1
|
Sadiq Z, Safiabadi Tali SH, Mansouri M, Jahanshahi-Anbuhi S. A dual-functional nanogold tablet as a plasmonic and nanozyme sensor for point-of-care applications. NANOSCALE ADVANCES 2025:d5na00082c. [PMID: 40177386 PMCID: PMC11960780 DOI: 10.1039/d5na00082c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/13/2025] [Indexed: 04/05/2025]
Abstract
Point-of-care (POC) devices provide on-site disease diagnosis, particularly in resource-limited settings. Despite considerable progress in POC testing, the availability of commercial devices remains limited, primarily due to challenges in detection sensitivity and portability. Furthermore, advancements in existing POC devices are essential to better meet the needs of end-users. Herein, we present a colorimetric dual-functional tablet sensor using dextran-gold nanoparticles (dAuNPs) to detect and quantify uric acid and glucose levels in urine. Our tablet sensor combines the plasmonic and nanozyme properties of dAuNPs, resulting in highly sensitive detection of both biomarkers. Interestingly, we fabricated the nanogold tablet directly from the dAuNP solution without the addition of any external stabilizer or tablet-forming reagent, thus naming it a direct tablet. An enzyme-free approach was employed for uric acid detection, providing a wide detection range of 0.00187-7.8 mM and a low detection limit of 0.0037 mM, attributed to the hydrogen bonding between dextran and uric acid. On the other hand, the unique nanozyme properties of dAuNPs exhibited exclusive POx-mimetic activity for glucose detection (K m = 0.106 mM and V max = 369.72 mM min-1), with a lower detection limit of 0.625 mM. Our dual-functional tablet offers exceptional substrate selectivity for the colorimetric-chromogenic assay of both uric acid and glucose. This dual-functionality not only provides a highly sensitive, selective, and cost-effective detection strategy for resource-limited settings but also introduces a new avenue for designing customizable plasmonic-nanozyme nanogold tablet sensors as a powerful tool for rapid diagnosis.
Collapse
Affiliation(s)
- Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University Montréal Québec Canada
| | - Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University Montréal Québec Canada
| | - Maryam Mansouri
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University Montréal Québec Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University Montréal Québec Canada
| |
Collapse
|
2
|
Bayat F, Hilal A, Thirugnanasampanthar M, Tremblay D, Filipe CDM, Moineau S, Didar TF, Hosseinidoust Z. High throughput platform technology for rapid target identification in personalized phage therapy. Nat Commun 2024; 15:5626. [PMID: 38992046 PMCID: PMC11239838 DOI: 10.1038/s41467-024-49710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
As bacteriophages continue to gain regulatory approval for personalized human therapy against antibiotic-resistant infections, there is a need for transformative technologies for rapid target identification through multiple, large, decentralized therapeutic phages biobanks. Here, we design a high throughput phage screening platform comprised of a portable library of individual shelf-stable, ready-to-use phages, in all-inclusive solid tablets. Each tablet encapsulates one phage along with luciferin and luciferase enzyme stabilized in a sugar matrix comprised of pullulan and trehalose capable of directly detecting phage-mediated adenosine triphosphate (ATP) release through ATP bioluminescence reaction upon bacterial cell burst. The tablet composition also enhances desiccation tolerance of all components, which should allow easier and cheaper international transportation of phages and as a result, increased accessibility to therapeutic phages. We demonstrate high throughput screening by identifying target phages for select multidrug-resistant clinical isolates of Pseudomonas aeruginosa, Salmonella enterica, Escherichia coli, and Staphylococcus aureus with targets identified within 30-120 min.
Collapse
Affiliation(s)
- Fereshteh Bayat
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Arwa Hilal
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | | | - Denise Tremblay
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, QC, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, QC, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada.
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada.
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
| | - Zeinab Hosseinidoust
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada.
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada.
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
3
|
Zhang G, Wu Y, Xue W, Wang D, Chang Y, Liu M. Amplification-free detection of Escherichia coli using an acidic deoxyribozyme-based paper device. Chem Commun (Camb) 2024; 60:6741-6744. [PMID: 38809259 DOI: 10.1039/d4cc01150c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We reported a colorimetric paper-based device by integrating the modified acid RNA-cleaving DNAzymes (MaRCD-EC1) for highly sensitive (detection limit = 102 CFU mL-1), and rapid (within 30 min) detection of E. coli without amplification. This device exhibited a clinical sensitivity of 100% and a specificity of 100% in identifying E. coli-associated urinary tract infections (UTIs) using the clinical urine samples.
Collapse
Affiliation(s)
- Guangxiao Zhang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
- Dalian POCT laboratory, Dalian, 116024, China.
| | - Yunping Wu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
- Dalian POCT laboratory, Dalian, 116024, China.
| | - Wei Xue
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
- Dalian POCT laboratory, Dalian, 116024, China.
| | - Dong Wang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
- Dalian POCT laboratory, Dalian, 116024, China.
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
- Dalian POCT laboratory, Dalian, 116024, China.
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
- Dalian POCT laboratory, Dalian, 116024, China.
| |
Collapse
|
4
|
Morkus P, Sibbald S, Choi L, Rassenberg S, Filipe CDM, Latulippe DR. Miniaturization of an enclosed electrospinning process to enhance reproducibility in the fabrication of rapidly dissolving cell-based biosensors. Biotechnol J 2024; 19:e2300306. [PMID: 37882254 DOI: 10.1002/biot.202300306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023]
Abstract
There is broad interest in producing electrospun films embedded with biological materials. It is well known that electrospinning requires careful control of the process conditions, especially the environmental conditions such as relative humidity (RH). Given that commercial electrospinning systems are expensive (> $10,000) and are typically too large to be used in standard biological safety cabinets (BSC), we designed and built a miniaturized electrospinning box (E-Box) that will fit inside a BSC, and the RH can be easily controlled using simple instrumentation (gas cylinder, regulator, needle valve, rotameter). It uses an inexpensive computerized numerical control machine to control the spinneret positioning and collector rotational speed-all the parts for the device (except the syringe pump and voltage supply) can be purchased for approximately $1000. We demonstrate the usefulness of our design in optimizing the production of Escherichia coli-embedded pullulan-trehalose films to be used as rapidly dissolving biosensors for environmental monitoring. At a fixed electrospinning recipe, we showed that decreasing the RH from approximately 48% to 22% resulted in the average fiber diameter increasing from 240 (± 11) nm to 314 (± 8) nm. We also demonstrate the usefulness of our design in performing sequential electrospinning experiments to evaluate process performance reproducibility. For example, from just 1 mL of a polymer solution, we produced 16 electrospun films (approximately 3 cm by 8 cm each)-from those films we hole-punched approximately 80 biosensor discs which were then used in subsequent experiments to determine the amount of two different biocides (Grotan BK and triclosan) in aqueous samples. The technique developed in this study is ideal for creating electrospun materials in high quantities that are highly reproducible through the precise control of RH.
Collapse
Affiliation(s)
- Patrick Morkus
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Stephanie Sibbald
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Lauren Choi
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Sarah Rassenberg
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - David R Latulippe
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Hajimiri H, Safiabadi Tali SH, Al-Kassawneh M, Sadiq Z, Jahanshahi-Anbuhi S. Tablet-Based Sensor: A Stable and User-Friendly Tool for Point-of-Care Detection of Glucose in Urine. BIOSENSORS 2023; 13:893. [PMID: 37754126 PMCID: PMC10526991 DOI: 10.3390/bios13090893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
The colorimetric detection of glucose in urine through enzymatic reactions offers a low-cost and non-invasive method to aid in diabetes management. Nonetheless, the vulnerability of enzymes to environmental conditions, particularly elevated temperatures, and their activity loss pose significant challenges for transportation and storage. In this work, we developed a stable and portable tablet sensor as a user-friendly platform for glucose monitoring. This innovative device encapsulates glucose oxidase and horseradish peroxidase enzymes with dextran, transforming them into solid tablets and ensuring enhanced stability and practicality. The enzymatic tablet-based sensor detected glucose in urine samples within 5 min, using 3,3',5,5'-tetramethylbenzidine (TMB) as the indicator. The tablet sensor exhibited responsive performance within the clinically relevant range of 0-6 mM glucose, with a limit of detection of 0.013 mM. Furthermore, the tablets detected glucose in spiked real human urine samples, without pre-processing, with high precision. Additionally, with regard to thermal stability, the enzyme tablets better maintained their activity at an elevated temperature as high as 60 °C compared to the solution-phase enzymes, demonstrating the enhanced stability of the enzymes under harsh conditions. The availability of these stable and portable tablet sensors will greatly ease the transportation and application of glucose sensors, enhancing the accessibility of glucose monitoring, particularly in resource-limited settings.
