1
|
Khorsand Kheirabad A, Friedrich HKJ, Chang J, Zhang M, Gröschel A, Yuan J. Ice-Assisted Porous Poly(ionic liquid)/MXene Composite Membranes for Solar Steam Generation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56347-56355. [PMID: 37984875 DOI: 10.1021/acsami.3c15551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Controlled synthesis of polymer-based porous membranes via innovative methods is of considerable interest, yet it remains a challenge. Herein, we established a general approach to fabricate porous polyelectrolyte composite membranes (PPCMs) from poly(ionic liquid) (PIL) and MXene via an ice-assisted method. This process enabled the formation of a uniformly distributed macroporous structure within the membrane. The unique characteristics of the as-produced composite membranes display significant light-to-heat conversion and excellent performance for solar-driven water vapor generation. This facile synthetic strategy breaks new ground for developing composite porous membranes as high-performance solar steam generators for clean water production.
Collapse
Affiliation(s)
- Atefeh Khorsand Kheirabad
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 10691 Stockholm, Sweden
| | - Helena K J Friedrich
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 10691 Stockholm, Sweden
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Munster, 48149 Munster, Germany
| | - Jian Chang
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 10691 Stockholm, Sweden
| | - Miao Zhang
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 10691 Stockholm, Sweden
| | - Andre Gröschel
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Munster, 48149 Munster, Germany
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
2
|
Zeh V, Schneider JS, Bachmann J, Krummenacher I, Braunschweig H, Helten H. Poly(ferrocenylene iminoborane): an inorganic-organic hybrid polymer comprising a backbone of moderately interacting ferrocenes. Chem Commun (Camb) 2023; 59:13723-13726. [PMID: 37909177 DOI: 10.1039/d3cc03523a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The first poly(ferrocenylene iminoborane), that is, a polyferrocene-based metallopolymer featuring CC-isoelectronic/-isosteric BN linking units, and a series of monodisperse ferrocenylene iminoborane oligomers are presented. Our studies provide important insight into the structural and electronic nature of this novel class of hybrid materials.
Collapse
Affiliation(s)
- Vivien Zeh
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, Würzburg 97074, Germany.
| | - Johannes S Schneider
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, Würzburg 97074, Germany.
| | - Jonas Bachmann
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, Würzburg 97074, Germany.
| | - Ivo Krummenacher
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, Würzburg 97074, Germany.
| | - Holger Braunschweig
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, Würzburg 97074, Germany.
| | - Holger Helten
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, Würzburg 97074, Germany.
| |
Collapse
|
3
|
Keshebo DL, Darge HF, Hu CC, Tsai HC, Su CJ, Sun YM, Hung WS, Wang CF, Lee KR, Lai JY. Exfoliation of MoS2 nanosheets using stimuli responsive poly (N-isopropylacrylamide-co-allylamine) for multi-functional nanofiltration membranes preparation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Bouzit H, Krusch F, Hermida‐Merino D, Solano E, Cot D, Méricq JP, Roualdes S, Semsarilar M, Quémener D, Aissou K. Double s
timuli‐responsive
perforated lamellar structure formed by linear
ABC
triblock terpolymer monoliths. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hana Bouzit
- Institut Européen des Membranes, IEM, UMR 5635 University of Montpellier, ENSCM, CNRS Montpellier
| | - Felix Krusch
- Institut Européen des Membranes, IEM, UMR 5635 University of Montpellier, ENSCM, CNRS Montpellier
| | - Daniel Hermida‐Merino
- DUBBLE CRG BM26@ESRF Netherlands Organization for Scientific Research (NWO) Grenoble France
- Departamento de Física Aplicada, CINBIO Universidade de Vigo Vigo Galicia Spain
| | - Eduardo Solano
- ALBA Synchrotron Light Source NCD‐SWEET Beamline Cerdanyola del Valles Spain
| | - Didier Cot
- Institut Européen des Membranes, IEM, UMR 5635 University of Montpellier, ENSCM, CNRS Montpellier
| | - Jean Pierre Méricq
- Institut Européen des Membranes, IEM, UMR 5635 University of Montpellier, ENSCM, CNRS Montpellier
| | - Stéphanie Roualdes
- Institut Européen des Membranes, IEM, UMR 5635 University of Montpellier, ENSCM, CNRS Montpellier
| | - Mona Semsarilar
- Institut Européen des Membranes, IEM, UMR 5635 University of Montpellier, ENSCM, CNRS Montpellier
| | - Damien Quémener
- Institut Européen des Membranes, IEM, UMR 5635 University of Montpellier, ENSCM, CNRS Montpellier
| | - Karim Aissou
- Institut Européen des Membranes, IEM, UMR 5635 University of Montpellier, ENSCM, CNRS Montpellier
| |
Collapse
|
5
|
Liu C, Raza F, Qian H, Tian X. Recent advances in poly(ionic liquid)s for biomedical application. Biomater Sci 2022; 10:2524-2539. [PMID: 35411889 DOI: 10.1039/d2bm00046f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Poly(ionic liquid)s (PILs) are polymers containing ions in their side-chain or backbone, and the designability and outstanding physicochemical properties of PILs have attracted widespread attention from researchers. PILs have specific characteristics, including negligible vapor pressure, high thermal and chemical stability, non-flammability, and self-assembly capabilities. PILs can be well combined with advanced analytical instruments and technology and have made outstanding contributions to the development of biomedicine aiding in the continuous advancement of science and technology. Here we reviewed the advances of PILs in the biomedical field in the past five years with a focus on applications in proteomics, drug delivery, and development. This paper aims to engage pharmaceutical and biomedical scientists to full understand PILs and accelerate the progress from laboratory research to industrialization.
