1
|
Bertolini M, Mendive-Tapia L, Karmakar U, Vendrell M. Chemo-Click: Receptor-Controlled and Bioorthogonal Chemokine Ligation for Real-Time Imaging of Drug-Resistant Leukemic B Cells. J Am Chem Soc 2024; 146:30565-30572. [PMID: 39441736 PMCID: PMC11544607 DOI: 10.1021/jacs.4c12035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Drug resistance in B cell leukemia is characterized by the coexpression of CXCR5 and CXCR3 chemokine receptors, making it a valuable biomarker for patient stratification. Herein, we report a novel platform of activatable chemokines to selectively image drug-resistant leukemic B cells for the first time. The C-terminal derivatization of the human chemokines CXCL13 and CXCL10 with bioorthogonal tetrazine-BODIPY and BCN groups retained binding and internalization via their cognate CXCR5 and CXCR3 receptors and enabled rapid fluorescence labeling of CXCR5+ CXCR3+ resistant B cells─but not drug-susceptible leukemic cells─via intracellular chemokine ligation. This modular chemical approach offers a versatile strategy for real-time immunophenotyping of cell populations with distinct chemokine profiles and will accelerate the design of new precision medicine tools to advance personalized therapies in blood tumors.
Collapse
Affiliation(s)
- Marco Bertolini
- Centre
for Inflammation Research, The University
of Edinburgh, Edinburgh EH16 4UU, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, U.K.
| | - Lorena Mendive-Tapia
- Centre
for Inflammation Research, The University
of Edinburgh, Edinburgh EH16 4UU, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, U.K.
| | - Utsa Karmakar
- Centre
for Inflammation Research, The University
of Edinburgh, Edinburgh EH16 4UU, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, U.K.
| | - Marc Vendrell
- Centre
for Inflammation Research, The University
of Edinburgh, Edinburgh EH16 4UU, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, U.K.
| |
Collapse
|
2
|
Milelli A, Catanzaro E, Greco G, Calcabrini C, Turrini E, Maffei F, Burattini S, Guardigni M, Sissi C, Schnekenburger M, Diederich M, Sestili P, Fimognari C. New rhodol-sulforaphane conjugates as innovative isothiocyanate-based cytotoxic agents for cancer cells. Eur J Med Chem 2024; 280:116936. [PMID: 39395301 DOI: 10.1016/j.ejmech.2024.116936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
In search of semisynthetic derivatives with increased antitumor activity, we condensed sulforaphane (SFR) with rhodol, a fluorophore platform capable of modifying the intracellular trafficking and pharmacokinetics of the linked molecules. The two tested derivatives, namely MG28 and MG46, showed a far higher, as compared to SFR, cytotoxicity toward cancer cells. Apoptotic cell death was preceded by the extensive generation of DNA lesions, which were repaired relatively slowly and caused formation of micronuclei. Unlike SFR, rhodol-SFR conjugates' DNA lesions resulted from direct interactions with nuclear DNA. Overall, MG28 and MG46 exhibit a remarkable cytotoxic effect, which is the likely consequence of their direct and intense DNA damaging activity, i.e., a novel and peculiar mechanism arising from the conjugation of the parental rhodol and SFR. Considering that a wide number of clinically used drugs kill cancer cells by inducing DNA damage, MG could represent a new and promising chance in antitumor chemotherapy.
Collapse
Affiliation(s)
- Andrea Milelli
- Department for Life Quality Studies, University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Elena Catanzaro
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Giulia Greco
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Cinzia Calcabrini
- Department for Life Quality Studies, University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Eleonora Turrini
- Department for Life Quality Studies, University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Francesca Maffei
- Department for Life Quality Studies, University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Sabrina Burattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Ca' Le Suore, 2/4, 61029, Urbino, Italy
| | - Melissa Guardigni
- Department for Life Quality Studies, University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Science, University of Padova, Via Marzolo 5, 35131, Padua, Italy
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire Du Cancer (LBMCC), BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Marc Diederich
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Ca' Le Suore, 2/4, 61029, Urbino, Italy.
| | - Carmela Fimognari
- Department for Life Quality Studies, University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy.
| |
Collapse
|
3
|
Wang Y, Cheng X, Yin N, Wang M, Qin G, Tang J, Zhang Y, Xu Q. A Hypochlorite-Activated Theranostic Prodrug for Selective Imaging of High Myeloperoxidase Expression Acute Myeloid Leukemia Cells and Drug Release. Anal Chem 2024. [PMID: 39012074 DOI: 10.1021/acs.analchem.4c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Acute myeloid leukemia (AML) is a fatal hematologic disease. Diagnosis and proper treatment are important for prognosis. High myeloperoxidase (MPO) expression AML cells are characterized with high levels of hypochlorite (ClO-). In this study, we report a ClO--activated theranostic agent, FNC, for AML therapy. FNC responds to ClO- specifically in high MPO expression AML cells, resulting in bright fluorescence and chlorambucil release. FNC can be used to quickly distinguish high MPO expression AML cells from other cells, including low MPO expression leukemia and activated inflammatory cells. FNC exhibits selective toxicity to highly MPO expression AML cells and can efficiently inhibit tumor growth. Meanwhile, FNC can be used to indicate differentiation through the detection of ClO-.
Collapse
Affiliation(s)
- Yuting Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Xiaoyu Cheng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Nan Yin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Mingxiu Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
- School of Public Health, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Guixin Qin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Jiali Tang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Yinlong Zhang
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Qingling Xu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| |
Collapse
|
4
|
Zhao J, Li X, Ma T, Chang B, Zhang B, Fang J. Glutathione-triggered prodrugs: Design strategies, potential applications, and perspectives. Med Res Rev 2024; 44:1013-1054. [PMID: 38140851 DOI: 10.1002/med.22007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
The burgeoning prodrug strategy offers a promising avenue toward improving the efficacy and specificity of cytotoxic drugs. Elevated intracellular levels of glutathione (GSH) have been regarded as a hallmark of tumor cells and characteristic feature of the tumor microenvironment. Considering the pivotal involvement of elevated GSH in the tumorigenic process, a diverse repertoire of GSH-triggered prodrugs has been developed for cancer therapy, facilitating the attenuation of deleterious side effects associated with conventional chemotherapeutic agents and/or the attainment of more efficacious therapeutic outcomes. These prodrug formulations encompass a spectrum of architectures, spanning from small molecules to polymer-based and organic-inorganic nanomaterial constructs. Although the GSH-triggered prodrugs have been gaining increasing interests, a comprehensive review of the advancements made in the field is still lacking. To fill the existing lacuna, this review undertakes a retrospective analysis of noteworthy research endeavors, based on a categorization of these molecules by their diverse recognition units (i.e., disulfides, diselenides, Michael acceptors, and sulfonamides/sulfonates). This review also focuses on explaining the distinct benefits of employing various chemical architecture strategies in the design of these prodrug agents. Furthermore, we highlight the potential for synergistic functionality by incorporating multiple-targeting conjugates, theranostic entities, and combinational treatment modalities, all of which rely on the GSH-triggering. Overall, an extensive overview of the emerging field is presented in this review, highlighting the obstacles and opportunities that lie ahead. Our overarching goal is to furnish methodological guidance for the development of more efficacious GSH-triggered prodrugs in the future. By assessing the pros and cons of current GSH-triggered prodrugs, we expect that this review will be a handful reference for prodrug design, and would provide a guidance for improving the properties of prodrugs and discovering novel trigger scaffolds for constructing GSH-triggered prodrugs.