Collapse
Affiliation(s)
| | | | | | | | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montreal, QC H3G 2W1, Canada; (H.H.); (S.H.S.T.); (M.A.-K.); (Z.S.)
| |
Collapse
|
6
|
Toldrà A, Chondrogiannis G, Hamedi MM. A 3D paper microfluidic device for enzyme-linked assays: Application to DNA analysis. Biotechnol J 2023; 18:e2300143. [PMID: 37222181 DOI: 10.1002/biot.202300143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 03/31/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
A paper microfluidic device capable of conducting enzyme-linked assays is presented: a microfluidic enzyme-linked paper analytical device (μEL-PAD). The system exploits a wash-free sandwich coupling to form beads/analyte/enzyme complexes, which are subsequently added to the vertical flow device composed of wax-printed paper, waxed nitrocellulose membrane and absorbent/barrier layers. The nitrocellulose retains the bead complexes without disrupting the flow, enabling for an efficient washing step. The entrapped complexes then interact with the chromogenic substrate stored on the detection paper, generating a color change on it, quantified with an open-source smartphone software. This is a universal paper-based technology suitable for high-sensitivity quantification of many analytes, such as proteins or nucleic acids, with different enzyme-linked formats. Here, the potential of the μEL-PAD is demonstrated to detect DNA from Staphylococcus epidermidis. After generation of isothermally amplified genomic DNA from bacteria, Biotin/FITC-labeled products were analyzed with the μEL-PAD, exploiting streptavidin-coated beads and antiFITC-horseradish peroxidase. The μEL-PAD achieved a limit of detection (LOD) and quantification <10 genome copies/μL, these being at least 70- and 1000-fold lower, respectively, than a traditional lateral flow assay (LFA) exploiting immobilized streptavidin and antiFITC-gold nanoparticles. It is envisaged that the device will be a good option for low-cost, simple, quantitative, and sensitive paper-based point-of-care testing.
Collapse
Affiliation(s)
- Anna Toldrà
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Georgios Chondrogiannis
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mahiar M Hamedi
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
7
|
Al-Kassawneh M, Sadiq Z, Jahanshahi-Anbuhi S. User-friendly and ultra-stable all-inclusive gold tablets for cysteamine detection. RSC Adv 2023; 13:19638-19650. [PMID: 37397283 PMCID: PMC10308203 DOI: 10.1039/d3ra03073c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
To date, a range of nanozymes has been reported for their enzyme-mimicking catalytic activity such as solution-based sensors. However, in remote areas, the need for portable, cost-effective, and one-pot prepared sensors is obvious. In this study, we report the development of a highly stable and sensitive gold tablet-based sensor for cysteamine quantification in human serum samples. The sensor is produced in two steps: synthesis of a pullulan-stabilized gold nanoparticle solution (pAuNP-Solution) using a pullulan polymer as a reducing, stabilizing, and encapsulating agent and then, casting the pAuNP-Solution into a pullulan gold nanoparticle tablet (pAuNP-Tablet) by a pipetting method. The tablet was characterized by UV-vis, DLS, FTIR, TEM, and AFM analyses. The pAuNP-tablet exhibited a high peroxidase-mimetic activity via a TMB-H2O2 system. The presence of cysteamine in the system introduced two types of inhibition which were dependent on the cysteamine concentration. By determining Michaelis-Menten's kinetic parameters, we gained mechanistic insights into the catalytic inhibition process. Based on the catalytic inhibition capability of cysteamine, the limit of detection (LoD) was calculated to be 69.04 and 82.9 μM in buffer and human serum samples, respectively. Finally, real human serum samples were tested, demonstrating the applicability of the pAuNP-Tablet for real-world applications. The % R values in human serum samples were in the range of 91-105% with % RSD less than 2% for all replicas. The stability tests over 16 months revealed the ultra-stable properties of the pAuNP-Tablet. Overall, with a simple fabrication method and a novel employed technique, this study contributes to the advancement of tablet-based sensors and helps in cysteamine detection in clinical settings.
Collapse
Affiliation(s)
- Muna Al-Kassawneh
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University Montréal Québec Canada
| | - Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University Montréal Québec Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University Montréal Québec Canada
| |
Collapse
|
8
|
Pullulan-stabilized gold nanoparticles tablet as a nanozyme sensor for point-of-care applications. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
9
|
Zhang T, Deng R, Wang Y, Wu C, Zhang K, Wang C, Gong N, Ledesma-Amaro R, Teng X, Yang C, Xue T, Zhang Y, Hu Y, He Q, Li W, Li J. A paper-based assay for the colorimetric detection of SARS-CoV-2 variants at single-nucleotide resolution. Nat Biomed Eng 2022; 6:957-967. [PMID: 35835993 DOI: 10.1038/s41551-022-00907-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 05/29/2022] [Indexed: 02/05/2023]
Abstract
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need for versatile diagnostic assays that can discriminate among emerging variants of the virus. Here we report the development and performance benchmarking of an inexpensive (approximately US$0.30 per test) assay for the rapid (sample-to-answer time within 30 min) colorimetric detection of SARS-CoV-2 variants. The assay, which we integrated into foldable paper strips, leverages nucleic acid strand-displacement reactions, the thermodynamic energy penalty associated with single-base-pair mismatches and the metal-ion-controlled enzymatic cleavage of urea to amplify the recognition of viral RNAs for the colorimetric readout of changes in pH via a smartphone. For 50 throat swab samples, the assay simultaneously detected the presence of SARS-CoV-2 and mutations specific to the SARS-CoV-2 variants Alpha, Beta and Gamma, with 100% concordance with real-time quantitative polymerase chain reaction and RNA sequencing. Customizable and inexpensive paper-based assays for the detection of viruses and their variants may facilitate viral surveillance.
Collapse
Affiliation(s)
- Ting Zhang
- College of Biomass Science and Engineering, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Wang
- College of Biomass Science and Engineering, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chengyong Wu
- College of Biomass Science and Engineering, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, China
| | - Chunyan Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, China
| | - Ningqiang Gong
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Xucong Teng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Chunrong Yang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Ting Xue
- College of Biomass Science and Engineering, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Zhang
- College of Biomass Science and Engineering, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Hu
- College of Biomass Science and Engineering, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang He
- College of Biomass Science and Engineering, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Weimin Li
- College of Biomass Science and Engineering, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
10
|
Sadiq Z, Safiabadi Tali SH, Jahanshahi-Anbuhi S. Gold Tablets: Gold Nanoparticles Encapsulated into Dextran Tablets and Their pH-Responsive Behavior as an Easy-to-Use Platform for Multipurpose Applications. ACS OMEGA 2022; 7:11177-11189. [PMID: 35415343 PMCID: PMC8991920 DOI: 10.1021/acsomega.1c07393] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Many applications using gold nanoparticles (AuNPs) require (i) their functionalization with a biopolymer to increase their stability and (ii) their transformation into an easy-to-handle material, which provide them with specific properties. In this research, a portable tablet platform is presented based on dextran-encapsulated gold nanoparticles (AuNPs-dTab) by a ligand exchange reaction between citrate-capped gold nanoparticles (AuNPs-Cit) and dextran. These newly fabricated tablets were characterized utilizing ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction spectroscopy (XRD), differential scanning calorimetry (DSC), and atomic force microscopy (AFM) techniques. The results showed that dextran-capped gold nanoparticles in a tablet platform (AuNPs-dTab) were well-dispersed and highly stable for at least a year at room temperature. In addition to particle and surface characterization of AuNPs-dTab, the tablet morphology in terms of thickness, diameter, density, and opacity was also measured using 6 and 10% dextran with 2, 4 and 8 nM AuNPs-Cit. We further investigated the pH-responsive behavior of AuNPs-dTab in the presence and absence of sodium chloride. Results showed that neutral and alkaline environments were suitable to render AuNPs dispersed in a tablet, while an acidic condition controls the aggregation rate of AuNPs as confirmed by concentration-dependent aggregation phenomena. Besides the easy fabrication, these tablets were portable and low-cost (approx. 1.22 CAD per 100 tablets of a 100 μL solution of dextran-capped gold nanoparticles (AuNPs-dSol)). The biocompatible nature of dextran along with the acidic medium trigger nature of AuNPs makes our proposed tablet a potential candidate for cancer therapy due to the acidic surrounding of tumor tissues as compared to normal cells. Also, our proposed tablet approach paves the way for the fabrication of portable and easy-to-use optical sensors based on the AuNPs embedded in a natural polymeric architecture that would serve as a colorimetric recognition indicator for detecting analytes of interest.
