1
|
Chae K, Mohamad NARC, Kim J, Won DI, Lin Z, Kim J, Kim DH. The promise of chiral electrocatalysis for efficient and sustainable energy conversion and storage: a comprehensive review of the CISS effect and future directions. Chem Soc Rev 2024; 53:9029-9058. [PMID: 39158537 DOI: 10.1039/d3cs00316g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The integration of chirality, specifically through the chirality-induced spin selectivity (CISS) effect, into electrocatalytic processes represents a pioneering approach for enhancing the efficiency of energy conversion and storage systems. This review delves into the burgeoning field of chiral electrocatalysis, elucidating the fundamental principles, historical development, theoretical underpinnings, and practical applications of the CISS effect across a spectrum of electrocatalytic reactions, including the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER). We explore the methodological advancements in inducing the CISS effect through structural and surface engineering and discuss various techniques for its measurement, from magnetic conductive atomic force microscopy (mc-AFM) to hydrogen peroxide titration. Furthermore, this review highlights the transformative potential of the CISS effect in addressing the key challenges of the NRR and CO2RR processes and in mitigating singlet oxygen formation in metal-air batteries, thereby improving their performance and durability. Through this comprehensive overview, we aim to underscore the significant role of incorporating chirality and spin polarization in advancing electrocatalytic technologies for sustainable energy applications.
Collapse
Affiliation(s)
- Kyunghee Chae
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Nur Aqlili Riana Che Mohamad
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Jeonghyeon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong-Il Won
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Zhiqun Lin
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Jeongwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| |
Collapse
|
2
|
Bloom BP, Paltiel Y, Naaman R, Waldeck DH. Chiral Induced Spin Selectivity. Chem Rev 2024; 124:1950-1991. [PMID: 38364021 PMCID: PMC10906005 DOI: 10.1021/acs.chemrev.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/18/2024]
Abstract
Since the initial landmark study on the chiral induced spin selectivity (CISS) effect in 1999, considerable experimental and theoretical efforts have been made to understand the physical underpinnings and mechanistic features of this interesting phenomenon. As first formulated, the CISS effect refers to the innate ability of chiral materials to act as spin filters for electron transport; however, more recent experiments demonstrate that displacement currents arising from charge polarization of chiral molecules lead to spin polarization without the need for net charge flow. With its identification of a fundamental connection between chiral symmetry and electron spin in molecules and materials, CISS promises profound and ubiquitous implications for existing technologies and new approaches to answering age old questions, such as the homochiral nature of life. This review begins with a discussion of the different methods for measuring CISS and then provides a comprehensive overview of molecules and materials known to exhibit CISS-based phenomena before proceeding to identify structure-property relations and to delineate the leading theoretical models for the CISS effect. Next, it identifies some implications of CISS in physics, chemistry, and biology. The discussion ends with a critical assessment of the CISS field and some comments on its future outlook.
Collapse
Affiliation(s)
- Brian P. Bloom
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yossi Paltiel
- Applied
Physics Department and Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ron Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute, Rehovot 76100, Israel
| | - David H. Waldeck
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
3
|
Pranav, Bajpai A, Dwivedi PK, Sivakumar S. Chiral nanomaterial-based approaches for diagnosis and treatment of protein-aggregated neurodiseases: current status and future opportunities. J Mater Chem B 2024; 12:1991-2005. [PMID: 38333942 DOI: 10.1039/d3tb02381h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Protein misfolding and its aggregation, known as amyloid aggregates (Aβ), are some of the major causes of more than 20 diseases such as Parkinson's disease, Alzheimer's disease, and type 2 diabetes. The process of Aβ formation involves an energy-driven oligomerization of Aβ monomers, leading to polymerization and eventual aggregation into fibrils. Aβ fibrils exhibit multilevel chirality arising from its amino acid residues and the arrangement of folded polypeptide chains; thus, a chirality-driven approach can be utilized for the detection and inhibition of Aβ fibrils. In this regard, chiral nanomaterials have recently opened new possibilities for various biomedical applications owing to their stereoselective interaction with biological systems. Leveraging this chirality-driven approach with chiral nanomaterials against protein-aggregated diseases could yield promising results, particularly in the early detection of Aβ forms and the inhibition of Aβ aggregate formation via specific and strong "chiral-chiral interaction." Despite the advantages, the development of advanced theranostic systems using chiral nanomaterials against protein-aggregated diseases has received limited attention so far because of considerably limited formulations for chiral nanomaterials and lack of information of their chiroptical behavior. This review aims to present the current status of chiral nanomaterials explored for detecting and inhibiting Aβ forms. This review covers the origin of chirality in amyloid fibrils and nanomaterials and different chiral detection methods; furthermore, different chiral nanosystems such as chiral plasmonic nanomaterials, chiral carbon-based nanomaterials, and chiral nanosurfaces, which have been used so far for different therapeutic applications against protein-aggregated diseases, are discussed in detail. The findings from this review may pave the way for the development of novel approaches using chiral nanomaterials to combat diseases resulting from protein misfolding and can further be extended to other disease forms.
Collapse
Affiliation(s)
- Pranav
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
| | - Abhishek Bajpai
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
| | - Prabhat K Dwivedi
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
| | - Sri Sivakumar
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, India
- Materials Science Program, Indian Institute of Technology, Kanpur 208016, India
- Centre for Environmental Science and Engineering, India
| |
Collapse
|
4
|
Pranav, Ghali ENHK, Chauhan N, Tiwari R, Cabrera M, Chauhan SC, Yallapu MM. One-step simultaneous liquid phase exfoliation-induced chirality in graphene and their chirality-mediated microRNA delivery. MATERIALS ADVANCES 2023; 4:6199-6212. [PMID: 38021466 PMCID: PMC10680132 DOI: 10.1039/d3ma00611e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
Graphene (G) has established itself as an exciting prospect for a broad range of applications owing to its remarkable properties. Recent innovations in chiral nanosystems have led to sensors, drug delivery, catalysis, etc. owing to the stereospecific interactions between various nanosystems and enantiomers. As the molecular structure of G itself is achiral introducing chirality in G by simple attachment of a functional group (a chiral ligand) on the G nanosheet may result in more diverse applications. Herein, we demonstrate direct liquid phase exfoliation and chiral induction in G nanosheets abbreviated as l-graphene and d-graphene in the presence of chiral l-tyrosine and d-tyrosine and by applying high-temperature sonication. The obtained exfoliated nanosheets demonstrated stable chirality confirmed by circular dichroism. Fourier transform infrared (FTIR) spectra, Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and differential scanning calorimetry (DSC) showed functional, structural, morphological, surface, and thermal characteristics of l-graphene and d-graphene. The hemo-compatibility of these chiral graphenes was evaluated for the very first time utilizing human red blood cells. Lastly, for the very first time, an attempt was made to explore enantiomeric binding between chiral l-graphene and d-graphene with microRNA (miR-205) and their possibility towards chirality-mediated gene delivery in prostate cancerous cells.
