1
|
Cheng Y, Lu Y. Physical stimuli-responsive polymeric patches for healthcare. Bioact Mater 2025; 43:342-375. [PMID: 39399837 PMCID: PMC11470481 DOI: 10.1016/j.bioactmat.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 10/15/2024] Open
Abstract
Many chronic diseases have become severe public health problems with the development of society. A safe and efficient healthcare method is to utilize physical stimulus-responsive polymer patches, which may respond to physical stimuli, including light, electric current, temperature, magnetic field, mechanical force, and ultrasound. Under certain physical stimuli, these patches have been widely used in therapy for diabetes, cancer, wounds, hair loss, obesity, and heart diseases since they could realize controllable treatment and reduce the risks of side effects. This review sketches the design principles of polymer patches, including composition, properties, and performances. Besides, control methods of using different kinds of physical stimuli were introduced. Then, the fabrication methods and characterization of patches were explored. Furthermore, recent applications of these patches in the biomedical field were demonstrated. Finally, we discussed the challenges and prospects for its clinical translation. We anticipate that physical stimulus-responsive polymer patches will open up new avenues for healthcare by acting as a platform with multiple functions.
Collapse
Affiliation(s)
- Yifan Cheng
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Quan W, Shi J, Zeng M, Li B, Liu Z, Lv W, Fan C, Wu J, Liu X, Yang J, Hu N, Yang Z. Quantum Confinement and End-Sealing Effects for Highly Sensitive and Stable Nitrogen Dioxide Detection: Homogeneous Integration of Ti 3C 2T x-Based Flexible Gas Sensors. ACS Sens 2024; 9:4578-4590. [PMID: 39223701 DOI: 10.1021/acssensors.4c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The real-time and room-temperature detection of nitrogen dioxide (NO2) holds significant importance for environmental monitoring. However, the performance of NO2 sensors has been hampered by the trade-off between the high sensitivity and stability of conventional sensitive materials. Here, we present a novel fully flexible paper-based gas sensing structure by combining a homogeneous screen-printed titanium carbide (Ti3C2Tx) MXene-based nonmetallic electrode with a MoS2 quantum dots/Ti3C2Tx (MoS2 QDs/Ti3C2Tx) gas-sensing film. These precisely designed gas sensors demonstrate an improved response value (16.3% at 5 ppm) and a low theoretical detection limit of 12.1 ppb toward NO2, which exhibit a remarkable 3.5-fold increase in sensitivity compared to conventional Au interdigital electrodes. The outstanding performance can be attributed to the integration of the quantum confinement effect of MoS2 QDs and the conductivity of Ti3C2Tx, establishing the main active adsorption sites and enhanced charge transport pathways. Furthermore, an end-sealing effect strategy was applied to decorate the defect sites with naturally oxygen-rich tannic acid and conductive polymer, and the formed hydrogen bonding network at the interface effectively mitigated the oxidative degradation of the Ti3C2Tx-based gas sensors. The exceptional stability has been achieved with only a 1.8% decrease in response over 4 weeks. This work highlights the innovative design of high-performance gas sensing materials and homogeneous gas sensor techniques.
Collapse
Affiliation(s)
- Wenjing Quan
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia Shi
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Zeng
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Li
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Zhou Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen Lv
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Fan
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Wu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianhua Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nantao Hu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Zhang Y, Zheng XT, Zhang X, Pan J, Thean AVY. Hybrid Integration of Wearable Devices for Physiological Monitoring. Chem Rev 2024; 124:10386-10434. [PMID: 39189683 DOI: 10.1021/acs.chemrev.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Wearable devices can provide timely, user-friendly, non- or minimally invasive, and continuous monitoring of human health. Recently, multidisciplinary scientific communities have made significant progress regarding fully integrated wearable devices such as sweat wearable sensors, saliva sensors, and wound sensors. However, the translation of these wearables into markets has been slow due to several reasons associated with the poor system-level performance of integrated wearables. The wearability consideration for wearable devices compromises many properties of the wearables. Besides, the limited power capacity of wearables hinders continuous monitoring for extended duration. Furthermore, peak-power operations for intensive computations can quickly create thermal issues in the compact form factor that interfere with wearability and sensor operations. Moreover, wearable devices are constantly subjected to environmental, mechanical, chemical, and electrical interferences and variables that can invalidate the collected data. This generates the need for sophisticated data analytics to contextually identify, include, and exclude data points per multisensor fusion to enable accurate data interpretation. This review synthesizes the challenges surrounding the wearable device integration from three aspects in terms of hardware, energy, and data, focuses on a discussion about hybrid integration of wearable devices, and seeks to provide comprehensive guidance for designing fully functional and stable wearable devices.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
4
|
Choi W, Shin J, Kim YJ, Hur J, Jang BC, Yoo H. Versatile Papertronics: Photo-Induced Synapse and Security Applications on Papers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312831. [PMID: 38870479 DOI: 10.1002/adma.202312831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Paper is a readily available material in nature. Its recyclability, eco-friendliness, portability, flexibility, and affordability make it a favored substrate for researchers seeking cost-effective solutions. Electronic devices based on solution process are fabricated on paper and banknotes using PVK and SnO2 nanoparticles. The devices manufactured on paper substrates exhibit photosynaptic behavior under ultraviolet pulse illumination, stemming from numerous interactions on the surface of the SnO2 nanoparticles. A light-modulated artificial synapse device is realized on a paper at a low voltage bias of -0.01 V, with an average recognition rate of 91.7% based on the Yale Face Database. As a security device on a banknote, 400 devices in a 20 × 20 array configuration exhibited random electrical characteristics owing to the local morphology of the SnO2 nanoparticles and differences in the depletion layer width at the SnO2/PVK interface. The security Physically Unclonable Functions (PUF) key based on the current distribution extracted at -1 V show unpredictable reproducibility with 50% uniformity, 48.7% inter-Hamming distance, and 50.1% bit-aliasing rates. Moreover, the device maintained its properties for more than 210 days under a curvature radius of 8.75 mm and bias and UV irradiation stress conditions.
Collapse
Affiliation(s)
- Wangmyung Choi
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, Republic of Korea
| | - Jihyun Shin
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, Republic of Korea
| | - Yeong Jae Kim
- Ceramic Total Solution Center, Korea Institute of Ceramic Engineering and Technology, 3321 Gyeongchung-daero, Icheon, 17303, Republic of Korea
| | - Jaehyun Hur
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, Republic of Korea
| | - Byung Chul Jang
- School of Electronics and Electrical Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, Republic of Korea
| |
Collapse
|
5
|
Das G, Ibrahim FA, Khalil ZA, Bazin P, Chandra F, AbdulHalim RG, Prakasam T, Das AK, Sharma SK, Varghese S, Kirmizialtin S, Jagannathan R, Saleh N, Benyettou F, Roz ME, Addicoat M, Olson MA, Rao DSS, Prasad SK, Trabolsi A. Ionic Covalent Organic Framework as a Dual Functional Sensor for Temperature and Humidity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311064. [PMID: 38396219 DOI: 10.1002/smll.202311064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Visual sensing of humidity and temperature by solids plays an important role in the everyday life and in industrial processes. Due to their hydrophobic nature, most covalent organic framework (COF) sensors often exhibit poor optical response when exposed to moisture. To overcome this challenge, the optical response is set out to improve, to moisture by incorporating H-bonding ionic functionalities into the COF network. A highly sensitive COF, consisting of guanidinium and diformylpyridine linkers (TG-DFP), capable of detecting changes in temperature and moisture content is fabricated. The hydrophilic nature of the framework enables enhanced water uptake, allowing the trapped water molecules to form a large number of hydrogen bonds. Despite the presence of non-emissive building blocks, the H-bonds restrict internal bond rotation within the COF, leading to reversible fluorescence and solid-state optical hydrochromism in response to relative humidity and temperature.