Collapse
Affiliation(s)
- Chunxia Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
6
|
Wang Y, Liang RZ, Jia TZ, Cao XL, Wang Q, Cao JR, Li S, Shi Q, Isaacs L, Sun SP. Voltage-Gated Membranes Incorporating Cucurbit[ n]uril Molecular Containers for Molecular Nanofiltration. J Am Chem Soc 2022; 144:6483-6492. [DOI: 10.1021/jacs.2c01263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rong-Zu Liang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Tian-Zhi Jia
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Li Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jing-Rong Cao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Shuo Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qixun Shi
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742 United States
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
7
|
Durmaz EN, Sahin S, Virga E, de Beer S, de Smet LCPM, de Vos WM. Polyelectrolytes as Building Blocks for Next-Generation Membranes with Advanced Functionalities. ACS APPLIED POLYMER MATERIALS 2021; 3:4347-4374. [PMID: 34541543 PMCID: PMC8438666 DOI: 10.1021/acsapm.1c00654] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 05/06/2023]
Abstract
The global society is in a transition, where dealing with climate change and water scarcity are important challenges. More efficient separations of chemical species are essential to reduce energy consumption and to provide more reliable access to clean water. Here, membranes with advanced functionalities that go beyond standard separation properties can play a key role. This includes relevant functionalities, such as stimuli-responsiveness, fouling control, stability, specific selectivity, sustainability, and antimicrobial activity. Polyelectrolytes and their complexes are an especially promising system to provide advanced membrane functionalities. Here, we have reviewed recent work where advanced membrane properties stem directly from the material properties provided by polyelectrolytes. This work highlights the versatility of polyelectrolyte-based membrane modifications, where polyelectrolytes are not only applied as single layers, including brushes, but also as more complex polyelectrolyte multilayers on both porous membrane supports and dense membranes. Moreover, free-standing membranes can also be produced completely from aqueous polyelectrolyte solutions allowing much more sustainable approaches to membrane fabrication. The Review demonstrates the promise that polyelectrolytes and their complexes hold for next-generation membranes with advanced properties, while it also provides a clear outlook on the future of this promising field.
Collapse
Affiliation(s)
- Elif Nur Durmaz
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| | - Sevil Sahin
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Ettore Virga
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
- Wetsus, European
Centre of Excellence for Sustainable Water
Technology, Oostergoweg
9, 8911 MA Leeuwarden, The Netherlands
| | - Sissi de Beer
- Sustainable
Polymer Chemistry Group, Department of Molecules and Materials MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Louis C. P. M. de Smet
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Wiebe M. de Vos
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| |
Collapse
|
8
|
Yu Y, Brió Pérez M, Cao C, de Beer S. Switching (bio-) adhesion and friction in liquid by stimulus responsive polymer coatings. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Remanan S, Padmavathy N, Rabiya R, Ghosh S, Das TK, Bose S, Sen R, Das NC. Converting Polymer Trash into Treasure: An Approach to Prepare MoS 2 Nanosheets Decorated PVDF Sponge for Oil/Water Separation and Antibacterial Applications. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sanjay Remanan
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Nagarajan Padmavathy
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Rabiya Rabiya
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Sabyasachi Ghosh
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Tushar Kanti Das
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Narayan Chandra Das
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| |
Collapse
|
10
|
Shao Y, Wang Y, Li X, Kheirabad AK, Zhao Q, Yuan J, Wang H. Crosslinking of a Single Poly(ionic liquid) by Water into Porous Supramolecular Membranes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yue Shao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yong‐Lei Wang
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
| | - Xiangshuai Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | | | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Luoyu Road No. 1037 Wuhan 430074 China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
| | - Hong Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
11
|
Shao Y, Wang Y, Li X, Kheirabad AK, Zhao Q, Yuan J, Wang H. Crosslinking of a Single Poly(ionic liquid) by Water into Porous Supramolecular Membranes. Angew Chem Int Ed Engl 2020; 59:17187-17191. [PMID: 32583932 DOI: 10.1002/anie.202002679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/07/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Shao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yong‐Lei Wang
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
| | - Xiangshuai Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | | | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Luoyu Road No. 1037 Wuhan 430074 China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
| | - Hong Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
12
|
|
13
|
KhorsandKheirabad A, Zhou X, Xie D, Wang H, Yuan J. Hydrazine-Enabled One-Step Synthesis of Metal Nanoparticle-Functionalized Gradient Porous Poly(ionic liquid) Membranes. Macromol Rapid Commun 2020; 42:e2000143. [PMID: 32410315 DOI: 10.1002/marc.202000143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 11/07/2022]
Abstract
In this communication, a one-step synthetic route is reported toward free-standing metal-nanoparticle-functionalized gradient porous polyelectrolyte membranes (PPMs). The membranes are produced by soaking a glass-plate-supported blend film that consists of a hydrophobic poly(ionic liquid) (PIL), poly(acrylic acid), and a metal salt, into an aqueous hydrazine solution. Upon diffusion of water and hydrazine molecules into the blend film, a phase separation process of the hydrophobic PIL and an ionic crosslinking reaction via interpolyelectrolyte complexation occur side by side to form the PPM. Simultaneously, due to the reductive nature of hydrazine, the metal salt inside the polymer blend film is reduced in situ by hydrazine into metal nanoparticles that anchor onto the PPM. The as-obtained hybrid porous membrane is proven functional in the catalytic reduction of p-nitrophenol. This one-step method to grow metal nanoparticles and gradient porous membranes can simplify future fabrication processes of multifunctional PPMs.
Collapse
Affiliation(s)
- Atefeh KhorsandKheirabad
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, Stockholm, 10691, Sweden
| | - Xianjing Zhou
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dongjiu Xie
- Institute for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, Berlin, 14109, Germany
| | - Hong Wang
- Key Laboratory of Functional Polymer Materials (Ministry of Education) Institute of Polymer Chemistry, College of chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, Stockholm, 10691, Sweden
| |
Collapse
|
14
|
Zhang SY, Zhuang Q, Zhang M, Wang H, Gao Z, Sun JK, Yuan J. Poly(ionic liquid) composites. Chem Soc Rev 2020; 49:1726-1755. [DOI: 10.1039/c8cs00938d] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review highlights recent advances in the development of poly(ionic liquid)-based composites for diverse materials applications.
