; 9:3967-3982. [PMID: 33908592 DOI: 10.1039/d1tb00155h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancers of the gastrointestinal tract constitute one of the most common cancer types worldwide and a ∼58% increase in the global number of cases has been estimated by IARC for the next twenty years. Recent advances in drug delivery technologies have attracted scientific interest for developing and utilizing efficient therapeutic systems. The present review focuses on the use of nanoscale MOFs (Nano-MOFs) as carriers for drug delivery and imaging purposes. In pursuit of significant improvements to current gastrointestinal cancer chemotherapy regimens, systems that allow multiple concomitant therapeutic options (polytherapy) and controlled release are highly desirable. In this sense, MOF-based nanotherapeutics represent a significant step towards achieving this goal. Here, the current state-of-the-art of interdisciplinary research and novel developments into MOF-based gastrointestinal cancer therapy are highlighted and reviewed.
Collapse
Affiliation(s)
- Alireza Hashemzadeh
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gregor P C Drummen
- (Bio)Nanotechnology and Hepato/Renal Pathobiology Programs, Bio&Nano Solutions-LAB3BIO, Bielefeld, Germany
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. and Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ruhollah Khajavian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | | | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| |
Collapse
|
10
|
Ahmed E, El-Gendy AO, Hamblin MR, Mohamed T. The effect of femtosecond laser irradiation on the growth kinetics of Staphylococcus aureus: An in vitro study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112240. [PMID: 34130092 DOI: 10.1016/j.jphotobiol.2021.112240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 01/10/2023]
Abstract
We investigated the effect of femtosecond laser irradiation on the growth kinetics of Staphylococcus aureus. In order to improve laser-based antimicrobial therapy and develop a clinically viable modality, various laser parameters such as laser light wavelength, laser power, exposure time, and energy density were studied. The INSPIRE HF100 laser system (Spectra Physics) provided the femtosecond laser light, which was pumped by a mode-locked femtosecond Ti: sapphire laser MAI TAI HP (Spectra Physics). The survival of the bacterial cells was monitored after irradiation by determination of growth rate using optical density, which is a rapid, simple, and reliable method. The growth rate of laser-exposed cultures was compared to control cultures. Fifteen minutes of exposure to femtosecond laser radiation with a wavelength of 390 nm and 400 nm at an average power of 50 mW was enough to significantly reduce bacterial viability, with a lag in the growth phase of 5 h longer than the control culture (P < 0.0001 by ANOVA and Tukey test).
Collapse
Affiliation(s)
- Esraa Ahmed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed O El-Gendy
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt; Faculty of Pharmacy, Department of Microbiology and Immunology, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Michael R Hamblin
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt.
| |
Collapse
|
11
|
Jiang M, Wu J, Liu W, Ren H, Zhang W, Lee CS, Wang P. Self-assembly of Amphiphilic Porphyrins To Construct Nanoparticles for Highly Efficient Photodynamic Therapy. Chemistry 2021; 27:11195-11204. [PMID: 33960049 DOI: 10.1002/chem.202101199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Indexed: 11/08/2022]
Abstract
Hydrophobic photosensitizers greatly affect cell permeability and enrichment in tumors, but they cannot be used directly for clinical applications because they always aggregate in water, preventing their circulation in the blood and accumulation in tumor cells. As a result, amphiphilic photosensitizers are highly desirable. Although nanomaterial-based photosensitizers can solve water solubility, they have the disadvantages of complicated operation, poor reproducibility, low drug loading, and poor stability. In this work, an efficient synthesis strategy is proposed that converts small molecules into nanoparticles in 100 % aqueous solution by molecular assembly without the addition of any foreign species. Three photosensitizers with triphenylphosphine units and ethylene glycol chains of different lengths, TPP-PPh3 , TPP-PPh3 -2PEG and TPP-PPh3 -4PEG, were synthesized to improve amphiphilicity. Of the three photosensitizers, TPP-PPh3 -4PEG is the most efficient (singlet oxygen yield: 0.89) for tumor photodynamic therapy not only because of its definite constituent, but also because its amphiphilic structure allows it to self-assemble in water.
Collapse
Affiliation(s)
- Meiyu Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) and CityU-CAS Joint Laboratory of Functional Materials and Devices, City University of Hong Kong Kowloon, Hong Kong SAR, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and CityU-CAS Joint Laboratory of Functional Materials and Devices, City University of Hong Kong Kowloon, Hong Kong SAR, China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Li Y, Liu F, Zhang J, Liu X, Xiao P, Bai H, Chen S, Wang D, Sung SHP, Kwok RTK, Shen J, Zhu K, Tang BZ. Efficient Killing of Multidrug-Resistant Internalized Bacteria by AIEgens In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001750. [PMID: 33977040 PMCID: PMC8097328 DOI: 10.1002/advs.202001750] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/18/2021] [Indexed: 05/04/2023]
Abstract
Bacteria infected cells acting as "Trojan horses" not only protect bacteria from antibiotic therapies and immune clearance, but also increase the dissemination of pathogens from the initial sites of infection. Antibiotics are hard and insufficient to treat such hidden internalized bacteria, especially multidrug-resistant (MDR) bacteria. Herein, aggregation-induced emission luminogens (AIEgens) such as N,N-diphenyl-4-(7-(pyridin-4-yl) benzo [c] [1,2,5] thiadiazol-4-yl) aniline functionalized with 1-bromoethane (TBP-1) and (3-bromopropyl) trimethylammonium bromide (TBP-2) (TBPs) show potent broad-spectrum bactericidal activity against both extracellular and internalized Gram-positive pathogens. TBPs trigger reactive oxygen species (ROS)-mediated membrane damage to kill bacteria, regardless of light irradiation. TBPs effectively kill bacteria without the development of resistance. Additionally, such AIEgens activate mitochondria dependent autophagy to eliminate internalized bacteria in host cells. Compared to the routinely used vancomycin in clinic, TBPs demonstrate comparable efficacy against methicillin-resistant Staphylococcus aureus (MRSA) in vivo. The studies suggest that AIEgens are promising new agents for the treatment of MDR bacteria associated infections.
Collapse
Affiliation(s)
- Ying Li
- Center for AIE ResearchCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518061China
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RdBeijing100193China
| | - Fei Liu
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RdBeijing100193China
| | - Jiangjiang Zhang
- Department of Biomedical EngineeringSouthern University of Science and TechnologyNo. 1088 Xueyuan Rd, Nanshan DistrictShenzhen518055China
| | - Xiaoye Liu
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RdBeijing100193China
| | - Peihong Xiao
- Center for AIE ResearchCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518061China
| | - Haotian Bai
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute for Advanced StudyDivision of Life ScienceThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
| | - Shang Chen
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RdBeijing100193China
| | - Dong Wang
- Center for AIE ResearchCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518061China
| | - Simon H. P. Sung
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute for Advanced StudyDivision of Life ScienceThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
| | - Ryan T. K. Kwok
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute for Advanced StudyDivision of Life ScienceThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
| | - Jianzhong Shen
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RdBeijing100193China
| | - Kui Zhu
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RdBeijing100193China
| | - Ben Zhong Tang
- Center for AIE ResearchCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518061China
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute for Advanced StudyDivision of Life ScienceThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
| |
Collapse
|
13
|
Galstyan A. Turning Photons into Drugs: Phthalocyanine-Based Photosensitizers as Efficient Photoantimicrobials. Chemistry 2021; 27:1903-1920. [PMID: 32677718 PMCID: PMC7894475 DOI: 10.1002/chem.202002703] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/15/2020] [Indexed: 12/31/2022]
Abstract
One of the most promising alternatives for treating bacterial infections is antimicrobial photodynamic therapy (aPDT), making the synthesis and application of new photoactive compounds called photosensitizers (PS) a dynamic research field. In this regard, phthalocyanine (Pc) derivatives offer great opportunities due to their extraordinary light-harvesting and tunable electronic properties, structural versatility, and stability. This Review, rather than focusing on synthetic strategies, intends to overview current progress in the structural design strategies for Pcs that could achieve effective photoinactivation of microorganisms. In addition, the Review provides a concise look into the recent developments and applications of nanocarrier-based Pc delivery systems.