Collapse
Affiliation(s)
- Pranav
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Eswara N H K Ghali
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Neeraj Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Rahul Tiwari
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Marco Cabrera
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA +1 956-296-1734
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley McAllen TX USA
| |
Collapse
|
5
|
Maity A, Hershkovitz-Pollak Y, Gupta R, Wu W, Haick H. Spin-Controlled Helical Quantum Sieve Chiral Spectrometer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209125. [PMID: 36807927 DOI: 10.1002/adma.202209125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/22/2022] [Indexed: 06/16/2023]
Abstract
This article reports on a molecular-spin-sensitive-antenna (MSSA) that is based on stacked layers of organically functionalized graphene on a fibrous helical cellulose network for carrying out spatiotemporal identification of chiral enantiomers. The MSSA structures combine three complementary features: (i) chiral separation via a helical quantum sieve for chiral trapping, (ii) chiral recognition by a synthetically implanted spin-sensitive center in a graphitic lattice; and (iii) chiral selectivity by a chirality-induced-spin mechanism that polarizes the local electronic band-structure in graphene through chiral-activated Rashba spin-orbit interaction field. Combining the MSSA structures with decision-making principles based on neuromorphic artificial intelligence shows fast, portable, and wearable spectrometry for the detection and classification of pure and a mixture of chiral molecules, such as butanol (S and R), limonene (S and R), and xylene isomers, with 95-98% accuracy. These results can have a broad impact where the MSSA approach is central as a precautionary risk assessment against potential hazards impacting human health and the environment due to chiral molecules; furthermore, it acts as a dynamic monitoring tool of all parts of the chiral molecule life cycles.
Collapse
Affiliation(s)
- Arnab Maity
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yael Hershkovitz-Pollak
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ritu Gupta
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| |
Collapse
|
6
|
Suwa M, Tsukahara S, Watarai H. Applications of magnetic and electromagnetic forces in micro-analytical systems. LAB ON A CHIP 2023; 23:1097-1127. [PMID: 36636900 DOI: 10.1039/d2lc00702a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Novel applications of magnetic fields in analytical chemistry have become a remarkable trend in the last two decades. Various magnetic forces have been employed for the migration, orientation, manipulation, and trapping of microparticles, and new analytical platforms for separating and detecting molecules have been proposed. Magnetic materials such as functional magnetic nanoparticles, magnetic nanocomposites, and specially designed magnetic solids and liquids have also been developed for analytical purposes. Numerous attractive applications of magnetic and electromagnetic forces on magnetic and non-magnetic materials have been studied, but fundamental studies to understand the working principles of magnetic forces have been challenging. These studies will form a new field of magneto-analytical science, which should be developed as an interdisciplinary field. In this review, essential pioneering works and recent attractive developments are presented.
Collapse
Affiliation(s)
- M Suwa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - S Tsukahara
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - H Watarai
- R3 Institute for Newly-Emerging Science Design, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
7
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
8
|
Möllers PV, Göhler B, Zacharias H. Chirality Induced Spin Selectivity – the Photoelectron View. Isr J Chem 2022. [DOI: 10.1002/ijch.202200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Paul V. Möllers
- Center for Soft Nanoscience University of Münster Busso-Peus-Str. 10 48149 Münster Germany
| | - Benjamin Göhler
- Center for Soft Nanoscience University of Münster Busso-Peus-Str. 10 48149 Münster Germany
| | - Helmut Zacharias
- Center for Soft Nanoscience University of Münster Busso-Peus-Str. 10 48149 Münster Germany
| |
Collapse
|
9
|
On the origins of life's homochirality: Inducing enantiomeric excess with spin-polarized electrons. Proc Natl Acad Sci U S A 2022; 119:e2204765119. [PMID: 35787048 PMCID: PMC9282223 DOI: 10.1073/pnas.2204765119] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Life as we know it is homochiral, but the origins of biological homochirality on early Earth remain elusive. Shallow closed-basin lakes are a plausible prebiotic environment on early Earth, and most are expected to have significant sedimentary magnetite deposits. We hypothesize that ultraviolet (200- to 300-nm) irradiation of magnetite deposits could generate hydrated spin-polarized electrons sufficient to induce enantioselective prebiotic chemistry. Such electrons are potent reducing agents that drive reduction reactions where the spin polarization direction can enantioselectively alter the reaction kinetics. Our estimate of this chiral bias is based on the strong effective spin-orbit coupling observed in the chiral-induced spin selectivity (CISS) effect, as applied to energy differences in reduction reactions for different isomers. In the original CISS experiments, spin-selective electron transmission through a monolayer of double-strand DNA molecules is observed at room temperature-indicating a strong coupling between molecular chirality and electron spin. We propose that the chiral symmetry breaking due to the CISS effect, when applied to reduction chemistry, can induce enantioselective synthesis on the prebiotic Earth and thus facilitate the homochiral assembly of life's building blocks.
Collapse
|
10
|
Bian Z, Kato K, Ogoshi T, Cui Z, Sa B, Tsutsui Y, Seki S, Suda M. Hybrid Chiral MoS 2 Layers for Spin-Polarized Charge Transport and Spin-Dependent Electrocatalytic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201063. [PMID: 35481673 PMCID: PMC9189682 DOI: 10.1002/advs.202201063] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/01/2022] [Indexed: 06/07/2023]
Abstract
The chiral-induced spin selectivity effect enables the application of chiral organic materials for spintronics and spin-dependent electrochemical applications. It is demonstrated on various chiral monolayers, in which their conversion efficiency is limited. On the other hand, relatively high spin polarization (SP) is observed on bulk chiral materials; however, their poor electronic conductivities limit their application. Here, the design of chiral MoS2 with a high SP and high conductivity is reported. Chirality is introduced to the MoS2 layers through the intercalation of methylbenzylamine molecules. This design approach activates multiple tunneling channels in the chiral layers, which results in an SP as high as 75%. Furthermore, the spin selectivity suppresses the production of H2 O2 by-product and promotes the formation of ground state O2 molecules during the oxygen evolution reaction. These potentially improve the catalytic activity of chiral MoS2 . The synergistic effect is demonstrated as an interplay of the high SP and the high catalytic activity of the MoS2 layer on the performance of the chiral MoS2 for spin-dependent electrocatalysis. This novel approach employed here paves way for the development of other novel chiral systems for spintronics and spin-dependent electrochemical applications.
