1
|
Nishi T, Sakamoto N, Sekizawa K, Morikawa T, Sato S. CO 2-to-CO Conversion with Over 10 % Efficiency Using Earth Abundant System in a Single-Compartment Reactor with Oxygen Tolerant Mn Complex Catalyst. CHEMSUSCHEM 2025; 18:e202401082. [PMID: 39021290 DOI: 10.1002/cssc.202401082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
The direct conversion of CO2 in the presence of O2 to value-added chemicals is a potentially important cost-effective solar-driven CO2 reduction technology. The present work demonstrates the solar-powered conversion of CO2 to CO with greater than 10 % efficiency using a Mn complex cathode and an Fe-Ni anode in a single-compartment reactor without an ion exchange membrane in conjunction with a Si solar cell. Reactors separated by ion exchange membranes are typically used to prevent any effects of oxygen generated by the counter electrode. However, the present Mn complex catalyst maintained its activity even in the presence of 15 % O2. Operando surface-enhanced Raman spectroscopy established that the present Mn catalyst preferentially reacted with CO2 without adsorbing O2. This unique characteristic enabled solar-driven CO2 reduction using a single-compartment reactor. In contrast, catalytic metals such as Ag tend to lose activity in such systems as a consequence of reaction with oxygen produced at the anode.
Collapse
Affiliation(s)
- Teppei Nishi
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-11992, Japan
| | - Naonari Sakamoto
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-11992, Japan
| | - Keita Sekizawa
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-11992, Japan
| | - Takeshi Morikawa
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-11992, Japan
| | - Shunsuke Sato
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-11992, Japan
| |
Collapse
|
2
|
Droghetti F, Amati A, Pascale F, Crochet A, Pastore M, Ruggi A, Natali M. Catalytic CO 2 Reduction with Heptacoordinated Polypyridine Complexes: Switching the Selectivity via Metal Replacement. CHEMSUSCHEM 2024; 17:e202300737. [PMID: 37846888 DOI: 10.1002/cssc.202300737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
The discovery of molecular catalysts for the CO2 reduction reaction (CO2 RR) in the presence of water, which are both effective and selective towards the generation of carbon-based products, is a critical task. Herein we report the catalytic activity towards the CO2 RR in acetonitrile/water mixtures by a cobalt complex and its iron analog both featuring the same redox-active ligand and an unusual seven-coordination environment. Bulk electrolysis experiments show that the cobalt complex mainly yields formate (52 % selectivity at an applied potential of -2.0 V vs Fc+ /Fc and 1 % H2 O) or H2 (up to 86 % selectivity at higher applied bias and water content), while the iron complex always delivers CO as the major product (selectivity >74 %). The different catalytic behavior is further confirmed under photochemical conditions with the [Ru(bpy)3 ]2+ sensitizer (bpy=2,2'-bipyridine) and N,N-diisopropylethylamine as electron donor, where the cobalt complex leads to preferential H2 formation (up to 89 % selectivity), while the iron analog quantitatively generates CO (up to 88 % selectivity). This is ascribed to a preference towards a metal-hydride vs. a metal-carboxyl pathway for the cobalt and the iron complex, respectively, and highlights how metal replacement may effectively impact on the reactivity of transition metal complexes towards solar fuel formation.
Collapse
Affiliation(s)
- Federico Droghetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Agnese Amati
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Fabien Pascale
- Laboratoire de Physique et Chimie Théoretiques, University of Lorraine & CNRS, 54000, Nancy, France
| | - Aurélien Crochet
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Mariachiara Pastore
- Laboratoire de Physique et Chimie Théoretiques, University of Lorraine & CNRS, 54000, Nancy, France
| | - Albert Ruggi
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Mirco Natali
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
3
|
Bari GAKMR, Jeong JH. Comprehensive Insights and Advancements in Gel Catalysts for Electrochemical Energy Conversion. Gels 2024; 10:63. [PMID: 38247786 PMCID: PMC10815738 DOI: 10.3390/gels10010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Continuous worldwide demands for more clean energy urge researchers and engineers to seek various energy applications, including electrocatalytic processes. Traditional energy-active materials, when combined with conducting materials and non-active polymeric materials, inadvertently leading to reduced interaction between their active and conducting components. This results in a drop in active catalytic sites, sluggish kinetics, and compromised mass and electronic transport properties. Furthermore, interaction between these materials could increase degradation products, impeding the efficiency of the catalytic process. Gels appears to be promising candidates to solve these challenges due to their larger specific surface area, three-dimensional hierarchical accommodative porous frameworks for active particles, self-catalytic properties, tunable electronic and electrochemical properties, as well as their inherent stability and cost-effectiveness. This review delves into the strategic design of catalytic gel materials, focusing on their potential in advanced energy conversion and storage technologies. Specific attention is given to catalytic gel material design strategies, exploring fundamental catalytic approaches for energy conversion processes such as the CO2 reduction reaction (CO2RR), oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and more. This comprehensive review not only addresses current developments but also outlines future research strategies and challenges in the field. Moreover, it provides guidance on overcoming these challenges, ensuring a holistic understanding of catalytic gel materials and their role in advancing energy conversion and storage technologies.
Collapse
Affiliation(s)
- Gazi A. K. M. Rafiqul Bari
- School of Mechanical Smart and Industrial Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Jae-Ho Jeong
- School of Mechanical Smart and Industrial Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Wu X, Li QH, Zuo S, Li Y, Yi X, Yuan LB, Zheng L, Zhang J, Dong J, Wang S, Zhang H, Zhang J. Bioinspired Polyoxo-titanium Cluster for Greatly Enhanced Solar-Driven CO 2 Reduction. NANO LETTERS 2023; 23:11562-11568. [PMID: 38054737 DOI: 10.1021/acs.nanolett.3c03304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Developing artificial enzymes with excellent catalytic activities and uncovering the structural and chemical determinants remain a grand challenge. Discrete titanium-oxo clusters with well-defined coordination environments at the atomic level can mimic the pivotal catalytic center of natural enzymes and optimize the charge-transfer kinetics. Herein, we report the precise structural tailoring of a self-assembled tetrahedral Ti4Mn3-cluster for photocatalytic CO2 reduction and realize the selective evolution of CO over specific sites. Experiments and theoretical simulation demonstrate that the high catalytic performance of the Ti4Mn3-cluster should be related to the synergy between active Mn sites and the surrounding functional microenvironment. The reduced energy barrier of the CO2 photoreduction reaction and moderate adsorption strength of CO* are beneficial for the high selective evolution of CO. This work provides a molecular scale accurate structural model to give insight into artificial enzyme for CO2 photoreduction.