Collapse
Affiliation(s)
- Gobinda Das
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Fayrouz Abou Ibrahim
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Zahraa Abou Khalil
- Laboratoire Catalyse et Spectrochimie, CNRS, Ensicaen, Université de Caen, 6, Boulevard Maréchal Juin 14050, Caen, France
| | - Philippe Bazin
- Laboratoire Catalyse et Spectrochimie, CNRS, Ensicaen, Université de Caen, 6, Boulevard Maréchal Juin 14050, Caen, France
| | - Falguni Chandra
- Chemistry Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates
| | - Rasha G AbdulHalim
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Thirumurugan Prakasam
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Akshaya Kumar Das
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Sudhir Kumar Sharma
- Engineering Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, 129188, United Arab Emirates
| | - Sabu Varghese
- New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Serdal Kirmizialtin
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Ramesh Jagannathan
- Engineering Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, 129188, United Arab Emirates
| | - Na'il Saleh
- Chemistry Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates
- National Water and Energy center, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Farah Benyettou
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Mohamad El Roz
- Laboratoire Catalyse et Spectrochimie, CNRS, Ensicaen, Université de Caen, 6, Boulevard Maréchal Juin 14050, Caen, France
| | - Matthew Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS, Nottingham, NG118NS, UK
| | - Mark A Olson
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Dr, Corpus Christi, TX, 78412, USA
| | - D S Shankar Rao
- Centre for Nano and Soft Matter Sciences(CeNS), Arkavathi, Survey No.7, Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India
| | - S Krishna Prasad
- Centre for Nano and Soft Matter Sciences(CeNS), Arkavathi, Survey No.7, Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India
| | - Ali Trabolsi
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
- NYUAD Water Research Center, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| |
Collapse
|
6
|
Tang C, Wang H, Dou Y, Lai P. Meshed, Flexible, and Self-Supported Humidity Sensors by Direct-Writing with Multifunctional Applications. ACS OMEGA 2024; 9:33261-33269. [PMID: 39100349 PMCID: PMC11292840 DOI: 10.1021/acsomega.4c05316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
Flexibility endows humidity sensors with new applications in human health monitoring except for traditionally known environmental humidity detection in recent years. In this study, a flexible, mesh-structured, and self-supported humidity sensor was designed and manufactured by direct writing in a homemade two-dimensional stepping numerical control workstation. Bacterial cellulose with humidity sensitivity and good film-forming properties was applied as the self-supporting substrate, in which conductive activated carbon and water-absorptive magnesium chloride (MgCl2) were incorporated. The humidity sensing performance of the printed sensor was measured and optimized. Besides, the fundamental insight into the sensing mechanism of the printed humidity sensor was analyzed by a complex impedance spectrum. The multifunctional applications of the self-supported humidity sensor were demonstrated by human breathing detection, noncontact distance sensing, and speaking recognition. The simple self-supported structure combined with the meshed attribute of the flexible sensor showed large use potential in real-time monitoring of human respiration, voice detection, environmental humidity monitoring, and noncontact switches.
Collapse
Affiliation(s)
- Chengli Tang
- School
of Mechanical Engineering, Tianjin University, Tianjin 300354, China
- Zhejiang
Zhongda Advanced Material Co., Ltd., Jiaxing 314312, China
- College
of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Haoxiang Wang
- College
of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
- School
of Mechanical Engineering, Zhejiang Sci-Tech
University, Hangzhou 310018, China
| | - Yuhao Dou
- College
of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
- School
of Mechanical Engineering, Zhejiang Sci-Tech
University, Hangzhou 310018, China
| | - Puguo Lai
- College
of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
7
|
Rath RJ, Herrington JO, Adeel M, Güder F, Dehghani F, Farajikhah S. Ammonia detection: A pathway towards potential point-of-care diagnostics. Biosens Bioelectron 2024; 251:116100. [PMID: 38364327 DOI: 10.1016/j.bios.2024.116100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Invasive methods such as blood collection and biopsy are commonly used for testing liver and kidney function, which are painful, time-consuming, require trained personnel, and may not be easily accessible to people for their routine checkup. Early diagnosis of liver and kidney diseases can prevent severe symptoms and ensure better management of these patients. Emerging approaches such as breath and sweat analysis have shown potential as non-invasive methods for disease diagnosis. Among the many markers, ammonia is often used as a biomarker for the monitoring of liver and kidney functions. In this review we provide an insight into the production and expulsion of ammonia gas in the human body, the different diseases that could potentially use ammonia as biomarker and analytical devices such as chemiresistive gas sensors for non-invasive monitoring of this gas. The review also provides an understanding into the different materials, doping agents and substrates used to develop such multifunctional sensors. Finally, the current challenges and the possible future trends have been discussed.
Collapse
Affiliation(s)
- Ronil J Rath
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jack O Herrington
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Muhammad Adeel
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Firat Güder
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia; The University of Sydney, Sydney Nano Institute, Sydney, NSW, 2006, Australia.
| | - Syamak Farajikhah
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia; The University of Sydney, Sydney Nano Institute, Sydney, NSW, 2006, Australia.
| |
Collapse
|
8
|
Cao J, Wu B, Yuan P, Liu Y, Hu C. Progress of Research on Conductive Hydrogels in Flexible Wearable Sensors. Gels 2024; 10:144. [PMID: 38391474 PMCID: PMC10887588 DOI: 10.3390/gels10020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
Conductive hydrogels, characterized by their excellent conductivity and flexibility, have attracted widespread attention and research in the field of flexible wearable sensors. This paper reviews the application progress, related challenges, and future prospects of conductive hydrogels in flexible wearable sensors. Initially, the basic properties and classifications of conductive hydrogels are introduced. Subsequently, this paper discusses in detail the specific applications of conductive hydrogels in different sensor applications, such as motion detection, medical diagnostics, electronic skin, and human-computer interactions. Finally, the application prospects and challenges are summarized. Overall, the exceptional performance and multifunctionality of conductive hydrogels make them one of the most important materials for future wearable technologies. However, further research and innovation are needed to overcome the challenges faced and to realize the wider application of conductive hydrogels in flexible sensors.
Collapse
Affiliation(s)
- Juan Cao
- School of Fashion and Design Art, Sichuan Normal University, Chengdu 610066, China
| | - Bo Wu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Ping Yuan
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Yeqi Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Vitazkova D, Foltan E, Kosnacova H, Micjan M, Donoval M, Kuzma A, Kopani M, Vavrinsky E. Advances in Respiratory Monitoring: A Comprehensive Review of Wearable and Remote Technologies. BIOSENSORS 2024; 14:90. [PMID: 38392009 PMCID: PMC10886711 DOI: 10.3390/bios14020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024]
Abstract
This article explores the importance of wearable and remote technologies in healthcare. The focus highlights its potential in continuous monitoring, examines the specificity of the issue, and offers a view of proactive healthcare. Our research describes a wide range of device types and scientific methodologies, starting from traditional chest belts to their modern alternatives and cutting-edge bioamplifiers that distinguish breathing from chest impedance variations. We also investigated innovative technologies such as the monitoring of thorax micromovements based on the principles of seismocardiography, ballistocardiography, remote camera recordings, deployment of integrated optical fibers, or extraction of respiration from cardiovascular variables. Our review is extended to include acoustic methods and breath and blood gas analysis, providing a comprehensive overview of different approaches to respiratory monitoring. The topic of monitoring respiration with wearable and remote electronics is currently the center of attention of researchers, which is also reflected by the growing number of publications. In our manuscript, we offer an overview of the most interesting ones.
Collapse
Affiliation(s)
- Diana Vitazkova
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Erik Foltan
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Helena Kosnacova
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Sasinkova 4, 81272 Bratislava, Slovakia
| | - Michal Micjan
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Martin Donoval
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Anton Kuzma
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Martin Kopani
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Sasinkova 2, 81272 Bratislava, Slovakia;
| | - Erik Vavrinsky
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Sasinkova 2, 81272 Bratislava, Slovakia;
| |
Collapse
|
10
|
Gong S, Lu Y, Yin J, Levin A, Cheng W. Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chem Rev 2024; 124:455-553. [PMID: 38174868 DOI: 10.1021/acs.chemrev.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the era of Internet-of-things, many things can stay connected; however, biological systems, including those necessary for human health, remain unable to stay connected to the global Internet due to the lack of soft conformal biosensors. The fundamental challenge lies in the fact that electronics and biology are distinct and incompatible, as they are based on different materials via different functioning principles. In particular, the human body is soft and curvilinear, yet electronics are typically rigid and planar. Recent advances in materials and materials design have generated tremendous opportunities to design soft wearable bioelectronics, which may bridge the gap, enabling the ultimate dream of connected healthcare for anyone, anytime, and anywhere. We begin with a review of the historical development of healthcare, indicating the significant trend of connected healthcare. This is followed by the focal point of discussion about new materials and materials design, particularly low-dimensional nanomaterials. We summarize material types and their attributes for designing soft bioelectronic sensors; we also cover their synthesis and fabrication methods, including top-down, bottom-up, and their combined approaches. Next, we discuss the wearable energy challenges and progress made to date. In addition to front-end wearable devices, we also describe back-end machine learning algorithms, artificial intelligence, telecommunication, and software. Afterward, we describe the integration of soft wearable bioelectronic systems which have been applied in various testbeds in real-world settings, including laboratories that are preclinical and clinical environments. Finally, we narrate the remaining challenges and opportunities in conjunction with our perspectives.