Collapse
Affiliation(s)
- Su-Yun Zhang
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- P. R. China
- College of Physics and Optoelectronic Engineering
| | - Qiang Zhuang
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an
- P. R. China
| | - Miao Zhang
- Department of Materials and Environmental Chemistry
- Stockholm University
- 10691 Stockholm
- Sweden
| | - Hong Wang
- Key Laboratory of Functional Polymer Materials (Ministry of Education)
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin
| | - Zhiming Gao
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- P. R. China
| | - Jian-Ke Sun
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- P. R. China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry
- Stockholm University
- 10691 Stockholm
- Sweden
| |
Collapse
|
15
|
Liu H, Zhu J, Hao L, Jiang Y, van der Bruggen B, Sotto A, Gao C, Shen J. Thermo- and pH-responsive graphene oxide membranes with tunable nanochannels for water gating and permeability of small molecules. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Li XY, Xie R, Zhang C, Chen ZH, Hu JQ, Ju XJ, Wang W, Liu Z, Chu LY. Effects of hydrophilicity of blended submicrogels on the microstructure and performance of thermo-responsive membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Liu H, Yang S, Liu Y, Miao M, Zhao Y, Sotto A, Gao C, Shen J. Fabricating a pH-responsive membrane through interfacial in-situ assembly of microgels for water gating and self-cleaning. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Lin H, Zhang S, Xiao Y, Zhang C, Zhu J, Dunlop JWC, Yuan J. Organic Molecule-Driven Polymeric Actuators. Macromol Rapid Commun 2019; 40:e1800896. [PMID: 30811751 DOI: 10.1002/marc.201800896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/23/2019] [Indexed: 12/11/2022]
Abstract
Inspired by the motions of plant tissues in response to external stimuli, significant attention has been devoted to the development of actuating polymeric materials. In particular, polymeric actuators driven by organic molecules have been designed due to their combined superiorities of tunable functional monomers, designable chemical structures, and variable structural anisotropy. Here, the recent progress is summarized in terms of material synthesis, structure design, polymer-solvent interaction, and actuating performance. In addition, various possibilities for practical applications, including the ability to sense chemical vapors and solvent isomers, and future directions to satisfy the requirement of sensing and smart systems are also highlighted.
Collapse
Affiliation(s)
- Huijuan Lin
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 210009, China
| | - Suyun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yan Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chenjun Zhang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 210009, China
| | - Jixin Zhu
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 210009, China
| | - John W C Dunlop
- Morphophysics Group, Department of the Chemistry and Physics of Materials, Paris Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, 10691, Sweden
| |
Collapse
|
19
|
Yin MJ, Zhao Q, Wu J, Seefeldt K, Yuan J. Precise Micropatterning of a Porous Poly(ionic liquid) via Maskless Photolithography for High-Performance Nonenzymatic H 2O 2 Sensing. ACS NANO 2018; 12:12551-12557. [PMID: 30512935 DOI: 10.1021/acsnano.8b07069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Porous poly(ionic liquid)s (PILs) recently have been serving as a multifunctional, interdisciplinary materials platform in quite a few research areas, including separation, catalysis, actuator, sensor, and energy storage, just to name a few. In this context, the capability of photopatterning PIL microstructures in a porous state on a substrate is still missing but is a crucial step for their real industrial usage. Here, we developed a method for in situ rapid patterning of porous PIL microstructures via a maskless photolithography approach coupled with a simple electrostatic complexation treatment. This breakthrough enables design of miniaturized sensors. As exemplified in this work, upon loading Pt nanoparticles into porous PIL microstructures, the hybrid sensor showed outstanding performance, bearing both a high sensitivity and a wide detection range.
Collapse
Affiliation(s)
- Ming-Jie Yin
- Photonics Research Center, Department of Electrical Engineering , The Hong Kong Polytechnic University , Hong Kong , SAR , China
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
- Max Planck Institute of Colloids and Interfaces , Department of Colloid Chemistry , D-14424 Potsdam , Germany
| | - Jushuai Wu
- Photonics Research Center, Department of Electrical Engineering , The Hong Kong Polytechnic University , Hong Kong , SAR , China
| | - Karoline Seefeldt
- Max Planck Institute of Colloids and Interfaces , Department of Colloid Chemistry , D-14424 Potsdam , Germany
| | - Jiayin Yuan
- Max Planck Institute of Colloids and Interfaces , Department of Colloid Chemistry , D-14424 Potsdam , Germany
- Department of Materials and Environmental Chemistry (MMK) , Stockholm University , Svante Arrhenius väg 16 C , 10691 Stockholm , Sweden
| |
Collapse
|
20
|
Shao Y, Jiang Z, Zhang Y, Wang T, Zhao P, Zhang Z, Yuan J, Wang H. All-Poly(ionic liquid) Membrane-Derived Porous Carbon Membranes: Scalable Synthesis and Application for Photothermal Conversion in Seawater Desalination. ACS NANO 2018; 12:11704-11710. [PMID: 30398843 DOI: 10.1021/acsnano.8b07526] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Herein, we introduce a straightforward, scalable, and technologically relevant strategy to manufacture charged porous polymer membranes (CPMs) in a controllable manner. The pore sizes and porous architectures of CPMs are well-controlled by rational choice of anions in poly(ionic liquid)s (PILs). Continuously, heteroatom-doped hierarchically porous carbon membrane (HCMs) can be readily fabricated via morphology-maintaining carbonization of as-prepared CPMs. These HCMs, as photothermal membranes, exhibited excellent performance for solar seawater desalination, representing a promising strategy to construct advanced functional nanomaterials for portable water production technologies.
