1
|
Farooq MA, Johnston APR, Trevaskis NL. Impact of nanoparticle properties on immune cell interactions in the lymph node. Acta Biomater 2024:S1742-7061(24)00758-X. [PMID: 39701340 DOI: 10.1016/j.actbio.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/21/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
The lymphatic system plays an important role in health and many diseases, such as cancer, autoimmune, cardiovascular, metabolic, hepatic, viral, and other infectious diseases. The lymphatic system is, therefore, an important treatment target site for a range of diseases. Lymph nodes (LNs), rich in T cells, B cells, dendritic cells, and macrophages, are also primary sites of action for vaccines and immunotherapies. Promoting the delivery of therapeutics and vaccines to LNs can, therefore, enhance treatment efficacy and facilitate avoidance of off-target side effects by enabling a reduction in therapeutic dose. Several nanoparticle (NP) based delivery systems, such as polymeric NPs, lipid NPs, liposomes, micelles, and dendrimers, have been reported to enhance the delivery of therapeutics and/or vaccines to LNs. Specific uptake into the lymph following injection into tissues is highly dependent on particle properties, particularly particle size, as small molecules are more likely to be taken up by blood capillaries due to higher blood flow rates, whereas larger molecules and NPs can be specifically transported via the lymphatic vessels to LNs as the initial lymphatic capillaries are more permeable than blood capillaries. Once NPs enter LNs, particle properties also have an important influence on their disposition within the node and association with immune cells, which has significant implications for the design of vaccines and immunotherapies. This review article focuses on the impact of NP properties, such as size, surface charge and modification, and route of administration, on lymphatic uptake, retention, and interactions with immune cells in LNs. We suggest that optimizing all these factors can enhance the efficacy of vaccines or therapeutics with targets in the lymphatics and also be helpful for the rational design of vaccines. STATEMENT OF SIGNIFICANCE: The lymphatic system plays an essential role in health and is an important treatment target site for a range of diseases. Promoting the delivery of immunotherapies and vaccines to immune cells in lymph nodes can enhance efficacy and facilitate avoidance of off-target side effects by enabling a reduction in therapeutic dose. One of the major approaches used to deliver therapeutics and vaccines to lymph nodes is via injection in nanoparticle delivery systems. This review aims to provide an overview of the impact of nanoparticle properties, such as size, surface charge, modification, and route of administration, on lymphatic uptake, lymph node retention, and interactions with immune cells in lymph nodes. This will inform the design of future improved nanoparticle systems for vaccines and immunotherapies.
Collapse
Affiliation(s)
- Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
2
|
Li T, Li Y, Chen H, Li J, Liu Y, Tan W. Engineering a Dual-Receptor Targeted Multivalent Probe for Enhanced Magnetic Resonance Imaging of Metastatic Cancer. Anal Chem 2024; 96:4394-4401. [PMID: 38451935 DOI: 10.1021/acs.analchem.3c04036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Noninvasive monitoring of cancer metastasis is essential to improving clinical outcomes. Molecular MRI (mMRI) is a special implementation of noninvasive molecular imaging that promises to offer a powerful means for early detection and analysis of pathological states of cancer by tracking molecular markers. However, this is often hindered by the challenging issue of obtaining transformable mMRI contrast agents with high sensitivity, specificity, and broad applicability, given the high tumor heterogeneity and complex metastatic features. Herein, we present a dual-receptor targeted, multivalent recognition strategy and report a new class of mMRI probes for enhanced imaging of metastatic cancer. This probe is designed by covalently conjugating Gd-chelate with phenylboronic acid and an aptamer via an affordable polymerization chemistry to concurrently target two different cell-membrane receptors that are commonly overexpressed and highly implicated in both tumorigenesis and metastasis. Moreover, the polymerization chemistry allows the probe to contain a bunch of targeting ligands and signal reporters in a single chain, which not only leads to more than 2-fold enhancement in T1 relaxivity at 1.5 T compared to the commercial contrast agent but also enables it to actively target tumor cells in a multivalent recognition manner, contributing to a much higher imaging contrast than single-receptor targeted probes and the commercial agent in mouse models with lung metastases, yet without inducing systemic side effects. We expect this study to offer a useful molecular tool to promote transformable applications of mMRI and a better understanding of molecular mechanisms involved in cancer development.
Collapse
Affiliation(s)
- Ting Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yazhou Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hong Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Jili Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Ji H, Hu C, Yang X, Liu Y, Ji G, Ge S, Wang X, Wang M. Lymph node metastasis in cancer progression: molecular mechanisms, clinical significance and therapeutic interventions. Signal Transduct Target Ther 2023; 8:367. [PMID: 37752146 PMCID: PMC10522642 DOI: 10.1038/s41392-023-01576-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 09/28/2023] Open
Abstract
Lymph nodes (LNs) are important hubs for metastatic cell arrest and growth, immune modulation, and secondary dissemination to distant sites through a series of mechanisms, and it has been proved that lymph node metastasis (LNM) is an essential prognostic indicator in many different types of cancer. Therefore, it is important for oncologists to understand the mechanisms of tumor cells to metastasize to LNs, as well as how LNM affects the prognosis and therapy of patients with cancer in order to provide patients with accurate disease assessment and effective treatment strategies. In recent years, with the updates in both basic and clinical studies on LNM and the application of advanced medical technologies, much progress has been made in the understanding of the mechanisms of LNM and the strategies for diagnosis and treatment of LNM. In this review, current knowledge of the anatomical and physiological characteristics of LNs, as well as the molecular mechanisms of LNM, are described. The clinical significance of LNM in different anatomical sites is summarized, including the roles of LNM playing in staging, prognostic prediction, and treatment selection for patients with various types of cancers. And the novel exploration and academic disputes of strategies for recognition, diagnosis, and therapeutic interventions of metastatic LNs are also discussed.
Collapse
Affiliation(s)
- Haoran Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chuang Hu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xuhui Yang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuanhao Liu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
4
|
Yang Q, Yu Y, Tang C, Gao Y, Wang W, Zhou Z, Yang S, Yang H. The location of metastatic lymph nodes and the evaluation of lymphadenectomy by near-infrared photoacoustic imaging with iridium complex nanoparticles. Biomater Sci 2023; 11:2543-2550. [PMID: 36780398 DOI: 10.1039/d2bm02044k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Histopathology evaluation and lymphadenectomy of node-positive patients is the usual procedure in clinical therapy. However, it requires days for the histopathology result analysis, which impedes intraoperative decision-making and immediate treatment. Noninvasive real-time imaging of metastatic lymph nodes can overcome these defects and help medical workers evaluate lymph nodes and make the operation decision more efficiently. Herein we developed iridium(III)-cyanine complex/bovine serum albumin (BSA)-based nanoparticles which are conjugated with folic acid (FA) (IrCy-FA NPs). The synthesized IrCy-FA NPs exhibit good biocompatibility, strong near-infrared absorption, and impressive lymph node accumulation and can serve as a photoacoustic (PA) imaging probe for lymph node imaging. Besides, the lymph nodes enriched with IrCy-FA NPs showing green color are easily visible to the naked eye, suggesting their potential as an intraoperative indicator. The real-time PA imaging with excellent contrast and high spatial resolution can promote efficient and reliable quantitative analysis of lymph nodes in vivo. By employing IrCy-FA NPs as the PA agent for lymph node imaging, we achieve effective pre-operative and post-operative evaluations of metastatic lymph nodes in lymphadenectomy. This study may provide helpful information for PA imaging guided colocalization and evaluation of lymph nodes and facilitate this method towards clinical trials.
Collapse
Affiliation(s)
- Qi Yang
- College of Chemistry and Materials Science, International Joint Laboratory on Resource Chemistry of Ministry Education, Shanghai Normal University, Shanghai, 200234, P. R China.
| | - Yajun Yu
- College of Chemistry and Materials Science, International Joint Laboratory on Resource Chemistry of Ministry Education, Shanghai Normal University, Shanghai, 200234, P. R China.
| | - Chaojie Tang
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R China.
| | - Yucong Gao
- College of Chemistry and Materials Science, International Joint Laboratory on Resource Chemistry of Ministry Education, Shanghai Normal University, Shanghai, 200234, P. R China.
| | - Wu Wang
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R China.
| | - Zhiguo Zhou
- College of Chemistry and Materials Science, International Joint Laboratory on Resource Chemistry of Ministry Education, Shanghai Normal University, Shanghai, 200234, P. R China.
| | - Shiping Yang
- College of Chemistry and Materials Science, International Joint Laboratory on Resource Chemistry of Ministry Education, Shanghai Normal University, Shanghai, 200234, P. R China.
| | - Hong Yang
- College of Chemistry and Materials Science, International Joint Laboratory on Resource Chemistry of Ministry Education, Shanghai Normal University, Shanghai, 200234, P. R China.
