1
|
Wei Y, Li Y, Li X, Yang T, Chen X, Li Y, Zhou Y, Wang J, Zhang J, Li H, Ling H, Wang S, Liu Y, Xie L. Double C-H Amination of Naphthylamine Derivatives by the Cross-Dehydrogenation Coupling Reaction. J Org Chem 2024; 89:11195-11202. [PMID: 39067013 DOI: 10.1021/acs.joc.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A high-efficiency tandem process has been developed for the formation of two C-N bonds through a cross-dehydrogenative coupling (CDC) amination of spiro[acridine-9,9'-fluorene]s (SAFs) with amines. This method offers a strategically innovative and atom-economical approach to obtaining diamine-substituted SAFs. Notably, the approach eliminates the need for metal catalysts and other additives, relying solely on O2 as the oxidant. A self-activation mechanism has been proposed to elucidate the effective double amination in the CDC process.
Collapse
Affiliation(s)
- Ying Wei
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yue Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xiaoyan Li
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Tonglin Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xin Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yang Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yang Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jiacheng Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jingrui Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Hao Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Haifeng Ling
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shasha Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yuyu Liu
- Electrical Engineering College, Nanjing Vocational University of Industry Technology, Nanjing 210023, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
2
|
Paffen A, Cremer C, Patureau FW. Phenotellurazine redox catalysts: elements of design for radical cross-dehydrogenative coupling reactions. Beilstein J Org Chem 2024; 20:1292-1297. [PMID: 38887568 PMCID: PMC11181166 DOI: 10.3762/bjoc.20.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024] Open
Abstract
Redox active phenotellurazine catalysts have been recently utilized in two different cross-dehydrogenative coupling reactions. In this study, we revisit the design of the phenotellurazine redox catalysts. In particular, we investigate the level of cooperativity between the Te- and N-centers, the effect of secondary versus tertiary N-centers, the effect of heterocyclic versus non-heterocyclic structures, and the effect of substitution patterns on the redox catalytic activity.
Collapse
Affiliation(s)
- Alina Paffen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Christopher Cremer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
3
|
Xu B, Liu X, Deng L, Shang Y, Jie X, Su W. Dehydrogenative synthesis of N-functionalized 2-aminophenols from cyclohexanones and amines: Molecular complexities via one-shot assembly. SCIENCE ADVANCES 2024; 10:eadn7656. [PMID: 38691610 PMCID: PMC11062582 DOI: 10.1126/sciadv.adn7656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024]
Abstract
Polyfunctionalized arenes are privileged structural motifs in both academic and industrial chemistry. Conventional methods for accessing this class of chemicals usually involve stepwise modification of phenyl rings, often necessitating expensive noble metal catalysts and suffering from low reactivity and selectivity when introducing multiple functionalities. We herein report dehydrogenative synthesis of N-functionalized 2-aminophenols from cyclohexanones and amines. The developed reaction system enables incorporating amino and hydroxyl groups into aromatic rings in a one-shot fashion, which simplifies polyfunctionalized 2-aminophenol synthesis by circumventing issues associated with traditional arene modifications. The wide substrate scope and excellent functional group tolerance are exemplified by late-stage modification of complex natural products and pharmaceuticals that are unattainable by existing methods. This dehydrogenative protocol benefits from using 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) as oxidant that offers interesting chemo- and regio-selective oxidation processes. More notably, the essential role of in situ generated water is disclosed, which protects aliphatic amine moieties from overoxidation via hydrogen bond-enabled interaction.
Collapse
Affiliation(s)
- Biping Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Xiaojie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Lei Deng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yaping Shang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Xiaoming Jie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
4
|
Girón-Elola C, Sasiain I, Sánchez-Fernández R, Pazos E, Correa A. Site-Selective C-H Amination of Phenol-Containing Biomolecules. Org Lett 2023; 25:4383-4387. [PMID: 37284781 PMCID: PMC10278169 DOI: 10.1021/acs.orglett.3c01560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 06/08/2023]
Abstract
A C-N bond-forming cross-dehydrogenative coupling of a collection of Tyr-containing peptides and estrogens with heteroarenes is described. This oxidative coupling is distinguished by its scalability, operational simplicity, and air tolerance and enables the appendance of phenothiazines and phenoxazines in phenol-like compounds. When incorporated into a Tb(III) metallopeptide, the Tyr-phenothiazine moiety acts as a sensitizer for the Tb(III) ion, providing a new tool for the design of luminescent probes.
Collapse
Affiliation(s)
- Carlota Girón-Elola
- University
of the Basque Country (UPV/EHU), Department
of Organic Chemistry I, Joxe Mari Korta R&D Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Ibon Sasiain
- University
of the Basque Country (UPV/EHU), Department
of Organic Chemistry I, Joxe Mari Korta R&D Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Rosalía Sánchez-Fernández
- CICA
− Centro Interdisciplinar de Química e Bioloxía
and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de Elviña, 15071 A Coruña, Spain
| | - Elena Pazos
- CICA
− Centro Interdisciplinar de Química e Bioloxía
and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de Elviña, 15071 A Coruña, Spain
| | - Arkaitz Correa
- University
of the Basque Country (UPV/EHU), Department
of Organic Chemistry I, Joxe Mari Korta R&D Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
5
|
Lan W, Zhu J, Abulaiti B, Chen G, Zhang Z, Yan N, Wan JP, Zhang X, Liao L. Zinc Trifluoromethanesulfonate-Catalyzed para-Selective Amination of Free Anilines and Free Phenols with Quinoneimides. J Org Chem 2022; 87:13895-13906. [DOI: 10.1021/acs.joc.2c01600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weiqiao Lan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jiatong Zhu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Buweihailiqiemu Abulaiti
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Genyuan Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Zhihao Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Nan Yan
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Xiaomei Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Lihua Liao
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, P. R. China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
6
|
Li Y, Fu ZT, Shen Y, Zhu J, Luo K, Wu L. Divergent Auto‐oxidative Alkylation and Alkanoacylation of Quinoxalin‐2(1H)‐ones with Aliphatic Aldehydes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuan Li
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Zi-Tong Fu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Yawei Shen
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Jie Zhu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Kai Luo
- Nanjing Agricultural University College of Sciences Weigang No. 1 210095 Nanjing CHINA
| | - Lei Wu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| |
Collapse
|
7
|
Zhang D, Yuan X, Gong C, Zhang X. High Electric Field on Water Microdroplets Catalyzes Spontaneous and Ultrafast Oxidative C-H/N-H Cross-Coupling. J Am Chem Soc 2022; 144:16184-16190. [PMID: 35960958 DOI: 10.1021/jacs.2c07385] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative C-H/N-H cross-coupling has emerged as an atom-economical method for the construction of C-N bonds. Conventional oxidative C-H/N-H coupling requires at least one of the following: high temperatures, strong oxidizers, transition metal catalysts, organic solvents, light, and electrochemical cells. In this study, by merely spraying the water solutions of the substrates into microdroplets at room temperature, we show a series of oxidative C-H/N-H coupling products that are strikingly produced in a spontaneous and ultrafast manner. The reactions are accelerated by six orders of magnitude compared to the same reactions in the bulk. It has been previously proposed by fluorescence microscopy and theory that the spontaneously generated electric field at the microdroplets peripheries can be in the ∼109 V/m range. Based on mass spectrometric analysis of key radical intermediates, we opine that the ultrahigh electric field catalytically oxidizes the substrates by removing an electron, which further promotes C/N coupling. Taken together, we anticipate that microdroplet chemistry will be an avenue rich in green opportunities of constructing C-heteroatom bonds.
Collapse
Affiliation(s)
- Dongmei Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xu Yuan
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Chu Gong
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Morimoto K, Yanase K, Toda K, Takeuchi H, Dohi T, Kita Y. Cyclic Hypervalent Iodine-Induced Oxidative Phenol and Aniline Couplings with Phenothiazines. Org Lett 2022; 24:6088-6092. [PMID: 35921162 DOI: 10.1021/acs.orglett.2c02470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C-H/N-H bond functionalization for direct intermolecular aryl C-N couplings is a useful synthetic process. In this study, we achieved metal-free cross-dehydrogenative coupling of phenols and anilines with phenothiazines using hypervalent iodine reagents. This method affords selective amination products under mild conditions. Electron-rich phenols and anilines could be employed, affording moderate-to-high yields of N-arylphenothiazines. Aniline amination proceeded efficiently at 20 °C, a previously unreported phenomenon.
Collapse
Affiliation(s)
- Koji Morimoto
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.,Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Kana Yanase
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Kentaro Toda
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Takeuchi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.,Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Yasuyuki Kita
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
9
|
Ravindar L, Hasbullah SA, Hassan NI, Qin HL. Cross‐Coupling of C‐H and N‐H Bonds: a Hydrogen Evolution Strategy for the Construction of C‐N Bonds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lekkala Ravindar
- Universiti Kebangsaan Malaysia Fakulti Teknologi dan Sains Maklumat Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Siti Aishah Hasbullah
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Nurul Izzaty Hassan
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Hua-Li Qin
- Wuhan University of Technology School of Chemistry 430070 Hubei CHINA
| |
Collapse
|
10
|
Purtsas A, Rosenkranz M, Dmitrieva E, Kataeva O, Knölker H. Iron-Catalyzed Oxidative C-O and C-N Coupling Reactions Using Air as Sole Oxidant. Chemistry 2022; 28:e202104292. [PMID: 35179270 PMCID: PMC9314016 DOI: 10.1002/chem.202104292] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 01/31/2023]
Abstract
We describe the oxygenation of tertiary arylamines, and the amination of tertiary arylamines and phenols. The key step of these coupling reactions is an iron-catalyzed oxidative C-O or C-N bond formation which generally provides the corresponding products in high yields and with excellent regioselectivity. The transformations are accomplished using hexadecafluorophthalocyanine-iron(II) (FePcF16 ) as catalyst in the presence of an acid or a base additive and require only ambient air as sole oxidant.