Collapse
Affiliation(s)
- Jintao Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Xinming Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Bingbing Chang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Sharma A, Verwilst P, Li M, Ma D, Singh N, Yoo J, Kim Y, Yang Y, Zhu JH, Huang H, Hu XL, He XP, Zeng L, James TD, Peng X, Sessler JL, Kim JS. Theranostic Fluorescent Probes. Chem Rev 2024; 124:2699-2804. [PMID: 38422393 PMCID: PMC11132561 DOI: 10.1021/acs.chemrev.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The ability to gain spatiotemporal information, and in some cases achieve spatiotemporal control, in the context of drug delivery makes theranostic fluorescent probes an attractive and intensely investigated research topic. This interest is reflected in the steep rise in publications on the topic that have appeared over the past decade. Theranostic fluorescent probes, in their various incarnations, generally comprise a fluorophore linked to a masked drug, in which the drug is released as the result of certain stimuli, with both intrinsic and extrinsic stimuli being reported. This release is then signaled by the emergence of a fluorescent signal. Importantly, the use of appropriate fluorophores has enabled not only this emerging fluorescence as a spatiotemporal marker for drug delivery but also has provided modalities useful in photodynamic, photothermal, and sonodynamic therapeutic applications. In this review we highlight recent work on theranostic fluorescent probes with a particular focus on probes that are activated in tumor microenvironments. We also summarize efforts to develop probes for other applications, such as neurodegenerative diseases and antibacterials. This review celebrates the diversity of designs reported to date, from discrete small-molecule systems to nanomaterials. Our aim is to provide insights into the potential clinical impact of this still-emerging research direction.
Collapse
Affiliation(s)
- Amit Sharma
- Amity
School of Chemical Sciences, Amity University
Punjab, Sector 82A, Mohali 140 306, India
| | - Peter Verwilst
- Rega
Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Mingle Li
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Dandan Ma
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nem Singh
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiyoung Yoo
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Yujin Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Ying Yang
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Jing-Hui Zhu
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haiqiao Huang
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi-Le Hu
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Peng He
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- National
Center for Liver Cancer, the International Cooperation Laboratory
on Signal Transduction, Eastern Hepatobiliary
Surgery Hospital, Shanghai 200438, China
| | - Lintao Zeng
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xiaojun Peng
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Jonathan L. Sessler
- Department
of Chemistry, The University of Texas at
Austin, Texas 78712-1224, United
States
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- TheranoChem Incorporation, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
6
|
Yu X, Huang Y, Tao Y, Fan L, Zhang Y. Mitochondria-targetable small molecule fluorescent probes for the detection of cancer-associated biomarkers: A review. Anal Chim Acta 2024; 1289:342060. [PMID: 38245195 DOI: 10.1016/j.aca.2023.342060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024]
Abstract
Cancer represents a global threat to human health, and effective strategies for improved cancer early diagnosis and treatment are urgently needed. The detection of tumor biomarkers has been one of the important auxiliary means for tumor screening and diagnosis. Mitochondria are crucial subcellular organelles that produce most chemical energy used by cells, control metabolic processes, and maintain cell function. Evidence suggests the close involvement of mitochondria with cancer development. As a consequence, the identification of cancer-associated biomarker expression levels in mitochondria holds significant importance in the diagnosis of early-stage diseases and the monitoring of therapy efficacy. Small-molecule fluorescent probes are effective for the identification and visualization of bioactive entities within biological systems, owing to their heightened sensitivity, expeditious non-invasive analysis and real-time detection capacities. The design principles and sensing mechanisms of mitochondrial targeted fluorescent probes are summarized in this review. Additionally, the biomedical applications of these probes for detecting cancer-associated biomarkers are highlighted. The limitations and challenges of fluorescent probes in vivo are also considered and some future perspectives are provided. This review is expected to provide valuable insights for the future development of novel fluorescent probes for clinical imaging, thereby contributing to the advancement of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xue Yu
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Yunong Huang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Yunqi Tao
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Li Fan
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Yuewei Zhang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China.
| |
Collapse
|
7
|
Tripathi R, Guglani A, Ghorpade R, Wang B. Biotin conjugates in targeted drug delivery: is it mediated by a biotin transporter, a yet to be identified receptor, or (an)other unknown mechanism(s)? J Enzyme Inhib Med Chem 2023; 38:2276663. [PMID: 37955285 PMCID: PMC10653662 DOI: 10.1080/14756366.2023.2276663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Conjugation of drugs with biotin is a widely studied strategy for targeted drug delivery. The structure-activity relationship (SAR) studies through H3-biotin competition experiments conclude with the presence of a free carboxylic acid being essential for its uptake via the sodium-dependent multivitamin transporter (SMVT, the major biotin transporter). However, biotin conjugation with a payload requires modification of the carboxylic acid to an amide or ester group. Then, there is the question as to how/whether the uptake of biotin conjugates goes through the SMVT. If not, then what is the mechanism? Herein, we present known uptake mechanisms of biotin and its applications reported in the literature. We also critically analyse possible uptake mechanism(s) of biotin conjugates to address the disconnect between the results from SMVT-based SAR and "biotin-facilitated" targeted drug delivery. We believe understanding the uptake mechanism of biotin conjugates is critical for their future applications and further development.
Collapse
Affiliation(s)
- Ravi Tripathi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Anchala Guglani
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Rujuta Ghorpade
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
8
|
Pratihar S, Bhagavath KK, Govindaraju T. Small molecules and conjugates as theranostic agents. RSC Chem Biol 2023; 4:826-849. [PMID: 37920393 PMCID: PMC10619134 DOI: 10.1039/d3cb00073g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/28/2023] [Indexed: 11/04/2023] Open
Abstract
Theranostics, the integration of therapy and diagnostics into a single entity for the purpose of monitoring disease progression and treatment response. Diagnostics involves identifying specific characteristics of a disease, while therapeutics refers to the treatment of the disease based on this identification. Advancements in medicinal chemistry and technology have led to the development of drug modalities that provide targeted therapeutic effects while also providing real-time updates on disease progression and treatment. The inclusion of imaging in therapy has significantly improved the prognosis of devastating diseases such as cancer and neurodegeneration. Currently, theranostic treatment approaches are based on nuclear medicine, while nanomedicine and a wide diversity of macromolecular systems such as gels, polymers, aptamers, and dendrimer-based agents are being developed for the purpose. Theranostic agents have significant roles to play in both early-stage drug development and clinical-stage therapeutic-containing drug candidates. This review will briefly outline the pros and cons of existing and evolving theranostic approaches before comprehensively discussing the role of small molecules and their conjugates.
Collapse
Affiliation(s)
- Sumon Pratihar
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 Karnataka India
| | - Krithi K Bhagavath
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 Karnataka India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 Karnataka India
| |
Collapse
|
9
|
Hou Y, Sun B, Li R, Meng W, Zhang W, Jia N, Chen M, Chen J, Tang X. GSH-activatable camptothecin prodrug-loaded gold nanostars coated with hyaluronic acid for targeted breast cancer therapy via multiple radiosensitization strategies. J Mater Chem B 2023; 11:9894-9911. [PMID: 37830402 DOI: 10.1039/d3tb00965c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Breast cancer has overtaken lung cancer to rank as the top malignant tumor in terms of incidence. Herein, a gold nanostar (denoted as AuNS) is used for loading disulfide-coupled camptothecin-fluorophore prodrugs (denoted as CPT-SS-FL) to form a nanocomposite of AuNS@CPT-SS-FL (denoted as AS), which, in turn, is further encapsulated with hyaluronic acid (HA) to give the final nanoplatform of AuNS@CPT-SS-FL@HA (denoted as ASH). ASH effectively carries the prodrug and targets the CD44 receptor on the surface of tumor cells. The endogenously overexpressed glutathione (GSH) in tumor cells breaks the disulfide bond to activate the prodrug and release the radiosensitizer drug camptothecin (CPT) and the fluorescence imaging reagent rhodamine derivative as a fluorophore (FL). The released FL can track the precise release position of the radiosensitizer camptothecin in tumor cells in real time. The AuNS has strong X-ray absorption and deposition ability due to the high atomic coefficient of elemental Au (Z = 79). At the same time, the AuNS can alleviate the tumor microenvironment (TME) hypoxia through its mild photothermal therapy (PTT). Therefore, through the multiple radiosensitizing effects of GSH depletion, the high atomic coefficient of Au, and hypoxia alleviation, accompanied by the radiosensitizer camptothecin, the designed ASH nanoplatform can effectively induce strong immunogenic cell death (ICD) at the tumor site via radiosensitizing therapy combined with PTT. This work provides a new way of constructing a structurally compact and highly functionalized hierarchical system toward efficient breast cancer treatment through ameliorating the TME with multiple modalities.