| |
Collapse
|
5
|
Yin X, Gu K, Shao Z. Preparation of the Protein/Polyphenylboronic Acid Nanospheres for Drug Loading and Unloading. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22110464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Singh N, Shi S, Goel S. Ultrasmall silica nanoparticles in translational biomedical research: Overview and outlook. Adv Drug Deliv Rev 2023; 192:114638. [PMID: 36462644 PMCID: PMC9812918 DOI: 10.1016/j.addr.2022.114638] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/06/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
The exemplary progress of silica nanotechnology has attracted extensive attention across a range of biomedical applications such as diagnostics and imaging, drug delivery, and therapy of cancer and other diseases. Ultrasmall silica nanoparticles (USNs) have emerged as a particularly promising class demonstrating unique properties that are especially suitable for and have shown great promise in translational and clinical biomedical research. In this review, we discuss synthetic strategies that allow precise engineering of USNs with excellent control over size and surface chemistry, functionalization, and pharmacokinetic and toxicological profiles. We summarize the current state-of-the-art in the biomedical applications of USNs with a particular focus on select clinical studies. Finally, we illustrate long-standing challenges in the translation of inorganic nanotechnology, particularly in the context of ultrasmall nanomedicines, and provide our perspectives on potential solutions and future opportunities in accelerating the translation and widespread adoption of USN technology in biomedical research.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112
| | - Sixiang Shi
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112,Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112,Correspondence to ;
| | - Shreya Goel
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112,Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112,Correspondence to ;
| |
Collapse
|
7
|
Niu Y, Lu Y. Construction of
pH
‐responsive core crosslinked micelles via thiol‐yne click reaction. J Appl Polym Sci 2022. [DOI: 10.1002/app.52753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yile Niu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Yanbing Lu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering Hunan University Changsha China
| |
Collapse
|
8
|
Song H, Su Q, Shi W, Huang P, Zhang C, Zhang C, Liu Q, Wang W. Antigen epitope-TLR7/8a conjugate as self-assembled carrier-free nanovaccine for personalized immunotherapy. Acta Biomater 2022; 141:398-407. [PMID: 35007785 DOI: 10.1016/j.actbio.2022.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
Epitope-based vaccine is a promising personalized cancer immunotherapy; however, a simple and effective approach for its bulk manufacturing is challenging. Current vaccination strategies complicate the process by introducing unnecessary components such as additional delivery carriers, and assembly units. Herein, a type of toll-like receptor 7/8 agonist-epitope conjugate (termed as TLR7/8a-epitope) has been developed as a self-assembled and carrier-free nano vaccine platform, which effectively introduces the antigen and adjuvant with maximum precision, resulting in significantly enhanced dendritic cells (DCs) activation through the MyD88-dependent TLR signaling pathway. TLR7/8a-epitope nanovaccine can prolong the local retention and increase drainage efficiency into the lymph node, eliciting a significantly higher level of CD8 T-cell immunity than those of conventional vaccine formulations. The immunization with TLR7/8a-epitope nanovaccine in mice can not only resist the invasion of B16 cancer cells, but also produce significant therapeutic effects against established B16 melanoma tumors. Therefore, the TLR7/8a-epitope nanovaccine, developed by the direct chemical conjugation of antigen peptide with immunoadjuvant, has great advantages of clear and leanest compositions, controllable and definite preparation process, and remarkable therapeutic effects, representing a new appraoch for personalized cancer immunotherapy. STATEMENT OF SIGNIFICANCE: Herein, a kind of toll-like receptor 7/8 agonist-epitope conjugate was developed and spontaneously self-assemble into nanostructure in aqueous solution without the use of any additional constituents, which can be termed as unique carrier-free nanovaccine platform, providing effectually the leanest vaccine components with maximally and precisely loading of antigen and adjuvant. Significantly, the nanovaccine augmented the immunogenicity of antigenic peptide by increasing DCs activation through MyD88-mediated TLR signaling pathways and promoting T-cell priming. Moreover, nanovaccines could prolong the local retention and further increase the efficiency of drainage into dLNs, which was contributing to efficient initiation of epitope-specific memory and effector T-cell immune responses, leading to effective prophylactic and therapeutic antitumor effects.
Collapse
Affiliation(s)
- Huijuan Song
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Qi Su
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Weifeng Shi
- Medical University of Tianjin, Tianjin 300070, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Chao Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
9
|
Yuen R, West FG, Wuest F. Dual Probes for Positron Emission Tomography (PET) and Fluorescence Imaging (FI) of Cancer. Pharmaceutics 2022; 14:pharmaceutics14030645. [PMID: 35336019 PMCID: PMC8952779 DOI: 10.3390/pharmaceutics14030645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023] Open
Abstract
Dual probes that possess positron emission tomography (PET) and fluorescence imaging (FI) capabilities are precision medicine tools that can be used to improve patient care and outcomes. Detecting tumor lesions using PET, an extremely sensitive technique, coupled with fluorescence-guided surgical resection of said tumor lesions can maximize the removal of cancerous tissue. The development of novel molecular probes is important for targeting different biomarkers as every individual case of cancer has different characteristics. This short review will discuss some aspects of dual PET/FI probes and explore the recently reported examples.
Collapse
Affiliation(s)
- Richard Yuen
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.Y.); (F.G.W.)
| | - Frederick G. West
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.Y.); (F.G.W.)
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Frank Wuest
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.Y.); (F.G.W.)
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Oncology, University of Alberta—Cross Cancer Institute, Edmonton, AB T6G IZ2, Canada
- Correspondence:
| |
Collapse
|
10
|
Liu M, Wang L, Lo Y, Shiu SCC, Kinghorn AB, Tanner JA. Aptamer-Enabled Nanomaterials for Therapeutics, Drug Targeting and Imaging. Cells 2022; 11:159. [PMID: 35011722 PMCID: PMC8750369 DOI: 10.3390/cells11010159] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
A wide variety of nanomaterials have emerged in recent years with advantageous properties for a plethora of therapeutic and diagnostic applications. Such applications include drug delivery, imaging, anti-cancer therapy and radiotherapy. There is a critical need for further components which can facilitate therapeutic targeting, augment their physicochemical properties, or broaden their theranostic applications. Aptamers are single-stranded nucleic acids which have been selected or evolved to bind specifically to molecules, surfaces, or cells. Aptamers can also act as direct biologic therapeutics, or in imaging and diagnostics. There is a rich field of discovery at the interdisciplinary interface between nanomaterials and aptamer science that has significant potential across biomedicine. Herein, we review recent progress in aptamer-enabled materials and discuss pending challenges for their future biomedical application.
Collapse
Affiliation(s)
- Mengping Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Lin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Young Lo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Simon Chi-Chin Shiu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Andrew B. Kinghorn
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Julian A. Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, China
| |
Collapse
|
11
|
Ducongé F. Aptamers for Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Dai Y, Yu X, Wei J, Zeng F, Li Y, Yang X, Luo Q, Zhang Z. Metastatic status of sentinel lymph nodes in breast cancer determined with photoacoustic microscopy via dual-targeting nanoparticles. LIGHT, SCIENCE & APPLICATIONS 2020; 9:164. [PMID: 33014359 PMCID: PMC7494891 DOI: 10.1038/s41377-020-00399-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 05/08/2023]
Abstract
Detection of sentinel lymph nodes (SLNs) is critical to guide the treatment of breast cancer. However, distinguishing metastatic SLNs from normal and inflamed lymph nodes (LNs) during surgical resection remains a challenge. Here, we report a CD44 and scavenger receptor class B1 dual-targeting hyaluronic acid nanoparticle (5K-HA-HPPS) loaded with the near-infra-red fluorescent dye DiR-BOA for SLN imaging in breast cancer. The small sized (~40 nm) self-assembled 5K-HA-HPPSs accumulated rapidly in the SLNs after intradermal injection. Compared with normal popliteal LNs (N-LN), there were ~3.2-fold and ~2.4-fold increases in fluorescence intensity in tumour metastatic SLNs (T-MLN) and inflamed LNs (Inf-LN), respectively, 6 h after nanoparticle inoculation. More importantly, photoacoustic microscopy (PAM) of 5K-HA-HPPS showed a significantly distinct distribution in T-MLN compared with N-LN and Inf-LN. Signals were mainly distributed at the centre of T-MLN but at the periphery of N-LN and Inf-LN. The ratio of PA intensity (R) at the centre of the LNs compared with that at the periphery was 5.93 ± 0.75 for T-MLNs of the 5K-HA-HPPS group, which was much higher than that for the Inf-LNs (R = 0.2 ± 0.07) and N-LNs (R = 0.45 ± 0.09). These results suggest that 5K-HA-HPPS injection combined with PAM provides a powerful tool for distinguishing metastatic SLNs from pLNs and inflamed LNs, thus guiding the removal of SLNs during breast cancer surgery.
Collapse
Affiliation(s)
- Yanfeng Dai
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics–Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Xiang Yu
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics–Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Jianshuang Wei
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics–Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Fanxin Zeng
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics–Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Yiran Li
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics–Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Xiaoquan Yang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics–Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Qingming Luo
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics–Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
- School of Biomedical Engineering, Hainan University, Haikou, Hainan 570228 China
| | - Zhihong Zhang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics–Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
- School of Biomedical Engineering, Hainan University, Haikou, Hainan 570228 China
| |
Collapse
|
13
|
Tariq H, Bokhari SAI. Surface-functionalised hybrid nanoparticles for targeted treatment of cancer. IET Nanobiotechnol 2020; 14:537-547. [PMID: 33010128 PMCID: PMC8676046 DOI: 10.1049/iet-nbt.2020.0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/11/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Despite the great advancement in understanding the pharmacology and biology of cancer, it still signifies one of the most serious human-health related problems. The current treatments for cancer may include surgery, radiotherapy, and chemotherapy, but these procedures have several limitations. Current studies have shown that nanoparticles (NPs) can be used as a novel strategy for cancer treatment. Developing nanosystems that allow lower doses of therapeutic agents, as well as their selective release in tumour cells, may resolve the challenges of targeted cancer therapy. In this review, the authors discuss the role of the size, shape, and surface modifications of NPs in cancer treatment. They also address the challenges associated with cancer therapies based on NPs. The overall purpose of this review is to summarise the recent developments in designing different hybrid NPs with promising therapeutic properties for different types of cancer.
Collapse
Affiliation(s)
- Hasnat Tariq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Syed Ali Imran Bokhari
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
14
|
Ding X, Li D, Jiang J. Gold-based Inorganic Nanohybrids for Nanomedicine Applications. Theranostics 2020; 10:8061-8079. [PMID: 32724458 PMCID: PMC7381751 DOI: 10.7150/thno.42284] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Noble metal Au nanoparticles have attracted extensive interests in the past decades, due to their size and morphology dependent localized surface plasmon resonances. Their unique optical property, high chemical stability, good biocompatibility, and easy functionalization make them promising candidates for a variety of biomedical applications, including bioimaging, biosensing, and cancer therapy. With the intention of enhancing their optical response in the near infrared window and endowing them with additional magnetic properties, Au nanoparticles have been integrated with other functional nanomaterials that possess complementary attributes, such as copper chalcogenides and magnetic metal oxides. The as constructed hybrid nanostructures are expected to exhibit unconventional properties compared to their separate building units, due to nanoscale interactions between materials with different physicochemical properties, thus broadening the application scope and enhancing the overall performance of the hybrid nanostructures. In this review, we summarize some recent progresses in the design and synthesis of noble metal Au-based hybrid inorganic nanostructures for nanomedicine applications, and the potential and challenges for their clinical translations.
Collapse
|
15
|
Mi P, Cabral H, Kataoka K. Ligand-Installed Nanocarriers toward Precision Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902604. [PMID: 31353770 DOI: 10.1002/adma.201902604] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/04/2019] [Indexed: 05/20/2023]
Abstract
Development of drug-delivery systems that selectively target neoplastic cells has been a major goal of nanomedicine. One major strategy for achieving this milestone is to install ligands on the surface of nanocarriers to enhance delivery to target tissues, as well as to enhance internalization of nanocarriers by target cells, which improves accuracy, efficacy, and ultimately enhances patient outcomes. Herein, recent advances regarding the development of ligand-installed nanocarriers are introduced and the effect of their design on biological performance is discussed. Besides academic achievements, progress on ligand-installed nanocarriers in clinical trials is presented, along with the challenges faced by these formulations. Lastly, the future perspectives of ligand-installed nanocarriers are discussed, with particular emphasis on their potential for emerging precision therapies.
Collapse
Affiliation(s)
- Peng Mi
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17 People's South Road, Chengdu, 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
16
|
Wei L, Zhao Y, Hu X, Tang L. Redox-Responsive Polycondensate Neoepitope for Enhanced Personalized Cancer Vaccine. ACS CENTRAL SCIENCE 2020; 6:404-412. [PMID: 32232140 PMCID: PMC7099592 DOI: 10.1021/acscentsci.9b01174] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 05/19/2023]
Abstract
A versatile and highly effective platform remains a major challenge in the development of personalized cancer vaccines. Here, we devised a redox-responsive polycondensate neoepitope (PNE) through a reversible polycondensation reaction of peptide neoantigens and adjuvants together with a tracelessly responsive linker-monomer. Peptide-based neoantigens with diverse sequences and structures could be copolymerized with molecular adjuvants to form PNEs of high loading capacity for vaccine delivery without adding any carriers. The redox-responsive PNEs with controlled molecular weights and sizes efficiently targeted and accumulated in draining lymph nodes and greatly promoted the antigen capture and cross-presentation by professional antigen presenting cells. Mice immunized with PNEs showed markedly enhanced antigen-specific T cell response and the protective immunity against the tumor cell challenge.
Collapse
Affiliation(s)
- Lixia Wei
- Institute
of Materials Science and Engineering, École
Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Yu Zhao
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Xiaomeng Hu
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Li Tang
- Institute
of Materials Science and Engineering, École
Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne, Lausanne 1015, Switzerland
- E-mail:
| |
Collapse
|
17
|
Vandghanooni S, Barar J, Eskandani M, Omidi Y. Aptamer-conjugated mesoporous silica nanoparticles for simultaneous imaging and therapy of cancer. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115759] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Thakur V, Kutty RV. Recent advances in nanotheranostics for triple negative breast cancer treatment. J Exp Clin Cancer Res 2019; 38:430. [PMID: 31661003 PMCID: PMC6819447 DOI: 10.1186/s13046-019-1443-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most complex and aggressive type of breast cancer encountered world widely in women. Absence of hormonal receptors on breast cancer cells necessitates the chemotherapy as the only treatment regime. High propensity to metastasize and relapse in addition to poor prognosis and survival motivated the oncologist, nano-medical scientist to develop novel and efficient nanotherapies to solve such a big TNBC challenge. Recently, the focus for enhanced availability, targeted cellular uptake with minimal toxicity is achieved by nano-carriers. These smart nano-carriers carrying all the necessary arsenals (drugs, tracking probe, and ligand) designed in such a way that specifically targets the TNBC cells at site. Articulating the targeted delivery system with multifunctional molecules for high specificity, tracking, diagnosis, and treatment emerged as theranostic approach. In this review, in addition to classical treatment modalities, recent advances in nanotheranostics for early and effective diagnostic and treatment is discussed. This review highlighted the recently FDA approved immunotherapy and all the ongoing clinical trials for TNBC, in addition to nanoparticle assisted immunotherapy. Futuristic but realistic advancements in artificial intelligence (AI) and machine learning not only improve early diagnosis but also assist clinicians for their workup in TNBC. The novel concept of Nanoparticles induced endothelial leakiness (NanoEL) as a way of tumor invasion is also discussed in addition to classical EPR effect. This review intends to provide basic insight and understanding of the novel nano-therapeutic modalities in TNBC diagnosis and treatment and to sensitize the readers for continue designing the novel nanomedicine. This is the first time that designing nanoparticles with stoichiometric definable number of antibodies per nanoparticle now represents the next level of precision by design in nanomedicine.
Collapse
Affiliation(s)
- Vikram Thakur
- Department of Virology, Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, 160012 India
| | - Rajaletchumy Veloo Kutty
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology,University Malaysia Pahang, Tun Razak Highway, 26300 Kuantan, Pahang Malaysia
- Center of Excellence for Advanced Research in Fluid Flow, University Malaysia Pahang, 26300, Kuantan, Pahang Malaysia
| |
Collapse
|
19
|
Ge J, Zhang Q, Zeng J, Gu Z, Gao M. Radiolabeling nanomaterials for multimodality imaging: New insights into nuclear medicine and cancer diagnosis. Biomaterials 2019; 228:119553. [PMID: 31689672 DOI: 10.1016/j.biomaterials.2019.119553] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022]
Abstract
Nuclear medicine imaging has been developed as a powerful diagnostic approach for cancers by detecting gamma rays directly or indirectly from radionuclides to construct images with beneficial characteristics of high sensitivity, infinite penetration depth and quantitative capability. Current nuclear medicine imaging modalities mainly include single-photon emission computed tomography (SPECT) and positron emission tomography (PET) that require administration of radioactive tracers. In recent years, a vast number of radioactive tracers have been designed and constructed to improve nuclear medicine imaging performance toward early and accurate diagnosis of cancers. This review will discuss recent progress of nuclear medicine imaging tracers and associated biomedical imaging applications. Radiolabeling nanomaterials for rational development of tracers will be comprehensively reviewed with highlights on radiolabeling approaches (surface coupling, inner incorporation and interface engineering), providing profound understanding on radiolabeling chemistry and the associated imaging functionalities. The applications of radiolabeled nanomaterials in nuclear medicine imaging-related multimodality imaging will also be summarized with typical paradigms described. Finally, key challenges and new directions for future research will be discussed to guide further advancement and practical use of radiolabeled nanomaterials for imaging of cancers.
Collapse
Affiliation(s)
- Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Qianyi Zhang
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China; Institute of Chemistry, Chinese Academy of Sciences/School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
20
|
Qiu J, Huo D, Xue J, Zhu G, Liu H, Xia Y. Encapsulation of a Phase‐Change Material in Nanocapsules with a Well‐Defined Hole in the Wall for the Controlled Release of Drugs. Angew Chem Int Ed Engl 2019; 58:10606-10611. [DOI: 10.1002/anie.201904549] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/03/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- State Key Laboratory of Crystal Materials Shandong University Jinan Shandong 250100 P. R. China
| | - Da Huo
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Guanghui Zhu
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Hong Liu
- State Key Laboratory of Crystal Materials Shandong University Jinan Shandong 250100 P. R. China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
21
|
Qiu J, Huo D, Xue J, Zhu G, Liu H, Xia Y. Encapsulation of a Phase‐Change Material in Nanocapsules with a Well‐Defined Hole in the Wall for the Controlled Release of Drugs. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904549] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- State Key Laboratory of Crystal Materials Shandong University Jinan Shandong 250100 P. R. China
| | - Da Huo
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Guanghui Zhu
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Hong Liu
- State Key Laboratory of Crystal Materials Shandong University Jinan Shandong 250100 P. R. China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
22
|
Shi H, Lei Y, Ge J, He X, Cui W, Ye X, Liu J, Wang K. A Simple, pH-Activatable Fluorescent Aptamer Probe with Ultralow Background for Bispecific Tumor Imaging. Anal Chem 2019; 91:9154-9160. [PMID: 31185714 DOI: 10.1021/acs.analchem.9b01828] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activatable aptamer probes (AAPs) are promising in molecular imaging of tumors, but the reported shape-switching-dependent AAPs are still challenged by unsatisfied noise suppression, poor stability, and sophisticated sequence design. To address the problem, we constructed a pH-activatable aptamer probe (pH-AAP) by utilizing an acid-labile acetal linker as the responsive element to be fused with a tumor-targeted aptamer. Specifically, a Cy5-labeled aptamer was connected with the quencher BHQ2 through the acetal group, thus generating pH-AAP with quenched fluorescence. Due to the stable proximity of Cy5 to BHQ2, pH-AAP was found to have ultralow background with a quenching efficiency as high as 98%. In comparison with shape-switching-dependent AAPs, the noise suppression of pH-AAP was well maintained for a much longer time in both serum and mouse body, thus showing a robust fluorescence stability. By a combination of the fluorescence recovery induced by acid hydrolysis of acetal linkers and the tumor-targeted recognition of aptamers, pH-AAP could either specifically anchor the extracellular pH-activated signals on the target cell surface in an acidic tumor microenvironment or be activated by acidic lysosomes after it was internalized into target cells. As proof of concept, in vitro evaluation and in vivo imaging of A549 lung cancer cells were performed by using S6 aptamer as a demonstration. It was indicated that pH-AAP realized washing-free, bispecific, and contrast-enhanced tumor imaging. The strategy is simple and free of sequence modification, which promises to provide a universal platform for sensitive and precise tumor diagnosis.
Collapse
Affiliation(s)
- Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology , Hunan University , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082 , People's Republic of China
| | - Yanli Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology , Hunan University , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082 , People's Republic of China.,School of Chemistry and Food Engineering , Changsha University of Science and Technology , Changsha 410076 , People's Republic of China
| | - Jia Ge
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology , Hunan University , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082 , People's Republic of China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology , Hunan University , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082 , People's Republic of China
| | - Wensi Cui
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology , Hunan University , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082 , People's Republic of China
| | - Xiaosheng Ye
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology , Hunan University , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082 , People's Republic of China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology , Hunan University , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082 , People's Republic of China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology , Hunan University , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082 , People's Republic of China
| |
Collapse
|
23
|
Zhang J, Lan T, Lu Y. Molecular Engineering of Functional Nucleic Acid Nanomaterials toward In Vivo Applications. Adv Healthc Mater 2019; 8:e1801158. [PMID: 30725526 PMCID: PMC6426685 DOI: 10.1002/adhm.201801158] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/14/2019] [Indexed: 12/25/2022]
Abstract
Recent advances in nanotechnology and engineering have generated many nanomaterials with unique physical and chemical properties. Over the past decade, numerous nanomaterials are introduced into many research areas, such as sensors for environmental monitoring, food safety, point-of-care diagnostics, and as transducers for solar energy transfer. Meanwhile, functional nucleic acids (FNAs), including nucleic acid enzymes, aptamers, and aptazymes, have attracted major attention from the biomedical community due to their unique target recognition and catalytic properties. Benefiting from the recent progress of molecular engineering strategies, the physicochemical properties of nanomaterials are endowed by the target recognition and catalytic activity of FNAs in the presence of a target analyte, resulting in numerous smart nanoprobes for diverse applications including intracellular imaging, drug delivery, in vivo imaging, and tumor therapy. This progress report focuses on the recent advances in designing and engineering FNA-based nanomaterials, highlighting the functional outcomes toward in vivo applications. The challenges and opportunities for the future translation of FNA-based nanomaterials into clinical applications are also discussed.
Collapse
Affiliation(s)
- JingJing Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 601 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Tian Lan
- GlucoSentient, Inc., 2100 S. Oak Street Suite 101, Champaign, IL, 61820, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 601 S. Mathews Ave., Urbana, IL, 61801, USA
| |
Collapse
|
24
|
Ni D, Ehlerding EB, Cai W. Multimodality Imaging Agents with PET as the Fundamental Pillar. Angew Chem Int Ed Engl 2019; 58:2570-2579. [PMID: 29968300 PMCID: PMC6314921 DOI: 10.1002/anie.201806853] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Indexed: 12/20/2022]
Abstract
Positron emission tomography (PET) provides quantitative information in vivo with ultra-high sensitivity but is limited by its relatively low spatial resolution. Therefore, PET has been combined with other imaging modalities, and commercial systems such as PET/computed tomography (CT) and PET/magnetic resonance (MR) have become available. Inspired by the emerging field of nanomedicine, many PET-based multimodality nanoparticle imaging agents have been developed in recent years. This Minireview highlights recent progress in the design of PET-based multimodality imaging nanoprobes with an aim to overview the major advances and key challenges in this field and substantially improve our knowledge of this fertile research area.
Collapse
Affiliation(s)
- Dalong Ni
- Departments of Radiology and Medical Physics, University of Wisconsin
– Madison, Madison, Wisconsin 53705, United States
| | - Emily B. Ehlerding
- Departments of Radiology and Medical Physics, University of Wisconsin
– Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin
– Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
25
|
Ni D, Ehlerding EB, Cai W. Multimodale Kontrastmittel für die kombinierte Positronenemissionstomographie. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dalong Ni
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin–Madison Madison Wisconsin 53705 USA
| | - Emily B. Ehlerding
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin–Madison Madison Wisconsin 53705 USA
| | - Weibo Cai
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin–Madison Madison Wisconsin 53705 USA
| |
Collapse
|
26
|
Application of aptamers for in vivo molecular imaging and theranostics. Adv Drug Deliv Rev 2018; 134:94-106. [PMID: 30125606 DOI: 10.1016/j.addr.2018.08.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/06/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022]
Abstract
Nucleic acid aptamers are small three-dimensional structures of oligonucleotides selected to bind to a target of interest with high affinity and specificity. In vitro, aptamers already compete with antibodies to serve as imaging probes, e.g. for microscopy or flow cytometry. However, they are also increasingly used for in vivo molecular imaging. Accordingly, aptamers have been evaluated over the last twenty years in almost every imaging modality, including single photon emission computed tomography, positron emission tomography, magnetic resonance imaging, fluorescence imaging, echography, and x-ray computed tomography. This review focuses on the studies that were conducted in vivo with aptamer-based imaging probes. It also presents how aptamers have been recently used to develop new types of probes for multimodal imaging and theranostic applications.
Collapse
|
27
|
Riccardi C, Fàbrega C, Grijalvo S, Vitiello G, D'Errico G, Eritja R, Montesarchio D. AS1411-decorated niosomes as effective nanocarriers for Ru(iii)-based drugs in anticancer strategies. J Mater Chem B 2018; 6:5368-5384. [PMID: 32254501 DOI: 10.1039/c8tb01563e] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Niosomes are self-assembled vesicles made up of single chain non-ionic surfactants combined with appropriate amounts of cholesterol or other lipids, exploited as carriers for hydrophilic or lipophilic drugs. Compared to liposomes, niosomes are typically more stable, less expensive and, being generally obtained from synthetic surfactants, more easily derivatizable, providing vesicular structures with a higher versatility and chemical diversity. Herein, we investigated the physico-chemical and biological properties of niosomes loaded with two active ingredients, i.e. the nucleolipidic Ru(iii)-complex HoThyRu, selected as an anticancer agent, and the nucleolin-targeting AS1411 aptamer, allowing selective recognition of cancer cells. The morphology, average size, zeta potential, electrophoretic mobility, and stability over time of the functionalized niosomes were analyzed using different biophysical techniques. These formulations, tested on both cancer and normal cells, showed promising antiproliferative activity on HeLa cells, with a higher efficacy associated with the nanosystems containing both AS1411 and HoThyRu with respect to the controls. In all the tested cell lines, AS1411 proved to markedly enhance the bioactivity of the Ru(iii)-containing niosomes.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126, Napoli, Italy.
| | | | | | | | | | | | | |
Collapse
|
28
|
Multiscale reconstruction of a synthetic biomimetic micro-niche for enhancing and monitoring the differentiation of stem cells. Biomaterials 2018; 173:87-99. [DOI: 10.1016/j.biomaterials.2018.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022]
|
29
|
Zheng DW, Hong S, Xu L, Li CX, Li K, Cheng SX, Zhang XZ. Hierarchical Micro-/Nanostructures from Human Hair for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800836. [PMID: 29782675 DOI: 10.1002/adma.201800836] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/20/2018] [Indexed: 05/15/2023]
Abstract
With the prominent progress of biomedical engineering, materials with high biocompatibility and versatile functions are urgently needed. So far, hierarchical structures in nature have shed some light on the design of high performance materials both in concept and implementation. Inspired by these, the hierarchical micro-/nanostructures of human hair are explored and human hair is further broken into hierarchical microparticles (HMP) and hierarchical nanoparticles (HNP) with top-down procedures. Compared with commercialized carriers, such as liposomes or albumin nanoparticles, the obtained particles exhibit high hemocompatibility and negligible immunogenicity. Furthermore, these materials also display attentional abilities in the aspects of light absorption and free radical scavenging. It is found that HMP and HNP can prevent skin from UV-induced damage and relieve symptoms of cataract in vitro. Besides, both HMP and HNP show satisfactory photothermal conversion ability. By using microcomputed tomography and intravital fluorescence microscopy, it is found that warfarin-loaded HMP can rescue mice from vein thrombosis. In another aspect, HNP modified with tumor targeted aptamers exhibit dramatic antineoplastic effect, and suppress 96.8% of tumor growth in vivo. Thus, the multifaceted materials described here might provide a new tool for addressing biomedical challenges.
Collapse
Affiliation(s)
- Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Sheng Hong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Lu Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Ke Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
30
|
Xia Y, Wang N, Qin Z, Wu J, Wang F, Zhang L, Xia X, Li J, Lu Y. Polycarbonate-based core-crosslinked redox-responsive nanoparticles for targeted delivery of anticancer drug. J Mater Chem B 2018; 6:3348-3357. [PMID: 32254392 DOI: 10.1039/c8tb00346g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We reported a facile and efficient strategy for the construction of polycarbonate-based core-crosslinked redox-responsive nanoparticles (CC-RRNs), which can efficiently regulate the drug loading content and redox-responsive drug release. A series of CC-RRNs for delivery of doxorubicin (DOX) were synthesized by the click reaction between alkyne-bearing amphiphilic block copolymer PEG-b-poly(MPC)n (PMPC) and azide-terminated α-lipoic acid derivative (LA) and 6-bromohexanoic acid derivative (AHE) at different ratios, followed by introduction of crosslinked networks under a catalytic amount of dithiothreitol (DTT). Dynamic light scattering (DLS) experiments showed that the CC-RRNs presented more excellent stability over non-crosslinked unresponsive nanoparticles (NC-URNs) under physiological conditions. Interestingly, the DOX loading content of nanoparticles (NPs) increased as the proportion of LA moieties increased, and the maximum value was up to 20.0 ± 0.6%, close to the theoretical value of 23.1%. The in vitro redox-responsive release of DOX and MTT assays confirmed that the ratio of LA-to-AHE of PMPC-based polymers not only determined the ultimate drug release of DOX-loaded CC-RRNs in a reductive environment, but also dominated the cytotoxicity towards HepG2 cells. Confocal laser scanning microscopy (CLMS) and flow cytometry further proved the enhancement of cellular uptake and tumor accumulation. This facile strategy overcomes tedious fabrication procedures for drug nanocarriers, offers an opportunity for regulating the functionality of NPs, and thus paves the pathway for scale-up production of biodegradable drug carriers with biocompatibility, stability and targetability.
Collapse
Affiliation(s)
- Yingchun Xia
- Institute of Polymer Science, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang W, Xia Y, Fang Y, Meng F, Zhang J, Cheng R, Deng C, Zhong Z. Selective Cell Penetrating Peptide-Functionalized Polymersomes Mediate Efficient and Targeted Delivery of Methotrexate Disodium to Human Lung Cancer In Vivo. Adv Healthc Mater 2018; 7:e1701135. [PMID: 29280317 DOI: 10.1002/adhm.201701135] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/01/2017] [Indexed: 12/17/2022]
Abstract
It is a long challenge to develop nanomedicines that simultaneously possess tumor cell selectivity and penetration functions. Here, it is reported that selective cell penetrating peptide (RLWMRWYSPRTRAYGC)-functionalized polymersomes (SCPP-PS) mediate efficient and targeted delivery of methotrexate disodium (MTX) to human lung cancer in vivo. SCPP-PS with an SCPP density of 18.7% is self-crosslinked, has a small size (63-65 nm), and high MTX loading (up to 19.4 wt%), shows selective uptake and fast penetration into A549 lung cancer cells, and efficiently releases MTX intracellularly. Interestingly, MTX-loaded SCPP-PS (MTX-SCPP-PS) displays much lower IC50 than those of MTX-PS and free MTX. Installing SCPP to polymersomes has no detrimental effect to their long blood circulation time but significantly increases drug accumulation in A549 tumor (5.3% injected dose per gram at 8 h post injection). Remarkably, SCPP-PS exhibits deep penetration in to A549 tumors. MTX-SCPP-PS completely inhibits tumor progression and significantly improves survival rates in mice bearing A549 lung tumor xenografts as compared to MTX-PS and free MTX groups (median survival time: 75 vs 45 and 38 d, respectively), without causing noticeable adverse effects. These results highlight that functionalization of nanomedicines with SCPP is a feasible strategy to achieve efficient and targeted tumor therapy.
Collapse
Affiliation(s)
- Weijing Yang
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Yifeng Xia
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Yuan Fang
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Jian Zhang
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Ru Cheng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Chao Deng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| |
Collapse
|
32
|
Cha BG, Kim J. Functional mesoporous silica nanoparticles for bio-imaging applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1515. [PMID: 29566308 DOI: 10.1002/wnan.1515] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/08/2018] [Accepted: 02/14/2018] [Indexed: 11/09/2022]
Abstract
Biomedical investigations using mesoporous silica nanoparticles (MSNs) have received significant attention because of their unique properties including controllable mesoporous structure, high specific surface area, large pore volume, and tunable particle size. These unique features make MSNs suitable for simultaneous diagnosis and therapy with unique advantages to encapsulate and load a variety of therapeutic agents, deliver these agents to the desired location, and release the drugs in a controlled manner. Among various clinical areas, nanomaterials-based bio-imaging techniques have advanced rapidly with the development of diverse functional nanoparticles. Due to the unique features of MSNs, an imaging agent supported by MSNs can be a promising system for developing targeted bio-imaging contrast agents with high structural stability and enhanced functionality that enable imaging of various modalities. Here, we review the recent achievements on the development of functional MSNs for bio-imaging applications, including optical imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), ultrasound imaging, and multimodal imaging for early diagnosis. With further improvement in noninvasive bio-imaging techniques, the MSN-supported imaging agent systems are expected to contribute to clinical applications in the future. This article is categorized under: Diagnostic Tools > In vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Bong Geun Cha
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon, Republic of Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| |
Collapse
|
33
|
Ni D, Jiang D, Ehlerding EB, Huang P, Cai W. Radiolabeling Silica-Based Nanoparticles via Coordination Chemistry: Basic Principles, Strategies, and Applications. Acc Chem Res 2018; 51:778-788. [PMID: 29489335 DOI: 10.1021/acs.accounts.7b00635] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As one of the most biocompatible and well-tolerated inorganic nanomaterials, silica-based nanoparticles (SiNPs) have received extensive attention over the last several decades. Recently, positron emission tomography (PET) imaging of radiolabeled SiNPs has provided a highly sensitive, noninvasive, and quantitative readout of the organ/tissue distribution, pharmacokinetics, and tumor targeting efficiency in vivo, which can greatly expedite the clinical translation of these promising NPs. Encouraged by the successful PET imaging of patients with metastatic melanoma using 124I-labeled ultrasmall SiNPs (known as Cornell dots or C dots) and their approval as an Investigational New Drug (IND) by the United States Food and Drug Administration, different radioisotopes (64Cu, 89Zr, 18F, 68Ga, 124I, etc.) have been reported to radiolabel a wide variety of SiNPs-based nanostructures, including dense silica (dSiO2), mesoporous silica (MSN), biodegradable mesoporous silica (bMSN), and hollow mesoporous silica nanoparticles (HMSN). With in-depth knowledge of coordination chemistry, abundant silanol groups (-Si-O-) on the silica surface or inside mesoporous channels not only can be directly used for chelator-free radiolabeling but also can be readily modified with the right chelators for chelator-based labeling. However, integrating these labeling strategies for constructing stably radiolabeled SiNPs with high efficiency has proven difficult because of the complexity of the involved key parameters, such as the choice of radioisotopes and chelators, nanostructures, and radiolabeling strategy. In this Account, we present an overview of recent progress in the development of radiolabeled SiNPs for cancer theranostics in the hope of speeding up their biomedical applications and potential translation into the clinic. We first introduce the basic principles and mechanisms for radiolabeling SiNPs via coordination chemistry, including general rules of selecting proper radioisotopes, engineering silica nanoplatforms (e.g., dSiO2, MSN, HMSN) accordingly, and chelation strategies for enhanced labeling efficiency and stability, on which our group has focused over the past decade. Generally, the medical applications guide the choice of specific SiNPs for radiolabeling by considering the inherent functionality of SiNPs. The radioisotopes can then be determined according to the amenability of the particular SiNPs for chelator-based or chelator-free radiolabeling to obtain high labeling stability in vivo, which is a prerequisite for PET to truly reflect the behavior of SiNPs since PET imaging detects the isotopes rather than nanoparticles. Next, we highlight several recent representative biomedical applications of radiolabeled SiNPs including molecular imaging to detect specific lesions, PET-guided drug delivery, SiNP-based theranostic cancer agents, and clinical studies. Finally, the challenges and prospects of radiolabeled SiNPs are briefly discussed toward clinical cancer research. We hope that this Account will clarify the recent progress on the radiolabeling of SiNPs for specific medical applications and generate broad interest in integrating nanotechnology and PET imaging. With several ongoing clinical trials, radiolabeled SiNPs offer great potential for future patient stratification and cancer management in clinical settings.
Collapse
Affiliation(s)
- Dalong Ni
- Departments of Radiology, Medical Physics, Biomedical Engineering, Materials Science & Engineering, and Pharmaceutical Sciences (Drug Delivery Core), University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Dawei Jiang
- Departments of Radiology, Medical Physics, Biomedical Engineering, Materials Science & Engineering, and Pharmaceutical Sciences (Drug Delivery Core), University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Emily B. Ehlerding
- Departments of Radiology, Medical Physics, Biomedical Engineering, Materials Science & Engineering, and Pharmaceutical Sciences (Drug Delivery Core), University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Weibo Cai
- Departments of Radiology, Medical Physics, Biomedical Engineering, Materials Science & Engineering, and Pharmaceutical Sciences (Drug Delivery Core), University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
34
|
Calcium carbonate-methylene blue nanohybrids for photodynamic therapy and ultrasound imaging. SCIENCE CHINA-LIFE SCIENCES 2018; 61:483-491. [DOI: 10.1007/s11427-017-9260-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/08/2017] [Indexed: 10/17/2022]
|
35
|
Jia B, Zhang X, Wang B, Chen M, Lv F, Wang S, Wang F. Dual-Modal Probe Based on Polythiophene Derivative for Pre- and Intraoperative Mapping of Lymph Nodes by SPECT/Optical Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6646-6651. [PMID: 29373014 DOI: 10.1021/acsami.8b01032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The metastatic spread of primary tumors to regional lymph nodes (LNs) is an important prognostic indicator for cancer staging and clinical therapy. Therefore, developing lymphatic mapping probes with improved accuracy and efficiency is of vital importance. Conjugated polymers (CPs) have been established as useful optical probes for sensitive biological and chemical detection. As a member of CPs family, polythiophene derivatives have drawn increasing attraction because of their superior photostability, signal amplification ability, and flexible structures for modification. In addition, these excellent properties allow the promising in vivo application to real-time LNs mapping. Here, we first reported a radiolabeled dual-modal probe based on the polythiophene derivative (99mTc-PTP) that was used for LNs mapping with high sensitivity and specificity by preoperative single-photon emission computed tomography imaging and intraoperative optical guidance. 99mTc-PTP exhibits an excellent radio-fluorescence guidance ability and a remarkable biocompatibility and holds great potential to be a powerful probe for noninvasive LNs mapping.
Collapse
Affiliation(s)
- Bing Jia
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University , Beijing 100191, P. R. China
- Medical and Healthy Analytical Center, Peking University Health Science Center , Beijing 100191, P. R. China
| | - Xin Zhang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University , Beijing 100191, P. R. China
| | - Bing Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Muhua Chen
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University , Beijing 100191, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University , Beijing 100191, P. R. China
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, P. R. China
| |
Collapse
|
36
|
Sun T, Jiang X, Wang Q, Chen Q, Lu Y, Liu L, Zhang Y, He X, Ruan C, Zhang Y, Guo Q, Liu Y, Jiang C. Substance P Mediated DGLs Complexing with DACHPt for Targeting Therapy of Glioma. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34603-34617. [PMID: 28925679 DOI: 10.1021/acsami.7b05997] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Currently, glioblastoma (glioma) is described as the deadliest brain tumor for its invasive natural with exceeding difficulty in surgical excision. Blood-brain barrier (BBB) can restrict the penetration of most therapeutic reagents including platinum (Pt)-based drugs-the most widely used reagents in clinical trials for their revolutionized cancer chemotherapy against a broad range of tumors. Nanomedicine represents a promising strategy for the intravenous delivery of Pt-based drugs into the brain. In this research, with the aim of malignant glioma treatment by Pt-based drugs, a novel nano drug carrier was developed: dendrigraft poly-L-lysines (DGLs) was PEGylated, linked with diethylenetriaminpentaacetic acid (DTPA) to complex (1,2-diaminocyclohexane)platinum(II) (DACHPt), and modified with Substance P (SP) as a BBB/glioma dual-targeting moiety. The preparation and characterization of the platform were exhibited in detail. The increased targeting capability and antitumor effect was found both in vitro and in vivo. The well-defined chemical composition, rigorously nanoscaled size and the first attempt of using SP as a BBB/glioma dual-targeting group were highlighted. The combined results suggest this strategy may serve as novel formulation for Pt-based drugs with the aim of clinical glioma treatment.
Collapse
Affiliation(s)
- Tao Sun
- Key Laboratory of Smart Drug Delivery of Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 200032, PR China
| | - Xutao Jiang
- Key Laboratory of Smart Drug Delivery of Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 200032, PR China
| | - Qingbing Wang
- Department of interventional Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200025, PR China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery of Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 200032, PR China
| | - Yifei Lu
- Key Laboratory of Smart Drug Delivery of Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 200032, PR China
| | - Lisha Liu
- Key Laboratory of Smart Drug Delivery of Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 200032, PR China
| | - Yu Zhang
- Key Laboratory of Smart Drug Delivery of Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 200032, PR China
| | - Xi He
- Key Laboratory of Smart Drug Delivery of Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 200032, PR China
| | - Chunhui Ruan
- Key Laboratory of Smart Drug Delivery of Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 200032, PR China
| | - Yujie Zhang
- Key Laboratory of Smart Drug Delivery of Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 200032, PR China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery of Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 200032, PR China
| | - Yaohua Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University , Harbin 150001, PR China
- Department of Neurosurgery, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 201620, PR China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery of Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 200032, PR China
| |
Collapse
|
37
|
Cai K, Wang AZ, Yin L, Cheng J. Bio-nano interface: The impact of biological environment on nanomaterials and their delivery properties. J Control Release 2017; 263:211-222. [DOI: 10.1016/j.jconrel.2016.11.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022]
|
38
|
Wang J, Ma Q, Hu XX, Liu H, Zheng W, Chen X, Yuan Q, Tan W. Autofluorescence-Free Targeted Tumor Imaging Based on Luminous Nanoparticles with Composition-Dependent Size and Persistent Luminescence. ACS NANO 2017; 11:8010-8017. [PMID: 28771315 DOI: 10.1021/acsnano.7b02643] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Optical bioimaging is an indispensable tool in modern biology and medicine, but the technique is susceptible to autofluorescence interference. Persistent nanophosphors provide an easy-to-perform and highly efficient means to eliminate tissue autofluorescence. However, direct synthesis of persistent nanophosphors with tunable properties to meet different bioimaging requirements remains largely unexplored. In this work, zinc gallogermanate (Zn1+xGa2-2xGexO4:Cr, 0 ≤ x ≤ 0.5, ZGGO:Cr) persistent luminescence nanoparticles with composition-dependent size and persistent luminescence are reported. The size of the ZGGO:Cr nanoparticles gradually increases with the increase of x in the chemical formula. Moreover, the intensity and decay time of persistent luminescence in ZGGO:Cr nanoparticles can also be fine-tuned by simply changing x in the formula. In vivo bioimaging tests demonstrate that ZGGO:Cr nanoparticles can efficiently eliminate tissue autofluorescence, and the nanoparticles also show good promise in long-term bioimaging as they can be easily reactivated in vivo. Furthermore, an aptamer-guided ZGGO:Cr bioprobe is constructed, and it displays excellent tumor-specific accumulation. The ZGGO:Cr nanoparticles are ideal for autofluorescence-free targeted bioimaging, indicating their great potential in monitoring cellular networks and construction of guiding systems for surgery.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Qinqin Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Xiao-Xiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, China
| | - Haoyang Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Wei Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou, Fujian 350002, China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou, Fujian 350002, China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, China
| |
Collapse
|
39
|
Catuogno S, Esposito CL. Aptamer Cell-Based Selection: Overview and Advances. Biomedicines 2017; 5:biomedicines5030049. [PMID: 28805744 PMCID: PMC5618307 DOI: 10.3390/biomedicines5030049] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
Aptamers are high affinity single-stranded DNA/RNA molecules, produced by a combinatorial procedure named SELEX (Systematic Evolution of Ligands by Exponential enrichment), that are emerging as promising diagnostic and therapeutic tools. Among selection strategies, procedures using living cells as complex targets (referred as "cell-SELEX") have been developed as an effective mean to generate aptamers for heavily modified cell surface proteins, assuring the binding of the target in its native conformation. Here we give an up-to-date overview on cell-SELEX technology, discussing the most recent advances with a particular focus on cancer cell targeting. Examples of the different protocol applications and post-SELEX strategies will be briefly outlined.
Collapse
Affiliation(s)
- Silvia Catuogno
- Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore", CNR, Naples 80100, Italy.
| | - Carla Lucia Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore", CNR, Naples 80100, Italy.
| |
Collapse
|
40
|
Xie P, Xin Q, Yang ST, He T, Huang Y, Zeng G, Ran M, Tang X. Skeleton labeled 13C-carbon nanoparticles for the imaging and quantification in tumor drainage lymph nodes. Int J Nanomedicine 2017; 12:4891-4899. [PMID: 28744123 PMCID: PMC5513824 DOI: 10.2147/ijn.s134493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Carbon nanoparticles (CNPs) have been widely used in tumor drainage lymph node (TDLN) imaging, drug delivery, photothermal therapy, and so on. However, during the theranostic applications, the accumulation efficiency of CNPs in target organs is unknown yet, which largely hinders the extension of CNPs into clinical uses. Herein, we prepared skeleton-labeled 13C-CNPs that had identical properties to commercial CNPs suspension injection (CNSI) for the imaging and quantification in TDLN. 13C-CNPs were prepared by arc discharge method, followed by homogenization with polyvinylpyrrolidone. The size distribution and morphology of 13C-CNPs were nearly the same as those of CNSI under transmission electron microscope. The hydrodynamic radii of both 13C-CNPs and CNSI were similar, too. According to X-ray photoelectron spectroscopy and infrared spectroscopy analyses, the chemical compositions and chemical states of elements were also nearly identical for both labeled and commercial forms. The skeleton labeling of 13C was reflected by the shift of G-band toward lower frequency in Raman spectra. 13C-CNPs showed competitive performance in TDLN imaging, where the three lymph nodes (popliteal lymph node, common iliac artery lymph node, and paraaortic lymph node) were stained black upon the injection into the hind extremity of mice. The direct quantification of 13C-CNPs indicated that 877 μg/g of 13C-CNPs accumulated in the first station of TDLN (popliteal lymph node). The second station of TDLN (common iliac artery lymph node) had even higher accumulation level (1,062 μg/g), suggesting that 13C-CNPs migrated efficiently along lymphatic vessel. The value decreased to 405 μg/g in the third station of TDLN (paraaortic lymph node). Therefore, the 13C-CNPs provided quantitative approach to image and quantify CNSI in biological systems. The implication in biomedical applications and biosafety evaluations of CNSI is discussed.
Collapse
Affiliation(s)
- Ping Xie
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu
| | - Qian Xin
- Chongqing Lummy Pharmaceutical Co., Ltd, Chongqing
| | - Sheng-Tao Yang
- College of Chemistry & Environment Protection Engineering, Southwest University for Nationalities
| | - Tiantian He
- Chongqing Lummy Pharmaceutical Co., Ltd, Chongqing
- College of Life Sciences, Sichuan Normal University
| | | | - Guangfu Zeng
- Chongqing Lummy Pharmaceutical Co., Ltd, Chongqing
- College of Life Sciences, Sichuan Normal University
| | - Maosheng Ran
- Chongqing Lummy Pharmaceutical Co., Ltd, Chongqing
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Xiaohai Tang
- Chongqing Lummy Pharmaceutical Co., Ltd, Chongqing
| |
Collapse
|
41
|
Niu J, Fan J, Wang X, Xiao Y, Xie X, Jiao X, Sun C, Tang B. Simultaneous Fluorescence and Chemiluminescence Turned on by Aggregation-Induced Emission for Real-Time Monitoring of Endogenous Superoxide Anion in Live Cells. Anal Chem 2017; 89:7210-7215. [DOI: 10.1021/acs.analchem.7b01425] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jinye Niu
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
- School
of Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Jilin Fan
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xu Wang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yongsheng Xiao
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xilei Xie
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xiaoyun Jiao
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Chuanzhi Sun
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
42
|
Bates PJ, Reyes-Reyes EM, Malik MT, Murphy EM, O'Toole MG, Trent JO. G-quadruplex oligonucleotide AS1411 as a cancer-targeting agent: Uses and mechanisms. Biochim Biophys Acta Gen Subj 2017; 1861:1414-1428. [PMID: 28007579 DOI: 10.1016/j.bbagen.2016.12.015] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AS1411 is a 26-mer G-rich DNA oligonucleotide that forms a variety of G-quadruplex structures. It was identified based on its cancer-selective antiproliferative activity and subsequently determined to be an aptamer to nucleolin, a multifunctional protein that preferentially binds quadruplex nucleic acids and which is present at high levels on the surface of cancer cells. AS1411 has exceptionally efficient cellular internalization compared to non-quadruplex DNA sequences. SCOPE OF REVIEW Recent developments related to AS1411 will be examined, with a focus on its use for targeted delivery of therapeutic and imaging agents. MAJOR CONCLUSIONS Numerous research groups have used AS1411 as a targeting agent to deliver nanoparticles, oligonucleotides, and small molecules into cancer cells. Studies in animal models have demonstrated that AS1411-linked materials can accumulate selectively in tumors following systemic administration. The mechanism underlying the cancer-targeting ability of AS1411 is not completely understood, but recent studies suggest a model that involves: (1) initial uptake by macropinocytosis, a form of endocytosis prevalent in cancer cells; (2) stimulation of macropinocytosis by a nucleolin-dependent mechanism resulting in further uptake; and (3) disruption of nucleolin-mediated trafficking and efflux leading to cargoes becoming trapped inside cancer cells. SIGNIFICANCE Human trials have indicated that AS1411 is safe and can induce durable remissions in a few patients, but new strategies are needed to maximize its clinical impact. A better understanding of the mechanisms by which AS1411 targets and kills cancer cells may hasten the development of promising technologies using AS1411-linked nanoparticles or conjugates for cancer-targeted therapy and imaging. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Paula J Bates
- Department of Medicine, University of Louisville, USA; James Graham Brown Cancer Center, University of Louisville, USA.
| | | | - Mohammad T Malik
- Department of Medicine, University of Louisville, USA; James Graham Brown Cancer Center, University of Louisville, USA
| | - Emily M Murphy
- Department of Biomedical Engineering, University of Louisville, USA
| | - Martin G O'Toole
- Department of Biomedical Engineering, University of Louisville, USA
| | - John O Trent
- Department of Medicine, University of Louisville, USA; James Graham Brown Cancer Center, University of Louisville, USA
| |
Collapse
|
43
|
Goel S, England CG, Chen F, Cai W. Positron emission tomography and nanotechnology: A dynamic duo for cancer theranostics. Adv Drug Deliv Rev 2017; 113:157-176. [PMID: 27521055 PMCID: PMC5299094 DOI: 10.1016/j.addr.2016.08.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 12/18/2022]
Abstract
Development of novel imaging probes for cancer diagnosis is critical for early disease detection and management. The past two decades have witnessed a surge in the development and evolution of radiolabeled nanoparticles as a new frontier in personalized cancer nanomedicine. The dynamic synergism of positron emission tomography (PET) and nanotechnology combines the sensitivity and quantitative nature of PET with the multifunctionality and tunability of nanomaterials, which can help overcome certain key challenges in the field. In this review, we discuss the recent advances in radionanomedicine, exemplifying the ability to tailor the physicochemical properties of nanomaterials to achieve optimal in vivo pharmacokinetics and targeted molecular imaging in living subjects. Innovations in development of facile and robust radiolabeling strategies and biomedical applications of such radionanoprobes in cancer theranostics are highlighted. Imminent issues in clinical translation of radiolabeled nanomaterials are also discussed, with emphasis on multidisciplinary efforts needed to quickly move these promising agents from bench to bedside.
Collapse
Affiliation(s)
- Shreya Goel
- Materials Science Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Christopher G England
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Feng Chen
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Weibo Cai
- Materials Science Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA.
| |
Collapse
|
44
|
Selective in vivo metabolic cell-labeling-mediated cancer targeting. Nat Chem Biol 2017; 13:415-424. [PMID: 28192414 DOI: 10.1038/nchembio.2297] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 12/05/2016] [Indexed: 12/23/2022]
Abstract
Distinguishing cancer cells from normal cells through surface receptors is vital for cancer diagnosis and targeted therapy. Metabolic glycoengineering of unnatural sugars provides a powerful tool to manually introduce chemical receptors onto the cell surface; however, cancer-selective labeling still remains a great challenge. Herein we report the design of sugars that can selectively label cancer cells both in vitro and in vivo. Specifically, we inhibit the cell-labeling activity of tetraacetyl-N-azidoacetylmannosamine (Ac4ManAz) by converting its anomeric acetyl group to a caged ether bond that can be selectively cleaved by cancer-overexpressed enzymes and thus enables the overexpression of azido groups on the surface of cancer cells. Histone deacetylase and cathepsin L-responsive acetylated azidomannosamine, one such enzymatically activatable Ac4ManAz analog developed, mediated cancer-selective labeling in vivo, which enhanced tumor accumulation of a dibenzocyclooctyne-doxorubicin conjugate via click chemistry and enabled targeted therapy against LS174T colon cancer, MDA-MB-231 triple-negative breast cancer and 4T1 metastatic breast cancer in mice.
Collapse
|
45
|
Mu Q, Wang H, Zhang M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opin Drug Deliv 2017; 14:123-136. [PMID: 27401941 PMCID: PMC5835024 DOI: 10.1080/17425247.2016.1208650] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/29/2016] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Metastatic breast cancer is one of the most devastating cancers that have no cure. Many therapeutic and diagnostic strategies have been extensively studied in the past decade. Among these strategies, cancer nanotechnology has emerged as a promising strategy in preclinical studies by enabling early identification of primary tumors and metastases, and by effective killing of cancer cells. Areas covered: This review covers the recent progress made in targeting and imaging of metastatic breast cancer with nanoparticles, and treatment using nanoparticle-enabled chemo-, gene, photothermal- and radio-therapies. This review also discusses recent developments of nanoparticle-enabled stem cell therapy and immunotherapy. Expert opinion: Nanotechnology is expected to play important roles in modern therapy for cancers, including metastatic breast cancer. Nanoparticles are able to target and visualize metastasis in various organs, and deliver therapeutic agents. Through targeting cancer stem cells, nanoparticles are able to treat resistant tumors with minimal toxicity to healthy tissues/organs. Nanoparticles are also able to activate immune cells to eliminate tumors. Owing to their multifunctional, controllable and trackable features, nanotechnology-based imaging and therapy could be a highly potent approach for future cancer research and treatment.
Collapse
Affiliation(s)
- Qingxin Mu
- Departments of Materials Science and Engineering, University of Washington, Seattle, 98195 USA
| | - Hui Wang
- Departments of Materials Science and Engineering, University of Washington, Seattle, 98195 USA
| | - Miqin Zhang
- Departments of Materials Science and Engineering, University of Washington, Seattle, 98195 USA
| |
Collapse
|
46
|
Lécuyer T, Teston E, Ramirez-Garcia G, Maldiney T, Viana B, Seguin J, Mignet N, Scherman D, Richard C. Chemically engineered persistent luminescence nanoprobes for bioimaging. Theranostics 2016; 6:2488-2524. [PMID: 27877248 PMCID: PMC5118608 DOI: 10.7150/thno.16589] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/18/2016] [Indexed: 12/27/2022] Open
Abstract
Imaging nanoprobes are a group of nanosized agents developed for providing improved contrast for bioimaging. Among various imaging probes, optical sensors capable of following biological events or progresses at the cellular and molecular levels are actually actively developed for early detection, accurate diagnosis, and monitoring of the treatment of diseases. The optical activities of nanoprobes can be tuned on demand by chemists by engineering their composition, size and surface nature. This review will focus on researches devoted to the conception of nanoprobes with particular optical properties, called persistent luminescence, and their use as new powerful bioimaging agents in preclinical assays.
Collapse
Affiliation(s)
- Thomas Lécuyer
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258 CNRS, U 1022 Inserm, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
- Chimie-ParisTech, PSL, 75005 Paris, France
| | - Eliott Teston
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258 CNRS, U 1022 Inserm, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
- Chimie-ParisTech, PSL, 75005 Paris, France
| | - Gonzalo Ramirez-Garcia
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258 CNRS, U 1022 Inserm, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
- Chimie-ParisTech, PSL, 75005 Paris, France
| | - Thomas Maldiney
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258 CNRS, U 1022 Inserm, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
- Chimie-ParisTech, PSL, 75005 Paris, France
| | - Bruno Viana
- Chimie-ParisTech, PSL, 75005 Paris, France
- Institut de Recherche de Chimie-Paris, CNRS UMR 8247, Chimie-ParisTech, 75005 Paris, France
| | - Johanne Seguin
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258 CNRS, U 1022 Inserm, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
- Chimie-ParisTech, PSL, 75005 Paris, France
| | - Nathalie Mignet
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258 CNRS, U 1022 Inserm, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
- Chimie-ParisTech, PSL, 75005 Paris, France
| | - Daniel Scherman
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258 CNRS, U 1022 Inserm, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
- Chimie-ParisTech, PSL, 75005 Paris, France
| | - Cyrille Richard
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258 CNRS, U 1022 Inserm, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
- Chimie-ParisTech, PSL, 75005 Paris, France
| |
Collapse
|
47
|
Cheng L, Kamkaew A, Shen S, Valdovinos HF, Sun H, Hernandez R, Goel S, Liu T, Thompson CR, Barnhart TE, Liu Z, Cai W. Facile Preparation of Multifunctional WS 2 /WO x Nanodots for Chelator-Free 89 Zr-Labeling and In Vivo PET Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5750-5758. [PMID: 27593416 PMCID: PMC5093087 DOI: 10.1002/smll.201601696] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/08/2016] [Indexed: 05/18/2023]
Abstract
While position emission tomography (PET) is an important molecular imaging technique for both preclinical research and clinical disease diagnosis/prognosis, chelator-free radiolabeling has emerged as a promising alternative approach to label biomolecules or nanoprobes in a facile way. Herein, starting from bottom-up synthesized WS2 nanoflakes, this study fabricates a unique type of WS2 /WOx nanodots, which can function as inherent hard oxygen donor for stable radiolabeling with Zirconium-89 isotope (89 Zr). Upon simply mixing, 89 Zr can be anchored on the surface of polyethylene glycol (PEG) modified WS2 /WOx (WS2 /WOx -PEG) nanodots via a chelator-free method with surprisingly high labeling yield and great stability. A higher degree of oxidation in the WS2 /WOx -PEG sample (WS2 /WOx (0.4)) produces more electron pairs, which would be beneficial for chelator-free labeling of 89 Zr with higher yields, suggesting the importance of surface chemistry and particle composition to the efficiency of chelator-free radiolabeling. Such 89 Zr-WS2 /WOx (0.4)-PEG nanodots are found to be an excellent PET contrast agent for in vivo imaging of tumors upon intravenous administration, or mapping of draining lymph nodes after local injection.
Collapse
Affiliation(s)
- Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
- Department of Radiology, University of Wisconsin-Madison, WI, 53705, USA
| | - Anyanee Kamkaew
- Department of Radiology, University of Wisconsin-Madison, WI, 53705, USA
| | - Sida Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hector F Valdovinos
- Department of Medical Physics, University of Wisconsin-Madison, WI, 53705, USA
| | - Haiyan Sun
- Department of Radiology, University of Wisconsin-Madison, WI, 53705, USA
| | - Reinier Hernandez
- Department of Radiology, University of Wisconsin-Madison, WI, 53705, USA
| | - Shreya Goel
- Materials Science Program, University of Wisconsin-Madison, WI, 53705, USA
| | - Teng Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Cyrus R Thompson
- Department of Radiology, University of Wisconsin-Madison, WI, 53705, USA
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin-Madison, WI, 53705, USA
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, WI, 53705, USA.
- Department of Medical Physics, University of Wisconsin-Madison, WI, 53705, USA.
- Materials Science Program, University of Wisconsin-Madison, WI, 53705, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA.
| |
Collapse
|
48
|
Wang H, Tang L, Liu Y, Dobrucki IT, Dobrucki LW, Yin L, Cheng J. In Vivo Targeting of Metabolically Labeled Cancers with Ultra-Small Silica Nanoconjugates. Am J Cancer Res 2016; 6:1467-76. [PMID: 27375793 PMCID: PMC4924513 DOI: 10.7150/thno.16003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/20/2016] [Indexed: 11/17/2022] Open
Abstract
Unnatural sugar-mediated metabolic labeling of cancer cells, coupled with efficient Click chemistry, has shown great potential for in vivo imaging and cancer targeting. Thus far, chemical labeling of cancer cells has been limited to the small-sized azido groups, with the large-sized and highly hydrophobic dibenzocyclooctyne (DBCO) being correspondingly used as the targeting ligand. However, surface modification of nanomedicines with DBCO groups often suffers from low ligand density, difficult functionalization, and impaired physiochemical properties. Here we report the development of DBCO-bearing unnatural sugars that could directly label LS174T colon cancer cells with DBCO groups and subsequently mediate cancer-targeted delivery of azido-modified silica nanoconjugates with easy functionalization and high azido density in vitro and in vivo. This study, for the first time, demonstrates the feasibility of metabolic labeling of cancer cells with large-sized DBCO groups for subsequent, efficient targeting of azido-modified nanomedicines.
Collapse
|
49
|
Wang H, Gauthier M, Kelly JR, Miller RJ, Xu M, O'Brien WD, Cheng J. Targeted Ultrasound-Assisted Cancer-Selective Chemical Labeling and Subsequent Cancer Imaging using Click Chemistry. Angew Chem Int Ed Engl 2016; 55:5452-6. [PMID: 27010510 PMCID: PMC4918225 DOI: 10.1002/anie.201509601] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/29/2016] [Indexed: 01/01/2023]
Abstract
Metabolic sugar labeling followed by the use of reagent-free click chemistry is an established technique for in vitro cell targeting. However, selective metabolic labeling of the target tissues in vivo remains a challenge to overcome, which has prohibited the use of this technique for targeted in vivo applications. Herein, we report the use of targeted ultrasound pulses to induce the release of tetraacetyl N-azidoacetylmannosamine (Ac4 ManAz) from microbubbles (MBs) and its metabolic expression in the cancer area. Ac4 ManAz-loaded MBs showed great stability under physiological conditions, but rapidly collapsed in the presence of tumor-localized ultrasound pulses. The released Ac4 ManAz from MBs was able to label 4T1 tumor cells with azido groups and significantly improved the tumor accumulation of dibenzocyclooctyne (DBCO)-Cy5 by subsequent click chemistry. We demonstrated for the first time that Ac4 ManAz-loaded MBs coupled with the use of targeted ultrasound could be a simple but powerful tool for in vivo cancer-selective labeling and targeted cancer therapies.
Collapse
Affiliation(s)
- Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, USA
| | - Marianne Gauthier
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jamie R Kelly
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rita J Miller
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ming Xu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, USA
| | - William D O'Brien
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
50
|
Wang H, Gauthier M, Kelly JR, Miller RJ, Xu M, O'Brien WD, Cheng J. Targeted Ultrasound‐Assisted Cancer‐Selective Chemical Labeling and Subsequent Cancer Imaging using Click Chemistry. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hua Wang
- Department of Materials Science and Engineering University of Illinois at Urbana-Champaign USA
| | - Marianne Gauthier
- Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Jamie R. Kelly
- Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Rita J. Miller
- Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Ming Xu
- Department of Materials Science and Engineering University of Illinois at Urbana-Champaign USA
| | - William D. O'Brien
- Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering University of Illinois at Urbana-Champaign USA
| |
Collapse
|