Collapse
Affiliation(s)
- Zhiyun Bian
- Department of Molecular EngineeringGraduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological ChemistryGraduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological ChemistryGraduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
| | - Zhou Cui
- Key Laboratory of Ecomaterials Advanced TechnologyCollege of Materials Science and EngineeringFuzhou UniversityFuzhou350108P. R. China
| | - Baisheng Sa
- Key Laboratory of Ecomaterials Advanced TechnologyCollege of Materials Science and EngineeringFuzhou UniversityFuzhou350108P. R. China
| | - Yusuke Tsutsui
- Department of Molecular EngineeringGraduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
- JST‐PRESTOHoncho 4‐1‐8KawaguchiSaitama332‐0012Japan
| | - Shu Seki
- Department of Molecular EngineeringGraduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
| | - Masayuki Suda
- Department of Molecular EngineeringGraduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615‐8510Japan
- JST‐PRESTOHoncho 4‐1‐8KawaguchiSaitama332‐0012Japan
| |
Collapse
|
11
|
Sallembien Q, Bouteiller L, Crassous J, Raynal M. Possible chemical and physical scenarios towards biological homochirality. Chem Soc Rev 2022; 51:3436-3476. [PMID: 35377372 DOI: 10.1039/d1cs01179k] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The single chirality of biological molecules in terrestrial biology raises more questions than certitudes about its origin. The emergence of biological homochirality (BH) and its connection with the appearance of life have elicited a large number of theories related to the generation, amplification and preservation of a chiral bias in molecules of life under prebiotically relevant conditions. However, a global scenario is still lacking. Here, the possibility of inducing a significant chiral bias "from scratch", i.e. in the absence of pre-existing enantiomerically-enriched chemical species, will be considered first. It includes phenomena that are inherent to the nature of matter itself, such as the infinitesimal energy difference between enantiomers as a result of violation of parity in certain fundamental interactions, and physicochemical processes related to interactions between chiral organic molecules and physical fields, polarized particles, polarized spins and chiral surfaces. The spontaneous emergence of chirality in the absence of detectable chiral physical and chemical sources has recently undergone significant advances thanks to the deracemization of conglomerates through Viedma ripening and asymmetric auto-catalysis with the Soai reaction. All these phenomena are commonly discussed as plausible sources of asymmetry under prebiotic conditions and are potentially accountable for the primeval chiral bias in molecules of life. Then, several scenarios will be discussed that are aimed to reflect the different debates about the emergence of BH: extra-terrestrial or terrestrial origin (where?), nature of the mechanisms leading to the propagation and enhancement of the primeval chiral bias (how?) and temporal sequence between chemical homochirality, BH and life emergence (when?). Intense and ongoing theories regarding the emergence of optically pure molecules at different moments of the evolution process towards life, i.e. at the levels of building blocks of Life, of the instructed or functional polymers, or even later at the stage of more elaborated chemical systems, will be critically discussed. The underlying principles and the experimental evidence will be commented for each scenario with particular attention on those leading to the induction and enhancement of enantiomeric excesses in proteinogenic amino acids, natural sugars, and their intermediates or derivatives. The aim of this review is to propose an updated and timely synopsis in order to stimulate new efforts in this interdisciplinary field.
Collapse
Affiliation(s)
- Quentin Sallembien
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005 Paris, France.
| | - Laurent Bouteiller
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005 Paris, France.
| | - Jeanne Crassous
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Matthieu Raynal
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
12
|
Liu Y, Li H, Li S, Zhang X, Xiong J, Jiang F, Liu Y, Jiang P. Chiral Cu 2-xSe Nanoparticles for Enhanced Synergistic Cancer Chemodynamic/Photothermal Therapy in the Second Near-Infrared Biowindow. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60933-60944. [PMID: 34923825 DOI: 10.1021/acsami.1c20486] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chiral nanomaterials have great potential in improving the clinical therapeutic effect due to the unique chiral selectivity of biosystems. However, such a promising therapeutic strategy has so far received little attention in cancer treatment. Here, we report a first chiral Fenton catalyst, d-/l-penicillamine-modified Cu2-xSe nanoparticles (d-/l-NPs), for enhanced synergistic cancer chemodynamic therapy (CDT) and photothermal therapy (PTT) under the second near-infrared (NIR-II) light irradiation. The chiral effect study of chiral Cu2-xSe NPs on cancer cells shows that d-NPs exhibit stronger CDT-induced cytotoxicity than l -NPs due to the stronger internalization ability. Moreover, the hydroxyl radicals (•OH) produced in d-NP-treated cancer cells via the CDT effect can be further improved by NIR-II light irradiation, thereby increasing the apoptosis of cancer cells. In vivo experiments show that, compared with l-NPs, d-NPs exhibit a stronger photothermal effect on the tumor site under NIR-II light irradiation and could completely eliminate the tumor under the synergistic effect of CDT and PTT. This work shows that the chirality of the surface ligand of the nanomaterials could significantly affect their cancer curative effect, which opens up a new way for the development of anticancer nanomedicine.
Collapse
Affiliation(s)
- Yaofa Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Haimei Li
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Shulan Li
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry and Chemical Engineering & School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Xiaoyang Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, People's Republic of China
| | - Fenglei Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yi Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, People's Republic of China
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry and Chemical Engineering & School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Peng Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
13
|
Feng T, Wang Z, Zhang Z, Xue J, Lu H. Spin selectivity in chiral metal-halide semiconductors. NANOSCALE 2021; 13:18925-18940. [PMID: 34783816 DOI: 10.1039/d1nr06407j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controlling the spin states of freedom represents a significant challenge for the next-generation optoelectronic and spintronic devices. Chiral metal-halide semiconductors (MHS) have recently emerged as an important class of materials for spin-dependent photonic and electronic applications. In this Minireview, we first discussed the chemical and structural diversity of chiral MHS, highlighting the chirality formation mechanism. We then provided our current understanding on the spin-sensitive photophysical and transport process with a focus on how chirality enables the spin selectivity in chiral MHS. We summarized recent progress on the experimental demonstration of spin control in various photonic and spintronic devices. Finally, we discussed ongoing challenges and opportunities associated with chiral MHS.