Collapse
Affiliation(s)
- Yingke Hou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Bin Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Rongtian Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Wei Meng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Wenhua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Nuan Jia
- Southern University of Science and Technology Hospital, Shenzhen 518055, China
| | - Ming Chen
- The People's Hospital of Gaozhou, Gaozhou 525200, China.
| | - Jinxiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xiaoyan Tang
- Department of Chemistry and Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, China.
| |
Collapse
|
10
|
Zhang R, Hao L, Chen P, Zhang G, Liu N. Multifunctional small-molecule theranostic agents for tumor-specific imaging and targeted chemotherapy. Bioorg Chem 2023; 137:106576. [PMID: 37182421 DOI: 10.1016/j.bioorg.2023.106576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Although great progress has been achieved in cancer diagnosis and treatment, novel therapies are still urgently needed to increase the efficacy and reduce the side effects of conventional therapies. Personalized medicine involves administering patients drugs that are specific to the characteristics of their tumors, and has significantly reduced side effects and increased overall survival rates. Multifunctional theranostic drugs are designed to combine diagnostic and therapeutic functions into a single molecule, which reduces the number of drugs administered to patients and increases patient compliance, and have shown great potential in propelling personalized medicine. This review focuses on multifunctional small-molecule theranostic agents for tumor-specific imaging and targeted chemotherapy, with a particular emphasis placed on highlighting design strategies and application in vitro or in vivo. The challenges and future perspectives of multifunctional small molecules are also discussed.
Collapse
Affiliation(s)
- Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Li Hao
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 528051, China
| | - Pengwei Chen
- Hainan Key Laboratory for ReseCarch and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Gang Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Ning Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
11
|
Huang Y, Liang J, Fan Z. A review: Small organic molecule dual/multi-organelle-targeted fluorescent probes. Talanta 2023; 259:124529. [PMID: 37084606 DOI: 10.1016/j.talanta.2023.124529] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
In recent years, the dual/multi-organelle-targeted fluorescent probe based on small organic molecules has good biocompatibility and can visualize the interaction between different organelles, which has attracted much attention. In addition, these probes can also be used to detect small molecules in the organelle environment, such as active sulfur species (RSS), reactive oxygen species (ROS), pH, viscosity and so on. However, the review of dual/multi-organelle-targeted fluorescent probe for small organic molecules lacks a systematic summary, which may hinder the development of this field. In this review, we will focus on the design strategies and bioimaging applications of dual/multi-organelle-targeted fluorescent probe, and classify them into six classes according to different organelles targeted. The first class probe targeted mitochondria and lysosome. The second class probe targeted endoplasmic reticulum and lysosome. The third class probe targeted mitochondria and lipid droplets. The fourth class probe targeted endoplasmic reticulum and lipid droplets. The fifth class probe targeted lysosome and lipid droplets. The sixth class multi-targeted probe. The mechanism of these probes targeting organelles and the visualization of the interaction between different organelles are emphasized, and the prospect and future development direction of this research field are prospected. This will provide a systematic idea for the development and functional research of dual/multi-organelle-targeted fluorescent probe, and promote its research in related physiological and pathological medicine field in the future.
Collapse
Affiliation(s)
- Yongfei Huang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan, 030032, China
| | - Junping Liang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan, 030032, China
| | - Zhefeng Fan
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan, 030032, China.
| |
Collapse
|
12
|
Zhang P, Zhu Y, Xiao C, Chen X. Activatable dual-functional molecular agents for imaging-guided cancer therapy. Adv Drug Deliv Rev 2023; 195:114725. [PMID: 36754284 DOI: 10.1016/j.addr.2023.114725] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Theranostics has attracted great attention due to its ability to combine the real-time diagnosis of cancers with efficient treatment modalities. Activatable dual-functional molecular agents could be synthesized by covalently conjugating imaging agents, therapeutic agents, stimuli-responsive linkers and/or targeting molecules together. They could be selectively activated by overexpressed physiological stimuli or external triggers at the tumor sites to release imaging agents and cytotoxic drugs, thus offering many advantages for tumor imaging and therapy, such as a high signal-to-noise ratio, low systemic toxicity, and improved therapeutic effects. This review summarizes the recent advances of dual-functional molecular agents that respond to various physiological or external stimuli for cancer theranostics. The molecular designs, synthetic strategies, activatable mechanisms, and biomedical applications of these molecular agents are elaborated, followed by a brief discussion of the challenges and opportunities in this field.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, PR China; State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai 200433, PR China
| | - Yaowei Zhu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, PR China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, PR China.
| |
Collapse
|
13
|
Zyryanov GV, Kopchuk DS, Kovalev IS, Santra S, Majee A, Ranu BC. Pillararenes as Promising Carriers for Drug Delivery. Int J Mol Sci 2023; 24:ijms24065167. [PMID: 36982244 PMCID: PMC10049520 DOI: 10.3390/ijms24065167] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Since their discovery in 2008 by N. Ogoshi and co-authors, pillararenes (PAs) have become popular hosts for molecular recognition and supramolecular chemistry, as well as other practical applications. The most useful property of these fascinating macrocycles is their ability to accommodate reversibly guest molecules of various kinds, including drugs or drug-like molecules, in their highly ordered rigid cavity. The last two features of pillararenes are widely used in various pillararene-based molecular devices and machines, stimuli-responsive supramolecular/host-guest systems, porous/nonporous materials, organic-inorganic hybrid systems, catalysis, and, finally, drug delivery systems. In this review, the most representative and important results on using pillararenes for drug delivery systems for the last decade are presented.
Collapse
Affiliation(s)
- Grigory V Zyryanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Dmitry S Kopchuk
- Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Igor S Kovalev
- Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Sougata Santra
- Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
| | - Adinath Majee
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Brindaban C Ranu
- Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
14
|
Rong X, Liu C, Li X, Zhu H, Wang K, Zhu B. Recent advances in chemotherapy-based organic small molecule theranostic reagents. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Chiral amide-bonded hydroxyquinoline-substituted porphyrin fluorescent probes “off–on–off” pH sensing properties. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Gao Z, Jia S, Ou H, Hong Y, Shan K, Kong X, Wang Z, Feng G, Ding D. An Activatable Near-Infrared Afterglow Theranostic Prodrug with Self-Sustainable Magnification Effect of Immunogenic Cell Death. Angew Chem Int Ed Engl 2022; 61:e202209793. [PMID: 35916871 DOI: 10.1002/anie.202209793] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 11/08/2022]
Abstract
Herein, we report an activatable near-infrared (NIR) afterglow theranostic prodrug that circumvents high background noise interference caused by external light excitation. The prodrug can release hydroxycamptothecin (HCPT) in response to the high intratumoral peroxynitrite level associated with immunogenic cell death (ICD), and synchronously activate afterglow signal to monitor the drug release process and cold-to-hot tumor transformation. The prodrug itself is an ICD inducer achieved by photodynamic therapy (PDT). PDT initiates ICD and recruits first-arrived neutrophils to secrete peroxynitrite to trigger HCPT release. Intriguingly, we demonstrate that HCPT can significantly amplify PDT-mediated ICD process. The prodrug thus shows a self-sustainable ICD magnification effect by establishing an "ICD-HCPT release-amplified ICD" cycling loop. In vivo studies demonstrate that the prodrug can eradicate existing tumors and prevent further tumor recurrence through antitumor immune response.
Collapse
Affiliation(s)
- Zhiyuan Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shaorui Jia
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hanlin Ou
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Ke Shan
- Shandong Artificial intelligence Institute and Shandong Computer Science Center, Qilu University of Technology, Jinan, 250353, China
| | - Xianglong Kong
- Shandong Artificial intelligence Institute and Shandong Computer Science Center, Qilu University of Technology, Jinan, 250353, China
| | - Zhiming Wang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Guangxue Feng
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
17
|
Gao Z, Jia S, Ou H, Hong Y, Shan K, Kong X, Wang Z, Feng G, Ding D. An Activatable Near‐Infrared Afterglow Theranostic Prodrug with Self‐Sustainable Magnification Effect of Immunogenic Cell Death. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhiyuan Gao
- Nankai University College of Life Sciences CHINA
| | - Shaorui Jia
- Nankai University College of Life Sciences CHINA
| | - Hanlin Ou
- Nankai University College of Life Sciences CHINA
| | - Yuning Hong
- La Trobe University Department of Chemistry and Physics AUSTRALIA
| | - Ke Shan
- Qilu University of Technology Shandong Artificial Intelligence Institute CHINA
| | - Xianglong Kong
- Qilu University of Technology Shandong Artificial Intelligence Institute CHINA
| | - Zhiming Wang
- South China University of Technology School of Materials Science and Engineering CHINA
| | - Guangxue Feng
- South China University of Technology School of Materials Science and Engineering CHINA
| | - Dan Ding
- Nankai University College of Life Sciences 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
18
|
Hao L, Ling YY, Huang ZX, Pan ZY, Tan CP, Mao ZW. Real-time tracking of ER turnover during ERLAD by a rhenium complex via lifetime imaging. Natl Sci Rev 2022; 9:nwab194. [PMID: 35958681 PMCID: PMC9362766 DOI: 10.1093/nsr/nwab194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
Endoplasmic reticulum (ER) degradation by autophagy (ER-phagy) is a recently revealed selective autophagy pathway that plays important roles in organelle turnover and protein degradation, but the biological functions of ER-phagy are largely unknown. Here, we present an ER-targeting Re(I) tricarbonyl complex (Re-ERLAD) that can accumulate in the ER, induce ER-to-lysosome-associated degradation (ERLAD) upon visible light irradiation, and label ER buds and track their morphological alterations during ER-phagy. The emission of Re-ERLAD is sensitive to viscosity, which is a key parameter reflecting the amount of unfolded protein in the ER. Quantitative detection using two-photon fluorescence lifetime imaging microscopy shows that ER viscosity initially increases and then decreases during ERLAD, which reveals that ERLAD is a pathway for alleviating ER stress caused by unfolded proteins. In conclusion, our work presents the first specific photoinducer and tracker of ERLAD, which can be used in studying the regulatory mechanism and function of this process.
Collapse
Affiliation(s)
- Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Yi Ling
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhi-Xin Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zheng-Yin Pan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
19
|
Zhang Y, Yue X, Yang S, Li X, Cui L, Cui X, Shi Y, Liu Z, Guo X, Li Y. Long circulation and tumor-targeting biomimetic nanoparticles for efficient chemo/photothermal synergistic therapy. J Mater Chem B 2022; 10:5035-5044. [PMID: 35726686 DOI: 10.1039/d2tb00748g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal therapy combined with chemotherapy based on nanomedicine has been considered a promising strategy for improving therapeutic efficacy in a tumor. However, nanomedicine can be easily cleared by the immune system without specific surface engineering modifications, thus affecting the ultimate efficacy. Herein, multifunctional biomimetic nanoparticles (Bio-RBCm@PDA@MSN-DOX) with enhanced long circulation and targeting ability are constructed by coating large pore-sized mesoporous silica (MSN) with polydopamine (PDA) layers in a biotin modified red blood cell membrane (Bio-RBCm) for efficient chemo/photothermal synergistic therapy. It is demonstrated that Bio-RBCm@PDA@MSN-DOX presents high photothermal conversion efficiency (40.17%) and enhanced capability to accelerate the release of the anticancer drug (doxorubicin, DOX), thus showing a good synergistic therapeutic effect in cell experiments. More importantly, with the assistance of the biotin and RBC membrane, Bio-RBCm@PDA@MSN-DOX can successfully evade immune clearance and effectively target transport to HeLa tumor sites, finally accomplishing up to 98.95% tumor inhibition with negligible side effects to normal tissues. This multilayer structure presents a valuable model for future therapeutic applications with safe and effective tumor chemotherapy and photothermal therapy.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Xuanyu Yue
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Shengchao Yang
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Xianglong Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lin Cui
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Xiaobin Cui
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Yue Shi
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China. .,State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yongsheng Li
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China. .,Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
20
|
Chen XX, Wu Y, Ge X, Lei L, Niu LY, Yang QZ, Zheng L. In vivo imaging of heart failure with preserved ejection fraction by simultaneous monitoring of cardiac nitric oxide and glutathione using a three-channel fluorescent probe. Biosens Bioelectron 2022; 214:114510. [DOI: 10.1016/j.bios.2022.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
|
21
|
Maiti M, Kikuchi K, Athul KK, Kaur A, Bhuniya S. β-Galactosidase-activated theranostic for hepatic carcinoma therapy and imaging. Chem Commun (Camb) 2022; 58:6413-6416. [PMID: 35543438 DOI: 10.1039/d2cc01825j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A β-galactosidase activatable fluorescent turn-on theranostic Gal-CGem exhibits gemcitabine release specifically in β-galactosidase overexpressing hepatic carcinoma cells. The cytotoxicity of Gal-CGem in cancer cells is achieved through the apoptotic cell death pathway. Overall, Gal-CGem is a new frontline prodrug in cancer therapy that has provided antineoplastic information through fluorescence imaging.
Collapse
Affiliation(s)
- Mrinmoy Maiti
- Department of Science, Amrita School of Engineering, Amrita Viswa Vidyapeetham, Coimbatore, India, 641112
| | - Kai Kikuchi
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - K K Athul
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research, JIS University, Arch Waterfront, GP Block, Sector V, Kolkata, India, 700091.
| | - Amandeep Kaur
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Sankarprasad Bhuniya
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research, JIS University, Arch Waterfront, GP Block, Sector V, Kolkata, India, 700091.
| |
Collapse
|
22
|
Zhang Y, Liu C, Sun W, Yu Z, Su M, Rong X, Wang X, Wang K, Li X, Zhu H, Yu M, Sheng W, Zhu B. Concise Biothiol-Activatable HPQ-NBD Conjugate as a Targeted Theranostic Probe for Tumor Cells. Anal Chem 2022; 94:7140-7147. [PMID: 35522825 DOI: 10.1021/acs.analchem.2c01459] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cancer, as a malignant tumor, seriously endangers human health. The study of cancer diagnosis and therapy has great practical significance. The development of theranostic agents has become a very important research topic. Nevertheless, some existing agents still have imperfections, such as complex structures and difficult syntheses. Therefore, it is urgent for researchers to develop simple novel theranostic agents. In this study, the precipitated fluorophore HAPQ was used as a simple drug molecule for the first time and combined with NBD-Cl to construct a simple and efficient theranostic probe (HAPQ-NBD). The theranostic probe can distinguish between tumor cells and normal cells based on the higher levels of biothiol in tumor cells. In addition, the probe can use biothiol as a control switch to release higher levels of precipitated fluorophore HAPQ in tumor cells, leading to selective high toxicity to tumor cells, thus achieving the goal of selectively killing tumor cells. The construction of probe HAPQ-NBD provides a practical tool for the diagnosis and therapy of cancer. It is expected that the development and utilization of precipitated fluorophore will provide a new method and strategy for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yan Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Weimin Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Ziwen Yu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Meijun Su
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xin Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiwei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
23
|
Wu J, Zhang Y, Jiang K, Wang X, Blum NT, Zhang J, Jiang S, Lin J, Huang P. Enzyme-Engineered Conjugated Polymer Nanoplatform for Activatable Companion Diagnostics and Multistage Augmented Synergistic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200062. [PMID: 35243699 DOI: 10.1002/adma.202200062] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Companion diagnostics (CDx) provides critical information for precision medicine. However, current CDx is mostly limited to in vitro tests, which cannot accurately evaluate the disease progression and treatment response in real time. To overcome this challenge, herein a glucose oxidase (GOx)-engineered conjugated polymer (polyaniline, PANI) nanoplatform (denoted as PANITG) is reported for activatable imaging-based CDx and multistage augmented photothermal/starvation synergistic therapy. PANITG comprises a pH-activatable conjugated polymer as a photothermal convertor and photoacoustic (PA) emitter, a GOx as a cancer starvation inducer as well as a H2 O2 and acid producer, and a H2 O2 -cleavable linker as a "switch" for GOx activity. The in vivo PA imaging and photothermal therapy abilities are activated by acidic tumor microenvironment and self-augmented by the reaction between GOx and glucose. Meanwhile, the photothermal effect will enhance the GOx activity in turn. Such multistage augmentation of the therapeutic effects will facilitate effective cancer management. In addition, the in vivo PA imaging with PANITG reveals the tumor pH level which is correlated to the efficiency of the photothermal therapy and to the catalytic activity of GOx at each stage, enabling real-time activatable CDx.