Collapse
Affiliation(s)
- Xin Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Shouwei Zuo
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yang Li
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xiaodong Yi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lv-Bing Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, PR China
| | - Huabin Zhang
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
5
|
Singh KK, Gerke CS, Saund SS, Zito AM, Siegler MA, Thoi VS. CO 2 Activation with Manganese Tricarbonyl Complexes through an H-Atom Responsive Benzimidazole Ligand. Chemistry 2023; 29:e202300796. [PMID: 37519094 DOI: 10.1002/chem.202300796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Herein, we report the synthesis and characterization of two manganese tricarbonyl complexes, MnI (HL)(CO)3 Br (1 a-Br) and MnI (MeL)(CO)3 Br (1 b-Br) (where HL=2-(2'-pyridyl)benzimidazole; MeL=1-methyl-2-(2'-pyridy)benzimidazole) and assayed their electrocatalytic properties for CO2 reduction. A redox-active pyridine benzimidazole ancillary ligand in complex 1 a-Br displayed unique hydrogen atom transfer ability to facilitate electrocatalytic CO2 conversion at a markedly lower reduction potential than that observed for 1 b-Br. Notably, a one-electron reduction of 1 a-Br yields a structurally characterized H-bonded binuclear Mn(I) adduct (2 a') rather than the typically observed Mn(0)-Mn(0) dimer, suggesting a novel method for CO2 activation. Combining advanced electrochemical, spectroscopic, and single crystal X-ray diffraction techniques, we demonstrate the use of an H-atom responsive ligand may reveal an alternative, low-energy pathway for CO2 activation by an earth-abundant metal complex catalyst.
Collapse
Affiliation(s)
- Kundan K Singh
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Carter S Gerke
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Simran S Saund
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Alessandra M Zito
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - V Sara Thoi
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| |
Collapse
|
6
|
Kuttassery F, Ohsaki Y, Thomas A, Kamata R, Ebato Y, Kumagai H, Nakazato R, Sebastian A, Mathew S, Tachibana H, Ishitani O, Inoue H. A Molecular Z-Scheme Artificial Photosynthetic System Under the Bias-Free Condition for CO 2 Reduction Coupled with Two-electron Water Oxidation: Photocatalytic Production of CO/HCOOH and H 2 O 2. Angew Chem Int Ed Engl 2023; 62:e202308956. [PMID: 37493175 DOI: 10.1002/anie.202308956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023]
Abstract
Bio-inspired molecular-engineered systems have been extensively investigated for the half-reactions of H2 O oxidation or CO2 reduction with sacrificial electron donors/acceptors. However, there has yet to be reported a device for dye-sensitized molecular photoanodes coupled with molecular photocathodes in an aqueous solution without the use of sacrificial reagents. Herein, we will report the integration of SnIV - or AlIII -tetrapyridylporphyrin (SnTPyP or AlTPyP) decorated tin oxide particles (SnTPyP/SnO2 or AlTPyP/SnO2 ) photoanode with the dye-sensitized molecular photocathode on nickel oxide particles containing [Ru(diimine)3 ]2+ as the light-harvesting unit and [Ru(diimine)(CO)2 Cl2 ] as the catalyst unit covalently connected and fixed within poly-pyrrole layer (RuCAT-RuC2 -PolyPyr-PRu/NiO). The simultaneous irradiation of the two photoelectrodes with visible light resulted in H2 O2 on the anode and CO, HCOOH, and H2 on the cathode with high Faradaic efficiencies in purely aqueous conditions without any applied bias is the first example of artificial photosynthesis with only two-electron redox reactions.
Collapse
Affiliation(s)
| | - Yutaka Ohsaki
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Arun Thomas
- Department of Chemistry, St. Stephen's College, Uzhavoor, Kerala, 686634, India
| | - Ryutaro Kamata
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro, Tokyo, 152-8550, Japan
| | - Yosuke Ebato
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro, Tokyo, 152-8550, Japan
| | - Hiromu Kumagai
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan
| | - Ryosuke Nakazato
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Abin Sebastian
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Siby Mathew
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Hiroshi Tachibana
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Osamu Ishitani
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro, Tokyo, 152-8550, Japan
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Haruo Inoue
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
7
|
Yan T, Chen X, Kumari L, Lin J, Li M, Fan Q, Chi H, Meyer TJ, Zhang S, Ma X. Multiscale CO 2 Electrocatalysis to C 2+ Products: Reaction Mechanisms, Catalyst Design, and Device Fabrication. Chem Rev 2023; 123:10530-10583. [PMID: 37589482 DOI: 10.1021/acs.chemrev.2c00514] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Electrosynthesis of value-added chemicals, directly from CO2, could foster achievement of carbon neutral through an alternative electrical approach to the energy-intensive thermochemical industry for carbon utilization. Progress in this area, based on electrogeneration of multicarbon products through CO2 electroreduction, however, lags far behind that for C1 products. Reaction routes are complicated and kinetics are slow with scale up to the high levels required for commercialization, posing significant problems. In this review, we identify and summarize state-of-art progress in multicarbon synthesis with a multiscale perspective and discuss current hurdles to be resolved for multicarbon generation from CO2 reduction including atomistic mechanisms, nanoscale electrocatalysts, microscale electrodes, and macroscale electrolyzers with guidelines for future research. The review ends with a cross-scale perspective that links discrepancies between different approaches with extensions to performance and stability issues that arise from extensions to an industrial environment.
Collapse
Affiliation(s)
- Tianxiang Yan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyi Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lata Kumari
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianlong Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Minglu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qun Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Haoyuan Chi
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sheng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
8
|
Cohen KY, Nedd DG, Evans R, Bocarsly AB. Mechanistic insights into CO 2 conversion to CO using cyano manganese complexes. Dalton Trans 2023. [PMID: 37183860 DOI: 10.1039/d3dt00891f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Without the use of a photosensitizer, [Mn(bpy)(CO)3(CN)] (MnCN) can photochemically form [Mn(bpy)(CO)3]-, the active species for CO2 reduction. While cases of the axial X-ligand dissociating upon irradiation of fac-[M(N-N)(CO)3X] complexes (M = Mn or Re; N-N = bipyridine (bpy) ligand; X = halogen or pseudohalogen) are well documented, the axial cyanide ligand is retained when either [Mn(bpy)(CO)3(CN)] or [Mn(mesbpy)(CO)3(CN)], MnCN(mesbpy), are irradiated anaerobically. Infrared and UV-vis spectroscopies indicate the formation of [Mn(bpy)(CO)2(MeCN)(CN)] (s-MnCN) as the primary product during the irradiation of MnCN. An in-depth analysis of the photochemical mechanism for the formation of [Mn(bpy)(CO)3]- from MnCN is presented. MnCN(mesbpy) is too sterically hindered to undergo the same photochemical mechanism as MnCN. However, MnCN(mesbpy) is found to be electrocatalytically active for CO2 reduction to CO. Thus providing an interesting distinction between photochemical and electrochemical charge transfer.