Collapse
Affiliation(s)
- Tanglue Feng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (SAR).
| | - Zhiyu Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (SAR).
| | - Zixuan Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (SAR).
| | - Jie Xue
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (SAR).
| | - Haipeng Lu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (SAR).
| |
Collapse
|
14
|
Gao Y, Zheng Y, Sanche L. Low-Energy Electron Damage to Condensed-Phase DNA and Its Constituents. Int J Mol Sci 2021; 22:7879. [PMID: 34360644 PMCID: PMC8345953 DOI: 10.3390/ijms22157879] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/18/2022] Open
Abstract
The complex physical and chemical reactions between the large number of low-energy (0-30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and cleavage, as well as double strand breaks and other cluster damages. When crosslinks and cluster damages cannot be repaired by the cell, they can cause genetic loss of information, mutations, apoptosis, and promote genomic instability. Through the efforts of many research groups in the past two decades, the study of the interaction between LEEs and DNA under different experimental conditions has unveiled some of the main mechanisms responsible for these damages. In the present review, we focus on experimental investigations in the condensed phase that range from fundamental DNA constituents to oligonucleotides, synthetic duplex DNA, and bacterial (i.e., plasmid) DNA. These targets were irradiated either with LEEs from a monoenergetic-electron or photoelectron source, as sub-monolayer, monolayer, or multilayer films and within clusters or water solutions. Each type of experiment is briefly described, and the observed DNA damages are reported, along with the proposed mechanisms. Defining the role of LEEs within the sequence of events leading to radiobiological lesions contributes to our understanding of the action of radiation on living organisms, over a wide range of initial radiation energies. Applications of the interaction of LEEs with DNA to radiotherapy are briefly summarized.
Collapse
Affiliation(s)
- Yingxia Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China;
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China;
| | - Léon Sanche
- Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| |
Collapse
|
15
|
Peng Z, Yuan L, XuHong J, Tian H, Zhang Y, Deng J, Qi X. Chiral nanomaterials for tumor therapy: autophagy, apoptosis, and photothermal ablation. J Nanobiotechnology 2021; 19:220. [PMID: 34294083 PMCID: PMC8299636 DOI: 10.1186/s12951-021-00965-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/16/2021] [Indexed: 01/08/2023] Open
Abstract
Chirality is a fundamental characteristic of natural molecules and a crucial factor in the biochemical reactions of living cells and organisms. Recently, researchers have successfully introduced chiral molecules to the surfaces of nanomaterials, creating chiral nanomaterials that exhibit an upscaling of chiral behavior from the molecular scale to the nanoscale. These chiral nanomaterials can selectively induce autophagy, apoptosis, and photothermal ablation in tumor cells based on their chirality, making them promising for application in anti-tumor therapy. However, these interesting and important phenomena have hitherto received little attention. Accordingly, we herein present a review of recent research progress in the field of chiral nanomaterials for tumor therapy along with brief looks at the mechanistic details of their actions. Finally, the current challenges and future perspectives of chiral nanomaterials in terms of maximizing their potential in tumor therapy are discussed. Thus, this review provides a helpful introduction to the design of chiral nanomaterials and will hopefully highlight the importance of chirality in tumor therapy. ![]()
Collapse
Affiliation(s)
- Zaihui Peng
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Long Yuan
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Juncheng XuHong
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Hao Tian
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yi Zhang
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400038, China.
| | - Xiaowei Qi
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
16
|
Radiation-Induced Effect on Spin-Selective Electron Transfer through Self-Assembled Monolayers of ds-DNA. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7070098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stability of the DNA molecule is essential for the proper functioning and sustainability of all living organisms. In this study, we investigate the effect of gamma radiation (γ-radiation) on spin-selective electron transfer through double strand (ds)DNA molecules. Self-assembled monolayers (SAMs) of 21-base long DNA are prepared on Au-coated Ni thin film. We measure the spin polarization (%) of the SAMs of ds-DNA using the spin-dependent electrochemical technique. We use a Cs-based γ-radiation source to expose the SAMs of ds-DNA immobilized on thin films for various time intervals ranging from 0–30 min. The susceptibility of DNA to γ-radiation is measured by spin-dependent electrochemistry. We observe that the efficiency of spin filtering by ds-DNA gradually decreases when exposure (to γ-radiation) time increases, and drops below 1% after 30 min of exposure. The change in spin polarization value is related either to the conformational perturbation in DNA or to structural damage in DNA molecules caused by ionizing radiation.
Collapse
|
17
|
Tang H, Li Q, Yan W, Jiang X. Reversing the Chirality of Surface Ligands Can Improve the Biosafety and Pharmacokinetics of Cationic Gold Nanoclusters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hao Tang
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Qizhen Li
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Weixiao Yan
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
18
|
Tang H, Li Q, Yan W, Jiang X. Reversing the Chirality of Surface Ligands Can Improve the Biosafety and Pharmacokinetics of Cationic Gold Nanoclusters. Angew Chem Int Ed Engl 2021; 60:13829-13834. [PMID: 33755292 DOI: 10.1002/anie.202101609] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Severe toxicity and rapid in vivo clearance of cationic nanomaterials seriously hinder their clinical translation. Present strategies to improve the biosafety and in vivo performance of cationic nanomaterials require neutralization of positive charge, which often compromises their efficacy. Herein, we report that substituting L-glutathione (L-GSH) on cationic gold nanoclusters (GNCs) with its D-counterpart can effectively improve the biosafety and pharmacokinetics. Compared with L-GNCs, D-GNCs do not exhibit cellular cytotoxicity, hemolysis, or acute damage to organs. Cationic D-GNCs show less cell internalization than L-GNCs, and do not induce cellular apoptosis. In vivo, the chirality of surface ligands distinctly affects the pharmacokinetics and tumor targeting abilities of D-/L-GNCs. D-GNCs show higher extended circulation time in blood plasma compared to similarly-sized and poly (ethylene glycol)-modified gold nanoparticles. This work demonstrates that the choice of chirality of surface ligands can determine toxicities and pharmacokinetics of cationic nanomaterials.