Collapse
Affiliation(s)
- Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yafei Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Kejia Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoyu Wang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Nicholas Thomas Blum
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jing Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Shanshan Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
24
|
Jia R, Wang Y, Ma W, Huang J, Sun H, Chen B, Cheng H, He X, Wang K. Activatable Dual Cancer-Related RNA Imaging and Combined Gene-Chemotherapy through the Target-Induced Intracellular Disassembly of Functionalized DNA Tetrahedron. Anal Chem 2022; 94:5937-5945. [PMID: 35380798 DOI: 10.1021/acs.analchem.2c00364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The desire for a cancer theranostic system with simultaneously accurate diagnosis and efficient therapy is undeniably interminable. Heretofore, theranostic systems with simple components were designed for cancer theranostics but with confined accuracy of diagnosis and side effects of administered drugs. Here, we report an activatable theranostic system for simultaneously imaging dual cancer-related RNAs, mRNA Bcl-2 and piRNA-36026, and combined gene-chemotherapy through the target-induced intracellular disassembly of DNA tetrahedron. Briefly, five customized oligonucleotides are used to assemble the functionalized DNA tetrahedron. The relevant functional nucleic acids, including the antisequence of mRNA Bcl-2, the antisequence of piRNA-36026, and aptamer AS1411, are designed in the customized oligonucleotides with the signal reporters Cy3 and Cy5. Doxorubicin (DOX) is loaded in the functionalized DNA tetrahedron by inlaying between cytosine and guanine to form the activatable cancer theranostic system. The activatable cancer theranostic system is able to recognize MCF-7 cells by aptamer AS1411 and then enter the cells. In the presence of targets, the antisequences in the activatable cancer theranostic system hybridize with intracellular mRNA Bcl-2 and piRNA-36026, leading to the fluorescence signal recovery of Cy3 and Cy5 and the downregulation of two targets in the cytoplasm as well as the consequent apoptosis of MCF-7 cells in the form of gene therapy. Interestingly, as the antisequences are designed in the assembly strands, the hybridization between targets and the antisequences results in the disassembly of the activatable cancer theranostic system and the release of DOX as well as sequential chemotherapy. Advantageously, the activatable cancer theranostic system can achieve imaging of dual cancer-related RNAs with an imaging time window as long as 15 h and exhibit an obvious therapeutic effect in vivo. Therefore, this work is in furtherance of exploration for activatable cancer theranostic systems with high accuracy and efficiency and sheds new light on the development of precision medicine.
Collapse
Affiliation(s)
- Ruichen Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Yitan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Huanhuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Biao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
25
|
Cao T, Ma H. A two-photon lysosome-targeted probe for endogenous formaldehyde in living cells. RSC Adv 2022; 12:18093-18101. [PMID: 35800308 PMCID: PMC9208363 DOI: 10.1039/d2ra02672d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
A turn-on two-photon lysosome-targeted probe based on the ICT mechanism has been synthesized and was successfully used not only to monitor and image formaldehyde exogenously but also endogenously with excellent performance in living cells.
Collapse
Affiliation(s)
- Ting Cao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, P. R. China
| | - Hong Ma
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, P. R. China
| |
Collapse
|
26
|
Qiu L, Li K, Dong W, Seimbille Y, Liu Q, Gao F, Lin J. Tumor Microenvironment Responsive "Head-to-Foot" Self-Assembly Nanoplatform for Positron Emission Tomography Imaging in Living Subjects. ACS NANO 2021; 15:18250-18259. [PMID: 34738462 DOI: 10.1021/acsnano.1c07275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sensitivity and specificity of molecular probes are two important factors in determining the accuracy of cancer diagnosis or the efficacy of cancer treatment. However, the development of probes with high sensitivity and strong specificity still poses many challenges. Herein, we report an 18F-labeled smart tracer ([18F]1) targeting cancer-associated biotin receptor (BR) and self-assembling into nanoparticles in response to intracellular glutathione. The tracer [18F]1 selectively targeted BR-positive cancer cells A549 and Hela and formed nanoparticles through self-assembly with an average diameter of 138.2 ± 16.3 nm. The character of self-assembly into nanoparticles enhanced the uptake and extended the retention of probe [18F]1 in the target tissue and hence improved the quality of positron emission tomography (PET) images. Thus, [18F]1 is a promising PET tracer for accurately detecting BR-positive cancers. Moreover, the tumor microenvironment responsive "head-to-foot" self-assembly nanoplatform is particularly attractive for development of other smart molecular probes.
Collapse
Affiliation(s)
- Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ke Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Wenyi Dong
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Feng Gao
- Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
27
|
Installation of high-affinity Siglec-1 ligand on tumor surface for macrophage-engaged tumor suppression. Bioorg Med Chem Lett 2021; 50:128328. [PMID: 34425200 DOI: 10.1016/j.bmcl.2021.128328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022]
Abstract
Siglecs that binds cell surface sialoglycans are a family of immunomodulatory receptors, of which, Siglec-7 expressed on natural killer (NK) cells promotes tumor immunoevation while the role of Siglec-1 expressed on macrophages on tumor development remains largely unexplored. Herein, we selectively introduced high affinity sialoside ligands of Siglec-1 and Siglec-7 to tumor cell surface via in vivo Strain-promoted Azide-Alkyne cyclization of TCCSiaα2,3-Lactose or FITCSiaα2,6-Lactose with 9-azido sialic acid (AzSia) metabolically installed on tumor cell surface. We found that TCCSiaα2,3-Lactose conjugated on tumor surface moderately inhibited tumor growth while FITCSiaα2,6-Lactose promote tumor growth. These results suggest high-affinity ligand of Siglec-1 dispalyed on tumors surface provide a new perspective for tumor immunotherapy.
Collapse
|
28
|
Wang H, Zheng Y, Sun Q, Zhang Z, Zhao M, Peng C, Shi S. Ginsenosides emerging as both bifunctional drugs and nanocarriers for enhanced antitumor therapies. J Nanobiotechnology 2021; 19:322. [PMID: 34654430 PMCID: PMC8518152 DOI: 10.1186/s12951-021-01062-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Ginsenosides, the main components isolated from Panax ginseng, can play a therapeutic role by inducing tumor cell apoptosis and reducing proliferation, invasion, metastasis; by enhancing immune regulation; and by reversing tumor cell multidrug resistance. However, clinical applications have been limited because of ginsenosides' physical and chemical properties such as low solubility and poor stability, as well as their short half-life, easy elimination, degradation, and other pharmacokinetic properties in vivo. In recent years, developing a ginsenoside delivery system for bifunctional drugs or carriers has attracted much attention from researchers. To create a precise treatment strategy for cancer, a variety of nano delivery systems and preparation technologies based on ginsenosides have been conducted (e.g., polymer nanoparticles [NPs], liposomes, micelles, microemulsions, protein NPs, metals and inorganic NPs, biomimetic NPs). It is desirable to design a targeted delivery system to achieve antitumor efficacy that can not only cross various barriers but also can enhance immune regulation, eventually converting to a clinical application. Therefore, this review focused on the latest research about delivery systems encapsulated or modified with ginsenosides, and unification of medicines and excipients based on ginsenosides for improving drug bioavailability and targeting ability. In addition, challenges and new treatment methods were discussed to support the development of these new tumor therapeutic agents for use in clinical treatment.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
29
|
Xiang J, Zhao R, Wang B, Sun X, Guo X, Tan S, Liu W. Advanced Nano-Carriers for Anti-Tumor Drug Loading. Front Oncol 2021; 11:758143. [PMID: 34604097 PMCID: PMC8481913 DOI: 10.3389/fonc.2021.758143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy is one of the important means of tumor therapy. However, most of the anti-tumor drugs that currently used in clinic are hydrophobic non-specific drugs, which seriously affect the efficacy of drugs. With the development of nanotechnology, drug efficacy can be improved by selecting appropriate biodegradable nanocarriers for achieving the controlled release, targeting and higher bioavailability of drugs. This paper reviewed the research progress of anti-tumor drug nanoparticle carriers, which mainly summarized the materials used for anti-tumor drug nanoparticle carriers and their effects in anti-tumor drugs, as well as the targeted drug delivery methods of anti-tumor drugs based on nanocarriers.