Collapse
Affiliation(s)
- Yue Shao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P.R. China
| | - Zhiping Jiang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P.R. China
| | - Yunjing Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P.R. China
| | - Tongzhou Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P.R. China
| | - Peng Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P.R. China
| | - Zhe Zhang
- College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , P.R. China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry , Stockholm University , 10691 Stockholm , Sweden
| | - Hong Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P.R. China
| |
Collapse
|
21
|
Wei R, Yang F, Gu R, Liu Q, Zhou J, Zhang X, Zhao W, Zhao C. Design of Robust Thermal and Anion Dual-Responsive Membranes with Switchable Response Temperature. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36443-36455. [PMID: 30277384 DOI: 10.1021/acsami.8b12887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, poly(ionic liquids/ N-isopropylacrylamide) (PIL/NIPAM) modified poly(ether sulfone) microporous membranes were prepared using a pore-filling method. Due to the anion-sensitive wettability of the PIL and the thermal-sensitive phase transformation of PNIPAM, the permeability of the modified membranes showed robust anion and thermal dual-responsive behaviors. In addition, the response temperature of the membranes could be adjusted precisely from 30 to 55 °C by anion exchange, which was attributed to the cooperative interaction of the PIL and PNIPAM. The switchable response temperature and the dual-responsive performances of the membranes were demonstrated by measuring the water fluxes under various conditions. The results indicated that the membrane permeabilities increased when exchanging the counteranions (CAs) from hydrophilic to hydrophobic ones; the thermal response behaviors were also obvious, and the sensitivity increased when increasing the hydrophobicity of the CA (the fluxes could be adjusted from 0 to 3800 mL/m2 mmHgh by controlling the temperature and CAs). At last, filtration tests were designed with the membranes, and the results indicated that by controlling the temperature and/or CA species, three different poly(ethylene glycol) molecules could be easily separated according to their molecule sizes in a single step.
Collapse
Affiliation(s)
- Ran Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| | - Fan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| | - Ruixue Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| | - Qian Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| | - Jukai Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| | - Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , People's Republic of China
| |
Collapse
|
22
|
Liu H, Liao J, Zhao Y, Sotto A, Zhu J, van der Bruggen B, Gao C, Shen J. Bioinspired dual stimuli-responsive membranes with enhanced gating ratios and reversible performances for water gating. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Gallei M, Rüttiger C. Recent Trends in Metallopolymer Design: Redox-Controlled Surfaces, Porous Membranes, and Switchable Optical Materials Using Ferrocene-Containing Polymers. Chemistry 2018; 24:10006-10021. [PMID: 29532972 DOI: 10.1002/chem.201800412] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/06/2018] [Indexed: 01/24/2023]
Abstract
Metallopolymers with metal functionalities are a unique class of functional materials. Their redox-mediated optoelectronic and catalytic switching capabilities, their outstanding structure formation and separation capabilities have been reported recently. Within this Minireview, the scope and limitations of intriguing ferrocene-containing systems will be discussed. In the first section recent advances in metallopolymer design will be given leading to a plethora of novel metallopolymer architectures. Discussed synthetic pathways comprise controlled and living polymerization protocols as well as surface immobilization strategies. In the following sections, we focus on recent advances and new applications for side-chain and main-chain ferrocene-containing polymers as (i) remote-switchable materials, (ii) smart surfaces, (iii) redox-responsive membranes, and some recent trends in (iv) photonic structures and (v) other optical applications.
Collapse
Affiliation(s)
- Markus Gallei
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Christian Rüttiger
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| |
Collapse
|
24
|
Zhang W, Zhao Q, Yuan J. Porous Polyelectrolytes: The Interplay of Charge and Pores for New Functionalities. Angew Chem Int Ed Engl 2018; 57:6754-6773. [PMID: 29124842 PMCID: PMC6001701 DOI: 10.1002/anie.201710272] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Indexed: 01/27/2023]
Abstract
The past decade has witnessed rapid advances in porous polyelectrolytes and there is tremendous interest in their synthesis as well as their applications in environmental, energy, biomedicine, and catalysis technologies. Research on porous polyelectrolytes is motivated by the flexible choice of functional organic groups and processing technologies as well as the synergy of the charge and pores spanning length scales from individual polyelectrolyte backbones to their nano-/micro-superstructures. This Review surveys recent progress in porous polyelectrolytes including membranes, particles, scaffolds, and high surface area powders/resins as well as their derivatives. The focus is the interplay between surface chemistry, Columbic interaction, and pore confinement that defines new chemistry and physics in such materials for applications in energy conversion, molecular separation, water purification, sensing/actuation, catalysis, tissue engineering, and nanomedicine.
Collapse
Affiliation(s)
- Weiyi Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials ProcessingClarkson UniversityPotsdamNY13699-5814USA
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Jiayin Yuan
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials ProcessingClarkson UniversityPotsdamNY13699-5814USA
- Department of Materials and Environmental Chemistry (MMK)Stockholm University10691StockholmSweden
| |
Collapse
|
25
|
Wu Y, Regan M, Zhang W, Yuan J. Reprocessable porous poly(ionic liquid) membranes derived from main-chain polyimidazolium. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.03.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Wei R, Song W, Yang F, Zhou J, Zhang M, Zhang X, Zhao W, Zhao C. Bidirectionally pH-Responsive Zwitterionic Polymer Hydrogels with Switchable Selective Adsorption Capacities for Anionic and Cationic Dyes. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ran Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Wanying Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Fan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Jukai Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Man Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | | | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
27
|
Sun N, Sun P, Wu A, Qiao X, Lu F, Zheng L. Facile fabrication of thermo/redox responsive hydrogels based on a dual crosslinked matrix for a smart on-off switch. SOFT MATTER 2018; 14:4327-4334. [PMID: 29761197 DOI: 10.1039/c8sm00504d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stimuli-responsive or "smart" soft materials have raised considerable attention due to their ability to spontaneously respond to external environmental variations and have a great potential for wide applications. Herein, a thermo/redox responsive hydrogel is facilely constructed based on a dual crosslinked matrix: the primary chemical crosslinked copolymer is composed of thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) and poly(ionic liquid), and the secondary physical crosslinking component is generated by the ionic coordination between iron ions and carboxyl groups in the poly(ionic liquid). The non-covalent ion coordination crosslinking is introduced into a covalently crosslinked network, which further strengthens the soft PNIPAM matrix and enhances the mechanical performances of the hydrogels. The excellent thermosensitivity of PNIPAM and the good conductive property of poly(ionic liquid) provide the hydrogel with an attractive performance as a thermo-responsive switch. Moreover, the trapped iron ions in the network endow the hydrogels with redox-responsiveness, which could be reversibly chemically oxidized and reduced. The mechanical strength of hydrogels could also be tuned by the crosslinked capacity of iron ions within the gel matrix between the strong binding of the oxidized state (Fe3+) and poor coordination of the reduced state (Fe2+). These stimuli-responsive hydrogels have the potential to be used as smart materials for stimuli-responsive devices.
Collapse
Affiliation(s)
- Na Sun
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.
| | | | | | | | | | | |
Collapse
|
28
|
Zhang W, Zhao Q, Yuan J. Poröse Polyelektrolyte: Zusammenspiel zwischen Poren und Ladung für neue Funktionen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Weiyi Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials Processing; Clarkson University; Potsdam NY 13699-5814 USA
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Jiayin Yuan
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials Processing; Clarkson University; Potsdam NY 13699-5814 USA
- Department of Materials and Environmental Chemistry (MMK); Stockholm University; 10691 Stockholm Schweden
| |
Collapse
|
29
|
Qian W, Texter J, Yan F. Frontiers in poly(ionic liquid)s: syntheses and applications. Chem Soc Rev 2018; 46:1124-1159. [PMID: 28180218 DOI: 10.1039/c6cs00620e] [Citation(s) in RCA: 520] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We review recent works on the synthesis and application of poly(ionic liquid)s (PILs). Novel chemical structures, different synthetic strategies and controllable morphologies are introduced as a supplement to PIL systems already reported. The primary properties determining applications, such as ionic conductivity, aqueous solubility, thermodynamic stability and electrochemical/chemical durability, are discussed. Furthermore, the near-term applications of PILs in multiple fields, such as their use in electrochemical energy materials, stimuli-responsive materials, carbon materials, and antimicrobial materials, in catalysis, in sensors, in absorption and in separation materials, as well as several special-interest applications, are described in detail. We also discuss the limitations of PIL applications, efforts to improve PIL physics, and likely future developments.
Collapse
Affiliation(s)
- Wenjing Qian
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - John Texter
- School of Engineering Technology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
30
|
Rüttiger C, Hübner H, Schöttner S, Winter T, Cherkashinin G, Kuttich B, Stühn B, Gallei M. Metallopolymer-Based Block Copolymers for the Preparation of Porous and Redox-Responsive Materials. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4018-4030. [PMID: 29313330 DOI: 10.1021/acsami.7b18014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metallopolymers are a unique class of functional materials because of their redox-mediated optoelectronic and catalytic switching capabilities and, as recently shown, their outstanding structure formation and separation capabilities. Within the present study, (tri)block copolymers of poly(isoprene) (PI) and poly(ferrocenylmethyl methacrylate) having different block compositions and overall molar masses up to 328 kg mol-1 are synthesized by anionic polymerization. The composition and thermal properties of the metallopolymers are investigated by state-of-the-art polymer analytical methods comprising size exclusion chromatography, 1H NMR spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. As a focus of this work, excellent microphase separation of the synthesized (tri)block copolymers is proven by transmission electron microscopy, scanning electron microcopy, energy-dispersive X-ray spectroscopy, small-angle X-ray scattering measurements showing spherical, cylindrical, and lamellae morphologies. As a highlight, the PI domains are subjected to ozonolysis for selective domain removal while maintaining the block copolymer morphology. In addition, the novel metalloblock copolymers can undergo microphase separation on cellulose-based substrates, again preserving the domain order after ozonolysis. The resulting nanoporous structures reveal an intriguing switching capability after oxidation, which is of interest for controlling the size and polarity of the nanoporous architecture.
Collapse
Affiliation(s)
- Christian Rüttiger
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt , Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Hanna Hübner
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt , Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Sebastian Schöttner
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt , Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Tamara Winter
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt , Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Gennady Cherkashinin
- Surface Science Group, Institute of Materials Science, Technische Universität Darmstadt , Otto-Berndt-Str. 3, D-64287 Darmstadt, Germany
| | - Björn Kuttich
- Institute of Condensed Matter Physics, Technische Universität Darmstadt , Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Bernd Stühn
- Institute of Condensed Matter Physics, Technische Universität Darmstadt , Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Markus Gallei
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt , Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| |
Collapse
|
31
|
Schöttner S, Hossain R, Rüttiger C, Gallei M. Ferrocene-Modified Block Copolymers for the Preparation of Smart Porous Membranes. Polymers (Basel) 2017; 9:E491. [PMID: 30965794 PMCID: PMC6418580 DOI: 10.3390/polym9100491] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/05/2017] [Accepted: 10/05/2017] [Indexed: 11/16/2022] Open
Abstract
The design of artificially generated channels featuring distinct remote-switchable functionalities is of critical importance for separation, transport control, and water filtration applications. Here, we focus on the preparation of block copolymers (BCPs) consisting of polystyrene-block-poly(2-hydroxyethyl methacrylate) (PS-b-PHEMA) having molar masses in the range of 91 to 124 kg mol-1 with a PHEMA content of 13 to 21 mol %. The BCPs can be conveniently functionalized with redox-active ferrocene moieties by a postmodification protocol for the hydrophilic PHEMA segments. Up to 66 mol % of the hydroxyl functionalities can be efficiently modified with the reversibly redox-responsive units. For the first time, the ferrocene-containing BCPs are shown to form nanoporous integral asymmetric membranes by self-assembly and application of the non-solvent-induced phase separation (SNIPS) process. Open porous structures are evidenced by scanning electron microscopy (SEM) and water flux measurements, while efficient redox-switching capabilities are investigated after chemical oxidation of the ferrocene moieties. As a result, the porous membranes reveal a tremendously increased polarity after oxidation as reflected by contact angle measurements. Additionally, the initial water flux of the ferrocene-containing membranes decreased after oxidizing the ferrocene moieties because of oxidation-induced pore swelling of the membrane.
Collapse
Affiliation(s)
- Sebastian Schöttner
- Ernst-Berl Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany.
| | - Rimjhim Hossain
- Ernst-Berl Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany.
| | - Christian Rüttiger
- Ernst-Berl Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany.
| | - Markus Gallei
- Ernst-Berl Institute for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany.
| |
Collapse
|
32
|
Bakangura E, Cheng C, Wu L, Ge X, Ran J, Khan MI, Kamana E, Afsar N, Irfan M, Shehzad A, Xu T. Hierarchically structured porous anion exchange membranes containing zwetterionic pores for ion separation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Zhang K, Feng X, Ye C, Hempenius MA, Vancso GJ. Hydrogels with a Memory: Dual-Responsive, Organometallic Poly(ionic liquid)s with Hysteretic Volume-Phase Transition. J Am Chem Soc 2017; 139:10029-10035. [PMID: 28654756 PMCID: PMC5538755 DOI: 10.1021/jacs.7b04920] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Indexed: 11/28/2022]
Abstract
We report on the synthesis and structure-property relations of a novel, dual-responsive organometallic poly(ionic liquid) (PIL), consisting of a poly(ferrocenylsilane) backbone of alternating redox-active, silane-bridged ferrocene units and tetraalkylphosphonium sulfonate moieties in the side groups. This PIL is redox responsive due to the presence of ferrocene in the backbone and also exhibits a lower critical solution temperature (LCST)-type thermal responsive behavior. The LCST phase transition originates from the interaction between water molecules and the ionic substituents and shows a concentration-dependent, tunable transition temperature in aqueous solution. The PIL's LCST-type transition temperature can also be influenced by varying the redox state of ferrocene in the polymer main chain. As the polymer can be readily cross-linked and is easily converted into hydrogels, it represents a new dual-responsive materials platform. Interestingly, the as-formed hydrogels display an unusual, strongly hysteretic volume-phase transition indicating useful thermal memory properties. By employing the dispersing abilities of this cationic PIL, CNT-hydrogel composites were successfully prepared. These hybrid conductive composite hydrogels showed bi-stable states and tunable resistance in heating-cooling cycles.
Collapse
Affiliation(s)
| | | | - Chongnan Ye
- Materials Science and Technology
of Polymers, MESA+ Institute for Nanotechnology,
University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Mark A. Hempenius
- Materials Science and Technology
of Polymers, MESA+ Institute for Nanotechnology,
University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - G. Julius Vancso
- Materials Science and Technology
of Polymers, MESA+ Institute for Nanotechnology,
University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| |
Collapse
|
34
|
Han W, Dong S, Li B, Ge L. Preparation of polyacrylonitrile- based porous hollow carbon microspheres. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Wu A, Lu F, Zhao M, Sun N, Shi L, Zheng L. Photo and Humidity Responsive Mesoporous Poly(ionic Liquid) Membrane for Selective Dye Adsorption. ChemistrySelect 2017. [DOI: 10.1002/slct.201601934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aoli Wu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education; Shandong University; Jinan 250100 China
| | - Fei Lu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education; Shandong University; Jinan 250100 China
| | - Mingwei Zhao
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing; China University of Petroleum (East China); Qingdao 266580 China
| | - Na Sun
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education; Shandong University; Jinan 250100 China
| | - Lijuan Shi
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province; Taiyuan University of Technology; Taiyuan 030024 China
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education; Shandong University; Jinan 250100 China
| |
Collapse
|
36
|
Qin L, Wang B, Zhang Y, Chen L, Gao G. Anion exchange: a novel way of preparing hierarchical porous structure in poly(ionic liquid)s. Chem Commun (Camb) 2017; 53:3785-3788. [DOI: 10.1039/c6cc10158e] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The exchange of bulky salicylate and its dimers/clusters in PILs by other smaller anions increased specific surface area and fabricated a hierarchical porous structure.
Collapse
Affiliation(s)
- Li Qin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- North Zhongshan Road 3663
- Shanghai 200062
| | - Binshen Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- North Zhongshan Road 3663
- Shanghai 200062
| | - Yongya Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- North Zhongshan Road 3663
- Shanghai 200062
| | - Li Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- North Zhongshan Road 3663
- Shanghai 200062
| | - Guohua Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- North Zhongshan Road 3663
- Shanghai 200062
| |
Collapse
|
37
|
Wang A, Xu H, Liu X, Gao R, Wang S, Zhou Q, Chen J, Liu X, Zhang L. The synthesis of a hyperbranched star polymeric ionic liquid and its application in a polymer electrolyte. Polym Chem 2017. [DOI: 10.1039/c7py00499k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This research provides an effective approach to synthesize a hyperbranched star polymeric ionic liquid, and the prepared polymeric ionic liquid electrolyte shows good electrochemical properties.