Collapse
Affiliation(s)
- Zubi Sadiq
- Department of Chemical and
Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Seyed Hamid Safiabadi Tali
- Department of Chemical and
Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and
Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
11
|
Insuasti‐Cruz E, Suárez‐Jaramillo V, Mena Urresta KA, Pila‐Varela KO, Fiallos‐Ayala X, Dahoumane SA, Alexis F. Natural Biomaterials from Biodiversity for Healthcare Applications. Adv Healthc Mater 2022; 11:e2101389. [PMID: 34643331 DOI: 10.1002/adhm.202101389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/20/2021] [Indexed: 12/22/2022]
Abstract
Natural biomaterials originating during the growth cycles of all living organisms have been used for many applications. They span from bioinert to bioactive materials including bioinspired ones. As they exhibit an increasing degree of sophistication, natural biomaterials have proven suitable to address the needs of the healthcare sector. Here the different natural healthcare biomaterials, their biodiversity sources, properties, and promising healthcare applications are reviewed. The variability of their properties as a result of considered species and their habitat is also discussed. Finally, some limitations of natural biomaterials are discussed and possible future developments are provided as more natural biomaterials are yet to be discovered and studied.
Collapse
Affiliation(s)
- Erick Insuasti‐Cruz
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | | | | | - Kevin O. Pila‐Varela
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | - Xiomira Fiallos‐Ayala
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | - Si Amar Dahoumane
- Department of Chemical Engineering Polytech Montreal Montreal Quebec H3C 3A7 Canada
- Center for Advances in Water and Air Quality (CAWAQ) Lamar University Beaumont TX 77710 USA
| | - Frank Alexis
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| |
Collapse
|
12
|
Bialy RM, Mainguy A, Li Y, Brennan JD. Functional nucleic acid biosensors utilizing rolling circle amplification. Chem Soc Rev 2022; 51:9009-9067. [DOI: 10.1039/d2cs00613h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional nucleic acids regulate rolling circle amplification to produce multiple detection outputs suitable for the development of point-of-care diagnostic devices.
Collapse
Affiliation(s)
- Roger M. Bialy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Alexa Mainguy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Yingfu Li
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D. Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| |
Collapse
|
13
|
Han GR, Jang H, Ki H, Lee H, Kim MG. Reagent Filming for Universal Point-of-Care Diagnostics. SMALL METHODS 2021; 5:e2100645. [PMID: 34928024 DOI: 10.1002/smtd.202100645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/14/2021] [Indexed: 06/14/2023]
Abstract
Simplifying assays while maintaining the robustness of reagents is a challenge in diagnostics. This problem is exacerbated when translating quality diagnostic assays to developing countries that lack resources and infrastructure such as trained health workers, high-end equipment, and cold-chain systems. To solve this problem, in this study, a simple solution that films assay reagents to simplify the operation of diagnostic assays and preserve the stability of diagnostic reagents without using cold chains is presented. A polyvinyl-alcohol-based water-soluble film is used to encapsulate premeasured and premixed reagents. The reagent film, produced through a simple and scalable cast-drying process, provides a glassy inner matrix with abundant hydroxyl groups that can stabilize various reagents (ranging from chemicals to biological materials) by restricting molecular mobility and generating hydrogen bonds. The reagent film is applied to an enzymatic glucose assay, a high-sensitivity immunoassay for cardiac troponin, and a molecular assay for viral RNA detection, to test its practicability and universal applicability. The film-based assays result in excellent analytical/diagnostic performance and stable long-term reagent storage at elevated temperatures (at 25 or 37 °C, for six months), demonstrating clinical readiness. This technology advances the development and distribution of affordable high-quality diagnostics to resource-limited regions.
Collapse
Affiliation(s)
- Gyeo-Re Han
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Hyungjun Jang
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Hangil Ki
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Hoyeon Lee
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| |
Collapse
|
14
|
Coudy D, Colotte M, Luis A, Tuffet S, Bonnet J. Long term conservation of DNA at ambient temperature. Implications for DNA data storage. PLoS One 2021; 16:e0259868. [PMID: 34763344 PMCID: PMC8585539 DOI: 10.1371/journal.pone.0259868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022] Open
Abstract
DNA conservation is central to many applications. This leads to an ever-increasing number of samples which are more and more difficult and costly to store or transport. A way to alleviate this problem is to develop procedures for storing samples at room temperature while maintaining their stability. A variety of commercial systems have been proposed but they fail to completely protect DNA from deleterious factors, mainly water. On the other side, Imagene company has developed a procedure for long-term conservation of biospecimen at room temperature based on the confinement of the samples under an anhydrous and anoxic atmosphere maintained inside hermetic capsules. The procedure has been validated by us and others for purified RNA, and for DNA in buffy coat or white blood cells lysates, but a precise determination of purified DNA stability is still lacking. We used the Arrhenius law to determine the DNA degradation rate at room temperature. We found that extrapolation to 25°C gave a degradation rate constant equivalent to about 1 cut/century/100 000 nucleotides, a stability several orders of magnitude larger than the current commercialized processes. Such a stability is fundamental for many applications such as the preservation of very large DNA molecules (particularly interesting in the context of genome sequencing) or oligonucleotides for DNA data storage. Capsules are also well suited for this latter application because of their high capacity. One can calculate that the 64 zettabytes of data produced in 2020 could be stored, standalone, for centuries, in about 20 kg of capsules.
Collapse
Affiliation(s)
- Delphine Coudy
- Laboratoire de Recherche et développement, Imagene Company, Pessac, France
| | - Marthe Colotte
- Imagene, plateforme de production, Genopole, Evry, France
| | - Aurélie Luis
- Laboratoire de Recherche et développement, Imagene Company, Pessac, France
| | - Sophie Tuffet
- Laboratoire de Recherche et développement, Imagene Company, Pessac, France
- Imagene, plateforme de production, Genopole, Evry, France
| | - Jacques Bonnet
- Laboratoire de Recherche et développement, Imagene Company, Pessac, France
- Université de Bordeaux, Institut Bergonié, INSERM, Bordeaux, France
| |
Collapse
|
15
|
Abstract
This article provides a comprehensive review of biosensing with DNAzymes, providing an overview of different sensing applications while highlighting major progress and seminal contributions to the field of portable biosensor devices and point-of-care diagnostics. Specifically, the field of functional nucleic acids is introduced, with a specific focus on DNAzymes. The incorporation of DNAzymes into bioassays is then described, followed by a detailed overview of recent advances in the development of in vivo sensing platforms and portable sensors incorporating DNAzymes for molecular recognition. Finally, a critical perspective on the field, and a summary of where DNAzyme-based devices may make the biggest impact are provided.
Collapse
Affiliation(s)
- Erin M McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | | | | | |
Collapse
|
16
|
Calabretta MM, Zangheri M, Calabria D, Lopreside A, Montali L, Marchegiani E, Trozzi I, Guardigli M, Mirasoli M, Michelini E. Paper-Based Immunosensors with Bio-Chemiluminescence Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:4309. [PMID: 34202483 PMCID: PMC8271422 DOI: 10.3390/s21134309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Since the introduction of paper-based analytical devices as potential diagnostic platforms a few decades ago, huge efforts have been made in this field to develop systems suitable for meeting the requirements for the point-of-care (POC) approach. Considerable progress has been achieved in the adaptation of existing analysis methods to a paper-based format, especially considering the chemiluminescent (CL)-immunoassays-based techniques. The implementation of biospecific assays with CL detection and paper-based technology represents an ideal solution for the development of portable analytical devices for on-site applications, since the peculiarities of these features create a unique combination for fitting the POC purposes. Despite this, the scientific production is not paralleled by the diffusion of such devices into everyday life. This review aims to highlight the open issues that are responsible for this discrepancy and to find the aspects that require a focused and targeted research to make these methods really applicable in routine analysis.