Collapse
Affiliation(s)
- Hao Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Qizhen Li
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Weixiao Yan
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
19
|
Wu D, Zhou K, Tian J, Liu C, Tian J, Jiang F, Yuan D, Zhang J, Chen Q, Hong M. Induction of Chirality in a Metal–Organic Framework Built from Achiral Precursors. Angew Chem Int Ed Engl 2020; 60:3087-3094. [DOI: 10.1002/anie.202013885] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Dong Wu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Kang Zhou
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jindou Tian
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Caiping Liu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jiayue Tian
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Henan Provincial Key Laboratory of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450001 China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jian Zhang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| |
Collapse
|
20
|
Wu D, Zhou K, Tian J, Liu C, Tian J, Jiang F, Yuan D, Zhang J, Chen Q, Hong M. Induction of Chirality in a Metal–Organic Framework Built from Achiral Precursors. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013885] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Dong Wu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Kang Zhou
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jindou Tian
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Caiping Liu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jiayue Tian
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Henan Provincial Key Laboratory of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450001 China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jian Zhang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| |
Collapse
|
21
|
Shukla N, Gellman AJ. Chiral metal surfaces for enantioselective processes. NATURE MATERIALS 2020; 19:939-945. [PMID: 32747699 DOI: 10.1038/s41563-020-0734-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/15/2020] [Indexed: 05/24/2023]
Abstract
Chiral surfaces are critical components of enantioselective heterogeneous processes such as those used to prepare enantiomerically pure pharmaceuticals. While the majority of chiral surfaces in practical use are based on achiral materials whose surfaces have been modified with enantiomerically pure chiral adsorbates, there are many inorganic materials with valuable surface properties that could be rendered enantiospecific, if their surfaces were intrinsically chiral. This Perspective discusses recent developments in the fabrication of intrinsically chiral surfaces exhibiting enantiospecific adsorption, surface chemistry and electron emission. We propose possible paths to the scalable fabrication of high-surface-area, enantiomerically pure surfaces and discuss opportunities for future progress.
Collapse
Affiliation(s)
- Nisha Shukla
- Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Andrew J Gellman
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- W.E. Scott Institute for Energy Innovation, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Metzger TS, Mishra S, Bloom BP, Goren N, Neubauer A, Shmul G, Wei J, Yochelis S, Tassinari F, Fontanesi C, Waldeck DH, Paltiel Y, Naaman R. The Electron Spin as a Chiral Reagent. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tzuriel S. Metzger
- Applied Physics Department and the Center for Nano-Science and Nano-Technology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Suryakant Mishra
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot 76100 Israel
| | - Brian P. Bloom
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Naama Goren
- Applied Physics Department and the Center for Nano-Science and Nano-Technology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Avner Neubauer
- Applied Physics Department and the Center for Nano-Science and Nano-Technology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Guy Shmul
- Chemical Research Support Weizmann Institute Rehovot 76100 Israel
| | - Jimeng Wei
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Shira Yochelis
- Applied Physics Department and the Center for Nano-Science and Nano-Technology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Francesco Tassinari
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot 76100 Israel
| | - Claudio Fontanesi
- Department of Engineering “Enzo Ferrari”, DIEF University of Modena and Reggio Emilia 41125 Modena Italy
| | - David H. Waldeck
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Yossi Paltiel
- Applied Physics Department and the Center for Nano-Science and Nano-Technology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Ron Naaman
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
23
|
Zhao X, Zang SQ, Chen X. Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chem Soc Rev 2020; 49:2481-2503. [DOI: 10.1039/d0cs00093k] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chirality is ubiquitous in nature and plays mysterious and essential roles in maintaining key biological and physiological processes.
Collapse
Affiliation(s)
- Xueli Zhao
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | | | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine
- National Institute of Biomedical Imaging and Bioengineering
- National Institutes of Health
- Bethesda
- USA
| |
Collapse
|
24
|
Metzger TS, Mishra S, Bloom BP, Goren N, Neubauer A, Shmul G, Wei J, Yochelis S, Tassinari F, Fontanesi C, Waldeck DH, Paltiel Y, Naaman R. The Electron Spin as a Chiral Reagent. Angew Chem Int Ed Engl 2019; 59:1653-1658. [DOI: 10.1002/anie.201911400] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/16/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Tzuriel S. Metzger
- Applied Physics Department and the Center for Nano-Science and Nano-Technology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Suryakant Mishra
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot 76100 Israel
| | - Brian P. Bloom
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Naama Goren
- Applied Physics Department and the Center for Nano-Science and Nano-Technology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Avner Neubauer
- Applied Physics Department and the Center for Nano-Science and Nano-Technology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Guy Shmul
- Chemical Research Support Weizmann Institute Rehovot 76100 Israel
| | - Jimeng Wei
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Shira Yochelis
- Applied Physics Department and the Center for Nano-Science and Nano-Technology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Francesco Tassinari
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot 76100 Israel
| | - Claudio Fontanesi
- Department of Engineering “Enzo Ferrari”, DIEF University of Modena and Reggio Emilia 41125 Modena Italy
| | - David H. Waldeck
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Yossi Paltiel
- Applied Physics Department and the Center for Nano-Science and Nano-Technology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Ron Naaman
- Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
25
|
Origin of Terrestrial Bioorganic Homochirality and Symmetry Breaking in the Universe. Symmetry (Basel) 2019. [DOI: 10.3390/sym11070919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The origin of terrestrial bioorganic homochirality is one of the most important and unresolved problems in the study of chemical evolution prior to the origin of terrestrial life. One hypothesis advocated in the context of astrobiology is that polarized quantum radiation in space, such as circularly polarized photons or spin-polarized leptons, induced asymmetric chemical and physical conditions in the primitive interstellar media (the cosmic scenario). Another advocated hypothesis in the context of symmetry breaking in the universe is that the bioorganic asymmetry is intrinsically derived from the chiral asymmetric properties of elementary particles, that is, parity violation in the weak interaction (the intrinsic scenario). In this paper, the features of these two scenarios are discussed and approaches to validate them are reviewed.
Collapse
|
26
|
Light-driven molecular switch for reconfigurable spin filters. Nat Commun 2019; 10:2455. [PMID: 31165729 PMCID: PMC6549145 DOI: 10.1038/s41467-019-10423-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/10/2019] [Indexed: 11/08/2022] Open
Abstract
Artificial molecular switches and machines that enable the directional movements of molecular components by external stimuli have undergone rapid advances over the past several decades. Particularly, overcrowded alkene-based artificial molecular motors are highly attractive from the viewpoint of chirality switching during rotational steps. However, the integration of these molecular switches into solid-state devices is still challenging. Herein, we present an example of a solid-state spin-filtering device that can switch the spin polarization direction by light irradiation or thermal treatment. This device utilizes the chirality inversion of molecular motors as a light-driven reconfigurable spin filter owing to the chiral-induced spin selectivity effect. Through this device, we found that the flexibility at the molecular scale is essential for the electrodes in solid-state devices using molecular machines. The present results are beneficial to the development of solid-state functionalities emerging from nanosized motions of molecular switches. The chirality provides new route for organic materials to be implemented in the spintronics applications. Here the authors show a solid-state spin-filtering device in an organic spin-valve structure enabled by light irradiation induced change in the chirality of molecule.
Collapse
|
27
|
Electrochirogenesis: The Possible Role of Low-Energy Spin-Polarized Electrons in Creating Homochirality. Symmetry (Basel) 2019. [DOI: 10.3390/sym11040528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Electrochirogenesis deals with the induction of chirality by polarized electrons of which those with low energy (<15 eV) are seen to be the most effective. Possible sources of such electrons in the prebiotic universe are discussed and several examples where chiral induction by these electrons have been demonstrated are given. Finally, some possible scenarios where electrochirogenesis could have played a role in forming a chiral imbalance in a prebiotic setting have been speculated on and some possible future areas of research proposed.
Collapse
|
28
|
Benincori T, Arnaboldi S, Magni M, Grecchi S, Cirilli R, Fontanesi C, Mussini PR. Highlighting spin selectivity properties of chiral electrode surfaces from redox potential modulation of an achiral probe under an applied magnetic field. Chem Sci 2019; 10:2750-2757. [PMID: 30996993 PMCID: PMC6419932 DOI: 10.1039/c8sc04126a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022] Open
Abstract
Impressive spin-related effects are observed in cyclic voltammetry (CV) experiments performed under an applied magnetic field on a non-ferromagnetic electrode modified with a thin electroactive oligothiophene film, either "inherently chiral" or featuring chiral pendants with stereogenic centres. When flipping the magnet's north/south orientation, the CV peaks of two achiral, chemically reversible Fe(iii)/Fe(ii) redox couples in aqueous or organic solution undergo impressive potential shifts (up to nearly 0.5 V depending on protocol conditions), specularly by changing the film's (R)- or (S)-configuration. The magnitude of the potential shift decreases upon increasing both the polymer film thickness and the distance between the permanent magnet and the electrode surface. Such unprecedented spin-related redox potential modulation, obtained in the absence of a magnetic electrode acting as a spin injector, provides striking evidence (as well as an attractive evaluation criterion) of the spin selectivity properties of chiral thin films.
Collapse
Affiliation(s)
- Tiziana Benincori
- Dipartimento di Scienza e Alta Tecnologia , Università degli Studi dell'Insubria , Via Valleggio 11 , 22100 , Como , Italy
| | - Serena Arnaboldi
- Dipartimento di Chimica , Università degli Studi di Milano , via Golgi 19 , 20133 Milano , Italy . ; ;
| | - Mirko Magni
- Dipartimento di Chimica , Università degli Studi di Milano , via Golgi 19 , 20133 Milano , Italy . ; ;
| | - Sara Grecchi
- Dipartimento di Chimica , Università degli Studi di Milano , via Golgi 19 , 20133 Milano , Italy . ; ;
| | - Roberto Cirilli
- Istituto Superiore di Sanità, Centro Nazionale per il Controllo e la Valutazione dei Farmaci , Viale Regina Elena 299 , 00161 , Roma , Italy
| | - Claudio Fontanesi
- Dipartimento di Ingegneria "Enzo Ferrari" , Università degli Studi di Modena , Via Vivarelli 10 , 41125 , Modena , Italy .
| | - Patrizia Romana Mussini
- Dipartimento di Chimica , Università degli Studi di Milano , via Golgi 19 , 20133 Milano , Italy . ; ;
| |
Collapse
|
29
|
Smolinsky EZB, Neubauer A, Kumar A, Yochelis S, Capua E, Carmieli R, Paltiel Y, Naaman R, Michaeli K. Electric Field-Controlled Magnetization in GaAs/AlGaAs Heterostructures-Chiral Organic Molecules Hybrids. J Phys Chem Lett 2019; 10:1139-1145. [PMID: 30785758 DOI: 10.1021/acs.jpclett.9b00092] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We study GaAs/AlGaAs devices hosting a two-dimensional electron gas and coated with a monolayer of chiral organic molecules. We observe clear signatures of room-temperature magnetism, which is induced in these systems by applying a gate voltage. We explain this phenomenon as a consequence of the spin-polarized charges that are injected into the semiconductor through the chiral molecules. The orientation of the magnetic moment can be manipulated by low gate voltages, with a switching rate in the megahertz range. Thus, our devices implement an efficient, electric field-controlled magnetization, which has long been desired for their technical prospects.
Collapse
Affiliation(s)
| | - Avner Neubauer
- Department of Applied Physics and Center for Nano Science and Nanotechnology , The Hebrew University , Jerusalem 91904 , Israel
| | | | - Shira Yochelis
- Department of Applied Physics and Center for Nano Science and Nanotechnology , The Hebrew University , Jerusalem 91904 , Israel
| | | | | | - Yossi Paltiel
- Department of Applied Physics and Center for Nano Science and Nanotechnology , The Hebrew University , Jerusalem 91904 , Israel
| | | | | |
Collapse
|
30
|
Abendroth JM, Cheung KM, Stemer DM, El Hadri MS, Zhao C, Fullerton EE, Weiss PS. Spin-Dependent Ionization of Chiral Molecular Films. J Am Chem Soc 2019; 141:3863-3874. [PMID: 30734553 DOI: 10.1021/jacs.8b08421] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spin selectivity in photo-emission from ferromagnetic substrates functionalized with chiral organic films was analyzed by ultraviolet photoelectron spectroscopy at room temperature. Using radiation with photon energy greater than the ionization potential of the adsorbed molecules, photoelectrons were collected that originated from both underlying ferromagnetic substrates and the organic films, with kinetic energies in the range of ca. 0-18 eV. We investigated chiral organic films composed of self-assembled monolayers of α-helical peptides and electrostatically adsorbed films of the protein, bovine serum albumin, with different α-helix and β-sheet contents. Ultraviolet photoelectron spectral widths were found to depend on substrate magnetization orientation and polarization, which we attribute to helicity-dependent molecular ionization cross sections arising from photoelectron impact, possibly resulting in spin-polarized holes. These interactions between spin-polarized photoelectrons and chiral molecules are physically manifested as differences in the measured photoionization energies of the chiral molecular films. Substrate magnetization-dependent ionization energies and work function values were deconvoluted using surface charge neutralization techniques, permitting the measurement of relative spin-dependent energy barriers to transmission through chiral organic films.