Collapse
Affiliation(s)
- Anzhela Galstyan
- Center for Soft NanoscienceWestfälische Wilhelms-Universität MünsterBusso-Peus-Straße 1048149MünsterGermany
| |
Collapse
|
14
|
Wang Y, Li J, Zhou Z, Zhou R, Sun Q, Wu P. Halo-fluorescein for photodynamic bacteria inactivation in extremely acidic conditions. Nat Commun 2021; 12:526. [PMID: 33483514 PMCID: PMC7822816 DOI: 10.1038/s41467-020-20869-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/22/2020] [Indexed: 02/05/2023] Open
Abstract
Aciduric bacteria that can survive in extremely acidic conditions (pH < 4.0) are challenging to the current antimicrobial approaches, including antibiotics and photodynamic bacteria inactivation (PDI). Here, we communicate a photosensitizer design concept of halogenation of fluorescein for extremely acidic PDI. Upon halogenation, the well-known spirocyclization that controls the absorption of fluorescein shifts to the acidic pH range. Meanwhile, the heavy atom effect of halogens boosts the generation of singlet oxygen. Accordingly, several photosensitizers that could work at even pH < 2.0 were discovered for a broad band of aciduric bacteria families, with half maximal inhibitory concentrations (IC50) lower than 1.1 μM. Since one of the discovered photosensitizers is an FDA-approved food additive (2',4',5',7'-tetraiodofluorescein, TIF), successful bacteria growth inhibition in acidic beverages was demonstrated, with greatly extended shelf life from 2 days to ~15 days. Besides, the in vivo PDI of Candidiasis with TIF under extremely acidic condition was also demonstrated.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610064, Chengdu, China
- Analytical & Testing Center, Sichuan University, 610064, Chengdu, China
| | - Jiazhuo Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610064, Chengdu, China
- Analytical & Testing Center, Sichuan University, 610064, Chengdu, China
| | - Zhiwei Zhou
- College of Life Science, Sichuan University, 610064, Chengdu, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Qun Sun
- College of Life Science, Sichuan University, 610064, Chengdu, China
| | - Peng Wu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610064, Chengdu, China.
- Analytical & Testing Center, Sichuan University, 610064, Chengdu, China.
| |
Collapse
|
15
|
Dubbert J, Höing A, Riek N, Knauer SK, Voskuhl J. Supramolecular subphthalocyanine complexes-cellular uptake and phototoxicity. Chem Commun (Camb) 2020; 56:7653-7656. [PMID: 32520022 DOI: 10.1039/d0cc03065a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this communication we report on the synthesis and application of axially functionalized boron-subphthalocyanines (SubPC) which are able to form host-guest complexes with cyclodextrins. Here, a tert-butylphenyl substituted SubPC was investigated concerning its complexation with β-cyclodextrin (β-CD) and a β-cyclodextrin polymer. NMR-titrations showed the formation of a 1 : 1 complex with β-CD. These assemblies were analyzed for their cellular distribution as well as their phototoxicity towards HeLa cells.
Collapse
Affiliation(s)
- Justin Dubbert
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany.
| | - Alexander Höing
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, D-45117 Essen, Germany
| | - Nathalie Riek
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany.
| | - Shirley K Knauer
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, D-45117 Essen, Germany
| | - Jens Voskuhl
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany.
| |
Collapse
|
16
|
Sowa A, Voskuhl J. Host-guest complexes - Boosting the performance of photosensitizers. Int J Pharm 2020; 586:119595. [PMID: 32629069 DOI: 10.1016/j.ijpharm.2020.119595] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/20/2022]
Abstract
In this review, we will show the diversity of supramolecular host-guest complexes of cyclodextrins, cucurbit[n]urils, calix[n]- and pillar[n]arenes with photosensitizers, like porphyrins and phthalocyanines. Host-guest complexes are one of the main building blocks in supramolecular chemistry. For example, they have been widely used to encapsulate hydrophobic drug molecules to enhance the bioavailability in the human body. In these days of multiresistant bacteria and difficulties in cancer therapy, supramolecular host-guest systems with photosensitizers for the photodynamic therapy(PDT) gain more and more interest. In general, photosensitizers with a (large) conjugated aromatic π-system are used, which tend to π-πstacking in aqueous media suppressing the cell toxicity by singletoxygen production quenching. This can be overcome by the formation of host-guest complexes. Besides that, encapsulation of the photosensitizers in host molecules can enhance the solubility, increase cellular uptake, lead to hydrogels, rotaxanes, and switchable systems.
Collapse
Affiliation(s)
- Andrea Sowa
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany
| | - Jens Voskuhl
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany.
| |
Collapse
|
17
|
Wan Y, Xu W, Ren X, Wang Y, Dong B, Wang L. Microporous Frameworks as Promising Platforms for Antibacterial Strategies Against Oral Diseases. Front Bioeng Biotechnol 2020; 8:628. [PMID: 32596233 PMCID: PMC7304413 DOI: 10.3389/fbioe.2020.00628] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Nowadays, the heavy burden of oral diseases such as dental caries, periodontitis, endodontic infections, etc., and their consequences on the patients' quality of life indicate a strong need for developing effective therapies. Bacterial infections played an important role in the field of oral diseases, in-depth insight of such oral diseases have given rise to the demand for antibacterial therapeutic strategies. Recently, microporous frameworks have attracted tremendous interest in antibacterial application due to their well-defined porous structures for drug delivery. In addition, intensive efforts have been made to enhance the antibacterial performance of microporous frameworks, such as ion doping, photosensitizer incorporation as building blocks, and surface modifications. This review article aims on the major recent developments of microporous frameworks for antibacterial applications against oral diseases. The first part of this paper puts concentration on the cutting-edge researches on the versatile antibacterial strategies of microporous materials via drug delivery, inherent activity, and structural modification. The second part discusses the antibacterial applications of microporous frameworks against oral diseases. The applications of microporous frameworks not only have promising therapeutic potential to inhibit bacterial plaque-initiated oral infectious diseases, but also have a wide applicability to other biomedical applications.