Collapse
Affiliation(s)
- Shu Gong
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Lu
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jialiang Yin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Arie Levin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
11
|
Yan M, Hao Q, Diao S, Zhou F, Yichen C, Jiang N, Zhao C, Ren XR, Yu F, Tong J, Wang D, Liu H. Smart Home Sleep Respiratory Monitoring System Based on a Breath-Responsive Covalent Organic Framework. ACS NANO 2024; 18:728-737. [PMID: 38118144 DOI: 10.1021/acsnano.3c09018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
A smart home sleep respiratory monitoring system based on a breath-responsive covalent organic framework (COF) was developed and utilized to monitor the sleep respiratory behavior of real sleep apnea patients in this work. The capacitance of the interdigital electrode chip coated with COFTPDA-TFPy exhibits thousands-level reversible responses to breath humidity gases, with subsecond response time and robustness against environmental humidity. A miniaturized printed circuit board, an open-face-mask-based respiratory sensor, and a smartphone app were constructed for the wearable wireless smart home sleep respiratory monitoring system. Leveraging the sensitive and rapid reversible response of COFs, the COF-based respiratory monitoring system can effectively record normal breath, rapid breath, and breath apnea, enabling over a thousand cycles of hour-level continuous monitoring during daily wear. Next, we took the groundbreaking step of advancing the humidity sensor to the clinical trial stage. In clinical experiments on real sleep apnea patients, the COF-based respiratory monitoring system successfully recorded hour-level sleep respiratory data and differentiated the breathing behavior characteristics and severity of sleep apnea patients and subjects with normal sleep function and primary snoring patients. This work successfully advanced humidity sensors into clinical research for real patients and demonstrated the enormous application potential of COF materials in clinical diagnosis.
Collapse
Affiliation(s)
- Mengwen Yan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Qing Hao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Shanyan Diao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Fan Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Chen Yichen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Nan Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Chao Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Xiao-Rui Ren
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Fuchao Yu
- Department of Cardiology, Zhongda Hospital, Nanjing, China Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Jiayi Tong
- Department of Cardiology, Zhongda Hospital, Nanjing, China Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hong Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| |
Collapse
|
12
|
Pan B, Su P, Jin M, Huang X, Wang Z, Zhang R, Xu H, Liu W, Ye Y. Ultrathin hierarchical hydrogel-carbon nanocomposite for highly stretchable fast-response water-proof wearable humidity sensors. MATERIALS HORIZONS 2023; 10:5263-5276. [PMID: 37750039 DOI: 10.1039/d3mh01093g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Wearable humidity sensors play an important role in human health monitoring. However, challenges persist in realizing high performance wearable humidity sensors with fast response and good stretchability and durability. Here we report wearable humidity sensors employing an ultrathin micro-nano hierarchical hydrogel-carbon nanocomposite. The nanocomposite is synthesized on polydimethylsiloxane (PDMS) films via a facile two-step solvent-free approach, which creates a hierarchical architecture consisting of periodic microscale wrinkles and vapor-deposited nanoporous hydrogel-candle-soot nanocoating. The hierarchical surface topography results in a significantly enlarged specific surface area (>107 times that of planar hydrogel), which along with the ultrathin hydrogel endow the sensor with high sensitivity and a fast response/recovery (13/0.48 s) over a wide humidity range (11-96%). Owing to the wrinkle structure and interpenetrating network between the hydrogel and PDMS, the sensor is stable and durable against repeated 180° bending, 100% strain, and even scratching. Furthermore, encapsulation of the sensor imparts excellent resistance to water, sweat, and bacteria without influencing its performance. The sensor is then successfully used to monitor different human respiratory behaviors and skin humidity in real time. The reported method is convenient and cost-effective, which could bring exciting new opportunities in the fabrication of next-generation wearable humidity sensors.
Collapse
Affiliation(s)
- Bingqi Pan
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Peipei Su
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Minghui Jin
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Xiaocheng Huang
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Zhenbo Wang
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Ruhao Zhang
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - He Xu
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Wenna Liu
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Yumin Ye
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| |
Collapse
|
13
|
Huang L, Hu Q, Gao S, Liu W, Wei X. Recent progress and applications of cellulose and its derivatives-based humidity sensors: A review. Carbohydr Polym 2023; 318:121139. [PMID: 37479446 DOI: 10.1016/j.carbpol.2023.121139] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Cellulose and its derivatives, which are low-cost, degradable, reproducible and highly hydrophilic, can serve as both substrate and humidity sensitive materials, making them more and more popular as ideal biomimetic materials for humidity sensors. Benefiting from these characteristics, cellulose-based humidity sensors cannot only exhibit high sensitivity, excellent mechanical performance, wide humidity response range, etc., but also can be applied to fields such as human health, medical care and agricultural product safety monitoring. Herein, cellulose-based humidity sensors are first classified according to the different conductive active materials, such as carbon nanotubes, graphene, electrolytes, metal compounds, and polymer materials, based on which the latest research progress is introduced, and the roles of different types of conductive materials in cellulose-based humidity sensors are analyzed and summarized. Besides, the similarities and differences in their working mechanisms are expounded. Finally, the application scenarios of cellulose-based humidity sensors in human movement respiration and skin surface humidity monitoring are discussed, which can make readers quickly familiarize the current preparation method, working mechanism and subsequent development trend of cellulose-based humidity sensors more effectively.
Collapse
Affiliation(s)
- Liang Huang
- Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qichang Hu
- Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Sheng Gao
- Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wei Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xuan Wei
- Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
14
|
Zhao T, Xiao X, Wu Y, Ma J, Li Y, Lu C, Shokoohi C, Xu Y, Zhang X, Zhang Y, Ge G, Zhang G, Chen J, Zeng Y. Tracing the Flu Symptom Progression via a Smart Face Mask. NANO LETTERS 2023; 23:8960-8969. [PMID: 37750614 DOI: 10.1021/acs.nanolett.3c02492] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Respiration and body temperature are largely influenced by the highly contagious influenza virus, which poses persistent global public health challenges. Here, we present a wireless all-in-one sensory face mask (WISE mask) made of ultrasensitive fibrous temperature sensors. The WISE mask shows exceptional thermosensitivity, excellent breathability, and wearing comfort. It offers highly sensitive body temperature monitoring and respiratory detection capabilities. Capitalizing on the advances in the Internet of Things and artificial intelligence, the WISE mask is further demonstrated by customized flexible circuitry, deep learning algorithms, and a user-friendly interface to continuously recognize the abnormalities of both the respiration and body temperature. The WISE mask represents a compelling approach to tracing flu symptom progression in a cost-effective and convenient manner, serving as a powerful solution for personalized health monitoring and point-of-care systems in the face of ongoing influenza-related public health concerns.
Collapse
Affiliation(s)
- Tienan Zhao
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yuchen Wu
- College of Information Science and Technology, Donghua University, Shanghai 201620, China
| | - Jiajia Ma
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Ying Li
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Chengyue Lu
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Cyrus Shokoohi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yuanqiang Xu
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaomin Zhang
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuze Zhang
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Gang Ge
- Department of Electrical and Computer Engineering, National University of Singapore,117583, Singapore
| | - Guanglin Zhang
- College of Information Science and Technology, Donghua University, Shanghai 201620, China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yongchun Zeng
- College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
15
|
Ji Y, Tang G, Zhao C, Zhao X, Mei D, Pan Y, Wang Y. High-performance paper-based humidity sensors with Nafion/AgNWs hybrid electrodes. RSC Adv 2023; 13:28613-28622. [PMID: 37780734 PMCID: PMC10539849 DOI: 10.1039/d3ra04789j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023] Open
Abstract
In the past decade, the development of medical health and human-computer interfaces has put forward requirements for the non-contact application of flexible electronics. Among them, flexible humidity sensors play an important role in the field of non-contact sensing by virtue of their rapid response to humidity changes. In this paper, a flexible paper-based humidity sensor with high performance was fabricated by embedded Au@AgNWs electrodes on filter paper through spraying and electroplating (EP) methods. Benefitting from the moisture-sensitive properties of the paper and the tight integration of the electrodes into the filter paper, the sensor shows the humidity monitoring range of 33-100% RH, large response value of I/I0 = 1958, excellent linearity of R2 = 0.99662 and hysteresis performance under the low excitation voltage of only DC 1 V. In addition, the good biocompatibility of the paper-based humidity sensor endows it with multifunctional applications for breath detection, non-contact applications and food security monitoring. Easy access to raw materials and convenient preparation methods of this work provide new ideas for the development and commercialization of flexible humidity sensors.