Collapse
Affiliation(s)
- Kailyn Y Cohen
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA.
| | - Delaan G Nedd
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA.
| | - Rebecca Evans
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA.
| | - Andrew B Bocarsly
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA.
| |
Collapse
|
9
|
Scherpf T, Carr CR, Donnelly LJ, Dubrawski ZS, Gelfand BS, Piers WE. A Mesoionic Carbene-Pyridine Bidentate Ligand That Improves Stability in Electrocatalytic CO 2 Reduction by a Molecular Manganese Catalyst. Inorg Chem 2022; 61:13644-13656. [PMID: 35981323 DOI: 10.1021/acs.inorgchem.2c02689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tricarbonyl Group 7 complexes have a longstanding history as efficacious CO2 electroreduction catalysts. Typically, these complexes feature an auxiliary 2,2'-bipyridine ligand that assists in redox steps by delocalizing the electron density into the ligand orbitals. While this feature lends to an accessible redox potential for CO2 electroreduction, it also presents challenges for electrocatalysis with Mn because the electron density is removed from metal-ligand bonding orbitals. The results presented here thus introduce a mesoionic carbene (MIC) as a potent ligand platform to promote Mn-based electrocatalysis. The strong σ donation of the N,C-bidentate MIC is shown to help centralize the electron density on the Mn center while also maintaining relevant redox potentials for CO2 electroreduction. Mechanistic investigation supports catalytic turnover at two operative potentials separated by 400 mV. In the low operating potential regime at -1.54 V, Mn(0) species catalyze CO2 to CO and CO32-, which has a maximum rate of 7 ± 5 s-1 and is stable for up to 30.7 h. At higher operating potential at -1.94 V, "Mn(-1)" catalyzes CO2 to CO and H2O with faster turnovers of 200 ± 100 s-1, with the trade-off being less stability at 6.7 h. The relative stabilities of Mn complexes bearing MIC and 4,4'-di-tert-butyl-2,2'-bipyridine were compared by evaluation under the same electrolysis conditions and therefore elucidated that the MIC promotes longevity for CO evolution throughout a 5 h period.
Collapse
Affiliation(s)
- Thorsten Scherpf
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Cody R Carr
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Laurie J Donnelly
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Zachary S Dubrawski
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Benjamin S Gelfand
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Warren E Piers
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
10
|
Siritanaratkul B, Eagle C, Cowan AJ. Manganese Carbonyl Complexes as Selective Electrocatalysts for CO 2 Reduction in Water and Organic Solvents. Acc Chem Res 2022; 55:955-965. [PMID: 35285618 PMCID: PMC9007415 DOI: 10.1021/acs.accounts.1c00692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The electrochemical
reduction
of CO2 provides a way
to sustainably generate carbon-based fuels and feedstocks. Molecular
CO2 reduction electrocatalysts provide tunable reaction
centers offering an approach to control the selectivity of catalysis.
Manganese carbonyl complexes, based on [Mn(bpy)(CO)3Br]
and its derivatives (bpy = 2,2′-bipyridine), are particularly
interesting due to their ease of synthesis and the use of a first-row
earth-abundant transition metal. [Mn(bpy)(CO)3Br] was first
shown to be an active and selective catalyst for reducing CO2 to CO in organic solvents in 2011. Since then, manganese carbonyl
catalysts have been widely studied with numerous reports of their
use as electrocatalysts and photocatalysts and studies of their mechanism. This class of Mn catalysts only shows CO2 reduction
activity with the addition of weak Brønsted acids. Perhaps surprisingly,
early reports showed increased turnover frequencies as the acid strength
is increased without a loss in selectivity toward CO evolution. It
may have been expected that the competing hydrogen evolution
reaction could have led to lower selectivity. Inspired by these works
we began to explore if the catalyst would work in protic solvents,
namely, water, and to explore the pH range over which it can operate.
Here we describe the early studies from our laboratory that first
demonstrated the use of manganese carbonyl complexes in water and
then go on to discuss wider developments on the use of these catalysts
in water, highlighting their potential as catalysts for use in aqueous
CO2 electrolyzers. Key to the excellent selectivity
of these catalysts in the presence
of Brønsted acids is a proton-assisted CO2 binding
mechanism, where for the acids widely studied, lower pKa values actually favor CO2 binding over Mn–H
formation, a precursor to H2 evolution. Here we discuss
the wider literature before focusing on our own contributions in validating
this previously proposed mechanism through the use of vibrational
sum frequency generation (VSFG) spectroelectrochemistry. This allowed
us to study [Mn(bpy)(CO)3Br] while it is at, or near, the
electrode surface, which provided a way to identify new catalytic
intermediates and also confirm that proton-assisted CO2 binding operates in both the “dimer” and primary (via
[Mn(bpy)(CO)3]−) pathways. Understanding
the mechanism of how these highly selective catalysts operate is important
as we propose that the Mn complexes will be valuable models to guide
the development of new proton/acid tolerant CO2 reduction
catalysts.
Collapse
Affiliation(s)
- Bhavin Siritanaratkul
- Stephenson Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, U.K
| | - Catherine Eagle
- Stephenson Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, U.K
| | - Alexander J. Cowan
- Stephenson Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, U.K
| |
Collapse
|
11
|
den Hartog S, Neukermans S, Samanipour M, Ching HV, Breugelmans T, Hubin A, Ustarroz J. Electrocatalysis under a magnetic lens: A combined electrochemistry and electron paramagnetic resonance review. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
13
|
Cohen KY, Reinhold A, Evans R, Lee TS, Kuo HY, Nedd DG, Scholes GD, Bocarsly AB. Elucidating the mechanism of photochemical CO 2 reduction to CO using a cyanide-bridged di-manganese complex. Dalton Trans 2022; 51:17203-17215. [DOI: 10.1039/d2dt02506j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complex, [{[Mn(bpy)(CO)3]2}(μ-CN)]+ (Mn2CN+), has previously been shown to photochemically reduce CO2 to CO.