Collapse
Affiliation(s)
- Jia Xiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Rui Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Bo Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xinran Sun
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xu Guo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Wenjie Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
30
|
Biotinylated chitosan macromolecule based nanosystems: A review from chemical design to biological targets. Int J Biol Macromol 2021; 188:82-93. [PMID: 34363823 DOI: 10.1016/j.ijbiomac.2021.07.197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/16/2021] [Accepted: 07/31/2021] [Indexed: 12/28/2022]
Abstract
World Health Organization estimates that 30-50% of cancers are preventable by healthy lifestyle choices, early detection and adequate therapy. When the conventional therapeutic strategies are still regulated by the lack of selectivity, multidrug resistance and severe toxic side effects, nanotechnology grants a new frontier for cancer management since it targets cancer cells and spares healthy tissues. This review highlights recent studies using biotin molecule combined with functional nanomaterials used in biomedical applications, with a particular attention on biotinylated chitosan-based nanosystems. Succinctly, this review focuses on five areas of recent advances in biotin engineering: (a) biotin features, (b) biotinylation approaches, (c) biotin functionalized chitosan based nanosystems for drug and gene delivery functions, (d) diagnostic and theranostic perspectives, and (e) author's inputs to the biotin-chitosan based tumour-targeting drug delivery structures. Precisely engineered biotinylated-chitosan macromolecules shaped into nanosystems are anticipated to emerge as next-generation platforms for treatment and molecular imaging modalities applications.
Collapse
|
31
|
Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021; 121:10469-10558. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.
Collapse
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Song
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Xia
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
32
|
Li X, Wang H, Zhang Y, Cao Q, Chen Y. A GSH-responsive PET-based fluorescent probe for cancer cells imaging. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Jurczyk M, Jelonek K, Musiał-Kulik M, Beberok A, Wrześniok D, Kasperczyk J. Single- versus Dual-Targeted Nanoparticles with Folic Acid and Biotin for Anticancer Drug Delivery. Pharmaceutics 2021; 13:326. [PMID: 33802531 PMCID: PMC8001342 DOI: 10.3390/pharmaceutics13030326] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the major causes of death worldwide and its treatment remains very challenging. The effectiveness of cancer therapy significantly depends upon tumour-specific delivery of the drug. Nanoparticle drug delivery systems have been developed to avoid the side effects of the conventional chemotherapy. However, according to the most recent recommendations, future nanomedicine should be focused mainly on active targeting of nanocarriers based on ligand-receptor recognition, which may show better efficacy than passive targeting in human cancer therapy. Nevertheless, the efficacy of single-ligand nanomedicines is still limited due to the complexity of the tumour microenvironment. Thus, the NPs are improved toward an additional functionality, e.g., pH-sensitivity (advanced single-targeted NPs). Moreover, dual-targeted nanoparticles which contain two different types of targeting agents on the same drug delivery system are developed. The advanced single-targeted NPs and dual-targeted nanocarriers present superior properties related to cell selectivity, cellular uptake and cytotoxicity toward cancer cells than conventional drug, non-targeted systems and single-targeted systems without additional functionality. Folic acid and biotin are used as targeting ligands for cancer chemotherapy, since they are available, inexpensive, nontoxic, nonimmunogenic and easy to modify. These ligands are used in both, single- and dual-targeted systems although the latter are still a novel approach. This review presents the recent achievements in the development of single- or dual-targeted nanoparticles for anticancer drug delivery.
Collapse
Affiliation(s)
- Magdalena Jurczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (D.W.)
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
| | - Monika Musiał-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (D.W.)
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (D.W.)
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland
| |
Collapse
|
34
|
Wang C, Xia C, Zhu Y, Zhang H. Innovative fluorescent probes for in vivo visualization of biomolecules in living Caenorhabditis elegans. Cytometry A 2021; 99:560-574. [PMID: 33638604 DOI: 10.1002/cyto.a.24325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
Abstract
Caenorhabditis elegans (C. elegans) as a well-established multicellular model organism has been widely used in the biological field for half a century. Its numerous advantages including small body size, rapid life cycle, high-reproductive rate, well-defined anatomy, and conserved genome, has made C. elegans one of the most successful multicellular model organisms. Discoveries obtained from the C. elegans model have made great contributions to research fields such as development, aging, biophysics, immunology, and neuroscience. Because of its transparent body and giant cell size, C. elegans is also an ideal subject for high resolution and high-throughput optical imaging and analysis. During the past decade, great advances have been made to develop biomolecule-targeting techniques for noninvasive optical imaging. These novel technologies expanded the toolbox for qualitative and quantitative analysis of biomolecules in C. elegans. In this review, we summarize recently developed fluorescent probes or labeling techniques for visualizing biomolecules at the cellular, subcellular or molecular scale by using C. elegans as the major model organism or designed specifically for the applications in C. elegans. Combining the technological advantages of the C. elegans model with the novel fluorescent labeling techniques will provide new horizons for high-efficiency quantitative optical analysis in live organisms.
Collapse
Affiliation(s)
- Chunxia Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Chujie Xia
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yi Zhu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Huimin Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
35
|
Scherger M, Räder HJ, Nuhn L. Self-Immolative RAFT-Polymer End Group Modification. Macromol Rapid Commun 2021; 42:e2000752. [PMID: 33629782 DOI: 10.1002/marc.202000752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Indexed: 11/07/2022]
Abstract
Reversible modifications of reversible addition-fragmentation chain transfer (RAFT)-polymerization derived end groups are usually limited to reductive degradable disulfide conjugates. However, self-immolative linkers can promote ligation and traceless release of primary and secondary amines as well as alcohols via carbonates or carbamates in β-position to disulfides. In this study, these two strategies are combined and the concept of self-immolative RAFT-polymer end group modifications is introduced: As model compounds, benzylamine, dibenzylamine, and benzyl alcohol are first attached as carbamates or carbonates to a symmetrical disulfide, and in a straightforward one-pot reaction these groups are reversibly attached to aminolyzed trithiocarbonate end groups of RAFT-polymerized poly(N,N-dimethylacrylamide). Quantitative end group modification is confirmed by 1 H NMR spectroscopy, size exclusion chromatography, and mass spectrometry, while reversible release of attached compounds under physiological reductive conditions is successfully monitored by diffusion ordered NMR spectroscopy and thin layer chromatography. Additionally, this concept is further expanded to protein-reactive, self-immolative carbonate species that enable reversible bioconjugation of lysozyme and α-macrophage mannose receptor (MMR) nanobodies as model proteins. Altogether, self-immolative RAFT end group modifications can form the new basis for reversible introduction of various functionalities to polymer chain ends including protein bioconjugates and, thus, opening novel opportunities for stimuli-responsive polymer hybrids.
Collapse
Affiliation(s)
- Maximilian Scherger
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Hans Joachim Räder
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| |
Collapse
|
36
|
Yan C, Zhang Y, Guo Z. Recent progress on molecularly near-infrared fluorescent probes for chemotherapy and phototherapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213556] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
Zhang Y, Benassi E, Shi Y, Yue X, Cui L, Yang S, Liu Z, Guo X. Modified biomimetic core–shell nanostructures enable long circulation and targeted delivery for cancer therapy. NEW J CHEM 2021. [DOI: 10.1039/d1nj04407a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A “Trojan horse” strategy realizes long circulation and precise targeting of Bio-RBCm@MSN–DOX nanoparticles to efficiently kill tumor cells.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Process for Chemical Engineering, Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region, Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China
| | - Enrico Benassi
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Process for Chemical Engineering, Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region, Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Yue Shi
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xuanyu Yue
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Lin Cui
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Process for Chemical Engineering, Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region, Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China
| | - Shengchao Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Process for Chemical Engineering, Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region, Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Process for Chemical Engineering, Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region, Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Process for Chemical Engineering, Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region, Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
38
|
|
39
|
Xing J, Gong Q, Akakuru OU, Liu C, Zou R, Wu A. Research advances in integrated theranostic probes for tumor fluorescence visualization and treatment. NANOSCALE 2020; 12:24311-24330. [PMID: 33300527 DOI: 10.1039/d0nr06867e] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
At present, cancer is obviously a major threat to human health worldwide. Accurate diagnosis and treatment are in great demand and have become an effective method to alleviate the development of cancer and improve the survival rate of patients. A large number of theranostic probes that combine diagnosis and treatment methods have been developed as promising tools for tumor precision medicine. Among them, fluorescent theranostic probes have developed rapidly in the frontier research field of precision medicine with their real time, low toxicity, and high-resolution merit. Therefore, this review focuses on recent advances in the development of fluorescent theranostic probes, as well as their applications for cancer diagnosis and treatment. Initially, small-molecule fluorescent theranostic probes mainly including tumor microenvironment-responsive fluorescent prodrugs and phototherapeutic probes were introduced. Subsequently, nanocomposite probes are expounded based on four types of nano-fluorescent particles combining different therapies (chemotherapy, photothermal therapy, photodynamic therapy, gene therapy, etc.). Then, the capsule-type "all in one" probes, which occupy an important position in theranostic probes, are summarized according to the surface carrier type. This review aims to present a comprehensive guide for researchers in the field of tumor-related theranostic probe design and development.
Collapse
Affiliation(s)
- Jie Xing
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qiuyu Gong
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ruifen Zou
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| |
Collapse
|
40
|
Krishnan Y, Zou J, Jani MS. Quantitative Imaging of Biochemistry in Situ and at the Nanoscale. ACS CENTRAL SCIENCE 2020; 6:1938-1954. [PMID: 33274271 PMCID: PMC7706076 DOI: 10.1021/acscentsci.0c01076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 05/12/2023]
Abstract
Biochemical reactions in eukaryotic cells occur in subcellular, membrane-bound compartments called organelles. Each kind of organelle is characterized by a unique lumenal chemical composition whose stringent regulation is vital to proper organelle function. Disruption of the lumenal ionic content of organelles is inextricably linked to disease. Despite their vital roles in cellular homeostasis, there are large gaps in our knowledge of organellar chemical composition largely from a lack of suitable probes. In this Outlook, we describe how, using organelle-targeted ratiometric probes, one can quantitatively image the lumenal chemical composition and biochemical activity inside organelles. We discuss how excellent fluorescent detection chemistries applied largely to the cytosol may be expanded to study organelles by chemical imaging at subcellular resolution in live cells. DNA-based reporters are a new and versatile platform to enable such approaches because the resultant probes have precise ratiometry and accurate subcellular targeting and are able to map multiple chemicals simultaneously. Quantitatively mapping lumenal ions and biochemical activity can drive the discovery of new biology and biomedical applications.
Collapse
Affiliation(s)
| | - Junyi Zou
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Grossman Institute of Neuroscience,
Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637, United States
| | - Maulik S. Jani
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Grossman Institute of Neuroscience,
Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
41
|
Nguyen HVT, Detappe A, Harvey P, Gallagher N, Mathieu C, Agius MP, Zavidij O, Wang W, Jiang Y, Rajca A, Jasanoff A, Ghobrial IM, Ghoroghchian PP, Johnson JA. Pro-organic radical contrast agents ("pro-ORCAs") for real-time MRI of pro-drug activation in biological systems. Polym Chem 2020; 11:4768-4779. [PMID: 33790990 PMCID: PMC8009311 DOI: 10.1039/d0py00558d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nitroxide-based organic-radical contrast agents (ORCAs) are promising as safe, next-generation magnetic resonance imaging (MRI) tools. Nevertheless, stimuli-responsive ORCAs that enable MRI monitoring of prodrug activation have not been reported; such systems could open new avenues for prodrug validation and image-guided drug delivery. Here, we introduce a novel "pro-ORCA" concept that addresses this challenge. By covalent conjugation of nitroxides and drug molecules (doxorubicin, DOX) to the same brush-arm star polymer (BASP) through chemically identical cleavable linkers, we demonstrate that pro-ORCA and prodrug activation, i.e., ORCA and DOX release, leads to significant changes in MRI contrast that correlate with cytotoxicity. This approach is shown to be general for a range of commonly used linker cleavage mechanisms (e.g., photolysis and hydrolysis) and release rates. Pro-ORCAs could find applications as research tools or clinically viable "reporter theranostics" for in vitro and in vivo MRI-correlated prodrug activation.
Collapse
Affiliation(s)
- Hung V.-T. Nguyen
- Department of Chemistry, Massachusetts Institute of Technology (MIT)
- David H. Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
- These authors contributed equally
| | - Alexandre Detappe
- David H. Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
- Centre Paul Strauss, 3 Rue de la Porte de l’Hopital, 67000 Strasbourg, France
- These authors contributed equally
| | | | - Nolan Gallagher
- Department of Chemistry, Massachusetts Institute of Technology (MIT)
| | - Clelia Mathieu
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| | - Michael P. Agius
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| | - Oksana Zavidij
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| | - Wencong Wang
- Department of Chemistry, Massachusetts Institute of Technology (MIT)
| | - Yivan Jiang
- Department of Chemistry, Massachusetts Institute of Technology (MIT)
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Alan Jasanoff
- Department of Biological Engineering, MIT
- Department of Brain and Cognitive Sciences, MIT
- Department of Nuclear Science and Engineering, MIT
| | - Irene M. Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| | - P. Peter Ghoroghchian
- David H. Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| | - Jeremiah A. Johnson
- Department of Chemistry, Massachusetts Institute of Technology (MIT)
- David H. Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
42
|
Cheng W, Chen H, Liu C, Ji C, Ma G, Yin M. Functional organic dyes for health‐related applications. VIEW 2020. [DOI: 10.1002/viw.20200055] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Wenyu Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| | - Hongtao Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| | - Chang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| | - Chendong Ji
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| | - Guiping Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| | - Meizhen Yin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| |
Collapse
|
43
|
Bongarzone S, Sementa T, Dunn J, Bordoloi J, Sunassee K, Blower PJ, Gee A. Imaging Biotin Trafficking In Vivo with Positron Emission Tomography. J Med Chem 2020; 63:8265-8275. [PMID: 32658479 PMCID: PMC7445742 DOI: 10.1021/acs.jmedchem.0c00494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The water-soluble vitamin biotin is essential for cellular growth, development, and well-being, but its absorption, distribution, metabolism, and excretion are poorly understood. This paper describes the radiolabeling of biotin with the positron emission tomography (PET) radionuclide carbon-11 ([11C]biotin) to enable the quantitative study of biotin trafficking in vivo. We show that intravenously administered [11C]biotin is quickly distributed to the liver, kidneys, retina, heart, and brain in rodents-consistent with the known expression of the biotin transporter-and there is a surprising accumulation in the brown adipose tissue (BAT). Orally administered [11C]biotin was rapidly absorbed in the small intestine and swiftly distributed to the same organs. Preadministration of nonradioactive biotin inhibited organ uptake and increased excretion. [11C]Biotin PET imaging therefore provides a dynamic in vivo map of transporter-mediated biotin trafficking in healthy rodents. This technique will enable the exploration of biotin trafficking in humans and its use as a research tool for diagnostic imaging of obesity/diabetes, bacterial infection, and cancer.
Collapse
Affiliation(s)
- Salvatore Bongarzone
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Teresa Sementa
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Joel Dunn
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Jayanta Bordoloi
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Kavitha Sunassee
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Antony Gee
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| |
Collapse
|
44
|
Jia Z, Han HH, Sedgwick AC, Williams GT, Gwynne L, Brewster JT, Bull SD, Jenkins ATA, He XP, Schönherr H, Sessler JL, James TD. Protein Encapsulation: A Nanocarrier Approach to the Fluorescence Imaging of an Enzyme-Based Biomarker. Front Chem 2020; 8:389. [PMID: 32582623 PMCID: PMC7283737 DOI: 10.3389/fchem.2020.00389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023] Open
Abstract
Here, we report a new pentafluoropropanamido rhodamine fluorescent probe (ACS-HNE) that allows for the selective detection of neutrophil elastase (NE). ACS-HNE displayed high sensitivity, with a low limit of detection (<5.3 nM), and excellent selectivity toward elastase over other relevant biological analytes and enzymes. The comparatively poor solubility and cell permeability of neat ACS-HNE was improved by creating an ACS-HNE-albumin complex; this approach allowed for improvements in the in situ visualization of elastase activity in RAW 264.7 cells relative to ACS-HNE alone. The present study thus serves to demonstrate a simple universal strategy that may be used to overcome cell impermeability and solubility limitations, and to prepare probes suitable for the cellular imaging of enzymatic activity in vitro.