Collapse
Affiliation(s)
- Yujun Ji
- Jiangsu Provincial Key Laboratory of Special Robot Technology, Hohai University, Changzhou Campus Changzhou 213022 China
| | - Gangqiang Tang
- Jiangsu Provincial Key Laboratory of Special Robot Technology, Hohai University, Changzhou Campus Changzhou 213022 China
| | - Chun Zhao
- Jiangsu Provincial Key Laboratory of Special Robot Technology, Hohai University, Changzhou Campus Changzhou 213022 China
| | - Xin Zhao
- Jiangsu Provincial Key Laboratory of Special Robot Technology, Hohai University, Changzhou Campus Changzhou 213022 China
| | - Dong Mei
- Jiangsu Provincial Key Laboratory of Special Robot Technology, Hohai University, Changzhou Campus Changzhou 213022 China
| | - Yifan Pan
- Jiangsu Provincial Key Laboratory of Special Robot Technology, Hohai University, Changzhou Campus Changzhou 213022 China
| | - Yanjie Wang
- Jiangsu Provincial Key Laboratory of Special Robot Technology, Hohai University, Changzhou Campus Changzhou 213022 China
| |
Collapse
|
16
|
Ko A, Liao C. Paper-based colorimetric sensors for point-of-care testing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4377-4404. [PMID: 37641934 DOI: 10.1039/d3ay00943b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
By eliminating the need for sample transportation and centralized laboratory analysis, point-of-care testing (POCT) enables on-the-spot testing, with results available within minutes, leading to improved patient management and overall healthcare efficiency. Motivated by the rapid development of POCT, paper-based colorimetric sensing, a powerful analytical technique that exploits the changes in color or absorbance of a chemical species to detect and quantify analytes of interest, has garnered increasing attention. In this review, we strive to provide a bird's eye view of the development landscape of paper-based colorimetric sensors that harness the unique properties of paper to create low-cost, easy-to-use, and disposable analytical devices, thematically covering both fundamental aspects and categorized applications. In the end, we authors summarized the review with the remaining challenges and emerging opportunities. Hopefully, this review will ignite new research endeavors in the realm of paper-based colorimetric sensors.
Collapse
Affiliation(s)
- Anthony Ko
- Renaissance Bio, New Territories, Hong Kong SAR, China.
- Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Caizhi Liao
- Renaissance Bio, New Territories, Hong Kong SAR, China.
| |
Collapse
|
17
|
Kong L, Li G, Wang Y, Cheng L, Lin L. Non-contact cardiopulmonary signal monitoring based on magnetic eddy current induction. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:074101. [PMID: 37466408 DOI: 10.1063/5.0148820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
The magnetic eddy current induction method has become an excellent solution for building home cardiopulmonary monitoring systems because of its non-contact and unobtrusive characteristics, but it has problems such as low precision and complex extraction of cardiopulmonary signals. Therefore, this paper designs a magnetic eddy current sensing system based on a Field Programmable Gate Array that can realize simultaneous real-time monitoring of cardiopulmonary signals. This system adopts a magnetic eddy current sensor design scheme that can improve the amount of cardiopulmonary information in the sensing signal. In addition, it uses a signal acquisition scheme that combines an inductance-to-digital converter (LDC) and oversampling technology to improve the resolution and signal-to-noise ratio of the sensing signal. Moreover, an optimized adaptive discrete wavelet transform algorithm is proposed in this system, which can realize the effective separation and extraction of cardiopulmonary signals in different respiration states. Comparing this system with the medical monitor, the cardiopulmonary signals obtained by the two have good consistency in the time-frequency domain. Under low motion, respiration rate and heart rate detected by this system are within the confidence interval of the 95% limit of agreement; the relative errors are less than 2.63% and 1.37%, respectively; and the accuracy rates are greater than 99.30% and 99.60%, respectively. In addition, an experiment with an asthmatic patient showed that the system still has good detection performance under pathological conditions and can monitor abnormal conditions such as coughing.
Collapse
Affiliation(s)
- Li Kong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Gang Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Yunyi Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Leiyang Cheng
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Ling Lin
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
18
|
Luo Y, Li J, Ding Q, Wang H, Liu C, Wu J. Functionalized Hydrogel-Based Wearable Gas and Humidity Sensors. NANO-MICRO LETTERS 2023; 15:136. [PMID: 37225851 PMCID: PMC10209388 DOI: 10.1007/s40820-023-01109-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023]
Abstract
Breathing is an inherent human activity; however, the composition of the air we inhale and gas exhale remains unknown to us. To address this, wearable vapor sensors can help people monitor air composition in real time to avoid underlying risks, and for the early detection and treatment of diseases for home healthcare. Hydrogels with three-dimensional polymer networks and large amounts of water molecules are naturally flexible and stretchable. Functionalized hydrogels are intrinsically conductive, self-healing, self-adhesive, biocompatible, and room-temperature sensitive. Compared with traditional rigid vapor sensors, hydrogel-based gas and humidity sensors can directly fit human skin or clothing, and are more suitable for real-time monitoring of personal health and safety. In this review, current studies on hydrogel-based vapor sensors are investigated. The required properties and optimization methods of wearable hydrogel-based sensors are introduced. Subsequently, existing reports on the response mechanisms of hydrogel-based gas and humidity sensors are summarized. Related works on hydrogel-based vapor sensors for their application in personal health and safety monitoring are presented. Moreover, the potential of hydrogels in the field of vapor sensing is elucidated. Finally, the current research status, challenges, and future trends of hydrogel gas/humidity sensing are discussed.
Collapse
Affiliation(s)
- Yibing Luo
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jianye Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
19
|
Emerging tetrapyrrole porous organic polymers for chemosensing applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
20
|
Korotcenkov G, Simonenko NP, Simonenko EP, Sysoev VV, Brinzari V. Paper-Based Humidity Sensors as Promising Flexible Devices, State of the Art, Part 2: Humidity-Sensor Performances. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13081381. [PMID: 37110966 PMCID: PMC10144639 DOI: 10.3390/nano13081381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023]
Abstract
This review article covers all types of paper-based humidity sensor, such as capacitive, resistive, impedance, fiber-optic, mass-sensitive, microwave, and RFID (radio-frequency identification) humidity sensors. The parameters of these sensors and the materials involved in their research and development, such as carbon nanotubes, graphene, semiconductors, and polymers, are comprehensively detailed, with a special focus on the advantages/disadvantages from an application perspective. Numerous technological/design approaches to the optimization of the performances of the sensors are considered, along with some non-conventional approaches. The review ends with a detailed analysis of the current problems encountered in the development of paper-based humidity sensors, supported by some solutions.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova;
| | - Nikolay P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, The Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.P.S.); (E.P.S.)
| | - Elizaveta P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, The Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.P.S.); (E.P.S.)
| | - Victor V. Sysoev
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya str., 410054 Saratov, Russia;
| | - Vladimir Brinzari
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova;
| |
Collapse
|
21
|
Wan Y, Zhang S, Zhao C, Deng M, Ren D, Huang F. A Flexible Humidity Sensor with Wide Range, High Linearity, and Fast Response Based on Ultralong Na 2Ti 3O 7 Nanowires. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16865-16873. [PMID: 36946616 DOI: 10.1021/acsami.2c21976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A flexible humidity sensor with wide sensing range, superior sensitivity, high linearity, and advanced response/recovery capabilities is extremely desirable for practical applications in human body-related (HBR) monitoring and human-machine interaction (HMI). However, the practical sensor lacks a versatile nanomaterial integrated with sensing capabilities and mechanical flexibility to meet the criteria. Herein, a comprehensive flexible humidity sensor with ultralong Na2Ti3O7 nanowires (>120 μm) is subtly constructed for the first time. Owing to the distinguish nanowires network structure, the sensor exhibits wide sensing range (11-95% RH), high sensitivity (>103), high linearity (R2 > 0.98), and fast response/recovery capability (8.9/2.1 s), as well as excellent respiratory stability (>5000 s). In addition, the Na2Ti3O7-based humidity sensor demonstrates superior flexibility and antibacteria capabilities, and exhibits diverse applications in respiration monitoring, noncontact detection, as well as dynamic interactive display. This work provides a multifunctional humidity sensor with excellent practicability, suggesting the great potential in next-generation human-related flexible/wearable devices.