Collapse
Affiliation(s)
- Yao Wan
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
| | - Wenzhou Xu
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Xuan Ren
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
| | - Yu Wang
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
| |
Collapse
|
18
|
Lee MM, Xu W, Zheng L, Yu B, Leung AC, Kwok RT, Lam JW, Xu FJ, Wang D, Tang BZ. Ultrafast discrimination of Gram-positive bacteria and highly efficient photodynamic antibacterial therapy using near-infrared photosensitizer with aggregation-induced emission characteristics. Biomaterials 2020; 230:119582. [DOI: 10.1016/j.biomaterials.2019.119582] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/25/2019] [Accepted: 10/25/2019] [Indexed: 10/25/2022]
|
19
|
Zhang H, Liang Y, Zhao H, Qi R, Chen Z, Yuan H, Liang H, Wang L. Dual‐Mode Antibacterial Conjugated Polymer Nanoparticles for Photothermal and Photodynamic Therapy. Macromol Biosci 2019; 20:e1900301. [DOI: 10.1002/mabi.201900301] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/17/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Hongjuan Zhang
- Department of ChemistrySchool of ScienceBeijing Technology and Business University Beijing 100048 P. R. China
| | - Yuchao Liang
- Department of NeurosurgeryBeijing Neurosurgical InstituteChina National Clinical Research Center for Neurological DiseasesBeijing Tian Tan HospitalCapital Medical University Beijing 100050 P. R. China
| | - Hao Zhao
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Ruilian Qi
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhuo Chen
- Department of ChemistrySchool of ScienceBeijing Technology and Business University Beijing 100048 P. R. China
| | - Huanxiang Yuan
- Department of ChemistrySchool of ScienceBeijing Technology and Business University Beijing 100048 P. R. China
| | - Haiyan Liang
- Department of ChemistrySchool of ScienceBeijing Technology and Business University Beijing 100048 P. R. China
| | - Lei Wang
- Department of NeurosurgeryBeijing Neurosurgical InstituteChina National Clinical Research Center for Neurological DiseasesBeijing Tian Tan HospitalCapital Medical University Beijing 100050 P. R. China
| |
Collapse
|
20
|
Molina N, Cnudde M, Guadix JA, Perez-Pomares JM, Strassert CA, Vida Y, Perez-Inestrosa E. Platinum-Doped Dendritic Structure as a Phosphorescent Label for Bacteria in Two-Photon Excitation Microscopy. ACS OMEGA 2019; 4:13027-13033. [PMID: 31460429 PMCID: PMC6704438 DOI: 10.1021/acsomega.9b00639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/19/2019] [Indexed: 05/07/2023]
Abstract
Herein, we present a water-soluble dendritric Pt(II) complex as a phosphorescent label for bacterial cells. The dendritic moiety endows the Pt(II) complex with unique properties such as water solubility, shielding from quenching by dioxygen, and binding to bacterial surfaces. The new biosensor was employed for two-photon excitation microscopy, and the binding was confirmed by electron microscopy, which demonstrates that such hybrid arrays can provide orthogonal yet complementary readouts.
Collapse
Affiliation(s)
- Noemi Molina
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Málaga—IBIMA, Campus de Teatinos s/n, 29071 Málaga, Spain
- Centro
Andaluz de Nanomedicina y Biotecnología (BIONAND), Junta de
Andalucía, Universidad de Málaga, C/ Severo Ochoa 35, 29590 Campanillas (Málaga), Spain
| | - Marvin Cnudde
- CeNTech—CiMIC—Institut
für Anorganische und Analytische Chemie, W. W.-Universität
Münster, Heisenbergstr. 11, D-48149 Münster, Germany
| | - Juan A. Guadix
- Centro
Andaluz de Nanomedicina y Biotecnología (BIONAND), Junta de
Andalucía, Universidad de Málaga, C/ Severo Ochoa 35, 29590 Campanillas (Málaga), Spain
- Departamento
de Biología Animal, Facultad de Ciencias, Universidad de Málaga—IBIMA, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Jose M. Perez-Pomares
- Centro
Andaluz de Nanomedicina y Biotecnología (BIONAND), Junta de
Andalucía, Universidad de Málaga, C/ Severo Ochoa 35, 29590 Campanillas (Málaga), Spain
- Departamento
de Biología Animal, Facultad de Ciencias, Universidad de Málaga—IBIMA, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Cristian A. Strassert
- CeNTech—CiMIC—Institut
für Anorganische und Analytische Chemie, W. W.-Universität
Münster, Heisenbergstr. 11, D-48149 Münster, Germany
- E-mail: (C.A.S.)
| | - Yolanda Vida
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Málaga—IBIMA, Campus de Teatinos s/n, 29071 Málaga, Spain
- Centro
Andaluz de Nanomedicina y Biotecnología (BIONAND), Junta de
Andalucía, Universidad de Málaga, C/ Severo Ochoa 35, 29590 Campanillas (Málaga), Spain
- E-mail: (Y.V.)
| | - Ezequiel Perez-Inestrosa
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Málaga—IBIMA, Campus de Teatinos s/n, 29071 Málaga, Spain
- Centro
Andaluz de Nanomedicina y Biotecnología (BIONAND), Junta de
Andalucía, Universidad de Málaga, C/ Severo Ochoa 35, 29590 Campanillas (Málaga), Spain
- E-mail: (E.P.-I.)
| |
Collapse
|
21
|
Molina N, Nájera F, Guadix JA, Perez-Pomares JM, Vida Y, Perez-Inestrosa E. Synthesis of Amino Terminal Clicked Dendrimers. Approaches to the Application as a Biomarker. J Org Chem 2019; 84:10197-10208. [PMID: 31310119 DOI: 10.1021/acs.joc.9b01369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Herein, we present an easy and efficient synthesis of amino terminal dendrons, combining protection/deprotection reactions with copper-catalyzed azide alkyne cycloaddition in a convergent way. This new approach affords dendrons in gram scale with excellent yields and easy purification. By choosing the appropriate azido-functionalized core, these dendrons lead to a more efficient and controlled convergent synthesis of dendrimers with different sizes and shapes and multivalence. The amino terminal dendrimers were analyzed by diffusion-ordered spectroscopy experiments. The observed dendrimer size is in excellent correlation with the expected size and shape by molecular dynamic simulations. The construction of these kinds of nanostructures, in a simple and efficient way, opens new opportunities for biomedical applications. Moreover, by choosing the appropriate core, these versatile macromolecules become an excellent fluorescent biomarker.