Collapse
Affiliation(s)
- Kailyn Y. Cohen
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Adam Reinhold
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Rebecca Evans
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Tia S. Lee
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Hsin-Ya Kuo
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Delaan G. Nedd
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Gregory D. Scholes
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Andrew B. Bocarsly
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
14
|
Madsen MR, Rønne MH, Heuschen M, Golo D, Ahlquist MSG, Skrydstrup T, Pedersen SU, Daasbjerg K. Promoting Selective Generation of Formic Acid from CO 2 Using Mn(bpy)(CO) 3Br as Electrocatalyst and Triethylamine/Isopropanol as Additives. J Am Chem Soc 2021; 143:20491-20500. [PMID: 34813304 DOI: 10.1021/jacs.1c10805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Urgent solutions are needed to efficiently convert the greenhouse gas CO2 into higher-value products. In this work, fac-Mn(bpy)(CO)3Br (bpy = 2,2'-bipyridine) is employed as electrocatalyst in reductive CO2 conversion. It is shown that product selectivity can be shifted from CO toward HCOOH using appropriate additives, i.e., Et3N along with iPrOH. A crucial aspect of the strategy is to outrun the dimer-generating parent-child reaction involving fac-Mn(bpy)(CO)3Br and [Mn(bpy)(CO)3]- and instead produce the Mn hydride intermediate. Preferentially, this is done at the first reduction wave to enable formation of HCOOH at an overpotential as low as 260 mV and with faradaic efficiency of 59 ± 1%. The latter may be increased to 71 ± 3% at an overpotential of 560 mV, using 2 M concentrations of both Et3N and iPrOH. The nature of the amine additive is crucial for product selectivity, as the faradaic efficiency for HCOOH formation decreases to 13 ± 4% if Et3N is replaced with Et2NH. The origin of this difference lies in the ability of Et3N/iPrOH to establish an equilibrium solution of isopropyl carbonate and CO2, while with Et2NH/iPrOH, formation of the diethylcarbamic acid is favored. According to density-functional theory calculations, CO2 in the former case can take part favorably in the catalytic cycle, while this is less opportune in the latter case because of the CO2-to-carbamic acid conversion. This work presents a straightforward procedure for electrochemical reduction of CO2 to HCOOH by combining an easily synthesized manganese catalyst with commercially available additives.
Collapse
Affiliation(s)
- Monica R Madsen
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Magnus H Rønne
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Marvin Heuschen
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Dusanka Golo
- Department of Theoretical Chemistry & Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Mårten S G Ahlquist
- Department of Theoretical Chemistry & Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Steen U Pedersen
- Department of Chemistry, Interdisciplinary Nanoscience Center, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Kim Daasbjerg
- Department of Chemistry, Interdisciplinary Nanoscience Center, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
15
|
Feng X, Ren Y, Jiang H. Metal-bipyridine/phenanthroline-functionalized porous crystalline materials: Synthesis and catalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Kinzel NW, Werlé C, Leitner W. Transition Metal Complexes as Catalysts for the Electroconversion of CO 2 : An Organometallic Perspective. Angew Chem Int Ed Engl 2021; 60:11628-11686. [PMID: 33464678 PMCID: PMC8248444 DOI: 10.1002/anie.202006988] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Indexed: 12/17/2022]
Abstract
The electrocatalytic transformation of carbon dioxide has been a topic of interest in the field of CO2 utilization for a long time. Recently, the area has seen increasing dynamics as an alternative strategy to catalytic hydrogenation for CO2 reduction. While many studies focus on the direct electron transfer to the CO2 molecule at the electrode material, molecular transition metal complexes in solution offer the possibility to act as catalysts for the electron transfer. C1 compounds such as carbon monoxide, formate, and methanol are often targeted as the main products, but more elaborate transformations are also possible within the coordination sphere of the metal center. This perspective article will cover selected examples to illustrate and categorize the currently favored mechanisms for the electrochemically induced transformation of CO2 promoted by homogeneous transition metal complexes. The insights will be corroborated with the concepts and elementary steps of organometallic catalysis to derive potential strategies to broaden the molecular diversity of possible products.
Collapse
Affiliation(s)
- Niklas W. Kinzel
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| |
Collapse
|
17
|
Massie AA, Schremmer C, Rüter I, Dechert S, Siewert I, Meyer F. Selective Electrocatalytic CO 2 Reduction to CO by an NHC-Based Organometallic Heme Analogue. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Allyssa A. Massie
- Institute of Inorganic Chemistry, University of Göttingen, D-37077 Göttingen, Germany
| | - Claudia Schremmer
- Institute of Inorganic Chemistry, University of Göttingen, D-37077 Göttingen, Germany
| | - Isabelle Rüter
- Institute of Inorganic Chemistry, University of Göttingen, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Institute of Inorganic Chemistry, University of Göttingen, D-37077 Göttingen, Germany
| | - Inke Siewert
- Institute of Inorganic Chemistry, University of Göttingen, D-37077 Göttingen, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
18
|
Yang Y, Ertem MZ, Duan L. An amide-based second coordination sphere promotes the dimer pathway of Mn-catalyzed CO 2-to-CO reduction at low overpotential. Chem Sci 2021; 12:4779-4788. [PMID: 34168756 PMCID: PMC8179605 DOI: 10.1039/d0sc05679k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/06/2021] [Indexed: 01/28/2023] Open
Abstract
The [fac-Mn(bpy)(CO)3Br] complex is capable of catalyzing the electrochemical reduction of CO2 to CO with high selectivity, moderate activity and large overpotential. Several attempts have been made to lower the overpotential and to enhance the catalytic activity of this complex by manipulating the second-coordination sphere of manganese and using relatively stronger acids to promote the protonation-first pathway. We report herein that the complex [fac-Mn(bpy-CONHMe)(CO)3(MeCN)]+ ([1-MeCN]+; bpy-CONHMe = N-methyl-(2,2'-bipyridine)-6-carboxamide) as a pre-catalyst could catalyze the electrochemical reduction of CO2 to CO with low overpotential and high activity and selectivity. Combined experimental and computational studies reveal that the amide NH group not only decreases the overpotential of the Mn catalyst by promoting the dimer and protonation-first pathways in the presence of H2O but also enhances the CO2 electroreduction activity by facilitating C-OH bond cleavage, making [1-MeCN]+ an efficient CO2 reduction pre-catalyst at low overpotential.