Collapse
Affiliation(s)
- Yingjie Wan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shaoning Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- School of Physical Science and Technology, Shanghai Tech University, Shanghai200031, P.R. China
| | - Chendong Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mingxia Deng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dayong Ren
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Fuqiang Huang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai200031, P.R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai200050, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| |
Collapse
|
22
|
Liu Y, Zhu H, Xing L, Bu Q, Ren D, Sun B. Recent advances in inkjet-printing technologies for flexible/wearable electronics. NANOSCALE 2023; 15:6025-6051. [PMID: 36892458 DOI: 10.1039/d2nr05649f] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The rapid development of flexible/wearable electronics requires novel fabricating strategies. Among the state-of-the-art techniques, inkjet printing has aroused considerable interest due to the possibility of large-scale fabricating flexible electronic devices with good reliability, high time efficiency, a low manufacturing cost, and so on. In this review, based on the working principle, recent advances in the inkjet printing technology in the field of flexible/wearable electronics are summarized, including flexible supercapacitors, transistors, sensors, thermoelectric generators, wearable fabric, and for radio frequency identification. In addition, some current challenges and future opportunities in this area are also addressed. We hope this review article can give positive suggestions to the researchers in the area of flexible electronics.
Collapse
Affiliation(s)
- Yu Liu
- College of Electronics and Information, Qingdao University, Qingdao 266071, PR. China.
| | - Hongze Zhu
- College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Lei Xing
- College of Electronics and Information, Qingdao University, Qingdao 266071, PR. China.
| | - Qingkai Bu
- College of Computer Science and Technology, Qingdao University, Qingdao 266071, PR. China
- Weihai Innovation Research Institute of Qingdao University, Weihai 264200, PR. China
| | - Dayong Ren
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR. China.
| | - Bin Sun
- College of Electronics and Information, Qingdao University, Qingdao 266071, PR. China.
- Weihai Innovation Research Institute of Qingdao University, Weihai 264200, PR. China
| |
Collapse
|
23
|
Korotcenkov G. Paper-Based Humidity Sensors as Promising Flexible Devices: State of the Art: Part 1. General Consideration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061110. [PMID: 36986004 PMCID: PMC10059663 DOI: 10.3390/nano13061110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 05/14/2023]
Abstract
In the first part of the review article "General considerations" we give information about conventional flexible platforms and consider the advantages and disadvantages of paper when used in humidity sensors, both as a substrate and as a humidity-sensitive material. This consideration shows that paper, especially nanopaper, is a very promising material for the development of low-cost flexible humidity sensors suitable for a wide range of applications. Various humidity-sensitive materials suitable for use in paper-based sensors are analyzed and the humidity-sensitive characteristics of paper and other humidity-sensitive materials are compared. Various configurations of humidity sensors that can be developed on the basis of paper are considered, and a description of the mechanisms of their operation is given. Next, we discuss the manufacturing features of paper-based humidity sensors. The main attention is paid to the consideration of such problems as patterning and electrode formation. It is shown that printing technologies are the most suitable for mass production of paper-based flexible humidity sensors. At the same time, these technologies are effective both in the formation of a humidity-sensitive layer and in the manufacture of electrodes.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova
| |
Collapse
|
24
|
Deng Z, Guo L, Chen X, Wu W. Smart Wearable Systems for Health Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23052479. [PMID: 36904682 PMCID: PMC10007426 DOI: 10.3390/s23052479] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/12/2023]
Abstract
Smart wearable systems for health monitoring are highly desired in personal wisdom medicine and telemedicine. These systems make the detecting, monitoring, and recording of biosignals portable, long-term, and comfortable. The development and optimization of wearable health-monitoring systems have focused on advanced materials and system integration, and the number of high-performance wearable systems has been gradually increasing in recent years. However, there are still many challenges in these fields, such as balancing the trade-off between flexibility/stretchability, sensing performance, and the robustness of systems. For this reason, more evolution is required to promote the development of wearable health-monitoring systems. In this regard, this review summarizes some representative achievements and recent progress of wearable systems for health monitoring. Meanwhile, a strategy overview is presented about selecting materials, integrating systems, and monitoring biosignals. The next generation of wearable systems for accurate, portable, continuous, and long-term health monitoring will offer more opportunities for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Zhiyong Deng
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Nuclear Power Institute of China, Huayang, Shuangliu District, Chengdu 610213, China
| | - Lihao Guo
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi’an 710126, China
| | - Ximeng Chen
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi’an 710126, China
| |
Collapse
|
25
|
Niu G, Wang Z, Xue Y, Yan J, Dutta A, Chen X, Wang Y, Liu C, Du S, Guo L, Zhou P, Cheng H, Yang L. Pencil-on-Paper Humidity Sensor Treated with NaCl Solution for Health Monitoring and Skin Characterization. NANO LETTERS 2023; 23:1252-1260. [PMID: 36584409 DOI: 10.1021/acs.nanolett.2c04384] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although flexible humidity sensors are essential for human health monitoring, it is still challenging to achieve high sensitivity and easy disposal with simple, low-cost fabrication processes. This study presents the design and fabrication of highly reliable hand-drawn interdigital electrodes from pencil-on-paper treated with NaCl solution for highly sensitive hydration sensors working over a wide range of relative humidity (RH) levels from 5.6% to 90%. The applications of the resulting flexible humidity sensor go beyond the monitoring of respiratory rate and proximity to characterizations of human skin types and evaluations of skin barrier functions through insensible sweat measurements. The sensor array can also be integrated with a diaper to result in smart diapers to alert for an early diaper change. The design and fabrication strategies presented in this work could also be leveraged for the development of wearable, self-powered, and recyclable sensors and actuators in the future.
Collapse
Affiliation(s)
- Guangyu Niu
- Department of Architecture and Art, Hebei University of Technology, Tianjin, 300130, China
| | - Zihan Wang
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Ye Xue
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Jiayi Yan
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Ankan Dutta
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xue Chen
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Key Laboratory of Bioelectromagnetics and Neuroengineering of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Ya Wang
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Chaosai Liu
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shuaijie Du
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Key Laboratory of Bioelectromagnetics and Neuroengineering of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Langang Guo
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Peng Zhou
- Tianjin Tianzhong Yimai Technology Development Co. Ltd., Tianjin 300384, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Li Yang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
- Tianjin Tianzhong Yimai Technology Development Co. Ltd., Tianjin 300384, China
| |
Collapse
|
26
|
Li J, Yin J, Ramakrishna S, Ji D. Smart Mask as Wearable for Post-Pandemic Personal Healthcare. BIOSENSORS 2023; 13:205. [PMID: 36831971 PMCID: PMC9953568 DOI: 10.3390/bios13020205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
A mask serves as a simple external barrier that protects humans from infectious particles from poor air conditions in the surrounding environment. As an important personal protective equipment (PPE) to protect our respiratory system, masks are able not only to filter pathogens and dust particles but also to sense, reflect or even respond to environmental conditions. This smartness is of particular interest among academia and industries due to its potential in disease detection, health monitoring and caring aspects. In this review, we provide an overlook of the current air filtration strategies used in masks, from structural designs to integrated functional modules that empower the mask's ability to sense and transfer physiological or environmental information to become smart. Specifically, we discussed recent developments in masks designed to detect macroscopic physiological signals from the wearer and mask-based disease diagnoses, such as COVID-19. Further, we propose the concept of next-generation smart masks and the requirements from material selection and function design perspectives that enable masks to interact and play crucial roles in health-caring wearables.
Collapse
Affiliation(s)
- Jingcheng Li
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117081, Singapore
| | - Jing Yin
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117081, Singapore
| | - Dongxiao Ji
- College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
27
|
He T, Wen F, Yang Y, Le X, Liu W, Lee C. Emerging Wearable Chemical Sensors Enabling Advanced Integrated Systems toward Personalized and Preventive Medicine. Anal Chem 2023; 95:490-514. [PMID: 36625107 DOI: 10.1021/acs.analchem.2c04527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tianyiyi He
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Feng Wen
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Yanqin Yang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Xianhao Le
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Weixin Liu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| |
Collapse
|
28
|
Srikrishnarka P, Dasi RM, Jana SK, Ahuja T, Kumar JS, Nagar A, Kini AR, George B, Pradeep T. Toward Continuous Breath Monitoring on a Mobile Phone Using a Frugal Conducting Cloth-Based Smart Mask. ACS OMEGA 2022; 7:42926-42938. [PMID: 36467907 PMCID: PMC9713799 DOI: 10.1021/acsomega.2c05017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
A frugal humidity sensor that can detect changes in the humidity of exhaled breath of individuals has been fabricated. The sensor comprises a humidity-sensitive conducting polymer that is in situ formed on a cloth that acts as a substrate. Interdigitated silver electrodes were screen-printed on the modified cloth, and conducting threads connected the electrodes to the measurement circuit. The sensor's response to changing humidity was measured as a voltage drop across the sensor using a microcontroller. The sensor was capable of discerning between fast, normal, and slow breathing based on the response time. A response time of ∼1.3 s was observed for fast breathing. An Android-based mobile application was designed to collect sensor data via Bluetooth for analysis. A time series classification algorithm was implemented to analyze patterns in breathing. The sensor was later stitched onto a face mask, transforming it into a smart mask that can monitor changes in the breathing pattern at work, play, and sleep.