Collapse
Affiliation(s)
- Ailian Wang
- College of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Hao Xu
- College of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Xu Liu
- College of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Rui Gao
- College of Materials Science and Opto-Electronic Technology
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Shi Wang
- College of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Qian Zhou
- College of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Jie Chen
- College of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Xiangfeng Liu
- College of Materials Science and Opto-Electronic Technology
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Liaoyun Zhang
- College of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| |
Collapse
|
38
|
Folkertsma L, Zhang K, Czakkel O, de Boer HL, Hempenius MA, van den Berg A, Odijk M, Vancso GJ. Synchrotron SAXS and Impedance Spectroscopy Unveil Nanostructure Variations in Redox-Responsive Porous Membranes from Poly(ferrocenylsilane) Poly(ionic liquid)s. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02318] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Orsolya Czakkel
- Insitut Laue
Langevin, CS 20156, 71 rue des Martyrs, 38042 Grenoble, Cedex 9, France
| | | | | | | | | | | |
Collapse
|
39
|
Feng X, Zhang K, Chen P, Sui X, Hempenius MA, Liedberg B, Vancso GJ. Highly Swellable, Dual-Responsive Hydrogels Based on PNIPAM and Redox Active Poly(ferrocenylsilane) Poly(ionic liquid)s: Synthesis, Structure, and Properties. Macromol Rapid Commun 2016; 37:1939-1944. [DOI: 10.1002/marc.201600374] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/11/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Xueling Feng
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
- Centre for Biomimetic Sensor Science; School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Drive Singapore 637553 Singapore
| | - Kaihuan Zhang
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Peng Chen
- Centre for Biomimetic Sensor Science; School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Drive Singapore 637553 Singapore
| | - Xiaofeng Sui
- Key Laboratory of Science and Technology of Eco-Textile (Ministry of Education); Donghua University; Shanghai 201620 P. R. China
| | - Mark A. Hempenius
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science; School of Materials Science and Engineering; Nanyang Technological University; 50 Nanyang Drive Singapore 637553 Singapore
| | - G. Julius Vancso
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
40
|
Bakangura E, Cheng C, Wu L, He Y, Ge X, Ran J, Emmanuel K, Xu T. Highly charged hierarchically structured porous anion exchange membranes with excellent performance. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.05.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Side chain effects in the packing structure and stiffness of redox-responsive ferrocene-containing polymer brushes. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Scheid D, von der Lühe M, Gallei M. Synthesis of Breathing Metallopolymer Hollow Spheres for Redox-Controlled Release. Macromol Rapid Commun 2016; 37:1573-1580. [PMID: 27491362 DOI: 10.1002/marc.201600338] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/01/2016] [Indexed: 12/23/2022]
Abstract
A convenient synthetic approach for the preparation of uniform metallopolymer-containing hollow spheres based on 2-(methacryloyloxy)ethyl ferrocenecarboxylate (FcMA) as monomer by sequential starved feed emulsion polymerization is described. Core/shell particles consisting of a noncrosslinked poly(methyl methacrylate) core and a slightly crosslinked ferrocene-containing shell allows for the simple dissolution of core material and, thus, monodisperse metallopolymer hollow spheres are obtained. Since PFcMA is incorporated in the particle shell, herein investigated hollow spheres can be addressed by external triggers, i.e., solvent variation and redox chemistry in order to change the particle swelling capability. PFcMA-containing core/shell particles and hollow spheres are characterized by transmission electron microscope (TEM), scanning electron microscopy, cryogenic TEM, thermogravimetric analysis, and dynamic light scattering in terms of size, size distribution, hollow sphere character, redox-responsiveness, and composition. Moreover, the general suitability of prepared stimulus-responsive nanocapsules for the use in catch-release systems is demonstrated by loading the nanocapsules with malachite green as model payload followed by release studies.
Collapse
Affiliation(s)
- Daniel Scheid
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Moritz von der Lühe
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldstr. 10, 07743, Jena, Germany
| | - Markus Gallei
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany.
| |
Collapse
|
43
|
|
44
|
Lee BY, Hyun S, Jeon G, Kim EY, Kim J, Kim WJ, Kim JK. Bioinspired Dual Stimuli-Responsive Membranous System with Multiple On-Off Gates. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11758-11764. [PMID: 27089551 DOI: 10.1021/acsami.6b01788] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Stimuli-responsive polymers have been widely used for controlled release of several biomolecules. In general, a single stimulus among various stimuli, for instance, temperature, pH, or light, has been used for these polymers. Although some stimuli are applied together, one cannot control each stimulus independently at a given stimulus-responsive polymer. However, to mimic biological system like cell membrane, multiple on-off gates utilizing independent control of dual (or multiple) stimuli should be used. Here, we introduce a stimuli-responsive membrane controlled by two orthogonal stimuli. For this purpose, the top and the bottom parts of anodized aluminum oxide membrane walls are independently grafted by thermoresponsive poly(N-isopropylacrylamide) and pH-responsive poly(acrylic acid), respectively, by using surface-initiated atom transfer radical polymerization. The membrane clearly showed two independent on-off gates depending on temperature and pH. Furthermore, through light irradiation of two different wavelengths (near-infrared and ultraviolet), temperature and pH were also controlled independently and promptly. Thus, this membrane shows two independent on-off gating of the transport of a model biomolecule of fluorescein isothiocyanate-labeled bovine serum albumin. This strategy suggests the potential of independently modified membrane in layers as stimuli-responsive on-off gates for the application of artificial cell membrane.
Collapse
Affiliation(s)
- Bom-Yi Lee
- National Creative Research Center for Block Copolymer Self-Assembly and Department of Chemical Engineering and ‡Department of Chemistry, Pohang University of Science and Technology , 77 Cheongam-ro, Nam-gu, Pohang 790-784, Republic of Korea
| | - Seung Hyun
- National Creative Research Center for Block Copolymer Self-Assembly and Department of Chemical Engineering and ‡Department of Chemistry, Pohang University of Science and Technology , 77 Cheongam-ro, Nam-gu, Pohang 790-784, Republic of Korea
| | - Gumhye Jeon
- National Creative Research Center for Block Copolymer Self-Assembly and Department of Chemical Engineering and ‡Department of Chemistry, Pohang University of Science and Technology , 77 Cheongam-ro, Nam-gu, Pohang 790-784, Republic of Korea
| | - Eun Young Kim
- National Creative Research Center for Block Copolymer Self-Assembly and Department of Chemical Engineering and ‡Department of Chemistry, Pohang University of Science and Technology , 77 Cheongam-ro, Nam-gu, Pohang 790-784, Republic of Korea
| | - Jinhwan Kim
- National Creative Research Center for Block Copolymer Self-Assembly and Department of Chemical Engineering and ‡Department of Chemistry, Pohang University of Science and Technology , 77 Cheongam-ro, Nam-gu, Pohang 790-784, Republic of Korea
| | - Won Jong Kim
- National Creative Research Center for Block Copolymer Self-Assembly and Department of Chemical Engineering and ‡Department of Chemistry, Pohang University of Science and Technology , 77 Cheongam-ro, Nam-gu, Pohang 790-784, Republic of Korea
| | - Jin Kon Kim
- National Creative Research Center for Block Copolymer Self-Assembly and Department of Chemical Engineering and ‡Department of Chemistry, Pohang University of Science and Technology , 77 Cheongam-ro, Nam-gu, Pohang 790-784, Republic of Korea
| |
Collapse
|
45
|
Li W, Trosien S, Schenderlein H, Graf M, Biesalski M. Preparation of photochromic paper, using fibre-attached spiropyran polymer networks. RSC Adv 2016. [DOI: 10.1039/c6ra23673a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Spiropyran-based photochromic paper was prepared by covalent immobilisation of functional polymer networks. The sensitivity of the UV-induced colour change was dynamically adjusted by a damping method. Thereby, a colourimetric UV sensor was designed.
Collapse
Affiliation(s)
- W. Li
- Laboratory of Macromolecular Chemistry and Paper Chemistry
- Department of Chemistry
- Technische Universitaet Darmstadt
- 64287 Darmstadt
- Germany
| | - S. Trosien
- Laboratory of Macromolecular Chemistry and Paper Chemistry
- Department of Chemistry
- Technische Universitaet Darmstadt
- 64287 Darmstadt
- Germany
| | - H. Schenderlein
- Laboratory of Macromolecular Chemistry and Paper Chemistry
- Department of Chemistry
- Technische Universitaet Darmstadt
- 64287 Darmstadt
- Germany
| | - M. Graf
- Laboratory of Macromolecular Chemistry and Paper Chemistry
- Department of Chemistry
- Technische Universitaet Darmstadt
- 64287 Darmstadt
- Germany
| | - M. Biesalski
- Laboratory of Macromolecular Chemistry and Paper Chemistry
- Department of Chemistry
- Technische Universitaet Darmstadt
- 64287 Darmstadt
- Germany
| |
Collapse
|
46
|
Rüttiger C, Pfeifer V, Rittscher V, Stock D, Scheid D, Vowinkel S, Roth F, Didzoleit H, Stühn B, Elbert J, Ionescu E, Gallei M. One for all: cobalt-containing polymethacrylates for magnetic ceramics, block copolymerization, unexpected electrochemistry, and stimuli-responsiveness. Polym Chem 2016. [DOI: 10.1039/c5py01845e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Functional cobalt-containing homo and block polymers are probed with respect to their redox-induced switchability and as preceramic materials.
Collapse
|
47
|
Sun JK, Antonietti M, Yuan J. Nanoporous ionic organic networks: from synthesis to materials applications. Chem Soc Rev 2016; 45:6627-6656. [DOI: 10.1039/c6cs00597g] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review highlights the recent progress made in the study of the synthesis of nanoporous ionic organic networks (NIONs) and their promising applications.
Collapse
Affiliation(s)
- Jian-Ke Sun
- Max Planck Institute of Colloids and Interfaces
- Department of Colloid Chemistry
- D-14424 Potsdam
- Germany
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces
- Department of Colloid Chemistry
- D-14424 Potsdam
- Germany
| | - Jiayin Yuan
- Max Planck Institute of Colloids and Interfaces
- Department of Colloid Chemistry
- D-14424 Potsdam
- Germany
| |
Collapse
|
48
|
Hailes RLN, Oliver AM, Gwyther J, Whittell GR, Manners I. Polyferrocenylsilanes: synthesis, properties, and applications. Chem Soc Rev 2016; 45:5358-407. [DOI: 10.1039/c6cs00155f] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This comprehensive review covers polyferrocenylsilanes (PFSs), a well-established, readily accessible class of main chain organosilicon metallopolymer. The focus is on the recent advances involving PFS homopolymers and block copolymers and the article covers the synthesis, properties, and applications of these fascinating materials.
Collapse
Affiliation(s)
| | | | | | | | - Ian Manners
- School of Chemistry
- University of Bristol
- Bristol
- UK
| |
Collapse
|
49
|
Täuber K, Zimathies A, Yuan J. Porous Membranes Built Up from Hydrophilic Poly(ionic liquid)s. Macromol Rapid Commun 2015; 36:2176-80. [DOI: 10.1002/marc.201500480] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/14/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Karoline Täuber
- Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 14476 Potsdam Germany
| | - Annett Zimathies
- Federal Institute for Materials Research and Testing; Richard-Willstätter Str. 11 12489 Berlin Germany
| | - Jiayin Yuan
- Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|
50
|
Yan N, Wang Y. Reversible switch between the nanoporous and the nonporous state of amphiphilic block copolymer films regulated by selective swelling. SOFT MATTER 2015; 11:6927-6937. [PMID: 26226937 DOI: 10.1039/c5sm01405k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Switchable nanoporous films, which can repeatedly alternate their porosities, are of great interest in a diversity of fields. Currently these intelligent materials are mostly based on polyelectrolytes and their porosities can change only in relatively narrow ranges, typically under wet conditions, severely limiting their applications. Here we develop a new system, which is capable of reversibly switching between a highly porous state and a nonporous state dozens of times regulated simply by exposure to selective solvents. In this system nanopores are created or reversibly eliminated in films of a block copolymer, polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP), by exposing the films to P2VP-selective or PS-selective solvents, respectively. The mechanism of the switch is based on the selective swelling of the constituent blocks in corresponding solvents, which is a nondestructive and easily controllable process enabling the repeatable and ample switch between the open and the closed state. Systematic microscopic and ellipsometric characterization methods are performed to elucidate the pore-closing course induced by nonsolvents and the cycling between the pore-open and the pore-closed state up to 20 times. The affinity of the solvent for PS blocks is found to play a dominating role in determining the pore-closing process and the porosities of the pore-open films increase with the cycling numbers as a result of loose packing conditions of the polymer chains. We finally demonstrate the potential applications of these films as intelligent antireflection coatings and drug carriers.
Collapse
Affiliation(s)
- Nina Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, P. R. China.
| | | |
Collapse
|