Collapse
Affiliation(s)
- Noemi Molina
- Universidad de Málaga-IBIMA , Departamento de Química Orgánica , Campus de Teatinos s/n , 29071 Málaga , Spain.,Centro Andaluz de Nanomedicina y Biotecnología-BIONAND , Parque Tecnológico de Andalucı́a , C/ Severo Ochoa 35 , 29590 , Campanillas, Málaga , Spain
| | - Francisco Nájera
- Universidad de Málaga-IBIMA , Departamento de Química Orgánica , Campus de Teatinos s/n , 29071 Málaga , Spain.,Centro Andaluz de Nanomedicina y Biotecnología-BIONAND , Parque Tecnológico de Andalucı́a , C/ Severo Ochoa 35 , 29590 , Campanillas, Málaga , Spain
| | - Juan A Guadix
- Universidad de Málaga-IBIMA , Departamento de Biología Animal , Campus de Teatinos s/n , 29071 Málaga , Spain.,Centro Andaluz de Nanomedicina y Biotecnología-BIONAND , Parque Tecnológico de Andalucı́a , C/ Severo Ochoa 35 , 29590 , Campanillas, Málaga , Spain
| | - Jose M Perez-Pomares
- Universidad de Málaga-IBIMA , Departamento de Biología Animal , Campus de Teatinos s/n , 29071 Málaga , Spain.,Centro Andaluz de Nanomedicina y Biotecnología-BIONAND , Parque Tecnológico de Andalucı́a , C/ Severo Ochoa 35 , 29590 , Campanillas, Málaga , Spain
| | - Yolanda Vida
- Universidad de Málaga-IBIMA , Departamento de Química Orgánica , Campus de Teatinos s/n , 29071 Málaga , Spain.,Centro Andaluz de Nanomedicina y Biotecnología-BIONAND , Parque Tecnológico de Andalucı́a , C/ Severo Ochoa 35 , 29590 , Campanillas, Málaga , Spain
| | - Ezequiel Perez-Inestrosa
- Universidad de Málaga-IBIMA , Departamento de Química Orgánica , Campus de Teatinos s/n , 29071 Málaga , Spain.,Centro Andaluz de Nanomedicina y Biotecnología-BIONAND , Parque Tecnológico de Andalucı́a , C/ Severo Ochoa 35 , 29590 , Campanillas, Málaga , Spain
| |
Collapse
|
22
|
Ranieri AM, Caporale C, Fiorini V, Hubbard A, Rigby P, Stagni S, Watkin E, Ogden MI, Hackett MJ, Massi M. Complementary Approaches to Imaging Subcellular Lipid Architectures in Live Bacteria Using Phosphorescent Iridium Complexes and Raman Spectroscopy. Chemistry 2019; 25:10566-10570. [DOI: 10.1002/chem.201902023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/11/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Anna Maria Ranieri
- Curtin Institute for Functional Molecules and Interfaces, and School of Molecular and Life SciencesCurtin University Bentley 6102 WA Australia
| | - Chiara Caporale
- Curtin Institute for Functional Molecules and Interfaces, and School of Molecular and Life SciencesCurtin University Bentley 6102 WA Australia
| | - Valentina Fiorini
- Department of Industrial Chemistry “Toso Montanari”University of Bologna, viale del Risorgimento4 40136 Bologna Italy
| | - Alysia Hubbard
- Centre for Microscopy, Characterisation and AnalysisThe University of Western Australia Perth 6009 WA Australia
| | - Paul Rigby
- Centre for Microscopy, Characterisation and AnalysisThe University of Western Australia Perth 6009 WA Australia
| | - Stefano Stagni
- Department of Industrial Chemistry “Toso Montanari”University of Bologna, viale del Risorgimento4 40136 Bologna Italy
| | - Elizabeth Watkin
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin University Kent Street Bentley 6102 Australia
| | - Mark I. Ogden
- Curtin Institute for Functional Molecules and Interfaces, and School of Molecular and Life SciencesCurtin University Bentley 6102 WA Australia
| | - Mark J. Hackett
- Curtin Institute for Functional Molecules and Interfaces, and School of Molecular and Life SciencesCurtin University Bentley 6102 WA Australia
| | - Massimiliano Massi
- Curtin Institute for Functional Molecules and Interfaces, and School of Molecular and Life SciencesCurtin University Bentley 6102 WA Australia
| |
Collapse
|
23
|
Li X, Bai H, Yang Y, Yoon J, Wang S, Zhang X. Supramolecular Antibacterial Materials for Combatting Antibiotic Resistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805092. [PMID: 30536445 DOI: 10.1002/adma.201805092] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/24/2018] [Indexed: 05/07/2023]
Abstract
Antibiotic-resistant bacteria have emerged as a severe threat to human health. As effective antibacterial therapies, supramolecular materials display unprecedented advantages because of the flexible and tunable nature of their noncovalent interactions with biomolecules and the ability to incorporate various active agents in their platforms. Herein, supramolecular antibacterial materials are discussed using a format that focuses on their fundamental active elements and on recent advances including material selection, fabrication methods, structural characterization, and activity performance.
Collapse
Affiliation(s)
- Xingshu Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, South Korea
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuchong Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, South Korea
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
24
|
Ozturk I, Tunçel A, Ince M, Ocakoglu K, Hoşgör-Limoncu M, Yurt F. Antibacterial properties of subphthalocyanine and subphthalocyanine-TiO2 nanoparticles on Staphylococcus aureus and Escherichia coli. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618501122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nowadays the problem of antimicrobial resistance is the most important cause of morbidity and mortality in the treatment of infectious diseases worldwide. Treatment options for antimicrobial-resistant microorganisms are quite limited. Therefore, alternative treatment strategies are needed to control infectious diseases. Antimicrobial photodynamic therapy (aPDT) is one of the new treatment modalities proposed for a wide variety of infections. In the basic principle of aPDT, photosensitizers (PS) produce free radicals by irradiating them with harmless light at the appropriate wavelength, and this causes microorganism cell cytotoxicity. In this study, light emitting diodes (LED) (630–700 nm, 17.4 mW/cm[Formula: see text] were used on Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) at different light doses under the minimum inhibitory concentration (MIC) values of SubPc and SubPc-integrated TiO2 nanoparticles (SubPc-TiO[Formula: see text] concentration. Both compounds show good phototoxicity toward S. aureus when high light doses (16, 24[Formula: see text]J/cm[Formula: see text] were applied. In addition, SubPc-TiO2 were found to be more effective than SubPc in aPDT of S. aureus. In E. coli, the success of aPDT has been shown to be dependent on the increased light dose (20, 30[Formula: see text]J/cm[Formula: see text] for both compounds. As a result, the aPDT activity of SubPc-TiO2 is more effective than SubPc in increasing light doses.
Collapse
Affiliation(s)
- Ismail Ozturk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, Cigli, 35620, Izmir, Turkey
| | - Ayça Tunçel
- Institute of Nuclear Science, Department of Nuclear Applications, Ege University, Bornova, 35100, Izmir, Turkey
| | - Mine Ince
- Department of Energy Systems Engineering, Faculty of Technology, Tarsus University, Tarsus, 33400, Mersin, Turkey
| | - Kasim Ocakoglu
- Department of Energy Systems Engineering, Faculty of Technology, Tarsus University, Tarsus, 33400, Mersin, Turkey
| | - Mine Hoşgör-Limoncu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ege University, Bornova, 35100, Izmir, Turkey
| | - Fatma Yurt
- Institute of Nuclear Science, Department of Nuclear Applications, Ege University, Bornova, 35100, Izmir, Turkey
| |
Collapse
|
25
|
Chedid G, Yassin A. Recent Trends in Covalent and Metal Organic Frameworks for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E916. [PMID: 30405018 PMCID: PMC6265694 DOI: 10.3390/nano8110916] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 11/16/2022]
Abstract
Materials science has seen a great deal of advancement and development. The discovery of new types of materials sparked the study of their properties followed by applications ranging from separation, catalysis, optoelectronics, sensing, drug delivery and biomedicine, and many other uses in different fields of science. Metal organic frameworks (MOFs) and covalent organic frameworks (COFs) are a relatively new type of materials with high surface areas and permanent porosity that show great promise for such applications. The current study aims at presenting the recent work achieved in COFs and MOFs for biomedical applications, and to examine some challenges and future directions which the field may take. The paper herein surveys their synthesis, and their use as Drug Delivery Systems (DDS), in non-drug delivery therapeutics and for biosensing and diagnostics.
Collapse
Affiliation(s)
- Georges Chedid
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon.
| | - Ali Yassin
- School of Arts and Sciences, Lebanese American University LAU, P.O. Box 36, Byblos, Lebanon.
| |
Collapse
|
26
|
Wang Y, Wang H, Guo L, Pang Y, Feng L. Red Fluorescence Conjugated Polymer with Broad Spectrum Antimicrobial Activity for Treatment of Bacterial Infections In Vivo. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34878-34885. [PMID: 30246522 DOI: 10.1021/acsami.8b10284] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To address the problem of bacterial resistance, a practical strategy for broad spectrum antimicrobial based on conjugated polymers was proposed in the work. Three red fluorescence conjugated polymers (P1, P2, and P3) bearing quaternary ammonium groups with different length of side chains were designed and synthesized. By virtue of inserting capacity of the longer side chain, conjugated polymer (P3) displayed well broad spectrum antimicrobial activity toward Gram-negative and Gram-positive bacteria and fungi under a white light density of 25 mW cm-2 and short time (15 min) by aid of dark toxicity and light toxicity, derived from the quaternary ammonium groups and reactive oxygen species produced by the backbone, respectively. Notably, for ampicillin-resistant Escherichia coli TOP10, P3 could kill the bacteria 100% at a very low concentration of 5 μM upon light irradiation. Furthermore, wound healing tests indicated that the polymer could be expediently employed for wound disinfection in vivo without any tissue damaging. The contribution of the work not only provides an efficient and broad spectrum antimicrobial material but also offers a multimodal antimicrobial strategy to fight against bacterial infections in vivo.
Collapse
Affiliation(s)
- Yunxia Wang
- School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , P. R. China
| | - Haoping Wang
- School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , P. R. China
| | - Lixia Guo
- School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , P. R. China
| | - Yuehong Pang
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , P. R. China
| |
Collapse
|
27
|
Hu D, Chen Z, Sheng Z, Gao D, Yan F, Ma T, Zheng H, Hong M. A catalase-loaded hierarchical zeolite as an implantable nanocapsule for ultrasound-guided oxygen self-sufficient photodynamic therapy against pancreatic cancer. NANOSCALE 2018; 10:17283-17292. [PMID: 30198041 DOI: 10.1039/c8nr05548c] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Photodynamic therapy (PDT) is an alternative strategy for treating pancreatic cancer (PC) in clinics. However, the therapeutic efficacy is generally suppressed by inadequate oxygen supply in the hypoxic tumor microenvironment. Herein, hierarchical zeolite nanocarriers with hydrophilic mesoporous nanostructures and excellent biodegradability are synthesized via a one-pot wet chemical method. By co-loading with catalase and methylene blue (MB), a new type of oxygen self-sufficient PDT platform, a zeolite-catalase-MB nanocapsule (ZCM nanocapsule), is developed. After precision implantation of the ZCM nanocapsule into the tumor area under the real-time ultrasound (US) imaging guidance, the nanocapsule with 90% relative activity of equivalent free catalase enzyme efficiently modulates the tumor hypoxia and enhances the intratumoral US contrast by sustained decomposition of endogenous H2O2 and in situ production of O2 gas bubbles. Meanwhile, the MB loading in hierarchical zeolite matrices prevents the rapid leaching of the photosensitizer in tumor tissue, achieving a good sustained photosensitizer release effect. Based on the synchronous mechanisms, upon near-infrared laser irradiation, the local PC cells are completely killed, and no therapy-induced toxicity and recurrence are observed. This highly biocompatible and biodegradable hierarchical nanozeolite would further facilitate the development of catalase-based catalytic nanomedicine for enhancing chemotherapy, radiotherapy and combination therapy.
Collapse
Affiliation(s)
- Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese of Academy of Sciences, Shenzhen 518055, China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Tu Q, Ma C, Tian C, Yuan M, Han X, Wang DE, Cao C, Wang J. Quantum dots modified with quaternized poly(dimethylaminoethyl methacrylate) for selective recognition and killing of bacteria over mammalian cells. Analyst 2018; 141:3328-36. [PMID: 27111264 DOI: 10.1039/c6an00725b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Copper-free click chemistry has been used to graft quaternized poly(dimethylaminoethyl methacrylate) (QPA) modified with azide to the quantum dots (QDs) derived with dibenzocyclooctynes (DBCO). The success of the quaternary ammonium polymer-modified QDs was confirmed by ultraviolet-visible spectrophotometry (UV-Vis), fluorescence spectroscopy, zeta (ζ) potential, size distribution, and transmission electron microscopy (TEM). The QPA-modified QDs exhibited properties of selective recognition and killing of bacteria. The novelty of this study lies in fact that the synthesis method of the antimicrobial QPA-modified QDs is simple. Moreover, from another standpoint, QPA-modified QDs simultaneously possess abilities of selective recognition and killing of bacteria over mammalian cells, which is very different from the currently designed multifunctional antimicrobial systems composed of complicated systematic compositions.
Collapse
Affiliation(s)
- Qin Tu
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Chao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Chang Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Maosen Yuan
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Xiang Han
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Dong-En Wang
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Chenyu Cao
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Jinyi Wang
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China. and College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
29
|
Zhai L, Zhang Z, Zhao Y, Tang Y. Efficient Antibacterial Performance and Effect of Structure on Property Based on Cationic Conjugated Polymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01530] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Liwei Zhai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P. R. China
| | - Ziqi Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P. R. China
| | - Yantao Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P. R. China
| | - Yanli Tang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P. R. China
| |
Collapse
|
30
|
Photodynamic therapy as an alternative to antibiotic therapy for the treatment of infected leg ulcers. Photodiagnosis Photodyn Ther 2018; 23:132-143. [DOI: 10.1016/j.pdpdt.2018.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/25/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022]
|
31
|
Xu H, Fang Z, Tian W, Wang Y, Ye Q, Zhang L, Cai J. Green Fabrication of Amphiphilic Quaternized β-Chitin Derivatives with Excellent Biocompatibility and Antibacterial Activities for Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801100. [PMID: 29845657 DOI: 10.1002/adma.201801100] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Bacterial infection has always been a great threat to public health, and new antimicrobials to combat it are urgently needed. Here, a series of quaternized β-chitin derivatives is prepared simply and homogeneously in an aqueous KOH/urea solution, which is a high-efficiency, energy-saving, and "green" route for the modification of chitin. The mild reaction conditions keep the acetamido groups of β-chitin intact and introduce quaternary ammonium groups on the primary hydroxyl at the C-6 position of the chitin backbone, allowing the quaternized β-chitin derivatives (QCs) to easily form micelles. These QCs are found to exhibit excellent antimicrobial activities against Escherichia coli, Staphylococcus aureus, Candida albicans, and Rhizopus oryzae with minimum inhibitory concentrations (MICs) of 8, 12, 60, and 40 µg mL-1 , respectively. As a specific highlight, their inherent outstanding biocompatibility and significant accelerating effects on the healing of uninfected, E. coli-infected, and S. aureus-infected wounds imply that these novel polysaccharide-based materials can be used as dressings for clinical skin regeneration, particularly for infected wounds.
Collapse
Affiliation(s)
- Huan Xu
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Zehong Fang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, P. R. China
| | - Weiqun Tian
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, P. R. China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, P. R. China
| | - Lina Zhang
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jie Cai
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
| |
Collapse
|
32
|
Abstract
Empty spaces are abhorred by nature, which immediately rushes in to fill the void. Humans have learnt pretty well how to make ordered empty nanocontainers, and to get useful products out of them. When such an order is imparted to molecules, new properties may appear, often yielding advanced applications. This review illustrates how the organized void space inherently present in various materials: zeolites, clathrates, mesoporous silica/organosilica, and metal organic frameworks (MOF), for example, can be exploited to create confined, organized, and self-assembled supramolecular structures of low dimensionality. Features of the confining matrices relevant to organization are presented with special focus on molecular-level aspects. Selected examples of confined supramolecular assemblies - from small molecules to quantum dots or luminescent species - are aimed to show the complexity and potential of this approach. Natural confinement (minerals) and hyperconfinement (high pressure) provide further opportunities to understand and master the atomistic-level interactions governing supramolecular organization under nanospace restrictions.
Collapse
Affiliation(s)
- Gloria Tabacchi
- Department of Science and High Technology, University of Insubria, Via Valleggio, 9 I-22100, Como, Italy
| |
Collapse
|
33
|
|
34
|
Zhang X, Wang W, Dai S, Cui F. Synchronous, efficient and fast removal of phosphate and organic matter by carbon-coated lanthanum nanorods. RSC Adv 2018; 8:11754-11763. [PMID: 35542814 PMCID: PMC9079142 DOI: 10.1039/c8ra01519h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/19/2018] [Indexed: 11/21/2022] Open
Abstract
Both phosphate and organic carbon can serve as nutrients for microorganism growth. Simultaneous removal of both nutrients would realize the antibacterial strategy of nutrient starvation better to ensure water quality safety. In addition, a short treatment time is the premise for the application of a material in water treatment. Herein, carbon-coated lanthanum nanorods with a uniform distribution of La and C (C–La-MOF) were rationally prepared through glucose and La-MOF hydrothermal treatment and further carbonization to synchronously and rapidly remove phosphate and organic matter. The carbon layer thickness was tuned by varying the hydrothermal time to find the optimal balance between excellent phosphate intake and low lanthanum leakage. C–La-MOF had a strong anti-interference ability and high phosphate capture capacity over a wide pH range of 2–12. Impressively, when phosphate and organic carbon coexisted in solution, their removal performances remained relatively unchanged compared with that when the two nutrients existed independently, and their adsorption equilibriums could be easily reached within 10 min. All of the above results prove that C–La-MOF is a promising material for practical drinking water treatment. The carbon-coated lanthanum nanorods with uniform distribution of La and C can synchronously remove phosphate and organic matter, efficiently and rapidly.![]()
Collapse
Affiliation(s)
- Xintong Zhang
- School of Environment
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| | - Wei Wang
- School of Environment
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| | - Shiyu Dai
- School of Environment
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| | - Fuyi Cui
- School of Environment
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
- College of Urban Construction and Environmental Engineering
| |
Collapse
|
35
|
Galstyan A, Putze J, Dobrindt U. Gaining Access to Bacteria through (Reversible) Control of Lipophilicity. Chemistry 2017; 24:1178-1186. [DOI: 10.1002/chem.201704562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Anzhela Galstyan
- Center for Nanotechnology; Physikalisches Institut; Westfälische Wilhelms-Universität Münster; Heisenbergstrasse 11 48149 Münster Germany
| | - Johannes Putze
- Institut für Hygiene; Westfälische Wilhelms-Universität Münster; Mendelstraße 7 48149 Münster Germany
| | - Ulrich Dobrindt
- Institut für Hygiene; Westfälische Wilhelms-Universität Münster; Mendelstraße 7 48149 Münster Germany
| |
Collapse
|
36
|
|
37
|
Kim DH, Park JC, Jeon GE, Kim CS, Seo JH. Effect of the size and shape of silver nanoparticles on bacterial growth and metabolism by monitoring optical density and fluorescence intensity. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0641-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Chen Z, Yuan H, Liang H. Synthesis of Multifunctional Cationic Poly(p-phenylenevinylene) for Selectively Killing Bacteria and Lysosome-Specific Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9260-9264. [PMID: 28266207 DOI: 10.1021/acsami.7b01609] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, a cationic polymer was synthesized to bear quaternized N-methyl-imidazole groups in the side chains. Positively charged PPV-M could selectively bind to Gram-negative and Gram-positive bacteria over fungi and exhibit enhanced antibacterial activity with the aid of white light because PPV-M could sensitize oxygen to generate reactive oxygen species (ROS) that would damage bacteria. In addition, green fluorescent and positively charged PPV-M has the ability to enter mammalian cells and be specifically accumulated in lysosome. Moreover, PPV-M could stay in live cells for a relatively long time, which implies that PPV-M has the potential to be a long-term imaging agent.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Chemistry, School of Science, Beijing Technology and Business University , Beijing 100048, P. R. China
| | - Huanxiang Yuan
- Department of Chemistry, School of Science, Beijing Technology and Business University , Beijing 100048, P. R. China
| | - Haiyan Liang
- Department of Chemistry, School of Science, Beijing Technology and Business University , Beijing 100048, P. R. China
| |
Collapse
|
39
|
Wang Z, Dong K, Liu Z, Zhang Y, Chen Z, Sun H, Ren J, Qu X. Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 2017; 113:145-157. [DOI: 10.1016/j.biomaterials.2016.10.041] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 01/28/2023]
|
40
|
Smith NA, Zhang P, Greenough SE, Horbury MD, Clarkson GJ, McFeely D, Habtemariam A, Salassa L, Stavros VG, Dowson CG, Sadler PJ. Combatting AMR: photoactivatable ruthenium(ii)-isoniazid complex exhibits rapid selective antimycobacterial activity. Chem Sci 2017; 8:395-404. [PMID: 28451184 PMCID: PMC5365061 DOI: 10.1039/c6sc03028a] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/11/2016] [Indexed: 12/12/2022] Open
Abstract
The novel photoactive ruthenium(ii) complex cis-[Ru(bpy)2(INH)2][PF6]2 (1·2PF6, INH = isoniazid) was designed to incorporate the anti-tuberculosis drug, isoniazid, that could be released from the Ru(ii) cage by photoactivation with visible light. In aqueous solution, 1 rapidly released two equivalents of isoniazid and formed the photoproduct cis-[Ru(bpy)2(H2O)2]2+ upon irradiation with 465 nm blue light. We screened for activity against bacteria containing the three major classes of cell envelope: Gram-positive Bacillus subtilis, Gram-negative Escherichia coli, and Mycobacterium smegmatis in vitro using blue and multi-colored LED multi-well arrays. Complex 1 is inactive in the dark, but when photoactivated is 5.5× more potent towards M. smegmatis compared to the clinical drug isoniazid alone. Complementary pump-probe spectroscopy measurements along with density functional theory calculations reveal that the mono-aqua product is formed in <500 ps, likely facilitated by a 3MC state. Importantly, complex 1 is highly selective in killing mycobacteria versus normal human cells, towards which it is relatively non-toxic. This work suggests that photoactivatable prodrugs such as 1 are potentially powerful new agents in combatting the global problem of antibiotic resistance.
Collapse
Affiliation(s)
- Nichola A Smith
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Pingyu Zhang
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Simon E Greenough
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Michael D Horbury
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Guy J Clarkson
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Daniel McFeely
- School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Abraha Habtemariam
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Luca Salassa
- CIC biomaGUNE , Paseo de Miramón 182 , Donostia-San Sebastián , 20009 , Spain
- Kimika Fakultatea , Euskal Herriko Unibertsitatea and Donostia International Physics Center (DIPC) , P.K. 1072 , Donostia-San Sebastián , 20080 , Spain
- Ikerbasque , Basque Foundation for Science , Bilbao , 48011 , Spain
| | - Vasilios G Stavros
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Christopher G Dowson
- School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Peter J Sadler
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| |
Collapse
|
41
|
Feng Y, Liu L, Zhang J, Aslan H, Dong M. Photoactive antimicrobial nanomaterials. J Mater Chem B 2017; 5:8631-8652. [DOI: 10.1039/c7tb01860f] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanomaterials for killing pathogenic bacteria under light irradiation.