Collapse
Affiliation(s)
- Pillalamarri Srikrishnarka
- DST
Unit of Nanoscience and Thematic Unit of Excellence, Department of
Chemistry, Indian Institute of Technology, Chennai 600036, India
- Department
of Chemical Engineering, Indian Institute
of Technology, Chennai 600036, India
| | - Raaga Madhuri Dasi
- Department
of Electrical Engineering, Indian Institute
of Technology, Chennai 600036, India
| | - Sourav Kanti Jana
- DST
Unit of Nanoscience and Thematic Unit of Excellence, Department of
Chemistry, Indian Institute of Technology, Chennai 600036, India
| | - Tripti Ahuja
- DST
Unit of Nanoscience and Thematic Unit of Excellence, Department of
Chemistry, Indian Institute of Technology, Chennai 600036, India
| | - Jenifer Shantha Kumar
- DST
Unit of Nanoscience and Thematic Unit of Excellence, Department of
Chemistry, Indian Institute of Technology, Chennai 600036, India
| | - Ankit Nagar
- DST
Unit of Nanoscience and Thematic Unit of Excellence, Department of
Chemistry, Indian Institute of Technology, Chennai 600036, India
| | - Amoghavarsha Ramachandra Kini
- DST
Unit of Nanoscience and Thematic Unit of Excellence, Department of
Chemistry, Indian Institute of Technology, Chennai 600036, India
| | - Boby George
- Department
of Electrical Engineering, Indian Institute
of Technology, Chennai 600036, India
| | - Thalappil Pradeep
- DST
Unit of Nanoscience and Thematic Unit of Excellence, Department of
Chemistry, Indian Institute of Technology, Chennai 600036, India
- International
Centre for Clean Water, IIT Madras Research
Park, 2nd Floor, B-Block,
Kanagam Road, Taramani, Chennai 600113, India
| |
Collapse
|
29
|
Wu K, Fei T, Zhang T. Humidity Sensors Based on Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4208. [PMID: 36500831 PMCID: PMC9740828 DOI: 10.3390/nano12234208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 05/27/2023]
Abstract
Humidity sensors are important in industrial fields and human activities. Metal-organic frameworks (MOFs) and their derivatives are a class of promising humidity-sensing materials with the characteristics of a large specific surface area, high porosity, modifiable frameworks, and high stability. The drawbacks of MOFs, such as poor film formation, low electrical conductivity, and limited hydrophilicity, have been gradually overcome with the development of material science. Currently, it is moving towards a critical development stage of MOF-based humidity sensors from usability to ease of use, of which great challenges remain unsolved. In order to better understand the related challenges and point out the direction for the future development of MOF-based humidity sensors, we reviewed the development of such sensors based on related published work, focusing on six primary types (impedance, capacitive, resistive, fluorescent, quartz crystal microbalance (QCM), and others) and analyzed the sensing mechanism, material design, and sensing performance involved, and presented our thoughts on the possible future research directions.
Collapse
Affiliation(s)
| | - Teng Fei
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
30
|
Yuan Y, Liu B, Li H, Li M, Song Y, Wang R, Wang T, Zhang H. Flexible Wearable Sensors in Medical Monitoring. BIOSENSORS 2022; 12:bios12121069. [PMID: 36551036 PMCID: PMC9775172 DOI: 10.3390/bios12121069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 05/31/2023]
Abstract
The popularity of health concepts and the wave of digitalization have driven the innovation of sensors in the medical field. Such continual development has made sensors progress in the direction of safety, flexibility, and intelligence for continuous monitoring of vital signs, which holds considerable promise for changing the way humans live and even treat diseases. To this end, flexible wearable devices with high performance, such as high sensitivity, high stability, and excellent biodegradability, have attracted strong interest from scientists. Herein, a review of flexible wearable sensors for temperature, heart rate, human motion, respiratory rate, glucose, and pH is highlighted. In addition, engineering issues are also presented, focusing on material selection, sensor fabrication, and power supply. Finally, potential challenges facing current technology and future directions of wearable sensors are also discussed.
Collapse
Affiliation(s)
- Yingying Yuan
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Hui Li
- Department of Nursing, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang 110042, China
| | - Mo Li
- Department of Nursing, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang 110042, China
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang 110042, China
| | - Runze Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Tianlu Wang
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
- Department of Radiotherapy, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang 110042, China
| | - Hangyu Zhang
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
31
|
Zhao Y, Liu F, Xie N, Wang Y, Liu M, Han Z, Hou T. Achieving Ultrasensitivity and Long-Term Durability Simultaneously for Microcantilevers Inspired by a Scorpion's Circular Tip Slits. ACS NANO 2022; 16:18048-18057. [PMID: 36255256 DOI: 10.1021/acsnano.2c04251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microcantilevers are one of the most essential sensitive elements for various mechanical sensors. Their sensing performance determines the index level of a series of sensors. To date, the long-standing trade-off between ultrasensitivity and long-term durability of microcantilevers still remains a challenge. In nature, scorpions can sense vibrations as low as 10 nm amplitude through their circular tip slits sensilla. Such slit sensilla embedded in the exoskeleton of walking legs endure the compressing and stretching of every movement without spontaneous fracture failures. Here, we focused on the structural design of the circular tip slits which concentrate stress effectively and disperse energy smoothly, with the result that the microcantilevers are ultrasensitive and durable simultaneously in a single element. We devised a reproducible circular tip slits cantilever with enhanced sensitivity and ultralow detection limits to monitor 7 nm amplitude vibrations. The sensor possessed excellent durability and remained highly consistent with the correlation coefficient of nearly 0.999 over 100 000 cycles. Furthermore, the circular tip slits cantilever could precisely sense diverse subtle mechanical signals and exhibited potential applications in monitoring respiratory patterns. The simple geometric design can be easily manufactured on various sensory materials for applications requiring ultrahigh sensitivity and long-time durability.
Collapse
Affiliation(s)
- Yufeng Zhao
- College of Communication Engineering, Jilin University, Changchun 130022, China
| | - Fu Liu
- College of Communication Engineering, Jilin University, Changchun 130022, China
| | - Nan Xie
- College of Communication Engineering, Jilin University, Changchun 130022, China
| | - Yueqiao Wang
- College of Communication Engineering, Jilin University, Changchun 130022, China
| | - Meihe Liu
- College of Communication Engineering, Jilin University, Changchun 130022, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Tao Hou
- College of Communication Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
32
|
Ma H, Cheng Z, Li X, Li B, Fu Y, Jiang J. Advances and Challenges of Cellulose Functional Materials in Sensors. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
33
|
Zhu P, Wei Y, Kuang Y, Qian Y, Liu Y, Jiang F, Chen G. Porous and conductive cellulose nanofiber/carbon nanotube foam as a humidity sensor with high sensitivity. Carbohydr Polym 2022; 292:119684. [PMID: 35725212 DOI: 10.1016/j.carbpol.2022.119684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022]
Abstract
In this study, we developed a humidity sensor with high sensitivity based on cellulose nanofiber/carbon nanotube (CNF/CNT) hybrid foam. The porous structure of the foam not only provides more contact interface for water molecules adsorption, but also tunes the conductivity of the CCF closed to the point where the sensor is most sensitive to the change in humidity. With this porous structural design, the obtained foam sensor shows a high humidity sensitivity of 87.3% (ΔI/I0, and the response limit is 100%), excellent linearity (R2 = 0.996) within the humidity range from 29 to 95% relative humidity (RH), and good long-time stability (more than two months). Furthermore, the water vapor adsorption behavior of the CNF/CNT foam sensor can be well described by the pseudo-first-order kinetic model. Finally, a simple humidity measuring device based on the CNF/CNT foam is presented, which can find good applications for human breath and fingertip humidity monitoring.