Collapse
Affiliation(s)
- Alexander Purtsas
- Fakultät ChemieTechnische Universität DresdenBergstraße 6601069DresdenGermany
| | - Marco Rosenkranz
- Center of SpectroelectrochemistryLeibniz Institute for Solid State and Materials Research (IFW) DresdenHelmholtzstraße 2001069DresdenGermany
| | - Evgenia Dmitrieva
- Center of SpectroelectrochemistryLeibniz Institute for Solid State and Materials Research (IFW) DresdenHelmholtzstraße 2001069DresdenGermany
| | - Olga Kataeva
- A. E. Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center, Russian Academy of SciencesArbuzov Str. 8Kazan420088Russia
| | | |
Collapse
|
11
|
Benchouaia R, Nandi S, Maurer C, Patureau FW. O 2-Mediated Dehydrogenative Phenoxazination of Phenols. J Org Chem 2022; 87:4926-4935. [PMID: 35276045 PMCID: PMC8981320 DOI: 10.1021/acs.joc.1c02827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Phenoxazines, in
particular N-arylated phenoxazines, represent
an increasingly important scaffold in the material sciences. Moreover,
the oxygen-gas-mediated dehydrogenative phenochalcogenazination concept
of phenols has been developed and exemplified for X = sulfur and recently
for X = selenium and tellurium. The smallest chalcogen, X = oxygen,
is herein exemplified with various functional groups under a likewise
trivial oxygen atmosphere.
Collapse
Affiliation(s)
- Rajaa Benchouaia
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Shiny Nandi
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Clemens Maurer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
12
|
Vemuri P, Cremer C, Patureau FW. Te(II)-Catalyzed Cross-Dehydrogenative Phenothiazination of Anilines. Org Lett 2022; 24:1626-1630. [PMID: 35192766 PMCID: PMC8902801 DOI: 10.1021/acs.orglett.2c00125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 12/11/2022]
Abstract
Oxidative clicklike reactions are useful for the late-stage functionalization of pharmaceuticals and organic materials. Hence, novel methodologies that enable such transformations are in high demand. Herein we describe a tellurium(II)-catalyzed cross-dehydrogenative phenothiazination (CDP) of aromatic amines. A key feature of this method is a cooperative effect between the phenotellurazine catalyst and the silver salt, which serves as a chemical oxidant for the reaction. This novel catalysis concept therefore enables a considerably broader scope compared with previous chemical oxidation methods.
Collapse
Affiliation(s)
- Pooja
Y. Vemuri
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Christopher Cremer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W. Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
13
|
Zhao X, Yang F, Wang LL, Guo J, Xu YQ, Chen ZS, Ji K. Cu( ii)-Catalyzed C2-site functionalization of p-aminophenols: an approach for selective cross-dehydrogenative aminations. Org Chem Front 2022. [DOI: 10.1039/d1qo01675j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Site selective cross dehydrogenative aminations from precursors without preactivated C–H and N–H bonds have been challenging.
Collapse
Affiliation(s)
- Xin Zhao
- College of Chemistry and Pharmacy, Northwest A&F University; Shaanxi Key Laboratory of Natural Products & Chemical Biology, 3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
- School of Pharmacy, Baotou Medical College, Baotou 014060, Inner Mongolia, P. R. China
| | - Fang Yang
- College of Chemistry and Pharmacy, Northwest A&F University; Shaanxi Key Laboratory of Natural Products & Chemical Biology, 3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Lin-Lin Wang
- College of Chemistry and Pharmacy, Northwest A&F University; Shaanxi Key Laboratory of Natural Products & Chemical Biology, 3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Jing Guo
- College of Chemistry and Pharmacy, Northwest A&F University; Shaanxi Key Laboratory of Natural Products & Chemical Biology, 3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Yu-Qin Xu
- College of Chemistry and Pharmacy, Northwest A&F University; Shaanxi Key Laboratory of Natural Products & Chemical Biology, 3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Zi-Sheng Chen
- College of Chemistry and Pharmacy, Northwest A&F University; Shaanxi Key Laboratory of Natural Products & Chemical Biology, 3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Kegong Ji
- College of Chemistry and Pharmacy, Northwest A&F University; Shaanxi Key Laboratory of Natural Products & Chemical Biology, 3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
14
|
Van Emelen L, Henrion M, Lemmens R, De Vos D. C–N coupling reactions with arenes through C–H activation: the state-of-the-art versus the principles of green chemistry. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01827b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, we discuss the state-of-the-art in arene C–N coupling through C–H activation and to what extent it complies with the principles of green chemistry, with a focus on heterogeneously catalysed systems.
Collapse
Affiliation(s)
- Lisa Van Emelen
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Mickaël Henrion
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Robin Lemmens
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Dirk De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| |
Collapse
|
15
|
Abstract
A Cu-catalyzed straightforward synthesis of benzoxazoles from free phenols and cyclic oxime esters is reported. The mild reaction conditions tolerate various electron-withdrawing and electron-donating functional groups on both substrates, affording benzoxazoles in moderate to good yields. With this protocol, large-scale syntheses of Ezutromid and Flunoxaprofe in one or two steps are demonstrated. A catalytic mechanism, which includes Cu-catalyzed amination via inner-sphere electron transfer and consequent annulation, is proposed.
Collapse
Affiliation(s)
- Zheng-Hai Wang
- Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China
| | - Dong-Hui Wang
- Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China.,Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Boulevard, Nanjing 210023, China
| |
Collapse
|
16
|
Shi J, Wang Y, Bu Q, Liu B, Dai B, Liu N. Cr-Catalyzed Direct ortho-Aminomethylation of Phenols. J Org Chem 2021; 86:17567-17580. [PMID: 34874723 DOI: 10.1021/acs.joc.1c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We developed a Cr-catalyzed strategy for the regioselective formation of Csp2-Csp3 bonds through the direct and efficient ortho-aminomethylation of N,N-dimethylanilines with phenols. The approach showed excellent site selectivity at the ortho-position of phenols and accommodated broad substrate scope and functional group compatibility for both N,N-dimethylanilines and phenols. Mechanistic studies revealed that the direct ortho-aminomethylation between N,N-dimethylanilines and phenols occurred via an ionic mechanism.
Collapse
Affiliation(s)
- Junbin Shi
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Yubin Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Qingqing Bu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Binyuan Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China.,Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Bin Dai
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Ning Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| |
Collapse
|
17
|
Buglioni L, Beslać M, Noël T. Dehydrogenative Azolation of Arenes in a Microflow Electrochemical Reactor. J Org Chem 2021; 86:16195-16203. [PMID: 34455793 PMCID: PMC8609577 DOI: 10.1021/acs.joc.1c01409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The electrochemical
synthesis of aryl azoles was performed for
the first time in a microflow reactor. The reaction relies on the
anodic oxidation of the arene partners making these substrates susceptible
for C–H functionalization with azoles, thus requiring no homogeneous
transition-metal-based catalysts. The synthetic protocol benefits
from the implementation of a microflow setup, leading to shorter residence
times (10 min), compared to previously reported batch systems. Various
azolated compounds (22 examples) are obtained in good to excellent
yields.
Collapse
Affiliation(s)
- Laura Buglioni
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Marko Beslać
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Timothy Noël
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park, 904 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
18
|
Chen S, Li YN, Xiang SH, Li S, Tan B. Electrochemical phenothiazination of naphthylamines and its application in photocatalysis. Chem Commun (Camb) 2021; 57:8512-8515. [PMID: 34351332 DOI: 10.1039/d1cc03276c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
N-Phenylphenothiazine as an inexpensive, highly reductive and oxygen tolerant organophotocatalyst has exhibited potential in various challenging photochemical transformations. Here we report a general and straightforward method to access structurally diverse N-phenylphenothiazine derivatives by means of a novel electrochemical tool. The introduction of a 2-naphthylamine moiety with an extended π-system and an amine group led to the variation of spectral characterization. Photochemical verification experiments demonstrated that the formed N-arylation products with good efficacy and chemo/site-control displayed competitive catalytic activity in challenging transformations.
Collapse
Affiliation(s)
- Song Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| | | | | | | | | |
Collapse
|
19
|
Cremer C, Eltester MA, Bourakhouadar H, Atodiresei IL, Patureau FW. Dehydrogenative C-H Phenochalcogenazination. Org Lett 2021; 23:3243-3247. [PMID: 33848168 PMCID: PMC8155573 DOI: 10.1021/acs.orglett.1c00573] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Heavy-atom-modified
chalcogen-fused triarylamine organic materials
are becoming increasingly important in the photochemical sciences.
In this context, the general and direct dehydrogenative C–H
phenochalcogenazination of phenols with the heavier chalcogens selenium
and tellurium is herein described. The latter dehydrogenative C–N
bond-forming processes operate under simple reaction conditions with
highly sustainable O2 serving as the terminal oxidant.
Collapse
Affiliation(s)
- Christopher Cremer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - M Alexander Eltester
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Hicham Bourakhouadar
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Iuliana L Atodiresei
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
20
|
Matsuzawa T, Hosoya T, Yoshida S. Transition-Metal-Free Synthesis of N-Arylphenothiazines through an N- and S-Arylation Sequence. Org Lett 2021; 23:2347-2352. [PMID: 33667111 DOI: 10.1021/acs.orglett.1c00515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An efficient synthetic method of N-arylphenothiazines from o-sulfanylanilines under transition-metal-free conditions is disclosed. An N- and S-arylation sequence of o-sulfanylanilines enabled us to synthesize a wide variety of N-arylphenothiazines. In particular, one-pot synthesis of N-arylphenothiazines was accomplished from easily available modules through preparation of o-sulfanylanilines by thioamination of aryne intermediates and following N- and S-arylation sequence.
Collapse
Affiliation(s)
- Tsubasa Matsuzawa
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
21
|
Cremer C, Goswami M, Rank CK, Bruin B, Patureau FW. Tellur(II)/Tellur(III)‐katalysierte dehydrierende C‐N‐Bindungsbildung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Christopher Cremer
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | | | - Christian K. Rank
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Bas Bruin
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam Niederlande
| | - Frederic W. Patureau
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| |
Collapse
|
22
|
Cremer C, Goswami M, Rank CK, de Bruin B, Patureau FW. Tellurium(II)/Tellurium(III)-Catalyzed Cross-Dehydrogenative C-N Bond Formation. Angew Chem Int Ed Engl 2021; 60:6451-6456. [PMID: 33320996 PMCID: PMC7986434 DOI: 10.1002/anie.202015248] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/11/2020] [Indexed: 01/03/2023]
Abstract
The TeII /TeIII -catalyzed dehydrogenative C-H phenothiazination of challenging phenols featuring electron-withdrawing substituents under mild aerobic conditions and with high yields is described. These unexpected TeII /TeIII radical catalytic properties were characterized by cyclic voltammetry, EPR spectroscopy, kinetic experiments, and DFT calculations.
Collapse
Affiliation(s)
- Christopher Cremer
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | | - Christian K. Rank
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Bas de Bruin
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Frederic W. Patureau
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
23
|
Nucleophilic Aromatic Substitution of Polyfluoroarene to Access Highly Functionalized 10-Phenylphenothiazine Derivatives. Molecules 2021; 26:molecules26051365. [PMID: 33806360 PMCID: PMC7962002 DOI: 10.3390/molecules26051365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/29/2022] Open
Abstract
Nucleophilic aromatic substitution (SNAr) reactions can provide metal-free access to synthesize monosubstituted aromatic compounds. We developed efficient SNAr conditions for p-selective substitution of polyfluoroarenes with phenothiazine in the presence of a mild base to afford the corresponding 10-phenylphenothiazine (PTH) derivatives. The resulting polyfluoroarene-bearing PTH derivatives were subjected to a second SNAr reaction to generate highly functionalized PTH derivatives with potential applicability as photocatalysts for the reduction of carbon–halogen bonds.
Collapse
|
24
|
Ni Y, Wan X, Zuo H, Bashir MA, Liu Y, Yu H, Liao RZ, Wu G, Zhong F. Iron-catalyzed cross-dehydrogenative C–H amidation of benzofurans and benzothiophenes with anilines. Org Chem Front 2021. [DOI: 10.1039/d0qo01651a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An efficient iron-catalyzed radical cross-dehydrogenative aromatic C–H amidation provides a straightforward access to structurally diverse diarylamine derivatives incorporating benzofuran/benzothiophene motifs.
Collapse
Affiliation(s)
- Yang Ni
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Xiang Wan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Honghua Zuo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Muhammad Adnan Bashir
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Yu Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Huaibin Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Guojiao Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Fangrui Zhong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| |
Collapse
|
25
|
Bub CL, Thönnißen V, Patureau FW. Benzophenothiazine and Its Cr(III)-Catalyzed Cross Dehydrogenative Couplings. Org Lett 2020; 22:9196-9198. [PMID: 33196197 PMCID: PMC8046291 DOI: 10.1021/acs.orglett.0c03354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In stark contrast to phenothiazines and their prevalence for cross-dehydrogenative amination reactions, benzophenothiazine has a pronounced preference for cross-dehydrogenative C-C bond-forming reactions. Moreover, the substrate is very versatile, leading to several new classes of C-C bond-forming reactions and many new oxidative coupling product architectures, including unprecedented indole fused paddlewheel-like structures.
Collapse
Affiliation(s)
- Christina L Bub
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Vinzenz Thönnißen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
26
|
Ye F, Liu Q, Cui R, Xu D, Gao Y, Chen H. Diverse Functionalization of Tetrahydro-β-carbolines or Tetrahydro-γ-carbolines via Oxidative Coupling Rearrangement. J Org Chem 2020; 86:794-812. [PMID: 33232143 DOI: 10.1021/acs.joc.0c02351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report herein diverse functionalization of tetrahydro-β-carbolines (THβCs) or tetrahydro-γ-carbolines (THγCs) via oxidative coupling rearrangement. The treatment of THβCs or THγCs with t-BuOOH (TBHP) afforded 3-peroxyindolenines, followed by HCl catalyzed indolation to form unexpected 2-indolyl-3-peroxyindolenines. Further rearrangement of these peroxides allows for rapid access to a skeletally diverse chemical library in good to excellent yields.
Collapse
Affiliation(s)
- Fu Ye
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qing Liu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ranran Cui
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Dekang Xu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
27
|
Jana S, Empel C, Pei C, Vinh Nguyen T, Koenigs RM. Gold‐catalyzed C−H Functionalization of Phenothiazines with Aryldiazoacetates. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000962] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sripati Jana
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
| | - Claire Empel
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
- University of New South Wales School of Chemistry Sydney Australia
| | - Chao Pei
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
| | | | - Rene M. Koenigs
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
- University of New South Wales School of Chemistry Sydney Australia
| |
Collapse
|
28
|
Zhao P, Wang K, Yue Y, Chao J, Ye Y, Tang Q, Liu J. Copper‐Catalyzed Aerobic Oxidative Amination of Indole Derivatives
via
Single‐Electron Transfer. ChemCatChem 2020. [DOI: 10.1002/cctc.202000284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Peizheng Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 P. R. China.) and
| | - Ke Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 P. R. China.) and
| | - Yuanyuan Yue
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 P. R. China.) and
| | - Junli Chao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 P. R. China.) and
| | - Yaqing Ye
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 P. R. China.) and
| | - Qinghu Tang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 P. R. China.) and
| | - Jianming Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 P. R. China.) and
| |
Collapse
|
29
|
Yang Y, Zhang D, Vessally E. Direct Amination of Aromatic C-H Bonds with Free Amines. Top Curr Chem (Cham) 2020; 378:37. [PMID: 32236795 DOI: 10.1007/s41061-020-0300-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/07/2020] [Indexed: 02/01/2023]
Abstract
Aromatic amines belong to a highly important class of organic compounds which are found in various natural products, functional materials, and pharmaceutical agents. Their prevalence has sparked continuing interest in the development of highly efficient and environmentally benign synthetic strategies for the construction of these compounds. Cross-dehydrogenative coupling reactions between two unmodified C(X)-H bonds have recently emerged as a versatile and powerful strategy for the fabrication of new C(X)-C(X) bonds. In this context, several procedures have been reported for the synthesis of aromatic amines through the direct amination of aromatic C-H bonds with free amines. This review highlights recent advances and progress in this appealing research arena, with special emphasis on the mechanistic features of the reactions.
Collapse
Affiliation(s)
- Yafeng Yang
- School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dangquan Zhang
- School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
30
|
Sigmund LM, Ebner F, Jöst C, Spengler J, Gönnheimer N, Hartmann D, Greb L. An Air-Stable, Neutral Phenothiazinyl Radical with Substantial Radical Stabilization Energy. Chemistry 2020; 26:3152-3156. [PMID: 31944465 PMCID: PMC7079145 DOI: 10.1002/chem.201905238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Indexed: 01/12/2023]
Abstract
The vital effect of radical states on the pharmacological activity of phenothiazine-based drugs has long been speculated. Whereas cationic radicals of N-substituted phenothiazines show high stability, the respective neutral radicals of N-unsubstituted phenothiazines have never been isolated. Herein, the 1,9-diamino-3,7-di-tert-butyl-N1 ,N9 -bis(2,6-diisopropylphenyl)-10H-phenothiazin-10-yl radical (SQH2 . ) is described as the first air-stable, neutral phenothiazinyl free radical. The crystalline dark-blue species is characterized by means of EPR and UV/Vis/near-IR spectroscopy, as well as cyclic voltammetry, spectro-electrochemical analysis, single-crystal XRD, and computational studies. The SQH2 . radical stands out from other aminyl radicals by an impressive radical stabilization energy and its parent amine has one of the weakest N-H bond dissociation energies ever determined. In addition to serving as open-shell reference in medicinal chemistry, its tridentate binding pocket or hydrogen-bond-donor ability might enable manifold uses as a redox-active ligand or proton-coupled electron-transfer reagent.
Collapse
Affiliation(s)
- Lukas M. Sigmund
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Fabian Ebner
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Christoph Jöst
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Jonas Spengler
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Nils Gönnheimer
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Deborah Hartmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lutz Greb
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
31
|
Vershinin V, Pappo D. M[TPP]Cl (M = Fe or Mn)-Catalyzed Oxidative Amination of Phenols by Primary and Secondary Anilines. Org Lett 2020; 22:1941-1946. [PMID: 32049535 PMCID: PMC7467820 DOI: 10.1021/acs.orglett.0c00296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Iron-
and manganese-catalyzed para-selective oxidative
amination of (4-R)phenols by primary and secondary anilines was developed.
Depending on the identity of the R group, the products of this efficient
reaction are either benzoquinone anils (C–N coupling) that
are produced via a sequential oxidative amination/dehydrogenation
(R = H), oxidative amination/elimination (R = OMe) steps, or N,O-biaryl compounds (C–C coupling)
that are formed when R = alkyl through an oxidative amination/[3,3]-sigmatropic
rearrangement (quinamine rearrangement) process.
Collapse
Affiliation(s)
- Vlada Vershinin
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Doron Pappo
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
32
|
Yu C, Sanjosé-Orduna J, Patureau FW, Pérez-Temprano MH. Emerging unconventional organic solvents for C-H bond and related functionalization reactions. Chem Soc Rev 2020; 49:1643-1652. [PMID: 32115586 DOI: 10.1039/c8cs00883c] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Solvent engineering is an increasingly essential topic in the chemical sciences. In this context, some recently appeared unconventional solvents have shown their large potential in the field of C-H bond functionalization reactions. This review aims not only at recognizing and classifying a short selection of these emerging solvents, in particular halogenated ones, but also at providing a medium term perspective of the possibilities they will offer for synthetic method development.
Collapse
Affiliation(s)
- Congjun Yu
- Institute for Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | | | | | | |
Collapse
|
33
|
Shao N, Yao Z, Wang D. Cu(II)‐Catalyzed
Ortho
‐Selective Amination of Simple Phenols with
O
‐Benzoylhydroxylamines. Isr J Chem 2020. [DOI: 10.1002/ijch.201900171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nan‐Qi Shao
- CAS Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional MoleculesCenter for Excellence in Molecular SynthesisUniversity of Chinese Academy of Sciences; Shanghai Institute of Organic Chemistry, CAS. 345 Lingling Rd. Shanghai 200032 China
| | - Zhi‐Li Yao
- CAS Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional MoleculesCenter for Excellence in Molecular SynthesisUniversity of Chinese Academy of Sciences; Shanghai Institute of Organic Chemistry, CAS. 345 Lingling Rd. Shanghai 200032 China
| | - Dong‐Hui Wang
- CAS Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional MoleculesCenter for Excellence in Molecular SynthesisUniversity of Chinese Academy of Sciences; Shanghai Institute of Organic Chemistry, CAS. 345 Lingling Rd. Shanghai 200032 China
| |
Collapse
|
34
|
Lin Z, Lu M, Liu B, Gao J, Huang M, Gan Z, Cai S. Oxidative alkylation of alkenes with carbonyl compounds through concomitant 1,2-aryl migration by photoredox catalysis. NEW J CHEM 2020. [DOI: 10.1039/d0nj03733h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient protocol for the construction of 1,5-diketones was realized in the presence of organic fluorophore 4CzIPN, diaryliodonium salt, and visible light irradiation.
Collapse
Affiliation(s)
- Zhaowei Lin
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University
- Zhangzhou
- China
| | - Maojian Lu
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University
- Zhangzhou
- China
| | - Boyi Liu
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University
- Zhangzhou
- China
| | - Jing Gao
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University
- Zhangzhou
- China
| | - Mingqiang Huang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University
- Zhangzhou
- China
| | - Zhenhong Gan
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University
- Zhangzhou
- China
| | - Shunyou Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University
- Zhangzhou
- China
- Key Laboratory of Chemical Genomics of Guangdong Province, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University
- Shenzhen
| |
Collapse
|
35
|
Yu C, Patureau FW. Regioselective Oxidative Arylation of Fluorophenols. Angew Chem Int Ed Engl 2019; 58:18530-18534. [PMID: 31584740 PMCID: PMC6916641 DOI: 10.1002/anie.201910352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/24/2019] [Indexed: 11/08/2022]
Abstract
A metal free and highly regioselective oxidative arylation reaction of fluorophenols is described. The relative position of the fluoride leaving group (i.e., ortho or para) controls the 1,2 or 1,4 nature of the arylated quinone product, lending versatility and generality to this oxidative, defluorinative, arylation concept.
Collapse
Affiliation(s)
- Congjun Yu
- Institute of Organic Chemistry, RWTH, Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH, Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
36
|
Vemuri PY, Wang Y, Patureau FW. Para-Selective Dehydrogenative Phenothiazination of Hydroquinolines and Indolines. Org Lett 2019; 21:9856-9859. [PMID: 31793299 DOI: 10.1021/acs.orglett.9b03729] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitrogen-containing heterocyclic systems, such as hydroquinolines, indolines, and phenothiazines, are prevalent in pharmaceuticals, natural products, and organic materials. It is therefore important to develop novel reaction strategies that give access to such biologically relevant scaffolds. This report demonstrates a novel robust, para-selective C-N bond formation between phenothiazines and quinolines or indolines under extremely mild and user-friendly conditions. Furthermore, we bring forward a surprising discovery arising from the homocoupling of indolines through an unprecedented C5-H functionalization.
Collapse
Affiliation(s)
- Pooja Y Vemuri
- Institute of Organic Chemistry , RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany
| | - Yongchao Wang
- Institute of Organic Chemistry , RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry , RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany
| |
Collapse
|
37
|
Affiliation(s)
- Congjun Yu
- Institut für Organische ChemieRWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Frederic W. Patureau
- Institut für Organische ChemieRWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| |
Collapse
|
38
|
Rank C, Özkaya B, Patureau FW. HBF 4- and AgBF 4-Catalyzed ortho-Alkylation of Diarylamines and Phenols. Org Lett 2019; 21:6830-6834. [PMID: 31429294 PMCID: PMC6900263 DOI: 10.1021/acs.orglett.9b02470] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 02/06/2023]
Abstract
A silver-tetrafluoroborate- or HBF4-catalyzed ortho-alkylation reaction of phenols and diarylamines with styrenes has been explored. A broad substrate scope is presented as well as mechanistic experiments and discussion.
Collapse
Affiliation(s)
- Christian
K. Rank
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Bünyamin Özkaya
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W. Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
39
|
Abstract
Metal-free N-H functionalization reactions represent an important strategy for sustainable C-N coupling reactions. In this report, we describe the visible light photolysis of aryl diazoacetates in the presence of some N-heterocycles that enables mild, metal-free N-H functionalization reactions of carbazole and azepine heterocycles (15 examples, up to 83% yield).
Collapse
Affiliation(s)
- Claire Empel
- Institute of Organic Chemistry , RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry , RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany
| | - Rene M Koenigs
- Institute of Organic Chemistry , RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany
| |
Collapse
|
40
|
Yao ZL, Wang L, Shao NQ, Guo YL, Wang DH. Copper-Catalyzed ortho-Selective Dearomative C–N Coupling of Simple Phenols with O-Benzoylhydroxylamines. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
41
|
Feng P, Ma G, Chen X, Wu X, Lin L, Liu P, Chen T. Electrooxidative and Regioselective C-H Azolation of Phenol and Aniline Derivatives. Angew Chem Int Ed Engl 2019; 58:8400-8404. [PMID: 30920715 DOI: 10.1002/anie.201901762] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Indexed: 12/19/2022]
Abstract
A general and practical protocol was developed for the regioselective C-H azolation of phenol and aniline derivatives by electrooxidative cross-coupling. The reaction occurs under metal-, oxidant-, and reagent-free conditions, allowing access to a wide variety of synthetically useful heteroarene derivatives. The reaction also tolerates a broad range of functional groups and is amenable to gram-scale synthesis. Finally, a preliminary mechanistic study indicated that a radical-radical-combination pathway might be involved in the coupling reaction.
Collapse
Affiliation(s)
- Pengju Feng
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Guojian Ma
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Xiaoguang Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Xing Wu
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Ling Lin
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Peng Liu
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil, Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
42
|
Feng P, Ma G, Chen X, Wu X, Lin L, Liu P, Chen T. Electrooxidative and Regioselective C−H Azolation of Phenol and Aniline Derivatives. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Pengju Feng
- Department of ChemistryJinan University Guangzhou 510632 China
| | - Guojian Ma
- Department of ChemistryJinan University Guangzhou 510632 China
| | - Xiaoguang Chen
- Department of ChemistryJinan University Guangzhou 510632 China
| | - Xing Wu
- Department of ChemistryJinan University Guangzhou 510632 China
| | - Ling Lin
- Department of ChemistryJinan University Guangzhou 510632 China
| | - Peng Liu
- Guangdong Engineering and Technology Research Center for Advanced NanomaterialsSchool of Environment and Civil, EngineeringDongguan University of Technology Dongguan 523808 China
| | - Tianfeng Chen
- Department of ChemistryJinan University Guangzhou 510632 China
| |
Collapse
|
43
|
Takamatsu K, Hayashi Y, Kawauchi S, Hirano K, Miura M. Copper-Catalyzed Regioselective C–H Amination of Phenol Derivatives with Assistance of Phenanthroline-Based Bidentate Auxiliary. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01145] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kazutaka Takamatsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Hayashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Susumu Kawauchi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
44
|
Sterckx H, Morel B, Maes BUW. Catalytic Aerobic Oxidation of C(sp 3 )-H Bonds. Angew Chem Int Ed Engl 2019; 58:7946-7970. [PMID: 30052305 DOI: 10.1002/anie.201804946] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 01/04/2023]
Abstract
Oxidation reactions are a key technology to transform hydrocarbons from petroleum feedstock into chemicals of a higher oxidation state, allowing further chemical transformations. These bulk-scale oxidation processes usually employ molecular oxygen as the terminal oxidant as at this scale it is typically the only economically viable oxidant. The produced commodity chemicals possess limited functionality and usually show a high degree of symmetry thereby avoiding selectivity issues. In sharp contrast, in the production of fine chemicals preference is still given to classical oxidants. Considering the strive for greener production processes, the use of O2 , the most abundant and greenest oxidant, is a logical choice. Given the rich functionality and complexity of fine chemicals, achieving regio/chemoselectivity is a major challenge. This review presents an overview of the most important catalytic systems recently described for aerobic oxidation, and the current insight in their reaction mechanism.
Collapse
Affiliation(s)
- Hans Sterckx
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Bénédicte Morel
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Bert U W Maes
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| |
Collapse
|
45
|
Sterckx H, Morel B, Maes BUW. Katalytische, aerobe Oxidation von C(sp
3
)‐H‐Bindungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201804946] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hans Sterckx
- Department of Chemistry University of Antwerp Groenenborgerlaan 171 B-2020 Antwerpen Belgien
| | - Bénédicte Morel
- Department of Chemistry University of Antwerp Groenenborgerlaan 171 B-2020 Antwerpen Belgien
| | - Bert U. W. Maes
- Department of Chemistry University of Antwerp Groenenborgerlaan 171 B-2020 Antwerpen Belgien
| |
Collapse
|
46
|
|
47
|
Electrooxidative para-selective C-H/N-H cross-coupling with hydrogen evolution to synthesize triarylamine derivatives. Nat Commun 2019; 10:639. [PMID: 30733447 PMCID: PMC6367370 DOI: 10.1038/s41467-019-08414-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
Abstract
Oxidative C–H/N–H cross-coupling is one of the most atom-economical methods for the construction of C–N bonds. However, traditional oxidative C–H/N–H cross-coupling either required the use of strong oxidants or high reaction temperature, which makes it difficult to tolerate redox active functional groups. Herein we describe an external chemical oxidant-free electrooxidative C–H/N–H cross-coupling between electron-rich arenes and diarylamine derivatives. Under undivided electrolytic conditions, a series of triarylamine derivatives are produced from electron-rich arenes and diarylamine derivatives with high functional group tolerance. Both of the coupling partners are redox active in oxidative C–H/N–H cross-coupling, which enables high regioselectivity in C–N bond formation. Exclusive para-selectivity is observed for the coupling with anilines. Oxidative C–H/N–H cross-coupling is a convenient method to construct C–N bonds, however this is rarely achieved in a sustainable manner. Here, the authors show an oxidant-free electrochemical C–H/N–H cross-coupling between electron-rich arenes and diarylamines to afford triarylamines with exclusive para-selectivity.
Collapse
|
48
|
Nunewar SN, Muthyala BB, Dastari S, Tangellamudi ND. Quinacetophenone: a simple precursor for synthesis of phenoxazines. NEW J CHEM 2019. [DOI: 10.1039/c9nj03525g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quinacetophenone is a versatile and easy accessible building block for synthesis of various biologically active heterocyclic compounds.
Collapse
Affiliation(s)
- Saiprasad N. Nunewar
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- Hyderabad 500037
- India
| | - Bhavana B. Muthyala
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- Hyderabad 500037
- India
| | - Sowmya Dastari
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- Hyderabad 500037
- India
| | - Neelima D. Tangellamudi
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- Hyderabad 500037
- India
| |
Collapse
|
49
|
Wu YC, Jiang SS, Song RJ, Li JH. A metal- and oxidizing-reagent-free anodic para-selective amination of anilines with phenothiazines. Chem Commun (Camb) 2019; 55:4371-4374. [DOI: 10.1039/c9cc01332f] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly para-selective amination of anilines with phenothiazines for producing various functionalized 10-aryl-10H-phenothiazines is reported.
Collapse
Affiliation(s)
- Yan-Chen Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Shuai-Shuai Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| |
Collapse
|
50
|
Youn SW, Kim YH, Jo YH. Palladium‐Catalyzed Regioselective Synthesis of 1‐Hydroxycarbazoles Under Aerobic Conditions. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural SciencesHanyang University Seoul 04763 Korea
| | - Young Ho Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural SciencesHanyang University Seoul 04763 Korea
| | - Yoon Hyung Jo
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural SciencesHanyang University Seoul 04763 Korea
| |
Collapse
|