Collapse
Affiliation(s)
- Yong Yang
- Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology Shenzhen 518055 China
| | - Mehmed Z Ertem
- Chemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory Upton NY 11973-5000 USA
| | - Lele Duan
- Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
19
|
Kinzel NW, Werlé C, Leitner W. Übergangsmetallkomplexe als Katalysatoren für die elektrische Umwandlung von CO
2
– eine metallorganische Perspektive. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202006988] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Niklas W. Kinzel
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| | - Christophe Werlé
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Walter Leitner
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| |
Collapse
|
20
|
Mandal SC, Pathak B. Computational insights into electrocatalytic CO2 reduction facilitated by Mn(I) half sandwich-based catalysts: Role of substitution and solvent. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Mukherjee J, Siewert I. Manganese and Rhenium Tricarbonyl Complexes Equipped with Proton Relays in the Electrochemical CO
2
Reduction Reaction. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000738] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jyotima Mukherjee
- Institut für Anorganische Chemie Universität Göttingen Tammannstr. 4 37077 Göttingen Germany
| | - Inke Siewert
- Institut für Anorganische Chemie Universität Göttingen Tammannstr. 4 37077 Göttingen Germany
| |
Collapse
|
22
|
Rotundo L, Polyansky DE, Gobetto R, Grills DC, Fujita E, Nervi C, Manbeck GF. Molecular Catalysts with Intramolecular Re-O Bond for Electrochemical Reduction of Carbon Dioxide. Inorg Chem 2020; 59:12187-12199. [PMID: 32804491 PMCID: PMC8009525 DOI: 10.1021/acs.inorgchem.0c01181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
A new Re bipyridine-type complex,
namely, fac-Re(pmbpy)(CO)3Cl (pmbpy =
4-phenyl-6-(2-hydroxy-phenyl)-2,2′-bipyridine), 1, carrying a single OH moiety as local proton source, has
been synthesized, and its electrochemical behavior under Ar and under
CO2 has been characterized. Two isomers of 1, namely, 1-cis characterized by the
proximity of Cl to OH and 1-trans, are
identified. The interconversion between 1-cis and 1-trans is clarified by DFT calculations,
which reveal two transition states. The energetically lower pathway
displays a non-negligible barrier of 75.5 kJ mol–1. The 1e– electrochemical reduction of 1 affords the neutral intermediate 1-OPh, formally derived
by reductive deprotonation and loss of Cl– from 1. 1-OPh, which exhibits an entropically favored
intramolecular Re–O bond, has been isolated and characterized.
The detailed electrochemical mechanism is demonstrated by combined
chemical reactivity, spectroelectrochemistry, spectroscopic (IR and
NMR), and computational (DFT) approaches. Comparison with previous
Re and Mn derivatives carrying local proton sources highlights that
the catalytic activity of Re complexes is more sensitive to the presence
of local OH groups. Similar to Re-2OH (2OH = 4-phenyl-6-(phenyl-2,6-diol)-2,2′-bipyridine), 1 and Mn-1OH display a selective reduction of
CO2 to CO. In the case of the Re bipyridine-type complex,
the formation of a relatively stable Re–O bond and a preference
for phenolate-based reactivity with CO2 slightly inhibit
the electrocatalytic reduction of CO2 to CO, resulting
in a low TON value of 9, even in the presence of phenol as a proton
source. A new Re bipyridine-type complex, namely, fac-Re(pmbpy)(CO)3Cl (pmbpy = 4-phenyl-6-(2-hydroxy-phenyl)-2,2′-bipyridine), 1, carrying a single OH moiety as local proton source, has
been synthesized, and its electrochemical behavior under Ar and under
CO2 has been characterized. Two isomers of 1, namely, 1-cis characterized by the
proximity of Cl to OH and 1-trans, are
identified.
Collapse
Affiliation(s)
- Laura Rotundo
- Chemistry Department, University of Torino, Via P. Giuria 7, 10125 Torino, Italy.,CIRCC (Bari), University of Bari, Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Dmitry E Polyansky
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Roberto Gobetto
- Chemistry Department, University of Torino, Via P. Giuria 7, 10125 Torino, Italy.,CIRCC (Bari), University of Bari, Via Celso Ulpiani 27, 70126 Bari, Italy
| | - David C Grills
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Etsuko Fujita
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Carlo Nervi
- Chemistry Department, University of Torino, Via P. Giuria 7, 10125 Torino, Italy.,CIRCC (Bari), University of Bari, Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Gerald F Manbeck
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
23
|
Ma X, Hu C, Bian Z. Hybrid photocatalytic systems comprising a manganese complex anchored on g-C3N4 for efficient visible-light photoreduction of CO2. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Zhang YQ, Chen JY, Siegbahn PEM, Liao RZ. Harnessing Noninnocent Porphyrin Ligand to Circumvent Fe-Hydride Formation in the Selective Fe-Catalyzed CO2 Reduction in Aqueous Solution. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00559] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ya-Qiong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jia-Yi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Per E. M. Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm 10691, Sweden
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
25
|
Singh KK, Siegler MA, Thoi VS. Unusual Reactivity of a Thiazole-Based Mn Tricarbonyl Complex for CO 2 Activation. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kundan K. Singh
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Maxime A. Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - V. Sara Thoi
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
26
|
Kuo HY, Tignor SE, Lee TS, Ni D, Park JE, Scholes GD, Bocarsly AB. Reduction-induced CO dissociation by a [Mn(bpy)(CO) 4][SbF 6] complex and its relevance in electrocatalytic CO 2 reduction. Dalton Trans 2020; 49:891-900. [PMID: 31859334 DOI: 10.1039/c9dt04150h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
[Mn(bpy)(CO)3Br] is recognized as a benchmark electrocatalyst for CO2 reduction to CO, with the doubly reduced [Mn(bpy)(CO)3]- proposed to be the active species in the catalytic mechanism. The reaction of this intermediate with CO2 and two protons is expected to produce the tetracarbonyl cation, [Mn(bpy)(CO)4]+, thereby closing the catalytic cycle. However, this species has not been experimentally observed. In this study, [Mn(bpy)(CO)4][SbF6] (1) was directly synthesized and found to be an efficient electrocatalyst for the reduction of CO2 to CO in the presence of H2O. Complex 1 was characterized using X-ray crystallography as well as IR and UV-Vis spectroscopy. The redox activity of 1 was determined using cyclic voltammetry and compared with that of benchmark manganese complexes, e.g., [Mn(bpy)(CO)3Br] (2) and [Mn(bpy)(CO)3(MeCN)][PF6] (3). Infrared spectroscopic analyses indicated that CO dissociation occurs after a single-electron reduction of complex 1, producing a [Mn(bpy)(CO)3(MeCN)]+ species. Complex 1 was experimentally verified as both a precatalyst and an on-cycle intermediate in homogeneous Mn-based electrocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Hsin-Ya Kuo
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Fabry DC, Koizumi H, Ghosh D, Yamazaki Y, Takeda H, Tamaki Y, Ishitani O. A Ru(II)–Mn(I) Supramolecular Photocatalyst for CO2 Reduction. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00755] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David C. Fabry
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hiroki Koizumi
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Debashis Ghosh
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yasuomi Yamazaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hiroyuki Takeda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yusuke Tamaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Osamu Ishitani
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
28
|
Taylor JO, Wang Y, Hartl F. Photo‐Assisted Electrocatalytic Reduction of CO
2
: A New Strategy for Reducing Catalytic Overpotentials. ChemCatChem 2019. [DOI: 10.1002/cctc.201901887] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- James O. Taylor
- Department of ChemistryUniversity of Reading Whiteknights, Reading RG6 6AD UK
| | - Yibo Wang
- Department of ChemistryUniversity of Reading Whiteknights, Reading RG6 6AD UK
| | - František Hartl
- Department of ChemistryUniversity of Reading Whiteknights, Reading RG6 6AD UK
| |
Collapse
|
29
|
Kurtz DA, Dhakal B, McDonald LT, Nichol GS, Felton GAN. Inter-ligand intramolecular through-space anisotropic shielding in a series of manganese carbonyl phosphorous compounds. Dalton Trans 2019; 48:14926-14935. [PMID: 31559411 DOI: 10.1039/c9dt03100f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eight novel manganese carbonyl complexes of the type [Mn(bpy-tBu)(CO)3PR3]+ (bpy-tBu = 4,4'-di-tert-butyl-2,2'-bipyridine; R = Cy, nBu, Me, p-tol, Ph, p-F-Ph, OEt, and OMe), have been synthesized and characterized by 1H NMR, FTIR, UV/Vis, HRMS and CV. X-ray crystallographic structures of [Mn(bpy-tBu)(CO)3(PCy3)]+ and [Mn(bpy-tBu)(CO)3(PPh3)]+ were obtained. The short Mn-P bond length allows for close proximity of the bipyridine ligand and the phosphine R groups, resulting in strong anisotropic shielding of certain bipyridine protons by aryl R groups (reordering the bipyridine 1H NMR pattern in the most extreme case). Electrochemical analysis of the compound series reveals that while each is a competent precatalyst for electrochemical carbon dioxide reduction (to carbon monoxide), the lability of the PR3 ligand results in similar catalytic performance amongst the series.
Collapse
Affiliation(s)
- Daniel A Kurtz
- Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142, USA
| | | | | | | | | |
Collapse
|
30
|
McKinnon M, Belkina V, Ngo KT, Ertem MZ, Grills DC, Rochford J. An Investigation of Electrocatalytic CO 2 Reduction Using a Manganese Tricarbonyl Biquinoline Complex. Front Chem 2019; 7:628. [PMID: 31608271 PMCID: PMC6771302 DOI: 10.3389/fchem.2019.00628] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/02/2019] [Indexed: 11/18/2022] Open
Abstract
The subject of this study [fac-Mn(bqn)(CO)3(CH3CN)]+ (bqn = 2,2′-biquinoline), is of particular interest because the bqn ligand exhibits both steric and electronic influence over the fundamental redox properties of the complex and, consequently, its related catalytic properties with respect to the activation of CO2. While not a particularly efficient catalyst for CO2 to CO conversion, in-situ generation and activity measurements of the [fac-Mn(bqn)(CO)3]− active catalyst allows for a better understanding of ligand design at the Mn center. By making direct comparisons to the related 2,2′-bipyridyl (bpy), 1,10-phenanthroline (phen), and 2,9-dimethyl-1,10-phenanthroline (dmphen) ligands via a combination of voltammetry, infrared spectroelectrochemistry, controlled potential electrolysis and computational analysis, the role of steric vs. electronic influences on the nucleophilicity of Mn-based CO2 reduction electrocatalysts is discussed.
Collapse
Affiliation(s)
- Meaghan McKinnon
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, United States
| | - Veronika Belkina
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, United States
| | - Ken T Ngo
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, United States
| | - Mehmed Z Ertem
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, United States
| | - David C Grills
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, United States
| | - Jonathan Rochford
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, United States
| |
Collapse
|
31
|
Molecular Catalysis for Utilizing CO2 in Fuel Electro-Generation and in Chemical Feedstock. Catalysts 2019. [DOI: 10.3390/catal9090760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Processes for the conversion of CO2 to valuable chemicals are highly desired as a result of the increasing CO2 levels in the atmosphere and the subsequent elevating global temperature. However, CO2 is thermodynamically and kinetically inert to transformation and, therefore, many efforts were made in the last few decades. Reformation/hydrogenation of CO2 is widely used as a means to access valuable products such as acetic acids, CH4, CH3OH, and CO. The electrochemical reduction of CO2 using hetero- and homogeneous catalysts recently attracted much attention. In particular, molecular CO2 reduction catalysts were widely studied using transition-metal complexes modified with various ligands to understand the relationship between various catalytic properties and the coordination spheres above the metal centers. Concurrently, the coupling of CO2 with various electrophiles under homogeneous conditions is also considered an important approach for recycling CO2 as a renewable C-1 substrate in the chemical industry. This review summarizes some recent advances in the conversion of CO2 into valuable chemicals with particular focus on the metal-catalyzed reductive conversion and functionalization of CO2.
Collapse
|
32
|
Fokin I, Denisiuk A, Würtele C, Siewert I. The Impact of a Proton Relay in Binuclear α-Diimine-Mn(CO)3 Complexes on the CO2 Reduction Catalysis. Inorg Chem 2019; 58:10444-10453. [DOI: 10.1021/acs.inorgchem.9b00992] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Igor Fokin
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstr. 4, 37077 Göttingen, Germany
| | - Alisa Denisiuk
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstr. 4, 37077 Göttingen, Germany
| | - Christian Würtele
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstr. 4, 37077 Göttingen, Germany
| | - Inke Siewert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstr. 4, 37077 Göttingen, Germany
- Universität Göttingen, International Center for Advanced Studies of Energy Conversion, 37077 Göttingen, Germany
| |
Collapse
|
33
|
Louis ME, Li G. Infrared studies of surface carbonate binding to diimine-tricarbonyl Re(I) and Mn(I) complexes in mesoporous silica. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1624953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Michael E. Louis
- Department of Chemistry, University of New Hampshire, Durham, NH, USA
| | - Gonghu Li
- Department of Chemistry, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
34
|
Neri G, Donaldson PM, Cowan AJ. In situ study of the low overpotential "dimer pathway" for electrocatalytic carbon dioxide reduction by manganese carbonyl complexes. Phys Chem Chem Phys 2019; 21:7389-7397. [PMID: 30906938 DOI: 10.1039/c9cp00504h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The electrocatalytic reduction of CO2 using [fac-Mn(bpy)(CO)3Br] (bpy = 2,2'-bipyridine) and its derivatives has been the subject of numerous recent studies. However the mechanisms of catalysis are still debated. Here we carry out in situ vibrational sum-frequency generation (VSFG) spectroelectrochemistry to examine how this catalyst behaves at an electrode surface. In particular, a low overpotential pathway involving a dimeric manganese has been reported in several studies using substituted bipyridine ligands. Here, we find that the "dimer pathway" can also occur with the unsubstuituted bipyridine complexes. Specifically we can observe spectroscopic evidence of the interaction between [Mn2(bpy)2(CO)6] with CO2 in the presence of a suitable acid. Detailed VSFG studies of [Mn2(bpy)2(CO)6], including of the potential dependence of the surface ν(CO) mode, allow us to construct a model of how it accumulates and behaves at the electrode surface under potentiostatic control.