Collapse
Affiliation(s)
- Maria Maddalena Calabretta
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
| | - Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
| | - Antonia Lopreside
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Laura Montali
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Elisa Marchegiani
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
| | - Ilaria Trozzi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, 48123 Ravenna, Italy
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, 48123 Ravenna, Italy
- INBB, Istituto Nazionale di Biostrutture e Biosistemi, Via Medaglie d’Oro, 00136 Rome, Italy
| | - Elisa Michelini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- INBB, Istituto Nazionale di Biostrutture e Biosistemi, Via Medaglie d’Oro, 00136 Rome, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
17
|
Safiabadi Tali SH, LeBlanc JJ, Sadiq Z, Oyewunmi OD, Camargo C, Nikpour B, Armanfard N, Sagan SM, Jahanshahi-Anbuhi S. Tools and Techniques for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)/COVID-19 Detection. Clin Microbiol Rev 2021; 34:e00228-20. [PMID: 33980687 PMCID: PMC8142517 DOI: 10.1128/cmr.00228-20] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory disease coronavirus 2 (SARS-CoV-2), has led to millions of confirmed cases and deaths worldwide. Efficient diagnostic tools are in high demand, as rapid and large-scale testing plays a pivotal role in patient management and decelerating disease spread. This paper reviews current technologies used to detect SARS-CoV-2 in clinical laboratories as well as advances made for molecular, antigen-based, and immunological point-of-care testing, including recent developments in sensor and biosensor devices. The importance of the timing and type of specimen collection is discussed, along with factors such as disease prevalence, setting, and methods. Details of the mechanisms of action of the various methodologies are presented, along with their application span and known performance characteristics. Diagnostic imaging techniques and biomarkers are also covered, with an emphasis on their use for assessing COVID-19 or monitoring disease severity or complications. While the SARS-CoV-2 literature is rapidly evolving, this review highlights topics of interest that have occurred during the pandemic and the lessons learned throughout. Exploring a broad armamentarium of techniques for detecting SARS-CoV-2 will ensure continued diagnostic support for clinicians, public health, and infection prevention and control for this pandemic and provide advice for future pandemic preparedness.
Collapse
Affiliation(s)
- Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
- Department of Mechanical, Industrial, and Aerospace Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
| | - Jason J LeBlanc
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medicine (Infectious Diseases), Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
| | - Oyejide Damilola Oyewunmi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
| | - Carolina Camargo
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Bahareh Nikpour
- Department of Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada
| | - Narges Armanfard
- Department of Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada
- Mila-Quebec AI Institute, Montréal, Québec, Canada
| | - Selena M Sagan
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
18
|
Cozma I, McConnell EM, Brennan JD, Li Y. DNAzymes as key components of biosensing systems for the detection of biological targets. Biosens Bioelectron 2021; 177:112972. [DOI: 10.1016/j.bios.2021.112972] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 12/11/2022]
|
19
|
Hall MP, Kincaid VA, Jost EA, Smith TP, Hurst R, Forsyth SK, Fitzgerald C, Ressler VT, Zimmermann K, Lazar D, Wood MG, Wood KV, Kirkland TA, Encell LP, Machleidt T, Dart ML. Toward a Point-of-Need Bioluminescence-Based Immunoassay Utilizing a Complete Shelf-Stable Reagent. Anal Chem 2021; 93:5177-5184. [PMID: 33730483 DOI: 10.1021/acs.analchem.0c05074] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzyme-linked immunosorbent assays (ELISAs) are used extensively for the detection and quantification of biomolecules in clinical diagnostics as well as in basic research. Although broadly used, the inherent complexities of ELISAs preclude their utility for straightforward point-of-need testing, where speed and simplicity are essential. With this in mind, we developed a bioluminescence-based immunoassay format that provides a sensitive and simple method for detecting biomolecules in clinical samples. We utilized a ternary, split-NanoLuc luciferase complementation reporter consisting of two small peptides (11mer, 13mer) and a 17 kDa polypeptide combined with a luminogenic substrate to create a complete, shelf-stable add-and-read assay detection reagent. Directed evolution was used to optimize reporter constituent sequences to impart chemical and thermal stability, as well as solubility, while formulation optimization was applied to stabilize an all-in-one reagent that can be reconstituted in aqueous buffers or sample matrices. The result of these efforts is a robust, first-generation bioluminescence-based homogenous immunoassay reporter platform where all assay components can be configured into a stable lyophilized cake, supporting homogeneous, rapid, and sensitive one-step biomolecule quantification in complex human samples. This technology represents a promising alternative immunoassay format with significant potential to bring critical diagnostic molecular detection testing closer to the point-of-need.
Collapse
Affiliation(s)
- Mary P Hall
- Promega Corporation, Madison, Wisconsin 53711, United States
| | | | - Emily A Jost
- Promega Corporation, Madison, Wisconsin 53711, United States
| | - Thomas P Smith
- Promega Biosciences LLC, San Luis Obispo, California 93401, United States
| | - Robin Hurst
- Promega Corporation, Madison, Wisconsin 53711, United States
| | | | - Connor Fitzgerald
- Promega Biosciences LLC, San Luis Obispo, California 93401, United States
| | | | - Kris Zimmermann
- Promega Corporation, Madison, Wisconsin 53711, United States
| | - Dan Lazar
- Promega Corporation, Madison, Wisconsin 53711, United States
| | - Monika G Wood
- Promega Corporation, Madison, Wisconsin 53711, United States
| | - Keith V Wood
- Promega Corporation, Madison, Wisconsin 53711, United States
| | - Thomas A Kirkland
- Promega Biosciences LLC, San Luis Obispo, California 93401, United States
| | - Lance P Encell
- Promega Corporation, Madison, Wisconsin 53711, United States
| | | | - Melanie L Dart
- Promega Corporation, Madison, Wisconsin 53711, United States
| |
Collapse
|
20
|
Dual-Modal Assay Kit for the Qualitative and Quantitative Determination of the Total Water Hardness Using a Permanent Marker Fabricated Microfluidic Paper-Based Analytical Device. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8040097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A dip-and-read microfluidic paper-based analytical device (µPAD) was developed for the qualitative and quantitative detection of the total hardness of water. To create well-defined hydrophobic barriers on filter paper, a regular office printer and a commercially available permanent marker pen were utilized as a quick and simple technique with easily accessible equipment/materials to fabricate µPAD in new or resource-limited laboratories without sophisticated equipment. After a wettability and barrier efficiency analysis on the permanent marker colors, the blue and green ink markers exhibited favorable hydrophobic properties and were utilized in the fabrication of the developed test devices. The device had five reaction and detection zones modeled after the classification given by the World Health Organization (WHO), so qualitatively it determined whether the water was ‘soft’, ‘moderately hard’, ‘hard’, or ‘very hard’ by changing color from blue to pink in about 3 min. The device was also used to introduce an alternative colorimetric reaction for quantitative analysis of the water hardness without the need for ethylenediaminetetraacetic acid (EDTA) and without compromising the simplicity and low cost of the device. The developed µPAD showed a calculated limit of detection (LOD) of 0.02 mM, which is at least 80% less than those of commercially available test strips and other reported µPADs, and the results of the real-world samples were consistent with those of the standard titration (with EDTA). In addition, the device exhibited stability for 2 months at room and frigid condition (4 °C) and at varying harsh temperatures from 25 to 100 °C. The results demonstrate that the developed paper-based device can be used for rapid, on-site analysis of water with no interferences and no need for a pipette for sample introduction during testing.
Collapse
|
21
|
Ding Y, Jiang F, Chen L, Lyu W, Chi Z, Liu C, Chi Z. An Alternative Hard Capsule Prepared with the High Molecular Weight Pullulan and Gellan: Processing, Characterization, and In Vitro Drug Release. Carbohydr Polym 2020; 237:116172. [DOI: 10.1016/j.carbpol.2020.116172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
|
22
|
Bialy RM, Ali MM, Li Y, Brennan JD. Protein-Mediated Suppression of Rolling Circle Amplification for Biosensing with an Aptamer-Containing DNA Primer. Chemistry 2020; 26:5085-5092. [PMID: 32096262 DOI: 10.1002/chem.202000245] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/21/2020] [Indexed: 12/22/2022]
Abstract
We report a method to detect proteins via suppression of rolling circle amplification (RCA) by using an appropriate aptamer as the linear primer (denoted as an aptaprimer) to initiate RCA. In the absence of a protein target, the aptaprimer is free to initiate RCA, which can produce long DNA products that are detected via binding of a fluorescent intercalating dye. Introduction of a target causes the primer region within the aptamer to become unavailable for binding to the circular template, inhibiting RCA. Using SYBR Gold or QuantiFluor dyes as fluorescent probes to bind to the RCA reaction product, it is possible to produce a generic protein-modulated RCA assay system that does not require fluorophore- or biotin-modified DNA species, substantially reducing complexity and cost of reagents. Based on this modulation of RCA, we demonstrate the ability to produce both solution and paper-based assays for rapid and quantitative detection of proteins including platelet derived growth factor and thrombin.