Collapse
Affiliation(s)
- Zhiyuan Jia
- Department of Chemistry and Biology, Physical Chemistry & Research Center of Micro- and Nanochemistry and Engineering (Cμ), University of Siegen, Siegen, Germany
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, TX, United States
| | | | - Lauren Gwynne
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - James T Brewster
- Department of Chemistry, The University of Texas at Austin, Austin, TX, United States
| | - Steven D Bull
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - A Toby A Jenkins
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Holger Schönherr
- Department of Chemistry and Biology, Physical Chemistry & Research Center of Micro- and Nanochemistry and Engineering (Cμ), University of Siegen, Siegen, Germany
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX, United States
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
45
|
Cong H, Wang K, Zhou Z, Yang J, Piao Y, Yu B, Shen Y, Zhou Z. Tuning the Brightness and Photostability of Organic Dots for Multivalent Targeted Cancer Imaging and Surgery. ACS NANO 2020; 14:5887-5900. [PMID: 32356972 DOI: 10.1021/acsnano.0c01034] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Specific labeling of biomarkers with bright and high photostable fluorophores is vital in fluorescent imaging applications. Here, we report a general strategy to develop single-molecule dendritic nanodots with finely tunable optical properties for in vivo fluorescent imaging. The well-defined nanodots are based on the divergent growth of biodegradable polylysine dendrimers with a fluorophore as the core. By tuning the size and surface chemistry, we obtained fluorescent nanodots with excellent brightness and photostability, favorable pharmacokinetics, and multivalent tumor-targeting capability. The nanodots provided robust, stable, long-lasting, and specific fluorescence enhancement in tumor tissue with an in situ tumor-to-normal ratio (TNR) of ∼3 and lasting over 5 days and an ex vivo TNR up to ∼17, holding considerable promise for cancer imaging and image-guided surgery. This strategy significantly improves the in vivo performance of fluorophores and can be applied to other modality imaging probes.
Collapse
Affiliation(s)
- Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kaiqi Wang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuha Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, East Qingchun Road 3, Hangzhou 310016, Zhejiang, China
| | - Jiajia Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ying Piao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
46
|
Li Y, Zhang X, Zhang Y, Zhang Y, He Y, Liu Y, Ju H. Activatable Photodynamic Therapy with Therapeutic Effect Prediction Based on a Self-correction Upconversion Nanoprobe. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19313-19323. [PMID: 32275130 DOI: 10.1021/acsami.0c03432] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Though emerging as a promising therapeutic approach for cancers, the crucial challenge for photodynamic therapy (PDT) is activatable phototoxicity for selective cancer cell destruction with low "off-target" damage and simultaneous therapeutic effect prediction. Here, we design an upconversion nanoprobe for intracellular cathepsin B (CaB)-responsive PDT with in situ self-corrected therapeutic effect prediction. The upconversion nanoprobe is composed of multishelled upconversion nanoparticles (UCNPs) NaYF4:Gd@NaYF4:Er,Yb@NaYF4:Nd,Yb, which covalently modified with an antenna molecule 800CW for UCNPs luminance enhancement under NIR irradiation, photosensitizer Rose Bengal (RB) for PDT, Cy3 for therapeutic effect prediction, and CaB substrate peptide labeled with a QSY7 quencher. The energy of UCNPs emission at 540 nm is transferred to Cy3/RB and eventually quenched by QSY7 via two continuous luminance resonance energy transfer processes from interior UCNPs to its surface-extended QSY7. The intracellular CaB specifically cleaves peptide to release QSY7, which correspondingly activates RB with reactive oxygen species (ROS) generation for PDT and recovers Cy3 luminance for CaB imaging. UCNPs emission at 540 nm remains unchanged during the peptide cleavage process, which is served as an internal standard for Cy3 luminance correction, and the fluorescence intensity ratio of Cy3 over UCNPs (FI583/FI540) is measured for self-corrected therapeutic effect prediction. The proposed self-corrected upconversion nanoprobe implies significant potential in precise tumor therapy.
Collapse
Affiliation(s)
- Yuyi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yue Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yue Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yuling He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
47
|
Guo Z, Yan C, Zhu WH. High-Performance Quinoline-Malononitrile Core as a Building Block for the Diversity-Oriented Synthesis of AIEgens. Angew Chem Int Ed Engl 2020; 59:9812-9825. [PMID: 31725932 DOI: 10.1002/anie.201913249] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 12/20/2022]
Abstract
In vivo fluorescent monitoring of physiological processes with high-fidelity is essential in disease diagnosis and biological research, but faces extreme challenges due to aggregation-caused quenching (ACQ) and short-wavelength fluorescence. The development of high-performance and long-wavelength aggregation-induced emission (AIE) fluorophores is in high demand for precise optical bioimaging. The chromophore quinoline-malononitrile (QM) has recently emerged as a new class of AIE building block that possesses several notable features, such as red to near-infrared (NIR) emission, high brightness, marked photostability, and good biocompatibility. In this minireview, we summarize some recent advances of our established AIE building block of QM, focusing on the AIE mechanism, regulation of emission wavelength and morphology, the facile scale-up and fast preparation for AIE nanoparticles, as well as potential biomedical imaging applications.
Collapse
Affiliation(s)
- Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
48
|
Guo Z, Yan C, Zhu W. High‐Performance Quinoline‐Malononitrile Core as a Building Block for the Diversity‐Oriented Synthesis of AIEgens. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterShanghai Key Laboratory of Functional Materials ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterShanghai Key Laboratory of Functional Materials ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Wei‐Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterShanghai Key Laboratory of Functional Materials ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
49
|
Fernández M, Shamsabadi A, Chudasama V. Fine-tuning thio-pyridazinediones as SMDC scaffolds (with intracellular thiol release via a novel self-immolative linker). Chem Commun (Camb) 2020; 56:1125-1128. [PMID: 31894778 DOI: 10.1039/c9cc08744c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Herein we report the synthesis of a library of thioalkyl- and thioaryl-pyridazinediones for thiol-based self-immolative release of cargo. A bisthioaryl-pyridazinedione is shown to be stable to serum protein albumin but unstable in intracellular conditions. A derivatised analogue underwent self-immolative degradation in cellular thiol conditions as evidenced by LC-MS/release of a turn-on fluorescence fluorophore; versatility of the thiol-pyridazinedione is demonstrated through synthesis of SMDC precursors that contain three different functional groups on the same central molecule.
Collapse
|
50
|
Cai S, Liu C, Jiao X, He S, Zhao L, Zeng X. A lysosome-targeted near-infrared fluorescent probe for imaging of acid phosphatase in living cells. Org Biomol Chem 2020; 18:1148-1154. [PMID: 31971197 DOI: 10.1039/c9ob02188d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fluorescent probes for the detection of acid phosphatases (ACP) are important in the investigation of the pathology and diagnosis of diseases. We reported a lysosome-targeted near-infrared (NIR) fluorescent probe SHCy-P based on a novel NIR-emitting thioxanthene-indolium dye for the detection of ACP. The probe showed a long wavelength fluorescence emission at λem = 765 nm. Due to the ACP-catalyzed cleavage of the phosphate group in SHCy-P, the probe exhibited high selectivity and sensitivity for the 'turn-on' detection of ACP with a limit of detection as low as 0.48 U L-1. The probe SHCy-P could also be used to detect and image endogenous ACP in lysosomes. In light of these prominent properties, we envision that SHCy-P will be an efficient optical imaging approach for investigating the ACP activity in disease diagnosis.
Collapse
Affiliation(s)
- Songtao Cai
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaojie Jiao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Liancheng Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xianshun Zeng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China and Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|