Collapse
Affiliation(s)
- Gaia Neri
- Department of Chemistry and Stephenson Institute for Renewable Energy, University of Liverpool, L69 7ZD, Liverpool, UK.
| | | | | |
Collapse
|
35
|
Sung S, Li X, Wolf LM, Meeder JR, Bhuvanesh NS, Grice KA, Panetier JA, Nippe M. Synergistic Effects of Imidazolium-Functionalization on fac-Mn(CO)3 Bipyridine Catalyst Platforms for Electrocatalytic Carbon Dioxide Reduction. J Am Chem Soc 2019; 141:6569-6582. [DOI: 10.1021/jacs.8b13657] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Siyoung Sung
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Xiaohui Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Lucienna M. Wolf
- Department of Chemistry and Biochemistry, DePaul University, 1110 West Belden Avenue, Chicago, Illinois 60614, United States
| | - Jeremy R. Meeder
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Nattamai S. Bhuvanesh
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Kyle A. Grice
- Department of Chemistry and Biochemistry, DePaul University, 1110 West Belden Avenue, Chicago, Illinois 60614, United States
| | - Julien A. Panetier
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Michael Nippe
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
36
|
Dalle K, Warnan J, Leung JJ, Reuillard B, Karmel IS, Reisner E. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem Rev 2019; 119:2752-2875. [PMID: 30767519 PMCID: PMC6396143 DOI: 10.1021/acs.chemrev.8b00392] [Citation(s) in RCA: 455] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 12/31/2022]
Abstract
The synthesis of renewable fuels from abundant water or the greenhouse gas CO2 is a major step toward creating sustainable and scalable energy storage technologies. In the last few decades, much attention has focused on the development of nonprecious metal-based catalysts and, in more recent years, their integration in solid-state support materials and devices that operate in water. This review surveys the literature on 3d metal-based molecular catalysts and focuses on their immobilization on heterogeneous solid-state supports for electro-, photo-, and photoelectrocatalytic synthesis of fuels in aqueous media. The first sections highlight benchmark homogeneous systems using proton and CO2 reducing 3d transition metal catalysts as well as commonly employed methods for catalyst immobilization, including a discussion of supporting materials and anchoring groups. The subsequent sections elaborate on productive associations between molecular catalysts and a wide range of substrates based on carbon, quantum dots, metal oxide surfaces, and semiconductors. The molecule-material hybrid systems are organized as "dark" cathodes, colloidal photocatalysts, and photocathodes, and their figures of merit are discussed alongside system stability and catalyst integrity. The final section extends the scope of this review to prospects and challenges in targeting catalysis beyond "classical" H2 evolution and CO2 reduction to C1 products, by summarizing cases for higher-value products from N2 reduction, C x>1 products from CO2 utilization, and other reductive organic transformations.
Collapse
Affiliation(s)
| | | | - Jane J. Leung
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Bertrand Reuillard
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Isabell S. Karmel
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Erwin Reisner
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
37
|
A computational study of electrocatalytic CO2 reduction by Mn(I) complexes: Role of bipyridine substituents. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Hameed Y, Berro P, Gabidullin B, Richeson D. An integrated Re(i) photocatalyst/sensitizer that activates the formation of formic acid from reduction of CO2. Chem Commun (Camb) 2019; 55:11041-11044. [PMID: 31453601 DOI: 10.1039/c9cc03943k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
cis-[Re(bpy)2(CO)2]+OTf− is a new integrated photosensitizer/catalyst for the selective visible light promoted photocatalytic reduction of CO2 to yield formic acid.
Collapse
Affiliation(s)
- Yasmeen Hameed
- Department of Chemistry and Biomolecular Sciences
- Centre for Catalysis Research and Innovation University of Ottawa
- Ottawa
- Canada
| | - Patrick Berro
- Department of Chemistry and Biomolecular Sciences
- Centre for Catalysis Research and Innovation University of Ottawa
- Ottawa
- Canada
| | - Bulat Gabidullin
- Department of Chemistry and Biomolecular Sciences
- Centre for Catalysis Research and Innovation University of Ottawa
- Ottawa
- Canada
| | - Darrin Richeson
- Department of Chemistry and Biomolecular Sciences
- Centre for Catalysis Research and Innovation University of Ottawa
- Ottawa
- Canada
| |
Collapse
|
39
|
Gardner AM, Saeed KH, Cowan AJ. Vibrational sum-frequency generation spectroscopy of electrode surfaces: studying the mechanisms of sustainable fuel generation and utilisation. Phys Chem Chem Phys 2019; 21:12067-12086. [DOI: 10.1039/c9cp02225b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The electrocatalytic oxidation of water coupled to the reduction of carbon dioxide, to make carbon based products, or the reduction of protons to provide hydrogen, offers a sustainable route to generating useful fuels.
Collapse
Affiliation(s)
- Adrian M. Gardner
- Stephenson Institute for Renewable Energy and the Department of Chemistry
- University of Liverpool
- Liverpool
- UK
| | - Khezar H. Saeed
- Stephenson Institute for Renewable Energy and the Department of Chemistry
- University of Liverpool
- Liverpool
- UK
| | - Alexander J. Cowan
- Stephenson Institute for Renewable Energy and the Department of Chemistry
- University of Liverpool
- Liverpool
- UK
| |
Collapse
|
40
|
Takeda H, Kamiyama H, Okamoto K, Irimajiri M, Mizutani T, Koike K, Sekine A, Ishitani O. Highly Efficient and Robust Photocatalytic Systems for CO2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts. J Am Chem Soc 2018; 140:17241-17254. [DOI: 10.1021/jacs.8b10619] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroyuki Takeda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hiroko Kamiyama
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kouhei Okamoto
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Mina Irimajiri
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshihide Mizutani
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kazuhide Koike
- National Institute of Advanced Industrial Science and Technology, Onogawa 16-1, Tsukuba 305-8569, Japan
| | - Akiko Sekine
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Osamu Ishitani
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
41
|
Hameed Y, Gabidullin B, Richeson D. Photocatalytic CO 2 Reduction with Manganese Complexes Bearing a κ 2-PN Ligand: Breaking the α-Diimine Hold on Group 7 Catalysts and Switching Selectivity. Inorg Chem 2018; 57:13092-13096. [PMID: 30351091 DOI: 10.1021/acs.inorgchem.8b02719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The fundamental challenge of reducing CO2 into more valuable energy-containing compounds depends on revealing new catalysts for this process. By removal of the long-standing limitation of α-diimine ligation, which is dominant in photocatalytic complexes in this area, new visible-light, CO2-reducing photocatalysts based on Mn and Re supported by κ2-PN phosphinoaminopyridine ligands were identified. These catalysts, [M{κ2-(Ph2P)NH(NC5H4)}(CO)3Br], displayed excellent product selectivity and, by a change of only the metal center, gave a dramatic product switch from CO with M = Mn to HCO2H with M = Re. The catalyst systems were explored with variation of the ligand, electron donor, solvent, and photosensitizer. The products were definitively traced using 13CO2 as a substrate. Both complexes quenched the excited-state photosensitizer Ru(bpy)32+*, suggesting oxidative quenching as a potential entry into the catalytic cycle.