Collapse
Affiliation(s)
- Penghui Zhu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-based Functional Materials, South China University of Technology, Guangzhou 510640, China; Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Yuan Wei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-based Functional Materials, South China University of Technology, Guangzhou 510640, China
| | - Yudi Kuang
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yangyang Qian
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-based Functional Materials, South China University of Technology, Guangzhou 510640, China
| | - Yijun Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-based Functional Materials, South China University of Technology, Guangzhou 510640, China
| | - Feng Jiang
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada.
| | - Gang Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-based Functional Materials, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
34
|
Li S, Zhang Y, Liang X, Wang H, Lu H, Zhu M, Wang H, Zhang M, Qiu X, Song Y, Zhang Y. Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management. Nat Commun 2022; 13:5416. [PMID: 36109531 PMCID: PMC9477177 DOI: 10.1038/s41467-022-33133-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 09/02/2022] [Indexed: 01/17/2023] Open
Abstract
Numerous studies have shown flexible electronics play important roles in health management. The way of power supply is always an essential factor of devices and self-powered ones are very attractive because of the fabrication easiness, usage comfort and aesthetics of the system. In this work, based on the metal-air redox reaction, which is usually used in designing metal-air batteries, we design a self-powered chemoelectric humidity sensor where a silk fibroin (SF) and LiBr gel matrix containing parallel aligned graphene oxide (GO) flakes serve as the electrolyte. The abundant hydrophilic groups in GO/SF and the hygroscopicity of LiBr lead to tight dependence of the output current on the humidity, enabling the sensor high sensitivity (0.09 μA/s/1%), fast response (1.05 s) and quick recovery (0.80 s). As proofs of concept, we design an all-in-one respiratory monitoring-diagnosing-treatment system and a non-contact human-machine interface, demonstrating the applications of the chemoelectric humidity sensor in health management.
Collapse
Affiliation(s)
- Shuo Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haomin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haojie Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mengjia Zhu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huimin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingchao Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xinping Qiu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yafeng Song
- Institute of Sport and Health Science, Beijing Sport University, Beijing, 100084, P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
35
|
Liu L, Zhang X. A Focused Review on the Flexible Wearable Sensors for Sports: From Kinematics to Physiologies. MICROMACHINES 2022; 13:1356. [PMID: 36014277 PMCID: PMC9412724 DOI: 10.3390/mi13081356] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 05/15/2023]
Abstract
As an important branch of wearable electronics, highly flexible and wearable sensors are gaining huge attention due to their emerging applications. In recent years, the participation of wearable devices in sports has revolutionized the way to capture the kinematical and physiological status of athletes. This review focuses on the rapid development of flexible and wearable sensor technologies for sports. We identify and discuss the indicators that reveal the performance and physical condition of players. The kinematical indicators are mentioned according to the relevant body parts, and the physiological indicators are classified into vital signs and metabolisms. Additionally, the available wearable devices and their significant applications in monitoring these kinematical and physiological parameters are described with emphasis. The potential challenges and prospects for the future developments of wearable sensors in sports are discussed comprehensively. This review paper will assist both athletic individuals and researchers to have a comprehensive glimpse of the wearable techniques applied in different sports.
Collapse
Affiliation(s)
- Lei Liu
- Department of Sports, Xi'an Polytechnic University, Xi'an 710048, China
| | - Xuefeng Zhang
- Shaanxi Key Laboratory of Nano Materials and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
36
|
Bhargava Reddy MS, Kailasa S, Marupalli BCG, Sadasivuni KK, Aich S. A Family of 2D-MXenes: Synthesis, Properties, and Gas Sensing Applications. ACS Sens 2022; 7:2132-2163. [PMID: 35972775 DOI: 10.1021/acssensors.2c01046] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gas sensors, capable of detecting and monitoring trace amounts of gas molecules or volatile organic compounds (VOCs), are in great demand for numerous applications including diagnosing diseases through breath analysis, environmental and personal safety, food and agriculture, and other fields. The continuous emergence of new materials is one of the driving forces for the development of gas sensors. Recently, 2D materials have been gaining huge attention for gas sensing applications, owing to their superior electrical, optical, and mechanical characteristics. Especially for 2D MXenes, high specific area and their rich surface functionalities with tunable electronic structure make them compelling for sensing applications. This Review discusses the latest advancements in the 2D MXenes for gas sensing applications. It starts by briefly explaining the family of MXenes, their synthesis methods, and delamination procedures. Subsequently, it outlines the properties of MXenes. Then it describes the theoretical and experimental aspects of the MXenes-based gas sensors. Discussion is also extended to the relation between sensing performance and the structure, electronic properties, and surface chemistry. Moreover, it highlights the promising potential of these materials in the current gas sensing applications and finally it concludes with the limitations, challenges, and future prospects of 2D MXenes in gas sensing applications.
Collapse
Affiliation(s)
- M Sai Bhargava Reddy
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Saraswathi Kailasa
- Department of Physics, National Institute of Technology, Warangal, 506004, India
| | - Bharat C G Marupalli
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | | | - Shampa Aich
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
37
|
Chen X, Li Y, Wang X, Yu H. Origami Paper-Based Stretchable Humidity Sensor for Textile-Attachable Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36227-36237. [PMID: 35912486 DOI: 10.1021/acsami.2c08245] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible and stretchable humidity sensors for wearable purposes have become increasingly important in health care and physiological signal monitoring. However, to the authors' knowledge, there is no report on flexible and stretchable paper-based humidity sensors that are low-cost, easily fabricated, and environmentally friendly. In this work, for the first time, we propose a stretchable, textile-compatible paper-based origami humidity sensor (POHS). The POHS can achieve good stretchability by integrating origami folding structures with a paper substrate, in which an airlaid paper acts as both a sensing material and a sensor substrate. This sensor has high sensitivity, good response, and recovery properties with excellent stability during deformation. This sensor has proved to be capable of dynamically monitoring the breathing rate after 300 folding and unfolding cycles. The flexible and stretchable nature of our POHS ensures that it is compatible for textile attachment and its utility for wearable applications, including respiration rate monitoring and diaper wetting detection. The facile fabrication process and convenient disposal method of the POHS proposed in this study provide feasible solutions for the development of low-cost wearable humidity sensors.
Collapse
Affiliation(s)
- Xingru Chen
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR
| | - Yongkai Li
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR
| | - Xiaoyi Wang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR
- The School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Hongyu Yu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR
| |
Collapse
|
38
|
Cotur Y, Olenik S, Asfour T, Bruyns-Haylett M, Kasimatis M, Tanriverdi U, Gonzalez-Macia L, Lee HS, Kozlov AS, Güder F. Bioinspired Stretchable Transducer for Wearable Continuous Monitoring of Respiratory Patterns in Humans and Animals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203310. [PMID: 35730340 DOI: 10.1002/adma.202203310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
A bio-inspired continuous wearable respiration sensor modeled after the lateral line system of fish is reported which is used for detecting mechanical disturbances in the water. Despite the clinical importance of monitoring respiratory activity in humans and animals, continuous measurements of breathing patterns and rates are rarely performed in or outside of clinics. This is largely because conventional sensors are too inconvenient or expensive for wearable sensing for most individuals and animals. The bio-inspired air-silicone composite transducer (ASiT) is placed on the chest and measures respiratory activity by continuously measuring the force applied to an air channel embedded inside a silicone-based elastomeric material. The force applied on the surface of the transducer during breathing changes the air pressure inside the channel, which is measured using a commercial pressure sensor and mixed-signal wireless electronics. The transducer produced in this work are extensively characterized and tested with humans, dogs, and laboratory rats. The bio-inspired ASiT may enable the early detection of a range of disorders that result in altered patterns of respiration. The technology reported can also be combined with artificial intelligence and cloud computing to algorithmically detect illness in humans and animals remotely, reducing unnecessary visits to clinics.
Collapse
Affiliation(s)
- Yasin Cotur
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Selin Olenik
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Tarek Asfour
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | - Michael Kasimatis
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Ugur Tanriverdi
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | - Hong Seok Lee
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Andrei S Kozlov
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Firat Güder
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
39
|
Ates HC, Nguyen PQ, Gonzalez-Macia L, Morales-Narváez E, Güder F, Collins JJ, Dincer C. End-to-end design of wearable sensors. NATURE REVIEWS. MATERIALS 2022; 7:887-907. [PMID: 35910814 PMCID: PMC9306444 DOI: 10.1038/s41578-022-00460-x] [Citation(s) in RCA: 239] [Impact Index Per Article: 119.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 05/03/2023]
Abstract
Wearable devices provide an alternative pathway to clinical diagnostics by exploiting various physical, chemical and biological sensors to mine physiological (biophysical and/or biochemical) information in real time (preferably, continuously) and in a non-invasive or minimally invasive manner. These sensors can be worn in the form of glasses, jewellery, face masks, wristwatches, fitness bands, tattoo-like devices, bandages or other patches, and textiles. Wearables such as smartwatches have already proved their capability for the early detection and monitoring of the progression and treatment of various diseases, such as COVID-19 and Parkinson disease, through biophysical signals. Next-generation wearable sensors that enable the multimodal and/or multiplexed measurement of physical parameters and biochemical markers in real time and continuously could be a transformative technology for diagnostics, allowing for high-resolution and time-resolved historical recording of the health status of an individual. In this Review, we examine the building blocks of such wearable sensors, including the substrate materials, sensing mechanisms, power modules and decision-making units, by reflecting on the recent developments in the materials, engineering and data science of these components. Finally, we synthesize current trends in the field to provide predictions for the future trajectory of wearable sensors.