Collapse
Affiliation(s)
- Yonghai Feng
- Institute for Advanced Materials
- Jiangsu University
- Zhenjiang 212013
- China
| | - Lei Liu
- Institute for Advanced Materials
- Jiangsu University
- Zhenjiang 212013
- China
| | - Jie Zhang
- Institute for Advanced Materials
- Jiangsu University
- Zhenjiang 212013
- China
| | - Hüsnü Aslan
- Interdisciplinary Nanoscience Center
- Universitas Arhusiensis
- Arhus 8200
- Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center
- Universitas Arhusiensis
- Arhus 8200
- Denmark
| |
Collapse
|
42
|
Zhao Z, Yan R, Wang J, Wu H, Wang Y, Chen A, Shao S, Li YQ. A bacteria-activated photodynamic nanosystem based on polyelectrolyte-coated silica nanoparticles. J Mater Chem B 2017; 5:3572-3579. [DOI: 10.1039/c7tb00199a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A novel bacteria-activated photodynamic nanosystem (SiO2/PAH–Ce6) has been reported for selective fluorescence sensing and photodynamic elimination of pathogenic bacteria.
Collapse
Affiliation(s)
- Zhiwei Zhao
- School of Radiation Medicine and Protection
- Medical College of Soochow University
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
- Suzhou 215123
- China
| | - Rong Yan
- School of Radiation Medicine and Protection
- Medical College of Soochow University
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
- Suzhou 215123
- China
| | - Jianhao Wang
- School of Pharmaceutical Engineering and Life Science
- Changzhou University
- Changzhou 213164
- China
| | - Hao Wu
- School of Pharmaceutical Engineering and Life Science
- Changzhou University
- Changzhou 213164
- China
| | - Yanhao Wang
- School of Radiation Medicine and Protection
- Medical College of Soochow University
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
- Suzhou 215123
- China
| | - Aihong Chen
- School of Radiation Medicine and Protection
- Medical College of Soochow University
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
- Suzhou 215123
- China
| | - Shilong Shao
- School of Radiation Medicine and Protection
- Medical College of Soochow University
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
- Suzhou 215123
- China
| | - Yong-Qiang Li
- School of Radiation Medicine and Protection
- Medical College of Soochow University
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
- Suzhou 215123
- China
| |
Collapse
|
43
|
Qin X, Engwer C, Desai S, Vila-Sanjurjo C, Goycoolea FM. An investigation of the interactions between an E. coli bacterial quorum sensing biosensor and chitosan-based nanocapsules. Colloids Surf B Biointerfaces 2016; 149:358-368. [PMID: 27792985 DOI: 10.1016/j.colsurfb.2016.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/11/2016] [Accepted: 10/15/2016] [Indexed: 11/29/2022]
Abstract
We examined the interaction between chitosan-based nanocapsules (NC), with average hydrodynamic diameter ∼114-155nm, polydispersity ∼0.127, and ζ-potential ∼+50mV, and an E. coli bacterial quorum sensing reporter strain. Dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) allowed full characterization and assessment of the absolute concentration of NC per unit volume in suspension. By centrifugation, DLS, and NTA, we determined experimentally a "stoichiometric" ratio of ∼80 NC/bacterium. By SEM it was possible to image the aggregation between NC and bacteria. Moreover, we developed a custom in silico platform to simulate the behavior of particles with diameters of 150nm and ζ-potential of +50mV on the bacterial surface. We computed the detailed force interactions between NC-NC and NC-bacteria and found that a maximum number of 145 particles might interact at the bacterial surface. Additionally, we found that the "stoichiometric" ratio of NC and bacteria has a strong influence on the bacterial behavior and influences the quorum sensing response, particularly due to the aggregation driven by NC.
Collapse
Affiliation(s)
- Xiaofei Qin
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossgarten 3, D-48149 Münster, Germany
| | - Christoph Engwer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossgarten 3, D-48149 Münster, Germany
| | - Saaketh Desai
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Celina Vila-Sanjurjo
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossgarten 3, D-48149 Münster, Germany
| | - Francisco M Goycoolea
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossgarten 3, D-48149 Münster, Germany.
| |
Collapse
|
44
|
Maaoui H, Jijie R, Pan GH, Drider D, Caly D, Bouckaert J, Dumitrascu N, Chtourou R, Szunerits S, Boukherroub R. A 980 nm driven photothermal ablation of virulent and antibiotic resistant Gram-positive and Gram-negative bacteria strains using Prussian blue nanoparticles. J Colloid Interface Sci 2016; 480:63-68. [DOI: 10.1016/j.jcis.2016.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 01/08/2023]
|
45
|
Marega R, Prasetyanto EA, Michiels C, De Cola L, Bonifazi D. Fast Targeting and Cancer Cell Uptake of Luminescent Antibody-Nanozeolite Bioconjugates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5431-5441. [PMID: 27510846 DOI: 10.1002/smll.201601447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/26/2016] [Indexed: 05/24/2023]
Abstract
Understanding the targeted cellular uptake of nanomaterials is an essential step to engineer and program functional and effective biomedical devices. In this respect, the targeting and ultrafast uptake of zeolite nanocrystals functionalized with Cetuximab antibodies (Ctxb) by cells overexpressing the epidermal growth factor receptor are described here. Biochemical assays show that the cellular uptake of the bioconjugate in the targeted cancer cells already begins 15 min after incubation, at a rate around tenfold faster than that observed in the negative control cells. These findings further show the role of Ctxb exposed at the surfaces of the zeolite nanocrystals in mediating the targeted and rapid cellular uptake. By using temperature and pharmacological inhibitors as modulators of the internalization pathways, the results univocally suggest a dissipative uptake mechanism of these nanomaterials, which seems to occur using different internalization pathways, according to the targeting properties of these nanocrystals. Owing to the ultrafast uptake process, harmless for the cell viability, these results further pave the way for the design of novel theranostic tools based on nanozeolites.
Collapse
Affiliation(s)
- Riccardo Marega
- Namur Research College (NARC) and Department of Chemistry, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Eko Adi Prasetyanto
- Institut de science et d'Ingénierie Supramoléculaire (ISIS), Université de Strasbourg, 8 Rue Gaspard Monge, BP 70028, Strasbourg, F-67000, France
- Karlsruher Institut für Technologie KIT-INT, Karlsruhe, D-76131, Germany
| | - Carine Michiels
- Cellular Biology Research Unit - NARILIS, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Luisa De Cola
- Institut de science et d'Ingénierie Supramoléculaire (ISIS), Université de Strasbourg, 8 Rue Gaspard Monge, BP 70028, Strasbourg, F-67000, France.
- Karlsruher Institut für Technologie KIT-INT, Karlsruhe, D-76131, Germany.
| | - Davide Bonifazi
- Namur Research College (NARC) and Department of Chemistry, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium.
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom.
| |
Collapse
|
46
|
Lee AA, Chen YCS, Ekalestari E, Ho SY, Hsu NS, Kuo TF, Wang TSA. Facile and Versatile Chemoenzymatic Synthesis of Enterobactin Analogues and Applications in Bacterial Detection. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Albert A. Lee
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan) (R.O.C
| | - Yi-Chen S. Chen
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan) (R.O.C
| | - Elisa Ekalestari
- Department of Chemistry & Biochemistry; University of California, Los Angeles; Los Angeles CA 90095 USA
| | - Sheng-Yang Ho
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan) (R.O.C
| | - Nai-Shu Hsu
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan) (R.O.C
| | - Tang-Feng Kuo
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan) (R.O.C
| | - Tsung-Shing Andrew Wang
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan) (R.O.C
| |
Collapse
|
47
|
Lee AA, Chen YCS, Ekalestari E, Ho SY, Hsu NS, Kuo TF, Wang TSA. Facile and Versatile Chemoenzymatic Synthesis of Enterobactin Analogues and Applications in Bacterial Detection. Angew Chem Int Ed Engl 2016; 55:12338-42. [DOI: 10.1002/anie.201603921] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/07/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Albert A. Lee
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan) (R.O.C
| | - Yi-Chen S. Chen
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan) (R.O.C
| | - Elisa Ekalestari
- Department of Chemistry & Biochemistry; University of California, Los Angeles; Los Angeles CA 90095 USA
| | - Sheng-Yang Ho
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan) (R.O.C
| | - Nai-Shu Hsu
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan) (R.O.C
| | - Tang-Feng Kuo
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan) (R.O.C
| | - Tsung-Shing Andrew Wang
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan) (R.O.C
| |
Collapse
|
48
|
Ergün B, De Cola L, Galla HJ, Kehr NS. Surface-Mediated Stimuli Responsive Delivery of Organic Molecules from Porous Carriers to Adhered Cells. Adv Healthc Mater 2016; 5:1588-92. [PMID: 27114067 DOI: 10.1002/adhm.201600098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/18/2016] [Indexed: 01/09/2023]
Abstract
The alternating layer-by-layer deposition of oppositely charged polyelectrolytes on fluorescence-dye-(Hst)-loaded zeolites L ((Hst) Zeo-PSS/PLL) is described. The arrays and nanocomposite (NC) hydrogels of (Hst) Zeo-PSS/PLL are prepared. The subsequent cell experiments show the potential application of arrays and NC hydrogels of (Hst) Zeo-PSS/PLL as alternative 2D- and 3D-surfaces, respectively, for 2D- and 3D-surface-mediated controlled organic molecules delivery applications.
Collapse
Affiliation(s)
- Bahar Ergün
- Department of Chemistry; Biochemistry Division; Hacettepe University; 06800 Ankara Turkey
| | - Luisa De Cola
- Institut de Science et d'Ingénierie Supramoléculaires; 8 allée Gaspard Monge 67083 Strasbourg France
| | - Hans-Joachim Galla
- Institut für Biochemie; Westfälische Wilhelms-Universität Münster; Wilhelm-Klemm-Str.2 D-48149 Münster Germany
| | - Nermin Seda Kehr
- Physikalisches Institut and CeNTech; Westfälische Wilhelms-Universität Münster; Heisenbergstraße 11 D-48149 Münster Germany
| |
Collapse
|
49
|
Barroso Á, Grüner M, Forbes T, Denz C, Strassert CA. Spatiotemporally Resolved Tracking of Bacterial Responses to ROS-Mediated Damage at the Single-Cell Level with Quantitative Functional Microscopy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15046-15057. [PMID: 27227509 DOI: 10.1021/acsami.6b02605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Herein we report on the implementation of photofunctional microparticles in combination with optical tweezers for the investigation of bacterial responses to oxidative stress by means of quantitative functional microscopy. A combination of a strongly hydrophobic axially substituted Si(IV) phthalocyanine adsorbed onto silica microparticles was developed, and the structural and photophysical characterization was carried out. The microparticles are able to produce reactive oxygen species under the fluorescence microscope upon irradiation with red light, and the behavior of individual bacteria can be consequently investigated in situ and in real time at the single cell level. For this purpose, a methodology was introduced to monitor phototriggered changes with spatiotemporal resolution. The defined distance between the photoactive particles and individual bacteria can be fixed under the microscope before the photosensitization process is started, and the photoinduced damage can be monitored by tracing the time-dependent fluorescence turn-on of a suitable marker. The results showed a distance-dependent photoinduced death time, defined as the onset of the incorporation of propidium iodide. Our methodology constitutes a new tool for the in vitro design and evaluation of photosensitizers for the treatment of cancer and infectious diseases with the aid of functional optical microscopy, as it enables a quantitative response evaluation of living systems toward oxidative stress. More generally, it provides a way to understand the response of an ensemble of living entities to reactive oxygen species by analyzing the behavior of a set of individual organisms.
Collapse
Affiliation(s)
- Álvaro Barroso
- Institut für Angewandte Physik and Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster , Corrensstraße 2, D-48149 Münster, Germany
| | - Malte Grüner
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster , Heisenbergstraße 11, D-48149 Münster, Germany
| | - Taylor Forbes
- Institut für Angewandte Physik and Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster , Corrensstraße 2, D-48149 Münster, Germany
| | - Cornelia Denz
- Institut für Angewandte Physik and Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster , Corrensstraße 2, D-48149 Münster, Germany
| | - Cristian A Strassert
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster , Heisenbergstraße 11, D-48149 Münster, Germany
| |
Collapse
|
50
|
Galstyan A, Kauscher U, Block D, Ravoo BJ, Strassert CA. Silicon(IV) Phthalocyanine-Decorated Cyclodextrin Vesicles as a Self-Assembled Phototherapeutic Agent against MRSA. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12631-12637. [PMID: 27098069 DOI: 10.1021/acsami.6b02132] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The host-guest complexation of a tailored Si(IV) phthalocyanine with supramolecular β-cyclodextrin vesicles (CDV) was studied, revealing a reduced aggregation of the photoactive center upon binding to the CDV, even in aqueous environments. For this purpose, a photosensitizing unit axially decorated with one adamantyl group and one pyridinium moiety on the other side was obtained by two successive click reactions on a bis-azido-functionalized derivative of Si(IV) phthalocyanine. To evaluate its potential as a photosensitizer against antibiotic-resistant bacteria, comparative studies of the photophysical properties including absorption and emission spectroscopy, lifetimes as well as fluorescence and singlet oxygen quantum yields were determined for the Si(IV) phthalocyanine alone and upon self-assembly on the CDV surface. In vitro phototoxicity against the methicillin-resistant Staphylococcus aureus (MRSA) USA300 was evaluated, showing an almost complete inactivation.
Collapse
Affiliation(s)
- Anzhela Galstyan
- Physikalisches Institut and CeNTech, Westfälische Wilhelms-Universität Münster , Heisenbergstrasse 11, 48149 Münster, Germany
- European Institute for Molecular Imaging , Waldeyerstrasse 15, 48149 Münster, Germany
| | - Ulrike Kauscher
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster , Corrensstrasse 40, 48149 Münster, Germany
| | - Desiree Block
- Institute for Medical Microbiology, University Hospital Münster , Domagkstrasse 10, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster , Corrensstrasse 40, 48149 Münster, Germany
| | - Cristian A Strassert
- Physikalisches Institut and CeNTech, Westfälische Wilhelms-Universität Münster , Heisenbergstrasse 11, 48149 Münster, Germany
| |
Collapse
|