Collapse
Affiliation(s)
- Yasmeen Hameed
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation University of Ottawa , 10 Marie Curie , Ottawa , Ontario K1N 6N5 , Canada
| | - Bulat Gabidullin
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation University of Ottawa , 10 Marie Curie , Ottawa , Ontario K1N 6N5 , Canada
| | - Darrin Richeson
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation University of Ottawa , 10 Marie Curie , Ottawa , Ontario K1N 6N5 , Canada
| |
Collapse
|
42
|
Grills DC, Ertem MZ, McKinnon M, Ngo KT, Rochford J. Mechanistic aspects of CO2 reduction catalysis with manganese-based molecular catalysts. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Neri G, Walsh JJ, Teobaldi G, Donaldson PM, Cowan AJ. Detection of catalytic intermediates at an electrode surface during carbon dioxide reduction by an earth-abundant catalyst. Nat Catal 2018. [DOI: 10.1038/s41929-018-0169-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Tignor SE, Kuo HY, Lee TS, Scholes GD, Bocarsly AB. Manganese-Based Catalysts with Varying Ligand Substituents for the Electrochemical Reduction of CO2 to CO. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00554] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steven E. Tignor
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Hsin-Ya Kuo
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tia S. Lee
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Andrew B. Bocarsly
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
45
|
Fukuzumi S, Lee YM, Ahn HS, Nam W. Mechanisms of catalytic reduction of CO 2 with heme and nonheme metal complexes. Chem Sci 2018; 9:6017-6034. [PMID: 30090295 PMCID: PMC6053956 DOI: 10.1039/c8sc02220h] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/26/2018] [Indexed: 11/21/2022] Open
Abstract
The catalytic conversion of CO2 into valuable chemicals and fuels has attracted increasing attention, providing a promising route for mitigating the greenhouse effect of CO2 and also meeting the global energy demand. Among many homogeneous and heterogeneous catalysts for CO2 reduction, this mini-review is focused on heme and nonheme metal complexes that act as effective catalysts for the electrocatalytic and photocatalytic reduction of CO2. Because metalloporphyrinoids show strong absorption in the visible region, which is sensitive to the oxidation states of the metals and ligands, they are suited for the detection of reactive intermediates in the catalytic CO2 reduction cycle by electronic absorption spectroscopy. The first part of this review deals with the catalytic mechanism for the one-electron reduction of CO2 to oxalic acid with heme and nonheme metal complexes, with an emphasis on how the formation of highly energetic CO2˙ is avoided. Then, the catalytic mechanism of two-electron reduction of CO2 to produce CO and H2O is compared with that to produce HCOOH. The effect of metals and ligands of the heme and nonheme complexes on the CO or HCOOH product selectivity is also discussed. The catalytic mechanisms of multi-electron reduction of CO2 to methanol (six-electron reduced product) and methane (eight-electron reduced product) are also discussed for both electrocatalytic and photocatalytic systems.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea . ; ;
- Graduate School of Science and Engineering , Meijo University , Nagoya , Aichi 468-8502 , Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea . ; ;
- Research Institute for Basic Sciences , Ewha Womans University , Seoul 03760 , Korea
| | - Hyun S Ahn
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea .
| | - Wonwoo Nam
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea . ; ;
- School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| |
Collapse
|
46
|
Walsh JJ, Neri G, Smith CL, Cowan AJ. Water-Soluble Manganese Complex for Selective Electrocatalytic CO2 Reduction to CO. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00336] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Gaia Neri
- Department of Chemistry, Stephenson Institute for Renewable Energy, The University of Liverpool, Liverpool L69 7ZF, United Kingdom
| | - Charlotte L. Smith
- Department of Chemistry, Stephenson Institute for Renewable Energy, The University of Liverpool, Liverpool L69 7ZF, United Kingdom
| | - Alexander J. Cowan
- Department of Chemistry, Stephenson Institute for Renewable Energy, The University of Liverpool, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|
47
|
Schneck F, Schendzielorz F, Hatami N, Finger M, Würtele C, Schneider S. Photochemically Driven Reverse Water-Gas Shift at Ambient Conditions mediated by a Nickel Pincer Complex. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Felix Schneck
- Georg-August-Universität; Institut für Anorganische Chemie; Tammannstrasse 4 37077 Göttingen Germany
| | - Florian Schendzielorz
- Georg-August-Universität; Institut für Anorganische Chemie; Tammannstrasse 4 37077 Göttingen Germany
| | - Nareh Hatami
- Georg-August-Universität; Institut für Anorganische Chemie; Tammannstrasse 4 37077 Göttingen Germany
| | - Markus Finger
- Georg-August-Universität; Institut für Anorganische Chemie; Tammannstrasse 4 37077 Göttingen Germany
| | - Christian Würtele
- Georg-August-Universität; Institut für Anorganische Chemie; Tammannstrasse 4 37077 Göttingen Germany
| | - Sven Schneider
- Georg-August-Universität; Institut für Anorganische Chemie; Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
48
|
Schneck F, Schendzielorz F, Hatami N, Finger M, Würtele C, Schneider S. Photochemically Driven Reverse Water-Gas Shift at Ambient Conditions mediated by a Nickel Pincer Complex. Angew Chem Int Ed Engl 2018; 57:14482-14487. [DOI: 10.1002/anie.201803396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/08/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Felix Schneck
- Georg-August-Universität; Institut für Anorganische Chemie; Tammannstrasse 4 37077 Göttingen Germany
| | - Florian Schendzielorz
- Georg-August-Universität; Institut für Anorganische Chemie; Tammannstrasse 4 37077 Göttingen Germany
| | - Nareh Hatami
- Georg-August-Universität; Institut für Anorganische Chemie; Tammannstrasse 4 37077 Göttingen Germany
| | - Markus Finger
- Georg-August-Universität; Institut für Anorganische Chemie; Tammannstrasse 4 37077 Göttingen Germany
| | - Christian Würtele
- Georg-August-Universität; Institut für Anorganische Chemie; Tammannstrasse 4 37077 Göttingen Germany
| | - Sven Schneider
- Georg-August-Universität; Institut für Anorganische Chemie; Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
49
|
|
50
|
Stanbury M, Compain JD, Chardon-Noblat S. Electro and photoreduction of CO 2 driven by manganese-carbonyl molecular catalysts. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.01.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|