Collapse
Affiliation(s)
- H. Ceren Ates
- FIT Freiburg Center for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany
- IMTEK – Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Peter Q. Nguyen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA USA
| | | | - Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, León, Mexico
| | - Firat Güder
- Department of Bioengineering, Imperial College London, London, UK
| | - James J. Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA USA
- Institute of Medical Engineering & Science, Department of Biological Engineering, MIT, Cambridge, MA USA
- Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Can Dincer
- FIT Freiburg Center for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany
- IMTEK – Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| |
Collapse
|
40
|
Cho MY, Kim IS, Kim MJ, Hyun DE, Koo SM, Sohn H, Kim NY, Kim S, Ko S, Oh JM. NaCl Ionization-Based Moisture Sensor Prepared by Aerosol Deposition for Monitoring Respiratory Patterns. SENSORS (BASEL, SWITZERLAND) 2022; 22:5178. [PMID: 35890859 PMCID: PMC9317478 DOI: 10.3390/s22145178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
A highly polarizable moisture sensor with multimodal sensing capabilities has great advantages for healthcare applications such as human respiration monitoring. We introduce an ionically polarizable moisture sensor based on NaCl/BaTiO3 composite films fabricated using a facile aerosol deposition (AD) process. The proposed sensing model operates based on an enormous NaCl ionization effect in addition to natural moisture polarization, whereas all previous sensors are based only on the latter. We obtained an optimal sensing performance in a 0.5 µm-thick layer containing NaCl-37.5 wt% by manipulating the sensing layer thickness and weight fraction of NaCl. The NaCl/BaTiO3 sensing layer exhibits outstanding sensitivity over a wide humidity range and a fast response/recovery time of 2/2 s; these results were obtained by performing the one-step AD process at room temperature without using any auxiliary methods. Further, we present a human respiration monitoring system using a sensing device that provides favorable and stable electrical signals under diverse respiratory scenarios.
Collapse
Affiliation(s)
- Myung-Yeon Cho
- Department of Electronic Materials Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea; (M.-Y.C.); (M.-J.K.); (D.-E.H.); (S.-M.K.)
| | - Ik-Soo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Korea;
| | - Min-Ji Kim
- Department of Electronic Materials Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea; (M.-Y.C.); (M.-J.K.); (D.-E.H.); (S.-M.K.)
| | - Da-Eun Hyun
- Department of Electronic Materials Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea; (M.-Y.C.); (M.-J.K.); (D.-E.H.); (S.-M.K.)
| | - Sang-Mo Koo
- Department of Electronic Materials Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea; (M.-Y.C.); (M.-J.K.); (D.-E.H.); (S.-M.K.)
| | - Hiesang Sohn
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea;
| | - Nam-Young Kim
- RFIC Center, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea;
| | - Sunghoon Kim
- Department of Applied Chemistry, Dong-Eui University, Busan 47227, Korea;
| | - Seunghoon Ko
- Department of Electronic Materials Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea; (M.-Y.C.); (M.-J.K.); (D.-E.H.); (S.-M.K.)
| | - Jong-Min Oh
- Department of Electronic Materials Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea; (M.-Y.C.); (M.-J.K.); (D.-E.H.); (S.-M.K.)
| |
Collapse
|
41
|
Laurino M, Arcarisi L, Brutti F, Giannetti F, Marinai C, Bufano P, Carbonaro N, Menicucci D, Benvenuti C, Tognetti A. An Innovative Sensorized Face Mask for Early Detection of Physiological Changes Associated with Viral Infection. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:933-936. [PMID: 36086043 DOI: 10.1109/embc48229.2022.9871775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A sensorized face mask could be a useful tool in the case of a viral pandemic event, as well as the Covid-19 emergency. In the context of the proposed project "RESPIRE", we have developed a "Smart-Mask" able to collect the signal patterns of body temperature, respiration, and symptoms such as cough, through a set of textile sensors. The signals have been analyzed by Artificial Intelligence algorithms in order to compare them with gold standard measurements, and to recognize the physiological changes associated with a viral infection. This low-cost prototype of a smart face mask is a reliable tool for the estimation of the individual physiological parameters. Moreover, it enables both personal protection and the early and rapid identification and tracking of potentially infected individuals.
Collapse
|
42
|
Deroco PB, Wachholz Junior D, Kubota LT. Paper‐based Wearable Electrochemical Sensors: a New Generation of Analytical Devices. ELECTROANAL 2022. [DOI: 10.1002/elan.202200177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Patricia Batista Deroco
- Institute of Chemistry University of Campinas – UNICAMP Campinas 13083-970 Brazil
- National Institute of Science and Technology in Bioanalytic (INCTBio) Brazil
| | - Dagwin Wachholz Junior
- Institute of Chemistry University of Campinas – UNICAMP Campinas 13083-970 Brazil
- National Institute of Science and Technology in Bioanalytic (INCTBio) Brazil
| | - Lauro Tatsuo Kubota
- Institute of Chemistry University of Campinas – UNICAMP Campinas 13083-970 Brazil
- National Institute of Science and Technology in Bioanalytic (INCTBio) Brazil
| |
Collapse
|
43
|
"Listen to Your Immune System When It's Calling for You": Monitoring Autoimmune Diseases Using the iShU App. SENSORS 2022; 22:s22103834. [PMID: 35632243 PMCID: PMC9147288 DOI: 10.3390/s22103834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022]
Abstract
The immune system plays a key role in protecting living beings against bacteria, viruses, and fungi, among other pathogens, which may be harmful and represent a threat to our own health. However, for reasons that are not fully understood, in some people this protective mechanism accidentally attacks the organs and tissues, thus causing inflammation and leads to the development of autoimmune diseases. Remote monitoring of human health involves the use of sensor network technology as a means of capturing patient data, and wearable devices, such as smartwatches, have lately been considered good collectors of biofeedback data, owing to their easy connectivity with a mHealth system. Moreover, the use of gamification may encourage the frequent usage of such devices and behavior changes to improve self-care for autoimmune diseases. This study reports on the use of wearable sensors for inflammation surveillance and autoimmune disease management based on a literature search and evaluation of an app prototype with fifteen stakeholders, in which eight participants were diagnosed with autoimmune or inflammatory diseases and four were healthcare professionals. Of these, six were experts in human–computer interaction to assess critical aspects of user experience. The developed prototype allows the monitoring of autoimmune diseases in pre-, during-, and post-inflammatory crises, meeting the personal needs of people with this health condition. The findings suggest that the proposed prototype—iShU—achieves its purpose and the overall experience may serve as a foundation for designing inflammation surveillance and autoimmune disease management monitoring solutions.
Collapse
|
44
|
Li C, Zhang Y, Yang S, Zhao H, Guo Y, Cong T, Huang H, Fan Z, Liang H, Pan L. A flexible tissue-carbon nanocoil-carbon nanotube-based humidity sensor with high performance and durability. NANOSCALE 2022; 14:7025-7038. [PMID: 35471502 DOI: 10.1039/d2nr00027j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A flexible humidity sensor based on a tissue-carbon nanocoil (CNC)-carbon nanotube (CNT) composite has been investigated. Taking advantage of the excellent water absorption of tissue and the electrical sensitivity of CNCs/CNTs to humidity, this humidity sensor obtains outstanding humidity sensing performance, including a wide sensing range of 10-90% RH, a maximum response value of 492% (ΔR/R0) at 90% RH, a maximum sensitivity of 6.16%/% RH, a good long-time stability of more than 7 days, a high humidity resolution accuracy of less than 1% RH and a fast response time of 275 ms. Furthermore, the sensor also exhibits robust bending (with a curvature of 0.322 cm-1) and folding (up to 500 times) durability, and after being made into a complex "thousand paper crane" shape it still provides stable humidity sensing performance. As a proof of concept, this humidity sensor demonstrates excellent responsivity to human breath monitoring, non-contact fingertip humidity detection, water boiling detection and air humidity monitoring, indicating great potential in the fields of wearable devices, weather forecasting systems and other intelligent humidity monitoring devices.
Collapse
Affiliation(s)
- Chengwei Li
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, P. R. China.
| | - Yifeng Zhang
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, P. R. China.
| | - Shuaitao Yang
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, P. R. China.
| | - Huitong Zhao
- School of Microelectronics, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Yuan Guo
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, P. R. China.
| | - