1
|
Zhong Z, Deventer MH, Chen Y, Vanhee S, Lammens I, Deswarte K, Huang Y, Ye T, Wang H, Nuhn L, Vandeputte MM, Gontsarik M, Cui X, Sanders NN, Lienenklaus S, N Lambrecht B, Baptista AP, Stove CP, G De Geest B. A Fentanyl Hapten-Displaying Lipid Nanoparticle Vaccine that Non-Covalently Encapsulates a TLR7/8 Agonist and T-Helper Epitope Induces Protective Anti-Fentanyl Immunity. Angew Chem Int Ed Engl 2025; 64:e202419031. [PMID: 39441822 DOI: 10.1002/anie.202419031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Opioid use disorder - particularly involving fentanyl - has precipitated a public health crisis characterized by a significant increase in addiction and overdose-related deaths. Fentanyl-specific immunotherapy, which aims at inducing fentanyl-specific antibodies capable of binding fentanyl molecules in the bloodstream, preventing their entry in the central nervous system, is therefore gaining momentum. Conventional opioid designs rely on the covalent conjugation of fentanyl analogues to immunogenic carrier proteins that hold the inherent capacity of mounting immunodominant responses. Here, we present an alternative fentanyl vaccine design that utilizes a non-covalent assembly of lipid nanoparticles (LNPs) to deliver fentanyl haptens in conjunction with a CD4+ T-helper peptide epitope and an imidazoquinoline TLR7/8 agonist. Our results demonstrate that a single intramuscular administration of the LNP-based nanovaccine elicits fentanyl-specific antibodies, significantly mitigating the effects of opioid overdose in preclinical mouse models. Furthermore, we analyzed the immunobiological behavior of the vaccine in vivo in mouse models, providing evidence that covalent attachment of a fentanyl hapten to a carrier proteins or peptide epitope is not necessary for inducing an effective immune response. However, co-delivery - specifically, the physical assembly of all immune cues into an LNP - remains essential for inducing hapten-specific immunity.
Collapse
Affiliation(s)
- Zifu Zhong
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Stijn Vanhee
- Department of Internal Medicine and Pediatrics, Ghent University, Technologiepark-Zwijnaarde 71, Gent, Ghent, 9052, Belgium
- Laboratory of immunoregulation and mucosal immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium Ghent, Belgium
- Department of Head and Skin, Ghent University, Gent, Belgium
| | - Inés Lammens
- Department of Internal Medicine and Pediatrics, Ghent University, Technologiepark-Zwijnaarde 71, Gent, Ghent, 9052, Belgium
- Laboratory of immunoregulation and mucosal immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium Ghent, Belgium
- Department of Head and Skin, Ghent University, Gent, Belgium
| | - Kim Deswarte
- Laboratory of immunoregulation and mucosal immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium Ghent, Belgium
| | - Yi Huang
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Tingting Ye
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Haixiu Wang
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Lutz Nuhn
- Institute of Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Würzburg, 97070, Germany
| | - Marthe M Vandeputte
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Mark Gontsarik
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Xiaole Cui
- Laboratory of Gene Therapy, Ghent University, Belgium, Heidestraat 19, Merelbeke, 9820, Belgium
| | - Niek N Sanders
- Laboratory of Gene Therapy, Ghent University, Belgium, Heidestraat 19, Merelbeke, 9820, Belgium
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science and Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany
| | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Technologiepark-Zwijnaarde 71, Gent, Ghent, 9052, Belgium
- Laboratory of immunoregulation and mucosal immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium Ghent, Belgium
| | - Antonio P Baptista
- Department of Internal Medicine and Pediatrics, Ghent University, Technologiepark-Zwijnaarde 71, Gent, Ghent, 9052, Belgium
- Laboratory of immunoregulation and mucosal immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| |
Collapse
|
2
|
Tuncturk M, Kushwaha S, Heider RM, Oesterle T, Weinshilboum R, Ho MF. The development of opioid vaccines as a novel strategy for the treatment of opioid use disorder and overdose prevention. Int J Neuropsychopharmacol 2025; 28:pyaf005. [PMID: 39831679 PMCID: PMC11792077 DOI: 10.1093/ijnp/pyaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025] Open
Abstract
Opioid use disorder (OUD) affects over 40 million people worldwide, creating significant social and economic burdens. Medication for opioid use disorder (MOUD) is often considered the primary treatment approach for OUD. MOUD, including methadone, buprenorphine, and naltrexone, is effective for some, but its benefits may be limited by poor adherence to treatment recommendations. Immunopharmacotherapy offers an innovative approach by using vaccines to generate antibodies that neutralize opioids, blocking them from crossing the blood-brain barrier and reducing their psychoactive effects. To date, only 3 clinical trials for opioid vaccines have been published. While these studies demonstrated the potential of opioid vaccines for relapse prevention, there is currently no standardized protocol for evaluating their effectiveness. We have reviewed recent preclinical studies that demonstrated the efficacy of vaccines targeting opioids, including heroin, morphine, oxycodone, hydrocodone, and fentanyl. These studies showed that vaccines against opioids reduced drug reinforcement, decreased opioid-induced antinociception, and increased survival rates against lethal opioid doses. These studies also demonstrated the importance of vaccine formulation and the use of adjuvants in enhancing antibody production and specificity. Finally, we highlighted the strengths and concerns associated with the opioid vaccine treatment, including ethical considerations.
Collapse
Affiliation(s)
- Mustafa Tuncturk
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Shikha Kushwaha
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Robin M Heider
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Tyler Oesterle
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Ming-Fen Ho
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
3
|
Chapman A, Xu M, Schroeder M, Goldstein JM, Chida A, Lee JR, Tang X, Wharton RE, Finn MG. Substructure-Specific Antibodies Against Fentanyl Derivatives. ACS NANO 2025; 19:3714-3725. [PMID: 39792034 PMCID: PMC11781026 DOI: 10.1021/acsnano.4c14369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Structural variants of the synthetic opioid fentanyl are a major threat to public health. Following an investigation showing that many derivatives are poorly detected by commercial lateral flow and related assays, we created hapten conjugate vaccines using an immunogenic virus-like particle carrier and eight synthetic fentanyl derivatives designed to mimic the structural features of several of the more dangerous analogues. Immunization of mice elicited strong antihapten humoral responses, allowing the screening of hundreds of hapten-specific hybridomas for binding strength and specificity. A panel of 13 monoclonal IgG antibodies were selected, each showing a different pattern of recognition of fentanyl structural variations, and all proving to be highly efficient at capturing parent fentanyl compounds in competition ELISA experiments. These results provide antibody reagents for assay development as well as a demonstration of the power of the immune system to create binding agents capable of both broad and specific recognition of small-molecule targets.
Collapse
Affiliation(s)
- Asheley Chapman
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Dr., Atlanta, Georgia 30332, United States
| | - Minghao Xu
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Dr., Atlanta, Georgia 30332, United States
| | - Michelle Schroeder
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Dr., Atlanta, Georgia 30332, United States
| | - Jason M. Goldstein
- Immunodiagnostic
Development Team, Preparedness, Response, & Outbreak Services
Branch, Division of Core Laboratory Services & Response, Office
of Laboratory Systems and Response, Centers
for Disease Control and Prevention, 1600 Clifton Rd NE., Atlanta, Georgia 30333, United States
| | - Asiya Chida
- Immunodiagnostic
Development Team, Preparedness, Response, & Outbreak Services
Branch, Division of Core Laboratory Services & Response, Office
of Laboratory Systems and Response, Centers
for Disease Control and Prevention, 1600 Clifton Rd NE., Atlanta, Georgia 30333, United States
| | - Joo R. Lee
- Immunodiagnostic
Development Team, Preparedness, Response, & Outbreak Services
Branch, Division of Core Laboratory Services & Response, Office
of Laboratory Systems and Response, Centers
for Disease Control and Prevention, 1600 Clifton Rd NE., Atlanta, Georgia 30333, United States
| | - Xiaoling Tang
- Immunodiagnostic
Development Team, Preparedness, Response, & Outbreak Services
Branch, Division of Core Laboratory Services & Response, Office
of Laboratory Systems and Response, Centers
for Disease Control and Prevention, 1600 Clifton Rd NE., Atlanta, Georgia 30333, United States
| | - Rebekah E. Wharton
- Division
of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, Georgia 30341, United States
| | - M. G. Finn
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Dr., Atlanta, Georgia 30332, United States
- School
of Biological Sciences, Georgia Institute
of Technology, 901 Atlantic
Dr. Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Muneer S, Smith M, Bazley MM, Cozzolino D, Blanchfield JT. Detection of low-level fentanyl concentrations in mixtures of cocaine, MDMA, methamphetamine, and caffeine via surface-enhanced Raman spectroscopy. J Forensic Sci 2025; 70:73-83. [PMID: 39526510 DOI: 10.1111/1556-4029.15652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) was utilized to measure low-level fentanyl concentrations mixed in common cutting agents, cocaine, 3,4-methylenedioxymethamphetamine (MDMA), methamphetamine, and caffeine. Mixtures were prepared with a fentanyl concentration range of 0-339 μM. Data was initially analyzed by plotting the area of a diagnostic peak (1026 cm-1) against concentration to generate a calibration model. This method was successful with fentanyl/MDMA samples (LOD 0.04 μM) but not for the other mixtures. A chemometric approach was then employed. The data was evaluated using principal component analysis (PCA), partial least squares (PLS1) regression, and linear discriminant analysis (LDA). The LDA model was used to classify samples into one of three designated concentration ranges, low = 0-0.4 mM, medium = 0.4-14 mM, or high >14 mM, with fentanyl concentrations correctly classified with greater than 85% accuracy. This model was then validated using a series of "blind" fentanyl mixtures and these unknown samples were assigned to the correct concentration range with an accuracy >95%. The PLS1 model failed to provide accurate quantitative assignments for the samples but did provide an accurate prediction for the presence or absence of fentanyl. The combination of the two models enabled accurate quantitative assignment of fentanyl in binary mixtures. This work establishes a proof of concept, indicating a larger sample size could generate a more accurate model. It demonstrates that samples, containing variable, low concentrations of fentanyl, can be accurately quantified, using SERS.
Collapse
Affiliation(s)
- Saiqa Muneer
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew Smith
- Research and Scientific Branch, Queensland Fire and Emergency Services, Brisbane, Queensland, Australia
| | - Mikaela M Bazley
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia
| | - Joanne T Blanchfield
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Hosztafi S, Galambos AR, Köteles I, Karádi DÁ, Fürst S, Al-Khrasani M. Opioid-Based Haptens: Development of Immunotherapy. Int J Mol Sci 2024; 25:7781. [PMID: 39063024 PMCID: PMC11277321 DOI: 10.3390/ijms25147781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past decades, extensive preclinical research has been conducted to develop vaccinations to protect against substance use disorder caused by opioids, nicotine, cocaine, and designer drugs. Morphine or fentanyl derivatives are small molecules, and these compounds are not immunogenic, but when conjugated as haptens to a carrier protein will elicit the production of antibodies capable of reacting specifically with the unconjugated hapten or its parent compound. The position of the attachment in opioid haptens to the carrier protein will influence the specificity of the antiserum produced in immunized animals with the hapten-carrier conjugate. Immunoassays for the determination of opioid drugs are based on the ability of drugs to inhibit the reaction between drug-specific antibodies and the corresponding drug-carrier conjugate or the corresponding labelled hapten. Pharmacological studies of the hapten-carrier conjugates resulted in the development of vaccines for treating opioid use disorders (OUDs). Immunotherapy for opioid addiction includes the induction of anti-drug vaccines which are composed of a hapten, a carrier protein, and adjuvants. In this review we survey the design of opioid haptens, the development of the opioid radioimmunoassay, and the results of immunotherapy for OUDs.
Collapse
Affiliation(s)
- Sándor Hosztafi
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes Endre u. 9., H-1092 Budapest, Hungary;
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
| | - István Köteles
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes Endre u. 9., H-1092 Budapest, Hungary;
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Dávid Á Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Üllői út 78., H-1082 Budapest, Hungary
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
| |
Collapse
|
6
|
Zhao Q, Zhu J, Chen Y, Dong H, Zhou S, Yin Y, Cai Q, Chen S, Chen C, Wang L. Trapping and reversing neuromuscular blocking agent by anionic pillar[5]arenes: Understanding the structure-affinity-reversal effects. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133875. [PMID: 38457970 DOI: 10.1016/j.jhazmat.2024.133875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
Selective relaxant binding agents (SRBA) have great potential in clinical surgeries for the precise reversal of neuromuscular blockades. Understanding the relationship between the structure-affinity-reversal effects of SRBA and neuromuscular blockade is crucial for the design of new SRBAs, which has rarely been explored. Seven anionic pillar[5]arenes (AP5As) with different aliphatic chains and anionic groups at both edges were designed. Their binding affinities to the neuromuscular blocking agent decamonium bromide (DMBr) were investigated using 1H NMR, isothermal titration calorimetry (ITC), and theoretical calculations. The results indicate that the capture of DMBr by AP5As is primarily driven by electrostatic interactions, ion-dipole interactions and C-H‧‧‧π interactions. The optimal size matching between the carboxylate AP5As and DMBr was ∼0.80. The binding affinity increased with an increase in the charge quantity of AP5As. Further animal experiments indicated that the reversal efficiency increased with increasing binding affinity for carboxylate or phosphonate AP5As. However, phosphonate AP5As exhibited lower reversal efficiencies than carboxylate AP5As, despite having stronger affinities with DMBr. By understanding the structure-affinity-reversal relationships, this study provides valuable insights into the design of innovative SRBAs for reversing neuromuscular blockade.
Collapse
Affiliation(s)
- Qi Zhao
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Jinpiao Zhu
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, China; Department of Anesthesiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Yi Chen
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Hongqiang Dong
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Siyuan Zhou
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Yongfei Yin
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China
| | - Shigui Chen
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China.
| | - Chang Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, China.
| | - Lu Wang
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China.
| |
Collapse
|
7
|
Chen XY, Wang L, Ma X, Yang F, Wang X, Xu P, Xu LL, Di B. Development of fentanyl-specific monoclonal antibody (mAb) to antagonize the pharmacological effects of fentanyl. Toxicol Appl Pharmacol 2024; 486:116918. [PMID: 38570042 DOI: 10.1016/j.taap.2024.116918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/17/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Fentanyl, a critical component of opioid analgesics, poses a severe threat to public health, exacerbating the drug problem due to its potential fatality. Herein, we present two novel haptens designed with different attachment sites conjugated to keyhole limpet hemocyanin (KLH), aiming to develop an efficacious vaccine against fentanyl. KLH-Fent-1 demonstrated superior performance over KLH-Fent-2 in antibody titer, blood-brain distribution, and antinociceptive tests. Consequently, we immunized mice with KLH-Fent-1 to generate fentanyl-specific monoclonal antibodies (mAbs) using the hybridoma technique to compensate for the defects of active immunization in the treatment of opioid overdose and addiction. The mAb produced by hybridoma 9D5 exhibited the ability to recognize fentanyl and its analogs with a binding affinity of 10-10 M. Subsequently, we developed a human IgG1 chimeric mAb to improve the degree of humanization. Pre-treatment with murine and chimeric mAb significantly reduced the analgesic effect of fentanyl and altered its blood-brain biodistribution in vivo. Furthermore, in a mouse model of fentanyl-induced respiratory depression, the chimeric mAb effectively reversed respiratory depression promptly and maintained a certain level during the week. The development of high-affinity chimeric mAb gives support to combat the challenges of fentanyl misuse and its detrimental consequences. In conclusion, mAb passive immunization represents a viable strategy for addressing fentanyl addiction and overdose.
Collapse
Affiliation(s)
- Xiao-Yi Chen
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Li Wang
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Ma
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Fan Yang
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Wang
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Xu
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China; Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, China.
| | - Li-Li Xu
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
| | - Bin Di
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
8
|
Abstract
Substance use disorders (SUD) present a worldwide challenge with few effective therapies except for the relative efficacy of opioid pharmacotherapies, despite limited treatment access. However, the proliferation of illicit fentanyl use initiated a dramatic and cascading epidemic of lethal overdoses. This rise in fentanyl overdoses regenerated an interest in vaccine immunotherapy, which, despite an optimistic start in animal models over the past 50 years, yielded disappointing results in human clinical trials of vaccines against nicotine, stimulants (cocaine and methamphetamine), and opioids. After a brief review of clinical and selected preclinical vaccine studies, the "lessons learned" from the previous vaccine clinical trials are summarized, and then the newest challenge of a vaccine against fentanyl and its analogs is explored. Animal studies have made significant advances in vaccine technology for SUD treatment over the past 50 years, and the resulting anti-fentanyl vaccines show remarkable promise for ending this epidemic of fentanyl deaths.
Collapse
Affiliation(s)
- Thomas R Kosten
- Waggoner Professor of Psychiatry, Pharmacology, Neuroscience, Immunology, Baylor College of Medicine, Houston
| |
Collapse
|
9
|
Yin XG, Chen XZ, Qiu JL, Yu ZK, Chen LY, Huang SQ, Huang WN, Luo X, Zhu KW. A conjugate vaccine strategy that induces protective immunity against arecoline. Eur J Med Chem 2024; 268:116229. [PMID: 38430852 DOI: 10.1016/j.ejmech.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
Betel-quid chewing addiction is the leading cause of oral submucous fibrosis and oral cancer, resulting in significant socio-economic burdens. Vaccination may serve as a promising potential remedy to mitigate the abuse and combat accidental overdose of betel nut. Hapten design is the crucial factor to the development of arecoline vaccine that determines the efficacy of a candidate vaccine. Herein, we reported that two kinds of novel arecoline-based haptens were synthesized and conjugated to Bovine Serum Albumin (BSA) to generate immunogens, which generated antibodies with high affinity for arecoline but reduced binding for guvacoline and no affinity for arecaidine or guvacine. Notably, vaccination with Arec-N-BSA, which via the N-position on the tetrahydropyridine ring (tertiary amine group), led to a higher antibody affinity compared to Arec-CONH-BSA, blunted analgesia and attenuated hypothermia for arecoline.
Collapse
Affiliation(s)
- Xu-Guang Yin
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Xiang-Zhao Chen
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Jia-Ling Qiu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Zhi-Kai Yu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Li-Yuan Chen
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Si-Qi Huang
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Wen-Na Huang
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Xiang Luo
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China; Zhejiang Engineering Research Center of Fat-soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Ke-Wu Zhu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
10
|
Shafieichaharberoud F, Lang S, Whalen C, Rivera Quiles C, Purcell L, Talbot C, Wang P, Norton EB, Mazei-Robison M, Sulima A, Jacobson AE, Rice KC, Matyas GR, Huang X. Enhancing Protective Antibodies against Opioids through Antigen Display on Virus-like Particles. Bioconjug Chem 2024; 35:164-173. [PMID: 38113481 PMCID: PMC11259974 DOI: 10.1021/acs.bioconjchem.3c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Opioid use disorder (OUD) has become a public health crisis, with recent significant increases in the number of deaths due to overdose. Vaccination can provide an attractive complementary strategy to combat OUD. A key for high vaccine efficacy is the induction of high levels of antibodies specific to the drug of abuse. Herein, a powerful immunogenic carrier, virus-like particle mutant bacteriophage Qβ (mQβ), has been investigated as a carrier of a small molecule hapten 6-AmHap mimicking heroin. The mQβ-6-AmHap conjugate was able to induce significantly higher levels of IgG antibodies against 6-AmHap than mice immunized with the corresponding tetanus toxoid-6-AmHap conjugate in head-to-head comparison studies in multiple strains of mice. The IgG antibody responses were persistent with high anti-6-AmHap titers 600 days after being immunized with mQβ-6-AmHap. The antibodies induced exhibited strong binding toward multiple heroin/morphine derivatives that have the potential to be abused, while binding weakly to medications used for OUD treatment and pain relief. Furthermore, vaccination effectively reduced the impacts of morphine on mice in both ambulation and antinociception assays, highlighting the translational potential of the mQβ-6-AmHap conjugate to mitigate the harmful effects of drugs of abuse.
Collapse
Affiliation(s)
- Fatemeh Shafieichaharberoud
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Connor Whalen
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Cristina Rivera Quiles
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lillie Purcell
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Cameron Talbot
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Pengfei Wang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Elizabeth B Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Michelle Mazei-Robison
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Arthur E Jacobson
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
11
|
Lu T, Li X, Zheng W, Kuang C, Wu B, Liu X, Xue Y, Shi J, Lu L, Han Y. Vaccines to Treat Substance Use Disorders: Current Status and Future Directions. Pharmaceutics 2024; 16:84. [PMID: 38258095 PMCID: PMC10820210 DOI: 10.3390/pharmaceutics16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Addiction, particularly in relation to psychostimulants and opioids, persists as a global health crisis with profound social and economic ramifications. Traditional interventions, including medications and behavioral therapies, often encounter limited success due to the chronic and relapsing nature of addictive disorders. Consequently, there is significant interest in the development of innovative therapeutics to counteract the effects of abused substances. In recent years, vaccines have emerged as a novel and promising strategy to tackle addiction. Anti-drug vaccines are designed to stimulate the immune system to produce antibodies that bind to addictive compounds, such as nicotine, cocaine, morphine, methamphetamine, and heroin. These antibodies effectively neutralize the target molecules, preventing them from reaching the brain and eliciting their rewarding effects. By obstructing the rewarding sensations associated with substance use, vaccines aim to reduce cravings and the motivation to engage in drug use. Although anti-drug vaccines hold significant potential, challenges remain in their development and implementation. The reversibility of vaccination and the potential for combining vaccines with other addiction treatments offer promise for improving addiction outcomes. This review provides an overview of anti-drug vaccines, their mechanisms of action, and their potential impact on treatment for substance use disorders. Furthermore, this review summarizes recent advancements in vaccine development for each specific drug, offering insights for the development of more effective and personalized treatments capable of addressing the distinct challenges posed by various abused substances.
Collapse
Affiliation(s)
- Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xue Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei Zheng
- Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China;
| | - Chenyan Kuang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China;
| | - Bingyi Wu
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China;
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China;
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
- Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China;
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China;
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
| |
Collapse
|
12
|
Kurdil NV, Andriushchenko VV, Ivashchenko OV, Volosovets AO, Sheyman BS, Bobkovych KO, Palamar BI. The modern view of the use of extracorporeal detoxification in the treatment of drug poisoning (overdose). POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2024; 52:522-528. [PMID: 39689198 DOI: 10.36740/merkur202405107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
OBJECTIVE Aim: To analyze the results of the application of extracorporeal detoxification methods in the treatment of drug poisoning and their complications.. PATIENTS AND METHODS Materials and Methods: The studied data of 129 patients aged 18-46 years with severe drug poisoning treated at the Kyiv toxicological center in 2010-2020. Statistical analysis was performed using the IBM SPSS Statistics 29.0.0.0 program; Kaplan-Meier method, log-rank test, p<0,05. RESULTS Results: Patients who started receiving renal replacement therapy 24-36 hours after hospitalization had the highest Kaplan-Meier survival rates. The Kaplan-Meier hazard ratio for death shows that the chances of survival progressively decrease from the 48th to the 72nd hour from the moment of admission of patients to hospital, and this trend is observed in patients with both anuria and oliguria. There was a statistically significant difference in Kaplan-Meier survival in patients receiving selective hemoperfusion on the background of renal replacement therapy (p=0,017); ozone therapy (p=0,051) and plasmapheresis (p=0,131) did not show statistical significance. CONCLUSION Conclusions: The combination of various methods of extracorporeal detoxification helps to increase the effectiveness of treatment of patients with drug poisoning due to the acceleration of the elimination of toxic substances and reduces the degree of manifestation of organotoxic effects.
Collapse
Affiliation(s)
- Natalia V Kurdil
- STATE ENTERPRISE ≪L.I. MEDVED'S RESEARCH CENTER OF PREVENTIVE TOXICOLOGY, FOOD AND CHEMICAL SAFETY OF THE MINISTRY OF HEALTH OF UKRAINE≫, KYIV, UKRAINE
| | | | | | | | - Borys S Sheyman
- STATE ENTERPRISE ≪L.I. MEDVED'S RESEARCH CENTER OF PREVENTIVE TOXICOLOGY, FOOD AND CHEMICAL SAFETY OF THE MINISTRY OF HEALTH OF UKRAINE≫, KYIV, UKRAINE
| | | | | |
Collapse
|
13
|
Bremer PT, Burke EL, Barrett AC, Desai RI. Investigation of monoclonal antibody CSX-1004 for fentanyl overdose. Nat Commun 2023; 14:7700. [PMID: 38052779 PMCID: PMC10698161 DOI: 10.1038/s41467-023-43126-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
The opioid crisis in the United States is primarily driven by the highly potent synthetic opioid fentanyl leading to >70,000 overdose deaths annually; thus, new therapies for fentanyl overdose are urgently needed. Here, we present the first clinic-ready, fully human monoclonal antibody CSX-1004 with picomolar affinity for fentanyl and related analogs. In mice CSX-1004 reverses fentanyl antinociception and the intractable respiratory depression caused by the ultrapotent opioid carfentanil. Moreover, toxicokinetic evaluation in a repeat-dose rat study and human tissue cross-reactivity study reveals a favorable pharmacokinetic profile of CSX-1004 with no safety-related issues. Using a highly translational non-human primate (NHP) model of respiratory depression, we demonstrate CSX-1004-mediated protection from repeated fentanyl challenges for 3-4 weeks. Furthermore, treatment with CSX-1004 produces up to a 15-fold potency reduction of fentanyl in NHP respiration, antinociception and operant responding assays without affecting non-fentanyl opioids like oxycodone. Taken together, our data establish the feasibility of CSX-1004 as a promising candidate medication for preventing and reversing fentanyl-induced overdose.
Collapse
Affiliation(s)
| | - Emily L Burke
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Behavioral Biology Program, Integrative Neurochemistry Laboratory, McLean Hospital, Belmont, MA, USA
| | | | - Rajeev I Desai
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Behavioral Biology Program, Integrative Neurochemistry Laboratory, McLean Hospital, Belmont, MA, USA
| |
Collapse
|
14
|
Burgraff NJ, Baertsch NA, Ramirez JM. A comparative examination of morphine and fentanyl: unravelling the differential impacts on breathing and airway stability. J Physiol 2023; 601:4625-4642. [PMID: 37778015 DOI: 10.1113/jp285163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
This study provides an in-depth analysis of the distinct consequences of the opioid drugs morphine and fentanyl during opioid-induced respiratory depression (OIRD). We explored the physiological implications of both drugs on ventilation and airway patency in anaesthetized mice. Our results revealed a similar reduction in respiratory frequency with equivalent scaled dosages of fentanyl and morphine, though the onset of suppression was more rapid with fentanyl. Additionally, fentanyl resulted in transient airflow obstructions during the inspiratory cycle, which were absent following morphine administration. Notably, these fentanyl-specific obstructions were eliminated with tracheostomy, implicating the upper airways as a major factor contributing to fentanyl-induced respiratory depression. We further demonstrate that bronchodilators salbutamol and adrenaline effectively reversed these obstructions, highlighting the bronchi's contribution to fentanyl-induced airflow obstruction. Our study also uncovered a significant reduction in sighs during OIRD, which were eliminated by fentanyl and markedly reduced by morphine. Finally, we found that fentanyl-exposed mice had reduced survival under hypoxic conditions compared to mice given morphine, demonstrating that fentanyl becomes more lethal in the context of hypoxaemia. Our findings shed light on the distinct and profound impacts of these opioids on respiration and airway stability and lay the foundation for improved opioid use guidelines and more effective OIRD prevention strategies. KEY POINTS: Both morphine and fentanyl significantly suppressed respiratory frequency, but the onset of suppression was faster with fentanyl. Also, while both drugs increased tidal volume, this effect was more pronounced with fentanyl. Fentanyl administration resulted in transient obstructions during the inspiratory phase, suggesting its unique impact on airway stability. This obstruction was not observed with morphine. The fentanyl-induced obstructions were reversed by administering bronchodilators such as salbutamol and adrenaline. This suggests a possible therapeutic strategy for mitigating the adverse airway effects of fentanyl. Both drugs reduced the frequency of physiological sighs, a key mechanism to prevent alveolar collapse. However, fentanyl administration led to a complete cessation of sighs, while morphine only reduced their occurrence. Fentanyl-treated mice showed a significantly reduced ability to survive under hypoxic conditions compared to those administered morphine. This indicates that the impacts of hypoxaemia during opioid-induced respiratory depression can vary based on the opioid used.
Collapse
Affiliation(s)
- Nicholas J Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Jimenez Ruiz F, Warner NS, Acampora G, Coleman JR, Kohan L. Substance Use Disorders: Basic Overview for the Anesthesiologist. Anesth Analg 2023; 137:508-520. [PMID: 37590795 DOI: 10.1213/ane.0000000000006281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Substance use disorders (SUDs) represent a current major public health concern in the United States and around the world. Social and economic stressors secondary to the coronavirus disease 2019 (COVID-19) pandemic have likely led to an increase in SUDs around the world. This chronic, debilitating disease is a prevalent health problem, and yet many clinicians do not have adequate training or clinical experience diagnosing and treating SUDs. Anesthesiologists and other perioperative medical staff frequently encounter patients with co-occurring SUDs. By such, through increased awareness and education, physicians and other health care providers have a unique opportunity to positively impact the lives and improve the perioperative outcomes of patients with SUDs. Understanding commonly used terms, potentially effective perioperative screening tools, diagnostic criteria, basics of treatment, and the perioperative implications of SUDs is essential to providing adequate care to patients experiencing this illness.
Collapse
Affiliation(s)
- Federico Jimenez Ruiz
- From the Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nafisseh S Warner
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, Minnesota
| | - Gregory Acampora
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - John R Coleman
- From the Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lynn Kohan
- From the Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
16
|
Eubanks LM, Pholcharee T, Oyen D, Natori Y, Zhou B, Wilson IA, Janda KD. An Engineered Human-Antibody Fragment with Fentanyl Pan-Specificity That Reverses Carfentanil-Induced Respiratory Depression. ACS Chem Neurosci 2023; 14:2849-2856. [PMID: 37534714 PMCID: PMC10791143 DOI: 10.1021/acschemneuro.3c00455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
The opioid overdose crisis primarily driven by potent synthetic opioids resulted in more than 500,000 deaths in the US over the last 20 years. Though naloxone, a short-acting medication, remains the primary treatment option for temporarily reversing opioid overdose effects, alternative countermeasures are needed. Monoclonal antibodies present a versatile therapeutic opportunity that can be tailored to synthetic opioids and help prevent post-treatment renarcotization. The ultrapotent analog carfentanil is especially concerning due to its unique pharmacological properties. With this in mind, we generated a fully human antibody through a drug-specific B cell sorting strategy with a combination of carfentanil and fentanyl probes. The resulting pan-specific antibody was further optimized through scFv phage display, producing C10-S66K. This monoclonal antibody displays high affinity to carfentanil, fentanyl, and other analogs and reversed carfentanil-induced respiratory depression. Additionally, X-ray crystal structures with carfentanil and fentanyl bound provided structural insight into key drug:antibody interactions.
Collapse
Affiliation(s)
- Lisa M. Eubanks
- Departments of Chemistry and Immunology, La Jolla, CA 92037,
United States
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational
Biology, La Jolla, CA 92037, United States
| | - David Oyen
- Department of Integrative Structural and Computational
Biology, La Jolla, CA 92037, United States
| | - Yoshihiro Natori
- Departments of Chemistry and Immunology, La Jolla, CA 92037,
United States
| | - Bin Zhou
- Departments of Chemistry and Immunology, La Jolla, CA 92037,
United States
| | - Ian A. Wilson
- Department of Integrative Structural and Computational
Biology, La Jolla, CA 92037, United States
- The Skaggs Institute for Chemical Biology, La Jolla, CA
92037, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology, La Jolla, CA 92037,
United States
- Worm Institute for Research and Medicine (WIRM), The
Scripps Research Institute, La Jolla, CA 92037, United States
| |
Collapse
|
17
|
Miller SM, Crouse B, Hicks L, Amin H, Cole S, Bazin HG, Burkhart DJ, Pravetoni M, Evans JT. A lipidated TLR7/8 adjuvant enhances the efficacy of a vaccine against fentanyl in mice. NPJ Vaccines 2023; 8:97. [PMID: 37429853 PMCID: PMC10333387 DOI: 10.1038/s41541-023-00694-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Opioid use disorders (OUD) and opioid-related fatal overdoses are a public health concern in the United States. Approximately 100,000 fatal opioid-related overdoses occurred annually from mid-2020 to the present, the majority of which involved fentanyl or fentanyl analogs. Vaccines have been proposed as a therapeutic and prophylactic strategy to offer selective and long-lasting protection against accidental or deliberate exposure to fentanyl and closely related analogs. To support the development of a clinically viable anti-opioid vaccine suitable for human use, the incorporation of adjuvants will be required to elicit high titers of high-affinity circulating antibodies specific to the target opioid. Here we demonstrate that the addition of a synthetic TLR7/8 agonist, INI-4001, but not a synthetic TLR4 agonist, INI-2002, to a candidate conjugate vaccine consisting of a fentanyl-based hapten, F1, conjugated to the diphtheria cross-reactive material (CRM), significantly increased generation of high-affinity F1-specific antibody concentrations, and reduced drug distribution to the brain after fentanyl administration in mice.
Collapse
Affiliation(s)
- Shannon M Miller
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
- Inimmune Corporation, Missoula, MT, USA
| | - Bethany Crouse
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Linda Hicks
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
| | - Hardik Amin
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
| | - Shelby Cole
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Helene G Bazin
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
- Inimmune Corporation, Missoula, MT, USA
| | - David J Burkhart
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
- Inimmune Corporation, Missoula, MT, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Jay T Evans
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA.
- Inimmune Corporation, Missoula, MT, USA.
| |
Collapse
|
18
|
Park H, Lin M, Zhou J, Eubanks LM, Zhou B, Janda KD. Development of a vaccine against the synthetic opioid U-47700. Front Pharmacol 2023; 14:1219985. [PMID: 37492086 PMCID: PMC10363602 DOI: 10.3389/fphar.2023.1219985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
Opioid use disorders and overdose have become a major public health concern in recent years. U-47700, a New psychoactive substances (NPS) opioid, also known as "pinky" or "pink" has been identified as a new threat in the drug supply because of its potency and abuse potential. Conjugate vaccines that can produce antibodies against target drug molecules have emerged as a promising tool to treat substance use disorders. Herein, we report the design, synthesis, and in vivo characterization of a U-47700 vaccine. The vaccine demonstrated favorable results with rodents producing elevated levels of antibody titer and sub-micromolar affinity to U-47700. In addition, antibodies generated by the vaccine effectively mitigated drug-induced effects by preventing the drug from penetrating the blood-brain barrier, which was verified by antinociception and drug biodistribution studies. The development of a vaccine against U-47700 and other NPS opioids contributes to the continued advancement of non-conventional pharmacological treatments to address the global opioid epidemic.
Collapse
Affiliation(s)
- Hyeri Park
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, United States
| | - Mingliang Lin
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, United States
| | - Jian Zhou
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, United States
- The College of Chemistry, Nankai University, Tianjin, China
| | - Lisa M. Eubanks
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, United States
| | - Bin Zhou
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
19
|
Eubanks LM, Pholcharee T, Oyen D, Natori Y, Zhou B, Wilson IA, Janda KD. An Engineered Human-Antibody Fragment with Fentanyl Pan-Specificity that Reverses Carfentanil-Induced Respiratory Depression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547721. [PMID: 37461607 PMCID: PMC10349930 DOI: 10.1101/2023.07.04.547721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The opioid overdose crisis primarily driven by potent synthetic opioids resulted in more than 500,000 deaths in the US over the last 20 years. Though naloxone, a short acting medication, remains the primary treatment option for temporarily reversing opioid overdose effects, alternative countermeasures are needed. Monoclonal antibodies present a versatile therapeutic opportunity that can be tailored for synthetic opioids and that can help prevent post-treatment renarcotization. The ultrapotent analog carfentanil, is especially concerning due to its unique pharmacological properties. With this in mind, we generated a fully human antibody through a drug-specific B cell sorting strategy with a combination of carfentanil and fentanyl probes. The resulting pan-specific antibody was further optimized through scFv phage display. This antibody, C10-S66K, displays high affinity to carfentanil, fentanyl, and other analogs, and reversed carfentanil-induced respiratory depression. Additionally, x-ray crystal structures with carfentanil and fentanyl bound provided structural insight into key drug:antibody interactions.
Collapse
Affiliation(s)
- Lisa M. Eubanks
- Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - David Oyen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Yoshihiro Natori
- Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Bin Zhou
- Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, CA 92037, United States
- Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA 92037, United States
| |
Collapse
|
20
|
Leon Duque MA, Vallavoju N, Woo CM. Chemical tools for the opioids. Mol Cell Neurosci 2023; 125:103845. [PMID: 36948231 PMCID: PMC10247539 DOI: 10.1016/j.mcn.2023.103845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
The opioids are potent and widely used pain management medicines despite also possessing severe liabilities that have fueled the opioid crisis. The pharmacological properties of the opioids primarily derive from agonism or antagonism of the opioid receptors, but additional effects may arise from specific compounds, opioid receptors, or independent targets. The study of the opioids, their receptors, and the development of remediation strategies has benefitted from derivatization of the opioids as chemical tools. While these studies have primarily focused on the opioids in the context of the opioid receptors, these chemical tools may also play a role in delineating mechanisms that are independent of the opioid receptors. In this review, we describe recent advances in the development and applications of opioid derivatives as chemical tools and highlight opportunities for the future.
Collapse
Affiliation(s)
- Mark Anthony Leon Duque
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, United States of America
| | - Nandini Vallavoju
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, United States of America
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, United States of America.
| |
Collapse
|
21
|
Malik JA, Agrewala JN. Future perspectives of emerging novel drug targets and immunotherapies to control drug addiction. Int Immunopharmacol 2023; 119:110210. [PMID: 37099943 DOI: 10.1016/j.intimp.2023.110210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Substance Use Disorder (SUD) is one of the major mental illnesses that is terrifically intensifying worldwide. It is becoming overwhelming due to limited options for treatment. The complexity of addiction disorders is the main impediment to understanding the pathophysiology of the illness. Hence, unveiling the complexity of the brain through basic research, identification of novel signaling pathways, the discovery of new drug targets, and advancement in cutting-edge technologies will help control this disorder. Additionally, there is a great hope of controlling the SUDs through immunotherapeutic measures like therapeutic antibodies and vaccines. Vaccines have played a cardinal role in eliminating many diseases like polio, measles, and smallpox. Further, vaccines have controlled many diseases like cholera, dengue, diphtheria, Haemophilus influenza type b (Hib), human papillomavirus, influenza, Japanese encephalitis, etc. Recently, COVID-19 was controlled in many countries by vaccination. Currently, continuous effort is done to develop vaccines against nicotine, cocaine, morphine, methamphetamine, and heroin. Antibody therapy against SUDs is another important area where serious attention is required. Antibodies have contributed substantially against many serious diseases like diphtheria, rabies, Crohn's disease, asthma, rheumatoid arthritis, and bladder cancer. Antibody therapy is gaining immense momentum due to its success rate in cancer treatment. Furthermore, enormous advancement has been made in antibody therapy due to the generation of high-efficiency humanized antibodies with a long half-life. The advantage of antibody therapy is its instant outcome. This article's main highlight is discussing the drug targets of SUDs and their associated mechanisms. Importantly, we have also discussed the scope of prophylactic measures to eliminate drug dependence.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology laboratory, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Javed N Agrewala
- Immunology laboratory, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.
| |
Collapse
|
22
|
Brockett AT, Xue W, King D, Deng CL, Zhai C, Shuster M, Rastogi S, Briken V, Roesch MR, Isaacs L. Pillar[6]MaxQ: A Potent Supramolecular Host for In Vivo Sequestration of Methamphetamine and Fentanyl. Chem 2023; 9:881-900. [PMID: 37346394 PMCID: PMC10281757 DOI: 10.1016/j.chempr.2022.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pillar[6]MaxQ (P6AS) functions as an in vivo sequestration agent for methamphetamine and fentanyl. We use 1H NMR, isothermal titration calorimetry, and molecular modelling to deduce the geometry and strength of the P6AS•drug complexes. P6AS forms tight complexes with fentanyl (Kd=9.8 nM), PCP (17.1 nM), MDMA (25.5 nM), mephedrone (52.4 nM), and methamphetamine (101 nM). P6AS has good in vitro biocompatibility according to MTS metabolic, Adenylate Kinase cell death, and hERG ion channel inhibition assays, and the Ames fluctuation test. The no observed adverse effect level for P6AS is 45 mg/kg. The hyperlocomotion of mice treated with methamphetamine (0.5 mg/kg) can be ameliorated by treatment with P6AS (35.7 mg/kg) 5-minutes later, whereas the hyperlocomotion of mice treated with fentanyl (0.1 mg/kg) can be controlled by treatment with P6AS (5 mg/kg) up to 15-minutes later. P6AS has significant potential for development as a broad spectrum in vivo sequestration agent.
Collapse
Affiliation(s)
- Adam T. Brockett
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, United States
| | - Weijian Xue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Chun-Lin Deng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Shivangi Rastogi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Matthew R. Roesch
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
23
|
Triller G, Vlachou EP, Hashemi H, van Straaten M, Zeelen JP, Kelemen Y, Baehr C, Marker CL, Ruf S, Svirina A, Chandra M, Urban K, Gkeka A, Kruse S, Baumann A, Miller AK, Bartel M, Pravetoni M, Stebbins CE, Papavasiliou FN, Verdi JP. A trypanosome-derived immunotherapeutics platform elicits potent high-affinity antibodies, negating the effects of the synthetic opioid fentanyl. Cell Rep 2023; 42:112049. [PMID: 36719797 PMCID: PMC10387133 DOI: 10.1016/j.celrep.2023.112049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/02/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Poorly immunogenic small molecules pose challenges for the production of clinically efficacious vaccines and antibodies. To address this, we generate an immunization platform derived from the immunogenic surface coat of the African trypanosome. Through sortase-based conjugation of the target molecules to the variant surface glycoprotein (VSG) of the trypanosome surface coat, we develop VSG-immunogen array by sortase tagging (VAST). VAST elicits antigen-specific memory B cells and antibodies in a murine model after deploying the poorly immunogenic molecule fentanyl as a proof of concept. We also develop a single-cell RNA sequencing (RNA-seq)-based computational method that synergizes with VAST to specifically identify memory B cell-encoded antibodies. All computationally selected antibodies bind to fentanyl with picomolar affinity. Moreover, these antibodies protect mice from fentanyl effects after passive immunization, demonstrating the ability of these two coupled technologies to elicit therapeutic antibodies to challenging immunogens.
Collapse
Affiliation(s)
- Gianna Triller
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Evi P Vlachou
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany; Panosome GmbH, 69123 Heidelberg, Germany
| | - Hamidreza Hashemi
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Monique van Straaten
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Johan P Zeelen
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | - Carly Baehr
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Cheryl L Marker
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Iuvo Bioscience, Rush, NY 14543, USA
| | - Sandra Ruf
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Anna Svirina
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Monica Chandra
- Panosome GmbH, 69123 Heidelberg, Germany; Division of Structural Biology of Infection and Immunity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Katharina Urban
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Anastasia Gkeka
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany; Panosome GmbH, 69123 Heidelberg, Germany
| | | | - Andreas Baumann
- Cancer Drug Development Group, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Aubry K Miller
- Cancer Drug Development Group, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Marc Bartel
- Forensic Toxicology, Institute of Forensic and Traffic Medicine, Heidelberg University Hospital, 69115 Heidelberg, Germany
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Psychiatry and Behavioral Sciences, Department of Pharmacology, University of Washington School of Medicine, Center for Medication Development for Substance Use Disorders, Seattle, WA 98195, USA
| | - C Erec Stebbins
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - F Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Joseph P Verdi
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany; Hepione Therapeutics, Inc., New York, NY 10014, USA.
| |
Collapse
|
24
|
The influence of hapten spacer arm length on antibody response and immunoassay development. Anal Chim Acta 2023; 1239:340699. [PMID: 36628767 DOI: 10.1016/j.aca.2022.340699] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Antibodies against small molecules with high titer and high affinity are always pursued in the field of vaccines for drugs of abuse, antidotes to toxins and immunoassays in medical, environmental, and food safety. The exposure degree of the target molecule to the immune system is critical to induce a strongly specific antibody response, thus, the spacer arm length between the target molecule and carrier protein plays an important role. However, the influence of spacer arm length on antibody titer, affinity, and assay performance is not yet clear and highly demanded to be addressed. In the present study, we proposed a model study to answer the question by using two typical small molecules, melamine and p-nitroaniline, which were introduced by varied spacer arms with increasing alkane linear length from 2 to 12 carbon atoms brick by brick. The spacer arm lengths of the haptens were obtained by computational chemistry. The titer and affinity of mouse antisera were analyzed and compared, showing that all haptens with spacer arms of 6-8 carbon atoms, i.e. 6.3-8.8 Å in length, induced strong antibodies represented by the highest titer and affinity without exception, while the haptens with spacer arms of 2-4 carbon atoms and 10-12 carbon atoms, i.e. 1.5-3.9 Å and 11.3-13.9 Å in length, failed to induce high-quality antibody response. Moreover, the titer and sensitivity of the subsequently developed immunoassays were significantly affected by using coating haptens with different spacer arm lengths, and coating haptens with a spacer arm of 6.3-8.8 Å in length delivered the optimum detection performance. The antibody recognition mechanism study further confirmed that the hapten spacer arm length had a critical effect on the recognition properties of the induced antibody, which should be interactive with the spacer arm each other. This study showed that the hapten with appropriate spacer arm length is important to antibody response and immunoassay development, providing a valuable and general clue for the rational design of hapten.
Collapse
|
25
|
Kiluk BD, Kleykamp BA, Comer SD, Griffiths RR, Huhn AS, Johnson MW, Kampman KM, Pravetoni M, Preston KL, Vandrey R, Bergeria CL, Bogenschutz MP, Brown RT, Dunn KE, Dworkin RH, Finan PH, Hendricks PS, Houtsmuller EJ, Kosten TR, Lee DC, Levin FR, McRae-Clark A, Raison CL, Rasmussen K, Turk DC, Weiss RD, Strain EC. Clinical Trial Design Challenges and Opportunities for Emerging Treatments for Opioid Use Disorder: A Review. JAMA Psychiatry 2023; 80:84-92. [PMID: 36449315 PMCID: PMC10297827 DOI: 10.1001/jamapsychiatry.2022.4020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Importance Novel treatments for opioid use disorder (OUD) are needed to address both the ongoing opioid epidemic and long-standing barriers to existing OUD treatments that target the endogenous μ-opioid receptor (MOR) system. The goal of this review is to highlight unique clinical trial design considerations for the study of emerging treatments for OUD that address targets beyond the MOR system. In November 2019, the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION) public-private partnership with the US Food and Drug Administration sponsored a meeting to discuss the current evidence regarding potential treatments for OUD, including cannabinoids, psychedelics, sedative-hypnotics, and immunotherapeutics, such as vaccines. Observations Consensus recommendations are presented regarding the most critical elements of trial design for the evaluation of novel OUD treatments, such as: (1) stage of treatment that will be targeted (eg, seeking treatment, early abstinence/detoxification, long-term recovery); (2) role of treatment (adjunctive with or independent of existing OUD treatments); (3) primary outcomes informed by patient preferences that assess opioid use (including changes in patterns of use), treatment retention, and/or global functioning and quality of life; and (4) adverse events, including the potential for opioid-related relapse or overdose, especially if the patient is not simultaneously taking maintenance MOR agonist or antagonist medications. Conclusions and Relevance Applying the recommendations provided here as well as considering input from people with lived experience in the design phase will accelerate the development, translation, and uptake of effective and safe therapeutics for individuals struggling with OUD.
Collapse
Affiliation(s)
- Brian D Kiluk
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Bethea A Kleykamp
- University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Sandra D Comer
- Division on Substance Use Disorders, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Roland R Griffiths
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew S Huhn
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthew W Johnson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kyle M Kampman
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Marco Pravetoni
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Harborview Medical Center, Seattle
| | - Kenzie L Preston
- Clinical Pharmacology and Therapeutics Research Branch, National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Ryan Vandrey
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cecilia L Bergeria
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael P Bogenschutz
- Department of Psychiatry, NYU Grossman School of Medicine, New York University, New York
| | - Randall T Brown
- Department of Family Medicine and Community Health, University of Wisconsin-Madison School of Medicine and Public Health, Madison
| | - Kelly E Dunn
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert H Dworkin
- University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Patrick H Finan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peter S Hendricks
- Department of Health Behavior, School of Public Health, University of Alabama at Birmingham
| | | | - Thomas R Kosten
- Baylor College of Medicine, Houston, Texas
- Michael E. DeBakey VA Medical Center, Houston, Texas
| | - Dustin C Lee
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Frances R Levin
- Division on Substance Use Disorders, New York State Psychiatric Institute, New York
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Aimee McRae-Clark
- Department of Psychiatry, Medical University of South Carolina, Charleston
| | - Charles L Raison
- Department of Human Development and Family Studies, School of Human Ecology, University of Wisconsin-Madison
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin-Madison
| | | | - Dennis C Turk
- University of Washington School of Medicine, Seattle
| | - Roger D Weiss
- Division of Alcohol, Drugs, and Addiction, McLean Hospital, Belmont, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Eric C Strain
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
26
|
Haile CN, Baker MD, Sanchez SA, Lopez Arteaga CA, Duddupudi AL, Cuny GD, Norton EB, Kosten TR, Kosten TA. An Immunconjugate Vaccine Alters Distribution and Reduces the Antinociceptive, Behavioral and Physiological Effects of Fentanyl in Male and Female Rats. Pharmaceutics 2022; 14:2290. [PMID: 36365109 PMCID: PMC9694531 DOI: 10.3390/pharmaceutics14112290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 09/15/2023] Open
Abstract
Fentanyl (FEN) is a potent synthetic opioid associated with increasing incidence of opioid use disorder (OUD) and fatal opioid overdose. Vaccine immunotherapy for FEN-associated disorders may be a viable therapeutic strategy. Here, we expand and confirm our previous study in mice showing immunological and antinociception efficacy of our FEN vaccine administered with the adjuvant dmLT. In this study, immunized male and female rats produced significant levels of anti-FEN antibodies that were highly effective at neutralizing FEN-induced antinociception in the tail flick assay and hot plate assays. The vaccine also decreased FEN brain levels following drug administration. Immunization blocked FEN-induced, but not morphine-induced, rate-disrupting effects on schedule-controlled responding. Vaccination prevented decreases on physiological measures (oxygen saturation, heart rate) and reduction in overall activity following FEN administration in male rats. The impact of FEN on these measures was greater in unvaccinated male rats compared to unvaccinated female rats. Cross-reactivity assays showed anti-FEN antibodies bound to FEN and sufentanil but not to morphine, methadone, buprenorphine, or oxycodone. These data support further clinical development of this vaccine to address OUD in humans.
Collapse
Affiliation(s)
- Colin N. Haile
- Department of Psychology & TIMES, University of Houston, Houston, TX 77204, USA
| | - Miah D. Baker
- Department of Psychology & TIMES, University of Houston, Houston, TX 77204, USA
| | - Sergio A. Sanchez
- Department of Psychology & TIMES, University of Houston, Houston, TX 77204, USA
| | | | - Anantha L. Duddupudi
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA
| | - Gregory D. Cuny
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA
| | - Elizabeth B. Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Thomas R. Kosten
- Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX 77030, USA
- The Michael E DeBakey Veteran’s Affairs Medical Center, Houston, TX 77030, USA
| | - Therese A. Kosten
- Department of Psychology & TIMES, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
27
|
Celik M, Fuehrlein B. A Review of Immunotherapeutic Approaches for Substance Use Disorders: Current Status and Future Prospects. Immunotargets Ther 2022; 11:55-66. [PMID: 36199734 PMCID: PMC9528911 DOI: 10.2147/itt.s370435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Muhammet Celik
- Research Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Brian Fuehrlein
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Mental Health Service Line, VA Connecticut Healthcare System, West Haven, CT, USA
- Correspondence: Brian Fuehrlein, Mental Health Service Line, VA Connecticut Healthcare System, 950 Campbell Ave, West Haven, CT, 06516, Tel +1-203-932-5711 x4471, Fax +1-203-937-4904, Email
| |
Collapse
|
28
|
DiMaggio D, Brockett AT, Shuster M, Murkli S, Zhai C, King D, O'Dowd B, Cheng M, Brady K, Briken V, Roesch MR, Isaacs L. Anthracene-Walled Acyclic CB[n] Receptors: in vitro and in vivo Binding Properties toward Drugs of Abuse. ChemMedChem 2022; 17:e202200046. [PMID: 35238177 PMCID: PMC9119912 DOI: 10.1002/cmdc.202200046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Indexed: 11/07/2022]
Abstract
We report studies of the interaction of six acyclic CB[n]-type receptors toward a panel of drugs of abuse by a combination of isothermal titration calorimetry and 1 H NMR spectroscopy. Anthracene walled acyclic CB[n] host (M3) displays highest binding affinity toward methamphetamine (Kd =15 nM) and fentanyl (Kd =4 nM). Host M3 is well tolerated by Hep G2 and HEK 293 cells up to 100 μM according to MTS metabolic and adenylate kinase release assays. An in vivo maximum tolerated dose study with Swiss Webster mice showed no adverse effects at the highest dose studied (44.7 mg kg-1 ). Host M3 is not mutagenic based on the Ames fluctuation test and does not inhibit the hERG ion channel. In vivo efficacy studies showed that pretreatment of mice with M3 significantly reduces the hyperlocomotion after treatment with methamphetamine, but M3 does not function similarly when administered 30 seconds after methamphetamine.
Collapse
Affiliation(s)
- Delaney DiMaggio
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Adam T Brockett
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, USA
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Brona O'Dowd
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ming Cheng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Kimberly Brady
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Matthew R Roesch
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
29
|
Han Y, Cao L, Yuan K, Shi J, Yan W, Lu L. Unique Pharmacology, Brain Dysfunction, and Therapeutic Advancements for Fentanyl Misuse and Abuse. Neurosci Bull 2022; 38:1365-1382. [PMID: 35570233 PMCID: PMC9107910 DOI: 10.1007/s12264-022-00872-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/13/2022] [Indexed: 11/20/2022] Open
Abstract
Fentanyl is a fully synthetic opioid with analgesic and anesthetic properties. It has become a primary driver of the deadliest opioid crisis in the United States and elsewhere, consequently imposing devastating social, economic, and health burdens worldwide. However, the neural mechanisms that underlie the behavioral effects of fentanyl and its analogs are largely unknown, and approaches to prevent fentanyl abuse and fentanyl-related overdose deaths are scarce. This review presents the abuse potential and unique pharmacology of fentanyl and elucidates its potential mechanisms of action, including neural circuit dysfunction and neuroinflammation. We discuss recent progress in the development of pharmacological interventions, anti-fentanyl vaccines, anti-fentanyl/heroin conjugate vaccines, and monoclonal antibodies to attenuate fentanyl-seeking and prevent fentanyl-induced respiratory depression. However, translational studies and clinical trials are still lacking. Considering the present opioid crisis, the development of effective pharmacological and immunological strategies to prevent fentanyl abuse and overdose are urgently needed.
Collapse
|
30
|
da Silva Neto L, da Silva Maia AF, Godin AM, de Almeida Augusto PS, Pereira RLG, Caligiorne SM, Alves RB, Fernandes SOA, Cardoso VN, Goulart GAC, Martins FT, das Neves MDCL, Garcia FD, de Fátima Â. Calix[ n]arene-based immunogens: A new non-proteic strategy for anti-cocaine vaccine. J Adv Res 2022; 38:285-298. [PMID: 35572397 PMCID: PMC9091763 DOI: 10.1016/j.jare.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction Cocaine use disorder is a significant public health issue without a current specific approved treatment. Among different approaches to this disorder, it is possible to highlight a promising immunologic strategy in which an immunogenic agent may reduce the reinforcing effects of the drug if they are able to yield sufficient specific antibodies capable to bind cocaine and/or its psychoactive metabolites before entering into the brain. Several carriers have been investigated in the anti-cocaine vaccine development; however, they generally present a very complex chemical structure, which potentially hampers the proper assessment of the coupling efficiency between the hapten units and the protein structure. Objectives The present study reports the design, synthesis and preclinical evaluation of two novel calix[n]arene-based anti-cocaine immunogens (herein named as V4N2 and V8N2) by the tethering of the hydrolysis-tolerant hapten GNE (15) on calix[4]arene and calix[8]arene moieties. Methods The preclinical assessment corresponded to the immunogenicity and dose-response evaluation of V4N2 and V8N2. The potential of the produced antibodies to reduce the passage of cocaine analogue through the blood-brain-barrier (BBB), modifying its biodistribution was also investigated. Results Both calix[n]arene-based immunogens elicited high titers of cocaine antibodies that modified the biodistribution of a cocaine radiolabeled analogue (99mTc-TRODAT-1) and decreased cocaine-induced behavior, according to an animal model. Conclusion The present results demonstrate the potential of V4N2 and V8N2 as immunogens for the treatment of cocaine use disorder.
Collapse
Affiliation(s)
- Leonardo da Silva Neto
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Angélica Faleiros da Silva Maia
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Adriana Martins Godin
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | | | - Sordaini Maria Caligiorne
- Department of Mental Health, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
| | - Rosemeire Brondi Alves
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Simone Odília Antunes Fernandes
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Valbert Nascimento Cardoso
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Gisele Assis Castro Goulart
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Felipe Terra Martins
- Institute of Chemistry, Universidade Federal de Goiás, Goiânia 74690-900, MG, Brazil
| | | | - Frederico Duarte Garcia
- Department of Mental Health, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
| | - Ângelo de Fátima
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
31
|
Sulima A, Li F, Morgan JB, Truong P, Antoline JFG, Oertel T, Barrientos RC, Torres OB, Beck Z, Imler GH, Deschamps JR, Matyas GR, Jacobson AE, Rice KC. Design, Synthesis, and In Vivo Evaluation of C1-Linked 4,5-Epoxymorphinan Haptens for Heroin Vaccines. Molecules 2022; 27:1553. [PMID: 35268659 PMCID: PMC8911913 DOI: 10.3390/molecules27051553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
In our continuing effort to develop effective anti-heroin vaccines as potential medications for the treatment of opioid use disorder, herein we present the design and synthesis of the haptens: 1-AmidoMorHap (1), 1-AmidoMorHap epimer (2), 1 Amido-DihydroMorHap (3), and 1 Amido-DihydroMorHap epimer (4). This is the first report of hydrolytically stable haptenic surrogates of heroin with the attachment site at the C1 position in the 4,5-epoxymorophinan nucleus. We prepared respective tetanus toxoid (TT)-hapten conjugates as heroin vaccine immunogens and evaluated their efficacy in vivo. We showed that all TT-hapten conjugates induced high antibody endpoint titers against the targets but only haptens 2 and 3 can induce protective effects against heroin in vivo. The epimeric analogues of these haptens, 1 and 4, failed to protect mice from the effects of heroin. We also showed that the in vivo efficacy is consistent with the results of the in vitro drug sequestration assay. Attachment of the linker at the C1 position induced antibodies with weak binding to the target drugs. Only TT-2 and TT-3 yielded antibodies that bound heroin and 6-acetyl morphine. None of the TT-hapten conjugates induced antibodies that cross-reacted with morphine, methadone, naloxone, or naltrexone, and only TT-3 interacted weakly with buprenorphine, and that subtle structural difference, especially at the C6 position, can vastly alter the specificity of the induced antibodies. This study is an important contribution in the field of vaccine development against small-molecule targets, providing proof that the chirality at C6 in these epoxymorphinans is a vital key to their effectiveness.
Collapse
Affiliation(s)
- Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (A.S.); (F.L.); (J.B.M.); (P.T.); (J.F.G.A.)
| | - Fuying Li
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (A.S.); (F.L.); (J.B.M.); (P.T.); (J.F.G.A.)
| | - Jeffrey Brian Morgan
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (A.S.); (F.L.); (J.B.M.); (P.T.); (J.F.G.A.)
| | - Phong Truong
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (A.S.); (F.L.); (J.B.M.); (P.T.); (J.F.G.A.)
| | - Joshua F. G. Antoline
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (A.S.); (F.L.); (J.B.M.); (P.T.); (J.F.G.A.)
| | - Therese Oertel
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (T.O.); (R.C.B.); (O.B.T.); (Z.B.); (G.R.M.)
| | - Rodell C. Barrientos
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (T.O.); (R.C.B.); (O.B.T.); (Z.B.); (G.R.M.)
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Oscar B. Torres
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (T.O.); (R.C.B.); (O.B.T.); (Z.B.); (G.R.M.)
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Zoltan Beck
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (T.O.); (R.C.B.); (O.B.T.); (Z.B.); (G.R.M.)
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Gregory H. Imler
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA; (G.H.I.); (J.R.D.)
| | - Jeffrey R. Deschamps
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA; (G.H.I.); (J.R.D.)
| | - Gary R. Matyas
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (T.O.); (R.C.B.); (O.B.T.); (Z.B.); (G.R.M.)
| | - Arthur E. Jacobson
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (A.S.); (F.L.); (J.B.M.); (P.T.); (J.F.G.A.)
| | - Kenner C. Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (A.S.); (F.L.); (J.B.M.); (P.T.); (J.F.G.A.)
| |
Collapse
|
32
|
Lee JC, Park H, Eubanks LM, Ellis B, Zhou B, Janda KD. A Vaccine against Benzimidazole-Derived New Psychoactive Substances That Are More Potent Than Fentanyl. J Med Chem 2022; 65:2522-2531. [PMID: 34994550 DOI: 10.1021/acs.jmedchem.1c01967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
New psychoactive substance (NPS) opioids have proliferated within the international drug market. While synthetic opioids are traditionally composed of fentanyl analogues, benzimidazole-derived isotonitazene and its derivatives are the current NPS opioids of concern. Hence, in this study, we implement immunopharmacotherapy wherein antibodies are produced with high titers and nanomolar affinity to multiple benzimidazole-derived NPS opioids (BNO). Notably, these antibodies blunt psychoactive and physiological repercussions from BNO exposure, which was observed through antinociception, whole-body plethysmography, and blood-brain biodistribution studies. Moreover, we detail previously unreported pharmacokinetics of these drugs, which explains the struggle of traditional pharmaceutical opioid antagonists against BNO substances. These findings provide further insight into the in vivo effects of BNO drugs and the development of effective broad-spectrum therapeutics against NPS opioids.
Collapse
Affiliation(s)
- Jinny Claire Lee
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyeri Park
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lisa M Eubanks
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Beverly Ellis
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Bin Zhou
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kim D Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
33
|
Stoecker WV. Part I: Missouri's Fentanyl Poisonings Rise to Record Levels. MISSOURI MEDICINE 2022; 119:489-493. [PMID: 36588654 PMCID: PMC9762215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Missourians are dying of fentanyl poisoning at an unprecedented rate. We identified growth areas in Missouri for fatal fentanyl encounters in rural and western counties. Though the deaths occur for a multitude of reasons, a growing trend adds to the surge in fentanyl fatalities: poisonings from counterfeit pills. The tablets are often labeled with brand names for alprazolam or oxycodone, but may contain only fentanyl at a dangerous level. Teenagers find counterfeit pills all too easily via social media. Believing they have found an easy way to obtain a quick high or relief of minor pain and anxiety, they take the pill alone in their bedroom, with no possibility of reversing a fatal fentanyl dose. There is a wide range of respiratory depression from illicit drugs containing fentanyl. We reviewed the physiologic respiratory response to drugs containing fentanyl that varies with genetics and the unpredictable amount of fentanyl contained in illicit drugs.
Collapse
|
34
|
Wu Y, Liu YY, Liu HK, Yu SB, Lin F, Zhou W, Wang H, Zhang DW, Li ZT, Ma D. Flexible organic frameworks sequester neuromuscular blocking agents in vitro and reverse neuromuscular block in vivo. Chem Sci 2022; 13:9243-9248. [PMID: 36093029 PMCID: PMC9384803 DOI: 10.1039/d2sc02456j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Supramolecular sequestration and reversal of neuromuscular block (NMB) have great clinical applications. Water-soluble flexible organic frameworks (FOFs) cross-linked by disulfide bonds are designed and prepared. Different linker lengths are introduced to FOFs to give them varied pore sizes. FOFs are anionic nanoscale polymers and capable of encapsulating cationic neuromuscular blocking agents (NMBAs), including rocuronium (Roc), vecuronium (Vec), pancuronium (Panc) and cisatracurium (Cis). A host–guest study confirms that FOFs bind NMBAs in water. The multivalency interaction between FOFs and NMBAs is able to sequester NMBAs, and prevent them from escaping. These FOFs are non-toxic and biocompatible. Animal studies show that FOFs are effective for the reversal of NMB induced by Roc, Vec and Cis, which shorten the time to a train-of-four ratio of 0.9 by 2.6, 3.8 and 5.7-fold compared to a placebo, respectively. Water-soluble flexible organic frameworks are prepared and used to sequester neuromuscular blocking agents, and reverse their neuromuscular block in vivo.![]()
Collapse
Affiliation(s)
- Yan Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Yue-Yang Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Hong-Kun Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Furong Lin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Wei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Da Ma
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue, Jiaojiang Zhejiang 318000 China
| |
Collapse
|
35
|
Abstract
Opioids may produce life-threatening respiratory depression and death from their actions at the opioid receptors within the brainstem respiratory neuronal network. Since there is an increasing number of conditions where the administration of the opioid receptor antagonist naloxone is inadequate or undesired, there is an increased interest in the development of novel reversal and prevention strategies aimed at providing efficacy close to that of the opioid receptor antagonist naloxone but with fewer of its drawbacks such as its short duration of action and lesser ability to reverse high-affinity opioids, such as carfentanil, or drug combinations. To give an overview of this highly relevant topic, the authors systematically discuss predominantly experimental pharmacotherapies, published in the last 5 yr, aimed at reversal of opioid-induced respiratory depression as alternatives to naloxone. The respiratory stimulants are discussed based on their characteristics and mechanism of action: nonopioid controlled substances (e.g., amphetamine, cannabinoids, ketamine), hormones (thyrotropin releasing hormone, oxytocin), nicotinic acetylcholine receptor agonists, ampakines, serotonin receptor agonists, antioxidants, miscellaneous peptides, potassium channel blockers acting at the carotid bodies (doxapram, ENA001), sequestration techniques (scrubber molecules, immunopharmacotherapy), and opioids (partial agonists/antagonists). The authors argue that none of these often still experimental therapies are sufficiently tested with respect to efficacy and safety, and many of the agents presented have a lesser efficacy at deeper levels of respiratory depression, i.e., inability to overcome apnea, or have ample side effects. The authors suggest development of reversal strategies that combine respiratory stimulants with naloxone. Furthermore, they encourage collaborations between research groups to expedite development of viable reversal strategies of potent synthetic opioid-induced respiratory depression.
Collapse
|
36
|
Truong TT, Kosten TR. Current status of vaccines for substance use disorders: A brief review of human studies. J Neurol Sci 2021; 434:120098. [PMID: 34952345 DOI: 10.1016/j.jns.2021.120098] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 01/20/2023]
Abstract
Substance use is a major public health concern worldwide. In the United States, drug-related deaths have increased many-fold in the past two decades due to the infiltration of more potent and lethal drugs such as fentanyl. Despite significant advancement in medicine, the management of substance use disorders (SUD) continues to be fraught with high attrition, relapse, morbidity, and mortality. The conceptual transition of a SUD from a moral failing to a chronic disease caused by substances facilitated the expansion of biological treatments, including pharmacotherapy, neurostimulation, and immunotherapy. While the quest for vaccines against drugs of abuse had an optimistic start in animal models, clinical trials in humans have yielded disappointing results. This paper provides a brief review on the current progress of vaccines against nicotine, stimulants (cocaine and methamphetamine), opioids including fentanyl, novel psychoactive substances (synthetic cathinones and synthetic cannabis), and discusses prospects for vaccine technology in the treatment of SUD.
Collapse
Affiliation(s)
- Thanh Thuy Truong
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, 1 Baylor plaza, Houston, TX 77030, USA.
| | - Thomas R Kosten
- Michael E. DeBakey VA Medical Center, 2002 Holcombe Blvd, BLDG 110, Rm 229, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Brockett AT, Deng C, Shuster M, Perera S, DiMaggio D, Cheng M, Murkli S, Briken V, Roesch MR, Isaacs L. In Vitro and In Vivo Sequestration of Methamphetamine by a Sulfated Acyclic CB[n]-Type Receptor. Chemistry 2021; 27:17476-17486. [PMID: 34613641 PMCID: PMC8665056 DOI: 10.1002/chem.202102919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 01/26/2023]
Abstract
We report the synthesis of two new acyclic sulfated acyclic CB[n]-type receptors (TriM0 and Me4 TetM0) and investigations of their binding properties toward a panel of drugs of abuse (1-13) by a combination of 1 H NMR spectroscopy and isothermal titration calorimetry. TetM0 is the most potent receptor with Ka ≥106 M-1 toward methamphetamine, fentanyl, MDMA and mephedrone. TetM0 is not cytotoxic toward HepG2 and HEK 293 cells below 100 μM according to MTS metabolic and adenylate kinase release assays and is well tolerated in vivo when dosed at 46 mg kg-1 . TetM0 does not inhibit the hERG ion channel and is not mutagenic based on the Ames fluctuation test. Finally, in vivo efficacy studies show that the hyperlocomotion of mice treated with methamphetamine can be greatly reduced by treatment with TetM0 up to 5 minutes later. TetM0 has potential as a broad spectrum in vivo sequestrant for drugs of abuse.
Collapse
Affiliation(s)
- Adam T Brockett
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland at College Park, College Park, MD 20742, United States
| | - Chunlin Deng
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, United States
| | - Suvenika Perera
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Delaney DiMaggio
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Ming Cheng
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, United States
| | - Matthew R Roesch
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland at College Park, College Park, MD 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| |
Collapse
|
38
|
Barrientos R, Whalen C, Torres OB, Sulima A, Bow EW, Komla E, Beck Z, Jacobson AE, Rice KC, Matyas GR. Bivalent Conjugate Vaccine Induces Dual Immunogenic Response That Attenuates Heroin and Fentanyl Effects in Mice. Bioconjug Chem 2021; 32:2295-2306. [PMID: 34076427 PMCID: PMC8603354 DOI: 10.1021/acs.bioconjchem.1c00179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Indexed: 11/29/2022]
Abstract
Opioid use disorders and fatal overdose due to consumption of fentanyl-laced heroin remain a major public health menace in the United States. Vaccination may serve as a promising potential remedy to combat accidental overdose and to mitigate the abuse potential of opioids. We previously reported the heroin and fentanyl monovalent vaccines carrying, respectively, a heroin hapten, 6-AmHap, and a fentanyl hapten, para-AmFenHap, conjugated to tetanus toxoid (TT). Herein, we describe the mixing of these antigens to formulate a bivalent vaccine adjuvanted with liposomes containing monophosphoryl lipid A (MPLA) adsorbed on aluminum hydroxide. Immunization of mice with the bivalent vaccine resulted in IgG titers of >105 against both haptens. The polyclonal sera bound heroin, 6-acetylmorphine, morphine, and fentanyl with dissociation constants (Kd) of 0.25 to 0.50 nM. Mice were protected from the anti-nociceptive effects of heroin, fentanyl, and heroin +9% (w/w) fentanyl. No cross-reactivity to methadone and buprenorphine was observed in vivo. Naloxone remained efficacious in immunized mice. These results highlighted the potential of combining TT-6-AmHap and TT-para-AmFenHap to yield an efficacious bivalent vaccine that could ablate heroin and fentanyl effects. This vaccine warrants further testing to establish its potential translatability to humans.
Collapse
Affiliation(s)
- Rodell
C. Barrientos
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Connor Whalen
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Oscar B. Torres
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Agnieszka Sulima
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Eric W. Bow
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Essie Komla
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Zoltan Beck
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Arthur E. Jacobson
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Kenner C. Rice
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Gary R. Matyas
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| |
Collapse
|
39
|
Zheng Z, Kyzer JL, Worob A, Wenthur CJ. Family of Structurally Related Bioconjugates Yields Antibodies with Differential Selectivity against Ketamine and 6-Hydroxynorketamine. ACS Chem Neurosci 2021; 12:4113-4122. [PMID: 34652905 PMCID: PMC9358770 DOI: 10.1021/acschemneuro.1c00498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The dissociative-hypnotic compound ketamine is being used in an increasingly wide range of therapeutic contexts, including anesthesia, adjunctive analgesia, treatment-resistant depression, but it also continues to be a notable substance of abuse. No specific antidotes exist for ketamine intoxication or overdose. Immunopharmacotherapy has demonstrated the ability to offer overdose protection through production of highly specific antibodies that prevent psychoactive drug penetration across the blood-brain barrier, although antiketamine antibodies have not yet been assessed or optimized for use in this approach. Moreover, generation of specific antibodies also provides an opportunity to address the role of 6-hydroxynorketamine metabolites in ketamine's rapid-acting antidepressant effect through selective restriction of metabolite access to the central nervous system. Hapten design is a critical element for tuning immune recognition of small molecules, as it affects the presentation of the target antigen and thus the quality and selectivity of the response. Here, we report the synthesis and optimization of carrier protein and conjugation conditions for an initial hapten, norketamine-N-COOH (NK-N-COOH), to optimize vaccination conditions and assess the functional consequences of such vaccination on ketamine-induced behavioral alterations occurring at dissociative-like (50 mg/kg) doses. Iterating from this initial approach, two additional haptens, ketamine-N-COOH (KET-N-COOH) and 6-hydroxynorketamine-N-COOH (HNK-N-COOH), were synthesized to target either ketamine or 6-hydroxynorketamine with greater selectivity. The ability of these haptens to generate antiketamine, antinorketamine, and anti-6-hydroxynorketamine immune responses in mice was then assessed using enzyme-linked immunosorbent assay (ELISA) and competitive surface plasmon resonance (SPR) methods. All three haptens provoked immune responses in vivo, although the KET-N-COOH and 6-HNK-N-COOH haptens yielded antibodies with 5- to 10-fold improvements in affinity for ketamine and/or 6-hydroxynorketamine, as compared to NK-N-COOH. Regarding selectivity, vaccines bearing a KET-N-COOH hapten yielded an antibody response with approximately equivalent Kd values against ketamine (86.4 ± 3.2 nM) and 6-hydroxynorketamine (74.1 ± 7.8 nM) and a 90-fold weaker Kd against norketamine. Contrastingly, 6-HNK-N-COOH generated the highest affinity and most selective antibody profile, with a 38.3 ± 4.7 nM IC50 against 6-hydroxynorketamine; Kd values for ketamine and norketamine were 33- to 105-fold weaker, at 1290 ± 281.5 and 3971 ± 2175 nM, respectively. Overall, these findings support the use of rational hapten design to generate antibodies capable of distinguishing between structurally related, yet mechanistically distinct, compounds arising from the same precursor molecule. As applied to the production of the first-reported anti-6-hydroxynorketamine antibodies to date, this approach demonstrates a promising path forward for identifying the individual and combinatorial roles of ketamine and its metabolites in supporting rewarding effects and/or rapid-acting antidepressant activity.
Collapse
Affiliation(s)
- Zhen Zheng
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Jillian L Kyzer
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Adam Worob
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Cody J Wenthur
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| |
Collapse
|
40
|
Ban B, Barrientos RC, Oertel T, Komla E, Whalen C, Sopko M, You Y, Banerjee P, Sulima A, Jacobson AE, Rice KC, Matyas GR, Yusibov V. Novel chimeric monoclonal antibodies that block fentanyl effects and alter fentanyl biodistribution in mice. MAbs 2021; 13:1991552. [PMID: 34693882 PMCID: PMC8547829 DOI: 10.1080/19420862.2021.1991552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The prevalence and societal impact of opioid use disorder (OUD) is an acknowledged public health crisis that is further aggravated by the current pandemic. One of the devastating consequences of OUD is opioid overdose deaths. While multiple medications are now available to treat OUD, given the prevalence and societal burden, additional well-tolerated and effective therapies are still needed. To this point, we have developed chimeric monoclonal antibodies (mAb) that will specifically complex with fentanyl and its analogs in the periphery, thereby preventing them from reaching the central nervous system. Additionally, mAb-based passive immunotherapy offers a high degree of specificity to drugs of abuse and does not interfere with an individual’s ability to use any of the medications used to treat OUD. We hypothesized that sequestering fentanyl and its analogs in the periphery will mitigate their negative effects on the brain and peripheral organs. This study is the first report of chimeric mAb against fentanyl and its analogs. We have discovered, engineered the chimeric versions, and identified the selectivity of these antibodies, through in vitro characterization and in vivo animal challenge studies. Two mAb candidates with very high (0.1–1.3 nM) binding affinities to fentanyl and its analogs were found to be effective in engaging fentanyl in the periphery and blocking its effects in challenged animals. Results presented in this work constitute a major contribution in the field of novel therapeutics targeting OUD.
Collapse
Affiliation(s)
- Bhupal Ban
- Pharmaceutical Center, Indiana Biosciences Research Institute, Indianapolis, Indiana, United States
| | - Rodell C Barrientos
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States.,U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States
| | - Therese Oertel
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States
| | - Essie Komla
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States.,U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States
| | - Connor Whalen
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States
| | - Megan Sopko
- Pharmaceutical Center, Indiana Biosciences Research Institute, Indianapolis, Indiana, United States
| | - Yingjian You
- Pharmaceutical Center, Indiana Biosciences Research Institute, Indianapolis, Indiana, United States
| | - Partha Banerjee
- Pharmaceutical Center, Indiana Biosciences Research Institute, Indianapolis, Indiana, United States
| | - Agnieszka Sulima
- Department of Health and Human Services, Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Arthur E Jacobson
- Department of Health and Human Services, Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Kenner C Rice
- Department of Health and Human Services, Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States
| | - Vidadi Yusibov
- Pharmaceutical Center, Indiana Biosciences Research Institute, Indianapolis, Indiana, United States
| |
Collapse
|
41
|
The M3-TT Vaccine Decreases the Antinociceptive Effects of Morphine and Heroin in Mice. Int J Ment Health Addict 2021. [DOI: 10.1007/s11469-021-00621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
42
|
Brunetti P, Pirani F, Carlier J, Giorgetti R, Busardò FP, Lo Faro AF. A 2017-2019 Update on Acute Intoxications and Fatalities from Illicit Fentanyl and Analogs. J Anal Toxicol 2021; 45:537-554. [PMID: 32860688 DOI: 10.1093/jat/bkaa115] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/24/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
The aim of this review was to report the most recent cases of acute intoxication, fatalities and "driving under the influence" cases, involving illicit fentanyl and its newest analogs. When available, information on age, sex, circumstances of exposure, intoxication symptoms, cause of death (if applicable) and toxicology results from biological fluid testing was described. Scientific publications reporting fatalities or acute intoxications involving use of fentanyl derivatives were identified from PubMed, Scopus and institutional/governmental websites from January 2017 up to December 2019. The search terms, used alone and in combination, were as follows: fentanyl, street fentanyl, analogs, compounds, derivatives, abuse, fatality, fatalities, death, toxicity, intoxication and adverse effects. When considered relevant, reports not captured by the initial search but cited in other publications were also included. Of the 2890 sources initially found, only 44 were suitable for the review. Emergent data showed that the most common analogs detected in biological samples and seized materials are acetylfentanyl, acrylfentanyl, butyrfentanyl, carfentanil, cyclopropylfentanyl, fluorofentanyl, 4-fluorobutyrfentanyl, 4-fluoroisobutyrfentanyl, furanylfentanyl, 2-methoxyacetylfentanyl, 3-methylfentanyl and ocfentanil. These compounds were frequently administered in association with other illicit substances, medicinal drugs and/or alcohol; patients and the victims often had a previous history of drug abuse. The trend of fentanyl analogs is rapidly evolving with illicit market fluctuations. Since information about potency and lethal dosage are frequently unknown, it is important to identify the new trends for further investigation on therapeutic use, toxicity and fatal doses, and implement public health measures. Recently marketed fentanyl analogs such as crotonylfentanyl and valerylfentanyl were not involved in intoxications to date, but should be carefully monitored. Many intoxications and fatalities might have gone unnoticed, and research efforts should focus on metabolite identification studies and the implementation of updated and comprehensive analytical methods.
Collapse
Affiliation(s)
- Pietro Brunetti
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy
| | - Filippo Pirani
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy
| | - Jeremy Carlier
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy
| | - Raffaele Giorgetti
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy
| | - Francesco Paolo Busardò
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy
| | - Alfredo Fabrizio Lo Faro
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy
| |
Collapse
|
43
|
Barbosa-Méndez S, Matus-Ortega M, Hernández-Miramontes R, Salazar-Juárez A. The morphine/heroin vaccine decreased the heroin-induced antinociceptive and reinforcing effects in three inbred strains mouse. Int Immunopharmacol 2021; 98:107887. [PMID: 34186279 DOI: 10.1016/j.intimp.2021.107887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022]
Abstract
Clinical trials have indicated that a vaccine must be immunogenic in genetically diverse human populations and that immunogenicity and protective efficacy in animal models are two key indices required for the approval of a new vaccine. Additionally, the immune response (immunogenicity) and immunoprotection are dependent on the mouse strain. Therefore, the objective of the present study was to determine the immune response (immunogenicity) and the protective efficacy (behavioral response) in three inbred mouse strains immunized with the M6TT vaccine. Female BALB/c, C57Bl/6, and DBA/2 inbred mice were immunized with the M6-TT vaccine. A solid-phase antibody-capture ELISA was used to monitor antibody titer responses after each booster dose in vaccinated animals. The study used tail-flick testing to evaluate the antinociceptive effects induced by heroin. Additionally, heroin-induced locomotor activity and place preference were evaluated. The M6-TT vaccine was able to generate a specific antibody titer in the three inbred mouse strains evaluated. The antibodies reduced the antinociceptive effect of different doses of heroin. In addition, they decreased the heroin-induced locomotor activity and place preference. These findings suggest that the M6-TT vaccine generates a powerful immunogenic response capable of reducing the antinociceptive and reinforcing effects of heroin in different inbred mouse strains, which supports its possible future use in clinical trials in genetically diverse human populations.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Maura Matus-Ortega
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Ricardo Hernández-Miramontes
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, Mexico.
| |
Collapse
|
44
|
Pharmacological mechanisms underlying the efficacy of antibodies generated by a vaccine to treat oxycodone use disorder. Neuropharmacology 2021; 195:108653. [PMID: 34126123 DOI: 10.1016/j.neuropharm.2021.108653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 06/06/2021] [Indexed: 11/24/2022]
Abstract
Therapeutic vaccines offer a viable strategy to treat opioid use disorders (OUD) complementary to current pharmacotherapies. The candidate Oxy(Gly)4-sKLH vaccine targeting oxycodone displayed pre-clinical proof of efficacy, selectivity and safety, and it is now undergoing clinical evaluation. To further support its implementation in the clinic, this study tested critical in vivo neuropsychopharmacological properties of the Oxy(Gly)4-sKLH vaccine in rats. While repeated immunizations with Oxy(Gly)4-sKLH were necessary to maintain the antibody response overtime, exposure to free oxycodone did not boost oxycodone-specific antibody levels in vaccinated rats, limiting concerns of immune-related side effects. Immunization with Oxy(Gly)4-sKLH achieved sustained antibody titers over a period of five months following initial vaccination, supporting its potential for providing long-lasting protection. In vivo studies of selectivity showed that vaccination prevented oxycodone-induced but not methadone-induced antinociception, while still preserving the opioid antagonist naloxone's pharmacological effects. Vaccination did not interfere with fentanyl-induced antinociception or fentanyl distribution to the brain. These in vivo data confirm the previously reported in vitro selectivity profile of Oxy(Gly)4-sKLH. Vaccination extended oxycodone's half-life up to 25 h compared to control. While vaccination reduced the reinforcing efficacy of oxycodone in an intravenous self-administration model, signs of toxicity were not observed. These rodent studies confirm that active immunization with Oxy(Gly)4-sKLH induces highly specific and long-lasting antibodies which are effective in decreasing the reinforcing effects of oxycodone while preserving the efficacy of medications used to treat OUD and overdose.
Collapse
|
45
|
Stone AE, Scheuermann SE, Haile CN, Cuny GD, Velasquez ML, Linhuber JP, Duddupudi AL, Vigliaturo JR, Pravetoni M, Kosten TA, Kosten TR, Norton EB. Fentanyl conjugate vaccine by injected or mucosal delivery with dmLT or LTA1 adjuvants implicates IgA in protection from drug challenge. NPJ Vaccines 2021; 6:69. [PMID: 33986280 PMCID: PMC8119695 DOI: 10.1038/s41541-021-00329-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
Fentanyl is a major contributor to the devastating increase in overdose deaths from substance use disorders (SUD). A vaccine targeting fentanyl could be a powerful immunotherapeutic. Here, we evaluated adjuvant and delivery strategies for conjugate antigen vaccination with fentanyl-based haptens. We tested adjuvants derived from the heat-labile toxin of E. coli including dmLT and LTA1 by intramuscular, sublingual or intranasal delivery. Our results show anti-fentanyl serum antibodies and antibody secreting cells in the bone-marrow after vaccination with highest levels observed with an adjuvant (alum, dmLT, or LTA1). Vaccine adjuvanted with LTA1 or dmLT elicited the highest levels of anti-fentanyl antibodies, whereas alum achieved highest levels against the carrier protein. Vaccination with sublingual dmLT or intranasal LTA1 provided the most robust blockade of fentanyl-induced analgesia and CNS penetration correlating strongly to anti-FEN IgA. In conclusion, this study demonstrates dmLT or LTA1 adjuvant as well as mucosal delivery may be attractive strategies for improving the efficacy of vaccines against SUD.
Collapse
Affiliation(s)
- Addison E Stone
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sarah E Scheuermann
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Colin N Haile
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute of Measurement Evaluation and Statistics, University of Houston, Houston, TX, USA
| | - Gregory D Cuny
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Marcela Lopez Velasquez
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Joshua P Linhuber
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Anantha L Duddupudi
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Jennifer R Vigliaturo
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.,Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Therese A Kosten
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute of Measurement Evaluation and Statistics, University of Houston, Houston, TX, USA
| | - Thomas R Kosten
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute of Measurement Evaluation and Statistics, University of Houston, Houston, TX, USA
| | - Elizabeth B Norton
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
46
|
Gutman ES, Irvin TC, Morgan JB, Barrientos RC, Torres OB, Beck Z, Matyas GR, Jacobson AE, Rice KC. Synthesis and immunological effects of C14-linked 4,5-epoxymorphinan analogues as novel heroin vaccine haptens. RSC Chem Biol 2021; 2:835-842. [PMID: 34179783 PMCID: PMC8190897 DOI: 10.1039/d1cb00029b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Active immunization is being explored as a potential therapeutic to combat accidental overdose and to mitigate the abuse potential of opioids. Hapten design is one of the crucial factors that determines the efficacy of a candidate vaccine to substance abuse and remains one of the most active areas of research in vaccine development. Herein we report for the first time the synthesis of three novel opiate surrogates with the linker attachment site at C14, 1 (6,14-AmidoHap), 2 (14-AmidoMorHap), and 3 (14-AmidoHerHap) as novel heroin haptens. The compounds 1, 2, and 3 are analogues with different substituents at C6: an acetamide, a hydroxyl moiety, and an acetate, respectively. All three haptens had a phenolic hydroxyl group at C3. The haptens were conjugated to the tetanus toxoid carrier protein, adjuvanted with liposomal monophosphoryl lipid A/aluminum hydroxide and were tested in mice in terms of immunogenicity and efficacy. Immunization of mice resulted in antibody endpoint titers of >105 against all the haptens. Neither of the conjugates of 1, 2, and 3 had induced antibodies with selectivity broad enough to recognize and bind heroin, 6-AM, and morphine resulting in little to no protection against the antinociceptive effects of heroin in vivo. Only the mice immunized with conjugate 3 were partially protected against heroin-induced antinociception. These results contribute to the growing body of knowledge that the linker position and the subtle structural differences in the hapten scaffold impact the selectivity of the induced antibodies. Together, these highlight the importance of rational hapten design for heroin vaccine development. Three novel opiate surrogates with the linker at C14, 1 (6,14-AmidoHap), 2 (14-AmidoMorHap), and 3 (14-AmidoHerHap) were conjugated to tetanus toxoid (TT) and tested as heroin vaccines. The C3 and C6 moieties are crucial in antibody selectivity.![]()
Collapse
Affiliation(s)
- Eugene S Gutman
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services 9800 Medical Center Drive Bethesda MD 20892-3373 USA +1 301-451-4799 +1 301-451-5028
| | - Thomas C Irvin
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services 9800 Medical Center Drive Bethesda MD 20892-3373 USA +1 301-451-4799 +1 301-451-5028
| | - J Brian Morgan
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services 9800 Medical Center Drive Bethesda MD 20892-3373 USA +1 301-451-4799 +1 301-451-5028
| | - Rodell C Barrientos
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research 503 Robert Grant Avenue Silver Spring MD 20910 USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine 6720A Rockledge Drive Bethesda MD 20817 USA
| | - Oscar B Torres
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research 503 Robert Grant Avenue Silver Spring MD 20910 USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine 6720A Rockledge Drive Bethesda MD 20817 USA
| | - Zoltan Beck
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research 503 Robert Grant Avenue Silver Spring MD 20910 USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine 6720A Rockledge Drive Bethesda MD 20817 USA
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research 503 Robert Grant Avenue Silver Spring MD 20910 USA
| | - Arthur E Jacobson
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services 9800 Medical Center Drive Bethesda MD 20892-3373 USA +1 301-451-4799 +1 301-451-5028
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services 9800 Medical Center Drive Bethesda MD 20892-3373 USA +1 301-451-4799 +1 301-451-5028
| |
Collapse
|
47
|
Liu L, Grillo F, Canfarotta F, Whitcombe M, Morgan SP, Piletsky S, Correia R, He C, Norris A, Korposh S. Carboxyl-fentanyl detection using optical fibre grating-based sensors functionalised with molecularly imprinted nanoparticles. Biosens Bioelectron 2021; 177:113002. [PMID: 33486137 DOI: 10.1016/j.bios.2021.113002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/03/2023]
Abstract
Butyrylfentanyl is a new designer drug reported with growing use and related deaths. Routine toxicological analyses of this novel synthetic opioid drug have not been established yet. This work reports a fibre optic sensor that measures carboxyl-fentanyl which is the major metabolite of butyrylfentanyl presented in blood, providing a promising tool for detecting butyrylfentanyl intoxication. A long period fibre grating (LPG) sensor array operating at phase-matching condition is deployed in combination with a state-of-the-art molecular imprinting technique. Nano-sized molecularly imprinted polymers (nanoMIPs) are synthesised via a solid-phase approach and coated on the surface of an LPG array. An LPG array consists of two parts: a detection and a reference LPG. The former is functionalised with nanoMIPs prior to the measurements, whilst the latter is used to take into account the temperature response of the detection LPG. The developed sensor exhibits a gradual response over increasing concentrations of carboxyl-fentanyl from 0 to 1000 ng/mL with a minimal detected concentration of 50 ng/mL, that corresponds to a wavelength shift of 1.20 ± 0.2 nm. The Langmuir adsorption isotherm is applied to fit the analytical data which reveal a binding constant of 2.03 μM-1. The developed sensor shows high selectivity in detecting carboxyl-fentanyl among other drugs and potential interferents including morphine, cocaine, glucose and albumin. It shows a certain degree of cross-response to fentanyl which shares the same binding sites as carboxyl-fentanyl and therefore can be potentially used to detect fentanyl.
Collapse
Affiliation(s)
- LiangLiang Liu
- Optics and Photonics Group, University of Nottingham, Nottingham, UK
| | - Fabiana Grillo
- Department of Chemistry, University of Leicester, Leicester, UK
| | | | | | - Stephen P Morgan
- Optics and Photonics Group, University of Nottingham, Nottingham, UK
| | - Sergey Piletsky
- Department of Chemistry, University of Leicester, Leicester, UK
| | - Ricardo Correia
- Optics and Photonics Group, University of Nottingham, Nottingham, UK
| | - ChenYang He
- Optics and Photonics Group, University of Nottingham, Nottingham, UK
| | - Andrew Norris
- Department of Anesthesiology, Nottingham University Hospitals NHS Trust, Nottingham, UK; Department of Anesthesiology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Serhiy Korposh
- Optics and Photonics Group, University of Nottingham, Nottingham, UK.
| |
Collapse
|
48
|
Eubanks LM, Blake S, Natori Y, Ellis B, Bremer PT, Janda KD. A Highly Efficacious Carfentanil Vaccine That Blunts Opioid-Induced Antinociception and Respiratory Depression. ACS Chem Biol 2021; 16:277-282. [PMID: 33533592 DOI: 10.1021/acschembio.1c00026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The opioid epidemic remains a dire public health crisis with millions of people currently suffering from opioid use disorder (OUD) and tens of thousands dying each year. Synthetic opioids are most responsible for the crisis because of their extreme potency and ease of manufacture. Carfentanil for example has an estimated potency 10,000 times greater than morphine and thus is highly dangerous for human use. Herein, we report two synthetic opioid vaccines that elicited high-affinity antibodies against carfentanil and fentanyl with cross-reactivity to other synthetic opioids in mice and offered protection against opioid-induced respiratory depression, the primary cause of overdose deaths. These vaccines also successfully diminished drug biodistribution to the brain and shielded against opioid analgesic effects. Collectively, these findings provide new insights into the development of immunotherapeutic strategies aimed at opioid abuse and overdose.
Collapse
Affiliation(s)
- Lisa M. Eubanks
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Steven Blake
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yoshihiro Natori
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Beverly Ellis
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Paul T. Bremer
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
49
|
Murkli S, Klemm J, Brockett AT, Shuster M, Briken V, Roesch MR, Isaacs L. In Vitro and In Vivo Sequestration of Phencyclidine by Me 4 Cucurbit[8]uril*. Chemistry 2021; 27:3098-3105. [PMID: 33206421 PMCID: PMC7902406 DOI: 10.1002/chem.202004380] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 12/19/2022]
Abstract
We report investigations of the use of cucurbit[8]uril (CB[8]) macrocycles as an antidote to counteract the in vivo biological effects of phencyclidine. We investigate the binding of CB[8] and its derivative Me4 CB[8] toward ten drugs of abuse (3-9, 12-14) by a combination of 1 H NMR spectroscopy and isothermal titration calorimetry in phosphate buffered water. We find that the cavity of CB[8] and Me4 CB[8] are able to encapsulate the 1-amino-1-aryl-cyclohexane ring system of phencyclidine (PCP) and ketamine as well as the morphinan skeleton of morphine and hydromorphone with Kd values ≤50 nm. In vitro cytotoxicity (MTS metabolic and adenylate kinase cell death assays in HEK293 and HEPG2 cells) and in vivo maximum tolerated dose studies (Swiss Webster mice) which were performed for Me4 CB[8] indicated good tolerability. The tightest host⋅guest pair (Me4 CB[8]⋅PCP; Kd =2 nm) was advanced to in vivo efficacy studies. The results of open field tests demonstrate that pretreatment of mice with Me4 CB[8] prevents subsequent hyperlocomotion induction by PCP and also that treatment of animals previously dosed with PCP with Me4 CB[8] significantly reduces the locomotion levels.
Collapse
Affiliation(s)
- Steven Murkli
- Mr. Steven Murkli, Mr. Jared Klemm, Mr. David King, Dr. Peter Y. Zavalij, Prof. Dr. Lyle Isaacs, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Jared Klemm
- Mr. Steven Murkli, Mr. Jared Klemm, Mr. David King, Dr. Peter Y. Zavalij, Prof. Dr. Lyle Isaacs, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Adam T. Brockett
- Dr. Adam T. Brockett, Prof. Dr. Matthew R. Roesch, Department of Psychology, University of Maryland, College Park, MD 20742, United States
- Dr. Adam T. Brockett, Prof. Dr. Matthew R. Roesch, Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, United States
| | - Michael Shuster
- Mr. Michael Shuster, Prof. Dr. Volker Briken, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Volker Briken
- Mr. Michael Shuster, Prof. Dr. Volker Briken, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Matthew R. Roesch
- Dr. Adam T. Brockett, Prof. Dr. Matthew R. Roesch, Department of Psychology, University of Maryland, College Park, MD 20742, United States
- Dr. Adam T. Brockett, Prof. Dr. Matthew R. Roesch, Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, United States
| | - Lyle Isaacs
- Mr. Steven Murkli, Mr. Jared Klemm, Mr. David King, Dr. Peter Y. Zavalij, Prof. Dr. Lyle Isaacs, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
50
|
Lin M, Lee JC, Blake S, Ellis B, Eubanks LM, Janda KD. Broadly Neutralizing Synthetic Cannabinoid Vaccines. JACS AU 2021; 1:31-40. [PMID: 34467269 PMCID: PMC8395583 DOI: 10.1021/jacsau.0c00057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 05/11/2023]
Abstract
Synthetic cannabinoids (SCs) constitute a significant portion of psychoactive substances forming a major public health risk. Due to the wide variety of SCs, broadly neutralizing antibodies generated by active immunization present an intriguing pathway to combat cannabinoid use disorder. Here, we probed hapten design for antibody affinity and cross reactivity against two classes of SCs. Of the 10 haptens screened, 3 vaccine groups revealed submicromolar IC50, each targeting 5-6 compounds in our panel of 22 drugs. Moreover, SCs were successfully sequestered when administered by vaping or intraperitoneal injection, which was confirmed within animal models by observing locomotion, body temperature, and pharmacokinetics. We also discovered synergistic effects to simultaneously blunt two drug classes through an admixture vaccine approach. Collectively, our study provides a comprehensive foundation for the development of vaccines against SCs.
Collapse
|