Collapse
Affiliation(s)
- Roger M Bialy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Monsur M Ali
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Yingfu Li
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| |
Collapse
|
23
|
Material development using the inherent features of nano-cellulose and nano-chitin: Necessity of simple processes and cross-disciplinary collaboration. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
24
|
Morkus P, Zolfaghari M, Kordkandi SA, Nease J, Filipe CDM, Latulippe DR. A Rapid Assay to Assess Nitrification Inhibition Using a Panel of Bacterial Strains and Partial Least Squares Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:184-194. [PMID: 31790215 DOI: 10.1021/acs.est.9b04453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As a proof of concept, a rapid assay consisting of a cell-based biosensor (CBB) panel of pure bacterial strains, a fluorescent dye, and partial least squares (PLS) modeling was developed to assess the nitrification inhibition potential of industrial wastewater (WW) samples. The current standard method used to assess the nitrification inhibition potential is the specific nitrification rate (SNR) batch test, which requires approximately 4 h to complete under the watch of an experienced operator. In this study, we exposed the CBB panel of seven bacterial strains (nitrifying and non-nitrifying) to 28 different industrial WW samples and then probed both the membrane integrity and cellular activity using a commercially available "live/dead" fluorescent dye. The CBB panel response acts as a surrogate measurement for the performance of nitrification. Of the seven strains, four (Nitrospira, Escherichia coli, Bacillus subtilis, Bacillus cereus) were identified via the modeling technique to be the most significant contributors for predicting the nitrification inhibition potential. The key outcome from this work is that the CBB panel fluorescence data (collected in approximately 10 min) can accurately predict the outcome of an SNR batch test (that takes 4 h) when performed with the same WW samples and has a strong potential to approximate the chemical composition of these WW samples using PLS modeling. Overall, this is a powerful technique that can be used for point-of-use detection of nitrification inhibition.
Collapse
Affiliation(s)
- Patrick Morkus
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Mehdi Zolfaghari
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Salman Alizadeh Kordkandi
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Jake Nease
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - David R Latulippe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
25
|
Liu Z, Xia X, Zhou G, Ge L, Li F. Acetylcholinesterase-catalyzed silver deposition for ultrasensitive electrochemical biosensing of organophosphorus pesticides. Analyst 2020; 145:2339-2344. [DOI: 10.1039/c9an02546d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports, for the first time, acetylcholinesterase-catalyzed silver deposition for sensitive electrochemical detection of organophosphorus pesticides.
Collapse
Affiliation(s)
- Zhenhui Liu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Xin Xia
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Guoxing Zhou
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Lei Ge
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| |
Collapse
|
26
|
White D, Keramane M, Capretta A, Brennan JD. A paper-based biosensor for visual detection of glucose-6-phosphate dehydrogenase from whole blood. Analyst 2020; 145:1817-1824. [DOI: 10.1039/c9an02219h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Paper-based, colorimetric, visual detection of G6PD from whole blood without need for equipment.
Collapse
Affiliation(s)
- Dawn White
- Biointerfaces Institute
- McMaster University
- Canada
| | | | | | | |
Collapse
|
27
|
Ali MM, Wolfe M, Tram K, Gu J, Filipe CDM, Li Y, Brennan JD. A DNAzyme‐Based Colorimetric Paper Sensor for
Helicobacter pylori. Angew Chem Int Ed Engl 2019; 58:9907-9911. [PMID: 31095864 DOI: 10.1002/anie.201901873] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/18/2019] [Indexed: 01/25/2023]
Affiliation(s)
- M. Monsur Ali
- Biointerfaces InstituteMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Michael Wolfe
- Biointerfaces InstituteMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Kha Tram
- InnovoGene Biosciences Inc. 919 Fraser Drive Burlington ON L7L 4X8 Canada
| | - Jimmy Gu
- InnovoGene Biosciences Inc. 919 Fraser Drive Burlington ON L7L 4X8 Canada
- Department of Biochemistry and Biomedical SciencesMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Carlos D. M. Filipe
- Department of Chemical EngineeringMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Yingfu Li
- InnovoGene Biosciences Inc. 919 Fraser Drive Burlington ON L7L 4X8 Canada
- Department of Biochemistry and Biomedical SciencesMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - John D. Brennan
- Biointerfaces InstituteMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| |
Collapse
|
28
|
Ali MM, Wolfe M, Tram K, Gu J, Filipe CDM, Li Y, Brennan JD. A DNAzyme‐Based Colorimetric Paper Sensor forHelicobacter pylori. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901873] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- M. Monsur Ali
- Biointerfaces InstituteMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Michael Wolfe
- Biointerfaces InstituteMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Kha Tram
- InnovoGene Biosciences Inc. 919 Fraser Drive Burlington ON L7L 4X8 Canada
| | - Jimmy Gu
- InnovoGene Biosciences Inc. 919 Fraser Drive Burlington ON L7L 4X8 Canada
- Department of Biochemistry and Biomedical SciencesMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Carlos D. M. Filipe
- Department of Chemical EngineeringMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Yingfu Li
- InnovoGene Biosciences Inc. 919 Fraser Drive Burlington ON L7L 4X8 Canada
- Department of Biochemistry and Biomedical SciencesMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - John D. Brennan
- Biointerfaces InstituteMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| |
Collapse
|
29
|
Leung V, Mapletoft J, Zhang A, Lee A, Vahedi F, Chew M, Szewczyk A, Jahanshahi-Anbuhi S, Ang J, Cowbrough B, Miller MS, Ashkar A, Filipe CDM. Thermal Stabilization of Viral Vaccines in Low-Cost Sugar Films. Sci Rep 2019; 9:7631. [PMID: 31113974 PMCID: PMC6529427 DOI: 10.1038/s41598-019-44020-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/07/2019] [Indexed: 01/08/2023] Open
Abstract
Most currently available vaccines, particularly live vaccines, require the cold chain, as vaccine efficacy can be significantly hampered if they are not stored in a temperature range of 2-8 °C at all times. This necessity places a tremendous financial and logistical burden on vaccination programs, particularly in the developing world. The development of thermally stable vaccines can greatly alleviate this problem and, in turn, increase vaccine accessibility worldwide. In this paper, we detail a simple and cost-effective method for stabilizing live vaccines that uses FDA-approved materials. To this end, we dried enveloped DNA (Herpes Simplex Virus type 2) and RNA (Influenza A virus) viral vaccines in a pullulan and trehalose mixture. The results of these studies showed that the live-attenuated HSV-2 vaccine retained its efficacy for at least 2 months of storage at 40 °C, while the inactivated influenza vaccine was able to retain its immunogenicity for at least 3 months of storage at 40 °C. This work presents a simple approach that allows thermo-sensitive vaccines to be converted into thermo-stable vaccines that do not require refrigeration, thus contributing to the improvement of vaccine deployment throughout the world.
Collapse
Affiliation(s)
- Vincent Leung
- Department of Chemical Engineering, 1280 Main Street West, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
| | - Jonathan Mapletoft
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Ali Zhang
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Amanda Lee
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Fatemeh Vahedi
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Marianne Chew
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Alexandra Szewczyk
- Department of Chemical Engineering, 1280 Main Street West, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical Engineering, 1280 Main Street West, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
| | - Jann Ang
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Braeden Cowbrough
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Matthew S Miller
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Ali Ashkar
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| | - Carlos D M Filipe
- Department of Chemical Engineering, 1280 Main Street West, McMaster University, Hamilton, Ontario, L8S 4L7, Canada.
| |
Collapse
|
30
|
Tang W, Yang J, Wang F, Li Z. Efficient Preservation of Acetylcholinesterase at Room Temperature for Facile Detection of Organophosphorus Pesticide. ANAL SCI 2019; 35:401-406. [PMID: 30555106 DOI: 10.2116/analsci.18p322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A simple and inexpensive strategy is reported to facilitate the detection of an organophosphorus pesticide by acetylcholinesterase (AChE). Pullulan is able to preserve AChE at room temperature, but the activity of conserved AChE varies significantly depending on the time, stir and volume of solution to dissolve it. The reason is that AChE entrapped in pullulan tablet remains in an inactive state to avoid denaturalization and deactivation. There is a reactivation process to gradually recover the enzyme activity during dissolution of the tablet. Stirring would interrupt this procedure and lead to a loss of enzyme activity. Dissolution of the tablet for 5 min with a volume of 15 μL could facilitate full recovery of AChE activity. The feasibility of activated AChE for organophosphorus pesticide detection was evaluated using malaoxon. These results contribute to the understanding of preservation mechanism by pullulan and the development of easy-to-use enzyme assays.