Collapse
Affiliation(s)
- John M Abendroth
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States.,Department of Chemistry & Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Kevin M Cheung
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States.,Department of Chemistry & Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Dominik M Stemer
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States.,Department of Materials Science & Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Mohammed S El Hadri
- Center for Memory and Recording Research , University of California, San Diego , La Jolla , California 92093 , United States
| | - Chuanzhen Zhao
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States.,Department of Chemistry & Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Eric E Fullerton
- Center for Memory and Recording Research , University of California, San Diego , La Jolla , California 92093 , United States
| | - Paul S Weiss
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States.,Department of Chemistry & Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States.,Department of Materials Science & Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| |
Collapse
|
31
|
Fontanesi C, Capua E, Paltiel Y, Waldeck DH, Naaman R. Spin-Dependent Processes Measured without a Permanent Magnet. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707390. [PMID: 29736985 DOI: 10.1002/adma.201707390] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/21/2018] [Indexed: 06/08/2023]
Abstract
A novel Hall circuit design that can be incorporated into a working electrode, which is used to probe spin-selective charge transfer and charge displacement processes, is reviewed herein. The general design of a Hall circuit based on a semiconductor heterostructure, which forms a shallow 2D electron gas and is used as an electrode, is described. Three different types of spin-selective processes have been studied with this device in the past: i) photoinduced charge exchange between quantum dots and the working electrode through chiral molecules is associated with spin polarization that creates a local magnetization and generates a Hall voltage; ii) charge polarization of chiral molecules by an applied voltage is accompanied by a spin polarization that generates a Hall voltage; and iii) cyclic voltammetry (current-voltage) measurements of electrochemical redox reactions that can be spin-analyzed by the Hall circuit to provide a third dimension (spin) in addition to the well-known current and voltage dimensions. The three studies reviewed open new doors into understanding both the spin current and the charge current in electronic materials and electrochemical processes.
Collapse
Affiliation(s)
| | - Eyal Capua
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, 76100, Israel
| | - Yossi Paltiel
- Department of Applied Physics and Center for Nano Science and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Ron Naaman
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, 76100, Israel
| |
Collapse
|
32
|
Banerjee-Ghosh K, Ben Dor O, Tassinari F, Capua E, Yochelis S, Capua A, Yang SH, Parkin SSP, Sarkar S, Kronik L, Baczewski LT, Naaman R, Paltiel Y. Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science 2018; 360:1331-1334. [DOI: 10.1126/science.aar4265] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/04/2018] [Accepted: 04/25/2018] [Indexed: 12/31/2022]
Abstract
It is commonly assumed that recognition and discrimination of chirality, both in nature and in artificial systems, depend solely on spatial effects. However, recent studies have suggested that charge redistribution in chiral molecules manifests an enantiospecific preference in electron spin orientation. We therefore reasoned that the induced spin polarization may affect enantiorecognition through exchange interactions. Here we show experimentally that the interaction of chiral molecules with a perpendicularly magnetized substrate is enantiospecific. Thus, one enantiomer adsorbs preferentially when the magnetic dipole is pointing up, whereas the other adsorbs faster for the opposite alignment of the magnetization. The interaction is not controlled by the magnetic field per se, but rather by the electron spin orientations, and opens prospects for a distinct approach to enantiomeric separations.
Collapse
|
33
|
Michaeli K, Kantor-Uriel N, Naaman R, Waldeck DH. The electron's spin and molecular chirality - how are they related and how do they affect life processes? Chem Soc Rev 2018; 45:6478-6487. [PMID: 27734046 DOI: 10.1039/c6cs00369a] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recently discovered chiral induced spin selectivity (CISS) effect gives rise to a spin selective electron transmission through biomolecules. Here we review the mechanism behind the CISS effect and its implication for processes in Biology. Specifically, three processes are discussed: long-range electron transfer, spin effects on the oxidation of water, and enantioselectivity in bio-recognition events. These phenomena imply that chirality and spin may play several important roles in biology, which have not been considered so far.
Collapse
Affiliation(s)
- Karen Michaeli
- Department of Condensed Matter Physics, Weizmann Institute, Rehovot 76100, Israel
| | - Nirit Kantor-Uriel
- Department of Chemical Physics, Weizmann Institute, Rehovot 76100, Israel.
| | - Ron Naaman
- Department of Chemical Physics, Weizmann Institute, Rehovot 76100, Israel.
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
34
|
Kumar A, Capua E, Vankayala K, Fontanesi C, Naaman R. Magnetless Device for Conducting Three-Dimensional Spin-Specific Electrochemistry. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708829] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anup Kumar
- Department of Chemical Physics; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Eyal Capua
- Department of Chemical Physics; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Kiran Vankayala
- Department of Chemical Physics; Weizmann Institute of Science; Rehovot 76100 Israel
| | | | - Ron Naaman
- Department of Chemical Physics; Weizmann Institute of Science; Rehovot 76100 Israel
| |
Collapse
|
35
|
Kumar A, Capua E, Vankayala K, Fontanesi C, Naaman R. Magnetless Device for Conducting Three-Dimensional Spin-Specific Electrochemistry. Angew Chem Int Ed Engl 2017; 56:14587-14590. [DOI: 10.1002/anie.201708829] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Anup Kumar
- Department of Chemical Physics; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Eyal Capua
- Department of Chemical Physics; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Kiran Vankayala
- Department of Chemical Physics; Weizmann Institute of Science; Rehovot 76100 Israel
| | | | - Ron Naaman
- Department of Chemical Physics; Weizmann Institute of Science; Rehovot 76100 Israel
| |
Collapse
|
36
|
Abendroth JM, Nakatsuka N, Ye M, Kim D, Fullerton EE, Andrews AM, Weiss PS. Analyzing Spin Selectivity in DNA-Mediated Charge Transfer via Fluorescence Microscopy. ACS NANO 2017; 11:7516-7526. [PMID: 28672111 DOI: 10.1021/acsnano.7b04165] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Understanding spin-selective interactions between electrons and chiral molecules is critical to elucidating the significance of electron spin in biological processes and to assessing the potential of chiral assemblies for organic spintronics applications. Here, we use fluorescence microscopy to visualize the effects of spin-dependent charge transport in self-assembled monolayers of double-stranded DNA on ferromagnetic substrates. Patterned DNA arrays provide background regions for every measurement to enable quantification of substrate magnetization-dependent fluorescence due to the chiral-induced spin selectivity effect. Fluorescence quenching of photoexcited dye molecules bound within DNA duplexes is dependent upon the rate of charge separation/recombination upon photoexcitation and the efficiency of DNA-mediated charge transfer to the surface. The latter process is modulated using an external magnetic field to switch the magnetization orientation of the underlying ferromagnetic substrates. We discuss our results in the context of the current literature on the chiral-induced spin selectivity effect across various systems.
Collapse
Affiliation(s)
| | | | | | - Dokyun Kim
- Center for Memory and Recording Research, University of California, San Diego , La Jolla, California 92093, United States
| | - Eric E Fullerton
- Center for Memory and Recording Research, University of California, San Diego , La Jolla, California 92093, United States
| | | | | |
Collapse
|
37
|
Wang PP, Yu SJ, Govorov AO, Ouyang M. Cooperative expression of atomic chirality in inorganic nanostructures. Nat Commun 2017; 8:14312. [PMID: 28148957 PMCID: PMC5296657 DOI: 10.1038/ncomms14312] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022] Open
Abstract
Cooperative chirality phenomena extensively exist in biomolecular and organic systems via intra- and inter-molecular interactions, but study of inorganic materials has been lacking. Here we report, experimentally and theoretically, cooperative chirality in colloidal cinnabar mercury sulfide nanocrystals that originates from chirality interplay between the crystallographic lattice and geometric morphology at different length scales. A two-step synthetic scheme is developed to allow control of critical parameters of these two types of handedness, resulting in different chiral interplays expressed as observables through materials engineering. Furthermore, we adopt an electromagnetic model with the finite element method to elucidate cooperative chirality in inorganic systems, showing excellent agreement with experimental results. Our study enables an emerging class of nanostructures with tailored cooperative chirality that is vital for fundamental understanding of nanoscale chirality as well as technology applications based on new chiroptical building blocks.
Collapse
Affiliation(s)
- Peng-peng Wang
- Department of Physics and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA
| | - Shang-Jie Yu
- Department of Physics and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Min Ouyang
- Department of Physics and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
38
|
Mondal PC, Fontanesi C, Waldeck DH, Naaman R. Spin-Dependent Transport through Chiral Molecules Studied by Spin-Dependent Electrochemistry. Acc Chem Res 2016; 49:2560-2568. [PMID: 27797176 PMCID: PMC5112609 DOI: 10.1021/acs.accounts.6b00446] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
Molecular spintronics (spin + electronics), which aims to exploit
both the spin degree of freedom and the electron charge in molecular
devices, has recently received massive attention. Our recent experiments
on molecular spintronics employ chiral molecules which have the unexpected
property of acting as spin filters, by way of an effect we call “chiral-induced spin selectivity” (CISS). In this
Account, we discuss new types of spin-dependent electrochemistry measurements
and their use to probe the spin-dependent charge transport properties
of nonmagnetic chiral conductive polymers and biomolecules, such as
oligopeptides, L/D cysteine, cytochrome c, bacteriorhodopsin
(bR), and oligopeptide-CdSe nanoparticles (NPs) hybrid structures.
Spin-dependent electrochemical measurements were carried out by employing
ferromagnetic electrodes modified with chiral molecules used as the
working electrode. Redox probes were used either in solution or when
directly attached to the ferromagnetic electrodes. During the electrochemical
measurements, the ferromagnetic electrode was magnetized either with
its magnetic moment pointing “UP” or “DOWN”
using a permanent magnet (H = 0.5 T), placed underneath
the chemically modified ferromagnetic electrodes. The spin polarization
of the current was found to be in the range of 5–30%, even
in the case of small chiral molecules. Chiral films of the l- and d-cysteine tethered with a redox-active dye, toludin
blue O, show spin polarizarion that depends on the chirality. Because
the nickel electrodes are susceptible to corrosion, we explored the
effect of coating them with a thin gold overlayer. The effect of the
gold layer on the spin polarization of the electrons ejected from
the electrode was investigated. In addition, the role of the structure
of the protein on the spin selective transport was also studied as
a function of bias voltage and the effect of protein denaturation
was revealed. In addition to “dark” measurements, we
also describe photoelectrochemical measurements in which light is
used to affect the spin selective electron transport through the chiral
molecules. We describe how the excitation of a chromophore (such as
CdSe nanoparticles), which is attached to a chiral working electrode,
can flip the preferred spin orientation of the photocurrent, when
measured under the identical conditions. Thus, chirality-induced spin
polarization, when combined with light and magnetic field effects,
opens new avenues for the study of the spin transport properties of
chiral molecules and biomolecules and for creating new types of spintronic
devices in which light and molecular chirality provide new functions
and properties.
Collapse
Affiliation(s)
| | - Claudio Fontanesi
- Department
of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
- Department
of Engineering, University of Modena and Reggio Emilia, Via Vivarelli
10, 41125 Modena, Italy
| | - David H. Waldeck
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ron Naaman
- Department
of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
39
|
Affiliation(s)
- Ron Naaman
- Department of Chemical Physics; Weizmann Institute of Science; Rehovot 76100 Israel
| |
Collapse
|
40
|
Kiran V, Mathew SP, Cohen SR, Hernández Delgado I, Lacour J, Naaman R. Helicenes--A New Class of Organic Spin Filter. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1957-62. [PMID: 26742997 DOI: 10.1002/adma.201504725] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/29/2015] [Indexed: 05/05/2023]
Abstract
Chiral helicene, a fully conjugated system without stereogenic carbon, can filter spins effectively at room temperature, a consequence of the chiral-induced spin-selectivity effect. The chirality dictates the spin of the electrons transferred through helicene, and magnetoresistance devices based on these molecules show antisymmetric magnetoresistance versus H plots.
Collapse
Affiliation(s)
- Vankayala Kiran
- Department of Chemical Physics, Weizmann Institute, Rehovot, 76100, Israel
| | - Shinto P Mathew
- Department of Chemical Physics, Weizmann Institute, Rehovot, 76100, Israel
| | - Sidney R Cohen
- Department of Chemical Research Support, Weizmann Institute, Rehovot, 76100, Israel
| | - Irene Hernández Delgado
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211, Geneva 4, Switzerland
| | - Jérôme Lacour
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211, Geneva 4, Switzerland
| | - Ron Naaman
- Department of Chemical Physics, Weizmann Institute, Rehovot, 76100, Israel
| |
Collapse
|