Collapse
Affiliation(s)
- Wenzhi Tang
- College of Food Science and Engineering, Northwest A&F University.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture.,National Engineering Research Center of Agriculture Integration Test (Yangling)
| | - Jingxian Yang
- College of Food Science and Engineering, Northwest A&F University.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture.,National Engineering Research Center of Agriculture Integration Test (Yangling)
| | - Fei Wang
- College of Food Science and Engineering, Northwest A&F University.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture.,National Engineering Research Center of Agriculture Integration Test (Yangling)
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture.,National Engineering Research Center of Agriculture Integration Test (Yangling)
| |
Collapse
|
31
|
Ali MM, Slepenkin A, Peterson E, Zhao W. A Simple DNAzyme-Based Fluorescent Assay for Klebsiella pneumoniae. Chembiochem 2019; 20:906-910. [PMID: 30521678 PMCID: PMC6692177 DOI: 10.1002/cbic.201800701] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Indexed: 11/09/2022]
Abstract
Pathogenic bacteria pose a serious threat to public health, and the rapid and cost-effective detection of such bacteria remains a major challenge. Herein, we present a DNAzyme-based fluorescent paper sensor for Klebsiella pneumoniae. The DNAzyme was generated by an in vitro selection technique to cleave a fluorogenic DNA-RNA chimeric substrate in the presence of K. pneumoniae. The DNAzyme was printed on a paper substrate in a 96-well format to serve as mix-and-read fluorescent assay that exhibits a limit of detection (LOD) 105 CFUs mL-1 . Evaluated with 20 strains of clinical bacterial isolates, the DNAzyme produced the desired fluorescence signal with the samples of K. pneumoniae, regardless of their source or drug resistance. The assay is simple to use, rapid, inexpensive, and avoids the complex procedures of sample preparation and equipment. We believe that this DNAzyme-based fluorescent assay has potential for practical applications to identify K. pneumoniae.
Collapse
Affiliation(s)
- M Monsur Ali
- Biointerfaces Institute, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4K1, Canada
| | - Anatoly Slepenkin
- Department of Pathology and Laboratory Medicine, University of California, 1001 Health Sciences Road, Irvine, CA, 92697, USA
| | - Ellena Peterson
- Department of Pathology and Laboratory Medicine, University of California, 1001 Health Sciences Road, Irvine, CA, 92697, USA
| | - Weian Zhao
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Edwards Lifesciences Center for Advanced Cardiovascular Technology and, The Department of Biomedical Engineering, University of California-Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA
| |
Collapse
|
32
|
Morkus P, Zolfaghari M, Parrello D, Csordas M, Malikov M, Rose J, Choi KB, Filipe CDM, Latulippe DR. Optimization of microorganism preservation conditions for the development of an acute toxicity bioassay for biocides. CHEMOSPHERE 2019; 221:45-54. [PMID: 30634148 DOI: 10.1016/j.chemosphere.2018.12.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Biocides, also referred to as 'microbicides' or 'inhibitors', are widely used in industrial processes (e.g. utility water in cooling towers) to control and/or eliminate the growth of microorganisms. Because of their inherent toxicity, their presence in various sources (e.g. river sediments, potable water) can negatively affect ecosystems. Currently available biocide detection techniques are not suitable for 'point-of-use' applications since they are tedious, complicated, and often require experienced personnel to operate. To address this concern, we sought to develop a simple-to-use toxicity bioassay based on a model microorganism (E. coli) after short (<30 min) exposure to known biocides that can be stored at room temperature (preferably) or in the fridge. Based on recent work and our expertise in polymer-based preservation of biomolecules, we leveraged this knowledge to improve E. coli preservation for biocide detection purposes. A design-of-experiments strategy was used to evaluate 16 different preservation conditions from 5 process parameters (i.e. 25-1 fractional factorial). It was found that pullulan, a sugar-based polymer, improved E. coli culturability by an order of magnitude after three months of storage. Also, it was found that storing E. coli in the fridge in Milli-Q water was favorable for maintaining a high level of culturability. Finally, the toxicity of three common biocides (Cetyltrimethylammonium bromide (CTAB), ProClin™ 300, and Grotan® BK) was evaluated using a fluorescence-based assay across all 16 preservation conditions. The response of the preserved E. coli was biocide specific and at certain conditions did not vary during the entire three-month storage period.
Collapse
Affiliation(s)
- Patrick Morkus
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Mehdi Zolfaghari
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Damien Parrello
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Matthew Csordas
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Mikayil Malikov
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - James Rose
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Kenneth Byungjun Choi
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - David R Latulippe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada.
| |
Collapse
|
33
|
Wolfe MG, Ali MM, Brennan JD. Enzymatic Litmus Test for Selective Colorimetric Detection of C-C Single Nucleotide Polymorphisms. Anal Chem 2019; 91:4735-4740. [PMID: 30869875 DOI: 10.1021/acs.analchem.9b00235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A paper based litmus test has been developed using modulation of urease enzyme activity for detection of C-C mismatch single nucleotide polymorphisms (SNPs) by the naked eye. Urease is first inactivated with silver ions and printed onto paper microzones. Addition of DNA containing C-C mismatches reactivates urease via binding of Ag(I), allowing restoration of urease activity, hydrolysis of urea to produce ammonia, and an increase in pH, which is monitored colorimetrically using a pH indicator with a limit of detection of 11 nM DNA in 40 min. The assay system is easy to use, portable, and stable for at least 30 days at ambient temperature. To assess the versatility and practical application of the paper sensor, we used it to identify a G > C transversion present in human genomic DNA from a ductal carcinoma cell line, a mutation commonly found in breast cancer. We believe this new assay system has the potential to be a low-cost method for rapidly identifying DNA with the C-C mismatch SNP as a means of cancer screening in resource-limited areas.
Collapse
Affiliation(s)
- Michael G Wolfe
- Biointerfaces Institute , McMaster University , 1280 Main Street West , Hamilton , ON L8S 4O3 , Canada
| | - M Monsur Ali
- Biointerfaces Institute , McMaster University , 1280 Main Street West , Hamilton , ON L8S 4O3 , Canada
| | - John D Brennan
- Biointerfaces Institute , McMaster University , 1280 Main Street West , Hamilton , ON L8S 4O3 , Canada
| |
Collapse
|
34
|
Paper-based microfluidics for DNA diagnostics of malaria in low resource underserved rural communities. Proc Natl Acad Sci U S A 2019; 116:4834-4842. [PMID: 30782834 PMCID: PMC6421471 DOI: 10.1073/pnas.1812296116] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Populations living in remote rural communities would benefit from rapid, highly sensitive molecular, DNA-based diagnostics to inform the correct and timely treatment of infectious diseases. Such information is also becoming increasingly relevant in global efforts for disease elimination, where the testing of asymptomatic patients is now seen as being important for the identification of disease reservoirs. However, healthcare workers face practical and logistical problems in the implementation of such tests, which often involve complex instrumentation and centralized laboratories. Here we describe innovations in paper microfluidics that enable low-cost, multiplexed DNA-based diagnostics for malaria, delivered, in a first-in-human study, in schools in rural Uganda. Rapid, low-cost, species-specific diagnosis, based upon DNA testing, is becoming important in the treatment of patients with infectious diseases. Here, we demonstrate an innovation that uses origami to enable multiplexed, sensitive assays that rival polymerase chain reactions (PCR) laboratory assays and provide high-quality, fast precision diagnostics for malaria. The paper-based microfluidic technology proposed here combines vertical flow sample-processing steps, including paper folding for whole-blood sample preparation, with an isothermal amplification and a lateral flow detection, incorporating a simple visualization system. Studies were performed in village schools in Uganda with individual diagnoses being completed in <50 min (faster than the standard laboratory-based PCR). The tests, which enabled the diagnosis of malaria species in patients from a finger prick of whole blood, were both highly sensitive and specific, detecting malaria in 98% of infected individuals in a double-blind first-in-human study. Our method was more sensitive than other field-based, benchmark techniques, including optical microscopy and industry standard rapid immunodiagnostic tests, both performed by experienced local healthcare teams (which detected malaria in 86% and 83% of cases, respectively). All assays were independently validated using a real-time double-blinded reference PCR assay. We not only demonstrate that advanced, low-cost DNA-based sensors can be implemented in underserved communities at the point of need but also highlight the challenges associated with developing and implementing new diagnostic technologies in the field, without access to laboratories or infrastructure.
Collapse
|
35
|
Barcelos MCS, Vespermann KAC, Pelissari FM, Molina G. Current status of biotechnological production and applications of microbial exopolysaccharides. Crit Rev Food Sci Nutr 2019; 60:1475-1495. [PMID: 30740985 DOI: 10.1080/10408398.2019.1575791] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbial exopolysaccharides (EPS) are an abundant and important group of compounds that can be secreted by bacteria, fungi and algae. The biotechnological production of these substances represents a faster alternative when compared to chemical and plant-derived production with the possibility of using industrial wastes as substrates, a feasible strategy after a comprehensive study of factors that may affect the synthesis by the chosen microorganism and desirable final product. Another possible difficulty could be the extraction and purification methods, a crucial part of the production of microbial polysaccharides, since different methods should be adopted. In this sense, this review aims to present the biotechnological production of microbial exopolysaccharides, exploring the production steps, optimization processes and current applications of these relevant bioproducts.
Collapse
Affiliation(s)
- Mayara C S Barcelos
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Kele A C Vespermann
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Franciele M Pelissari
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Gustavo Molina
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| |
Collapse
|
36
|
Leung V, Brooks M, Emerson S, Ali M, Filipe CDM. Ready-to-use thermally stable mastermix pills for molecular biology applications. Biotechnol Prog 2018; 35:e2764. [PMID: 30536873 DOI: 10.1002/btpr.2764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/14/2018] [Accepted: 12/06/2018] [Indexed: 11/12/2022]
Abstract
Rolling circle amplification (RCA), polymerase chain reaction (PCR), and loop-mediated isothermal amplification (LAMP), are powerful tools that can be used for gene manipulation, pathogen detection, and infectious disease diagnostics. However, these techniques require trained personnel, as the pipetting steps involved can lead to contamination and, consequently, erroneous results. Furthermore, many of the reagents used in molecular biology are thermally labile and must be kept within a cold-chain. In this article, we present a simple and cost-effective method that allows molecular biology reagents to be thermally stabilized into ready-to-use mastermixes via drying in pullulan and trehalose films. Our experimental results demonstrate that this method is capable of preserving the activity of RCA, PCR, LAMP, ligase, polynucleotide kinase, and Klenow fragment mastermixes for at least 3 months at ambient conditions. Thus, stabilizing reagents via drying in pullulan and trehalose film may allow for a drastic reduction in the number of pipetting steps and the elimination of the need for a cold chain. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2764, 2019.
Collapse
Affiliation(s)
- Vincent Leung
- Dept. of Chemical Engineering, 1280 Main Street West, McMaster University, Hamilton, L8S 4L7, Ontario, Canada
| | - Meredith Brooks
- Dept. of Chemical Engineering, 1280 Main Street West, McMaster University, Hamilton, L8S 4L7, Ontario, Canada
| | - Sophia Emerson
- Dept. of Chemical Engineering, 1280 Main Street West, McMaster University, Hamilton, L8S 4L7, Ontario, Canada
| | - Monsur Ali
- Biointerfaces Inst., McMaster University, Hamilton, L8S 4L7, Ontario, Canada
| | - Carlos D M Filipe
- Dept. of Chemical Engineering, 1280 Main Street West, McMaster University, Hamilton, L8S 4L7, Ontario, Canada
| |
Collapse
|
37
|
Qian C, Wang R, Wu H, Ping J, Wu J. Recent advances in emerging DNA-based methods for genetically modified organisms (GMOs) rapid detection. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Manochehry S, McConnell EM, Tram KQ, Macri J, Li Y. Colorimetric Detection of Uranyl Using a Litmus Test. Front Chem 2018; 6:332. [PMID: 30140672 PMCID: PMC6095041 DOI: 10.3389/fchem.2018.00332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/16/2018] [Indexed: 01/10/2023] Open
Abstract
Ingestion of water containing toxic contaminants above levels deemed safe for human consumption can occur unknowingly since numerous common contaminants in drinking water are colorless and odorless. Uranyl is particularly problematic as it has been found at dangerous levels in sources of drinking water. Detection of this heavy metal-ion species in drinking water currently requires sending a sample to a laboratory where trained personnel use equipment to perform the analysis and turn-around times can be long. A pH-responsive colorimetric biosensor was developed to enable detection of uranyl in water which coupled the uranyl-specific 39E DNAzyme as a recognition element, and an enzyme capable of producing a pH change as the reporter element. The rapid colorimetric assay presented herein can detect uranyl in lake and well water at concentrations relevant for environmental monitoring, as demonstrated by the detection of uranyl at levels below the limits set for drinking water by major regulatory agencies including the World Health Organization (30 μg/L). This simple and inexpensive DNAzyme-based assay enabled equipment-free visual detection of 15 μg/L uranyl, using both solution-based and paper-based pH-dependent visualization strategies.
Collapse
Affiliation(s)
- Sepehr Manochehry
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamilton, ON, Canada
| | - Erin M. McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamilton, ON, Canada
| | - Kha Q. Tram
- Department of Chemistry and Chemical Biology, McMaster UniversityHamilton, ON, Canada
| | - Joseph Macri
- Department of Pathology and Molecular Medicine, McMaster UniversityHamilton, ON, Canada
- Hamilton Regional Laboratory Medicine ProgramHamilton, ON, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamilton, ON, Canada
- Department of Chemistry and Chemical Biology, McMaster UniversityHamilton, ON, Canada
| |
Collapse
|
39
|
Murase R, Kondo S, Kitamura T, Goi Y, Hashimoto M, Teramoto Y. Cellulose Nanofibers as a Module for Paper-Based Microfluidic Analytical Devices: Labile Substance Storage, Processability, and Reaction Field Provision and Control. ACS APPLIED BIO MATERIALS 2018; 1:480-486. [DOI: 10.1021/acsabm.8b00206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Hui CY, Liu M, Li Y, Brennan JD. A Paper Sensor Printed with Multifunctional Bio/Nano Materials. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712903] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Christy Y. Hui
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4O3 Canada
| | - Meng Liu
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4O3 Canada
- Department of Biochemistry and Biomedical Sciences; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
- School of Environmental Science and Technology; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education); Dalian University of Technology; Dalian 116024 China
| | - Yingfu Li
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4O3 Canada
- Department of Biochemistry and Biomedical Sciences; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
| | - John D. Brennan
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4O3 Canada
| |
Collapse
|
41
|
Hui CY, Liu M, Li Y, Brennan JD. A Paper Sensor Printed with Multifunctional Bio/Nano Materials. Angew Chem Int Ed Engl 2018; 57:4549-4553. [PMID: 29504183 DOI: 10.1002/anie.201712903] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/12/2018] [Indexed: 01/08/2023]
Abstract
We report a paper-based aptasensor platform that uses two reaction zones and a connecting bridge along with printed multifunctional bio/nano materials to achieve molecular recognition and signal amplification. Upon addition of analyte to the first zone, a fluorescently labelled DNA or RNA aptamer is desorbed from printed graphene oxide, rapidly producing an initial fluorescence signal. The released aptamer then flows to the second zone where it reacts with printed reagents to initiate rolling circle amplification, generating DNA amplicons containing a peroxidase-mimicking DNAzyme, which produces a colorimetric readout that can be read in an equipment-free manner or with a smartphone. The sensor was demonstrated using an RNA aptamer for adenosine triphosphate (a bacterial marker) and a DNA aptamer for glutamate dehydrogenase (Clostridium difficile marker) with excellent sensitivity and specificity. These targets could be detected in spiked serum or feacal samples, demonstrating the potential for testing clinical samples.
Collapse
Affiliation(s)
- Christy Y Hui
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4O3, Canada
| | - Meng Liu
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4O3, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada.,School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Yingfu Li
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4O3, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4O3, Canada
| |
Collapse
|
42
|
Duchesne L, Lacombe K. Innovative technologies for point-of-care testing of viral hepatitis in low-resource and decentralized settings. J Viral Hepat 2018; 25:108-117. [PMID: 29134742 DOI: 10.1111/jvh.12827] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 09/18/2017] [Indexed: 12/13/2022]
Abstract
According to the Global Burden of Diseases, chronic viral hepatitis B and C are one of the most challenging global health conditions that rank among the first causes of morbidity and mortality worldwide. Low- and middle-income countries are particularly affected by the health burden associated with HBV or HCV infection. One major gap in efficiently addressing the issue of viral hepatitis is universal screening. However, the costs and chronic lack of human resources for using traditional screening strategies based on serology and molecular biology preclude any scaling-up. Point-of-care tests have been deemed a powerful potential solution to fill the current diagnostics gap in low-resource and decentralized settings. Despite high interest resulting from their development in recent years, very few point-of-care devices have reached the market. Scaling down and automating all testing steps in 1 single device (eg, sample preparation, detection and readout) is indeed challenging. But innovations in multiple disciplines such as nanotechnologies, microfluidics, biosensors and synthetic biology have led to the creation of chip-sized laboratory systems called "lab-on-a-chip" devices. This review aims to explain how these innovations can overcome technological barriers that usually arise for each testing step while developing integrated point-of-care tests. Point-of-care test prototypes rarely meet the requirements for mass production, which also hinders their large-scale production. In addition to logistical hurdles, legal and economic constraints specific to the commercialization of in vitro diagnostics, which have also participated in the low transfer of innovative point-of-care tests to the field, are discussed.
Collapse
Affiliation(s)
- L Duchesne
- Sorbonne Universités, UPMC Univ Paris, Paris, France.,Inserm, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France
| | - K Lacombe
- Sorbonne Universités, UPMC Univ Paris, Paris, France.,Inserm, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France.,Service de maladies infectieuses et tropicales, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
43
|
Udugama B, Kadhiresan P, Samarakoon A, Chan WCW. Simplifying Assays by Tableting Reagents. J Am Chem Soc 2017; 139:17341-17349. [PMID: 29172470 DOI: 10.1021/jacs.7b07055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Medical diagnostic assays provide exquisite sensitivity and precision in the diagnoses of patients. However, these technologies often require multiple steps, skilled technicians, and facilities to store heat-sensitive reagents. Here, we developed a high-throughput compression method to incorporate different assay components into color-coded tablets. With our technique, premeasured quantities of reagents can be encapsulated in compressed tablets. We show that tableting stabilizes heat-sensitive reagents and simplifies a broad range of assays, including isothermal nucleic acid amplification techniques, enzyme-based immunoassays, and microbead diagnostics. To test the clinical readiness of this tableting technology, we show the ability of tableted diagnostics for screening hepatitis B-positive patient samples. Our development simplifies complicated assays and the transportation of reagents and mitigates the need for refrigeration of reagents. This advances the use of complex assays in remote areas with limited infrastructure.
Collapse
Affiliation(s)
- Buddhisha Udugama
- Institute of Biomaterials and Biomedical Engineering, ‡Terrence Donnelly Centre for Cellular and Bimolecular Research, §Department of Chemistry, ∥Department of Chemical Engineering, and ⊥Department of Materials Science and Engineering, University of Toronto , 160 College Street, Toronto, Ontario, Canada M5S 3E1
| | - Pranav Kadhiresan
- Institute of Biomaterials and Biomedical Engineering, ‡Terrence Donnelly Centre for Cellular and Bimolecular Research, §Department of Chemistry, ∥Department of Chemical Engineering, and ⊥Department of Materials Science and Engineering, University of Toronto , 160 College Street, Toronto, Ontario, Canada M5S 3E1
| | - Amila Samarakoon
- Institute of Biomaterials and Biomedical Engineering, ‡Terrence Donnelly Centre for Cellular and Bimolecular Research, §Department of Chemistry, ∥Department of Chemical Engineering, and ⊥Department of Materials Science and Engineering, University of Toronto , 160 College Street, Toronto, Ontario, Canada M5S 3E1
| | - Warren C W Chan
- Institute of Biomaterials and Biomedical Engineering, ‡Terrence Donnelly Centre for Cellular and Bimolecular Research, §Department of Chemistry, ∥Department of Chemical Engineering, and ⊥Department of Materials Science and Engineering, University of Toronto , 160 College Street, Toronto, Ontario, Canada M5S 3E1
| |
Collapse
|
44
|
Leung V, Szewczyk A, Chau J, Hosseinidoust Z, Groves L, Hawsawi H, Anany H, Griffiths MW, Ali MM, Filipe CDM. Long-Term Preservation of Bacteriophage Antimicrobials Using Sugar Glasses. ACS Biomater Sci Eng 2017; 4:3802-3808. [PMID: 33429601 DOI: 10.1021/acsbiomaterials.7b00468] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vincent Leung
- Department of Chemical Engineering, 1280 Main Street West, McMaster University, Hamilton, Ontario, Canada L8S 4L7
| | - Alexandra Szewczyk
- Department of Chemical Engineering, 1280 Main Street West, McMaster University, Hamilton, Ontario, Canada L8S 4L7
| | - Jacqueline Chau
- Department of Chemical Engineering, 1280 Main Street West, McMaster University, Hamilton, Ontario, Canada L8S 4L7
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering, 1280 Main Street West, McMaster University, Hamilton, Ontario, Canada L8S 4L7
| | - Logan Groves
- Department of Chemical Engineering, 1280 Main Street West, McMaster University, Hamilton, Ontario, Canada L8S 4L7
| | - Hajar Hawsawi
- Canadian Research Institute for Food Safety, 50 Stone Road East, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Hany Anany
- Canadian Research Institute for Food Safety, 50 Stone Road East, University of Guelph, Guelph, Ontario, Canada N1G 2W1
- Agriculture and Agri-Food Canada, Guelph Research and Development Center, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9
| | - Mansel W. Griffiths
- Canadian Research Institute for Food Safety, 50 Stone Road East, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - M. Monsur Ali
- Department of Chemical Engineering, 1280 Main Street West, McMaster University, Hamilton, Ontario, Canada L8S 4L7
| | - Carlos D. M. Filipe
- Department of Chemical Engineering, 1280 Main Street West, McMaster University, Hamilton, Ontario, Canada L8S 4L7
| |
Collapse
|
45
|
Ali MM, Brown CL, Jahanshahi-Anbuhi S, Kannan B, Li Y, Filipe CDM, Brennan JD. A Printed Multicomponent Paper Sensor for Bacterial Detection. Sci Rep 2017; 7:12335. [PMID: 28951563 PMCID: PMC5615064 DOI: 10.1038/s41598-017-12549-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/12/2017] [Indexed: 12/14/2022] Open
Abstract
We present a simple all-in-one paper-based sensor for E. coli detection using a composite ink made of a fluorogenic DNAzyme probe for bacterial recognition and signal generation, lysozyme that lyses whole bacterial cells, and pullulan/trehalose sugars that stabilize printed bioactive molecules. The paper sensor is capable of producing a fluorescence signal as a readout within 5 minutes upon contacting E. coli, can achieve a limit of detection of 100 cells/mL, in a variety of sample matrixes, without sample enrichment, and remains stable for at least 6 months when stored at ambient temperature. Therefore, this simple paper sensor provides rapid bacterial testing on site, and can be shipped and stored under ambient conditions to benefit users living in resource-limited regions.
Collapse
Affiliation(s)
- M Monsur Ali
- Biointerfaces Institute, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 0A3, Canada
| | - Christine L Brown
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4L7, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4L7, Canada
| | - Balamurali Kannan
- Biointerfaces Institute, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 0A3, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4K1, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4L7, Canada.
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 0A3, Canada.
| |
Collapse
|
46
|
Singh RS, Kaur N, Rana V, Kennedy JF. Pullulan: A novel molecule for biomedical applications. Carbohydr Polym 2017; 171:102-121. [DOI: 10.1016/j.carbpol.2017.04.089] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 01/09/2023]
|
47
|
Loukas CM, McQuillan JS, Laouenan F, Tsaloglou MN, Ruano-Lopez JM, Mowlem MC. Detection and quantification of the toxic microalgae Karenia brevis using lab on a chip mRNA sequence-based amplification. J Microbiol Methods 2017; 139:189-195. [DOI: 10.1016/j.mimet.2017.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 11/28/2022]
|
48
|
Advances and challenges of fully integrated paper-based point-of-care nucleic acid testing. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.05.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
49
|
Cao R, Tian W, Shen W. Polysaccharides as protectants for paper-based analytical devices with antibody. Talanta 2017; 165:357-363. [DOI: 10.1016/j.talanta.2016.12.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/25/2016] [Accepted: 12/26/2016] [Indexed: 01/11/2023]
|
50
|
Yamada K, Shibata H, Suzuki K, Citterio D. Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. LAB ON A CHIP 2017; 17:1206-1249. [PMID: 28251200 DOI: 10.1039/c6lc01577h] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microfluidic paper-based analytical devices (μPADs) have emerged as a promising diagnostic platform a decade ago. In contrast to highly active academic developments, their entry into real-life applications is still very limited. This discrepancy is attributed to the gap between research developments and their practical utility, particularly in the aspects of operational simplicity, long-term stability of devices, and associated equipment. On the basis of these backgrounds, this review attempts to: 1) identify the reasons for success of paper-based devices already in the market, 2) describe the current status and remaining issues of μPADs in terms of operational complexity, signal interpretation approaches, and storage stability, and 3) discuss the possibility of mass production based on established manufacturing technologies. Finally, the state-of-the-art in commercialisation of μPADs is discussed, and the "upgrades" required from a laboratory-based prototype to an end user device are demonstrated on a specific example.
Collapse
Affiliation(s)
- Kentaro Yamada
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Hiroyuki Shibata
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Koji Suzuki
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Daniel Citterio
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|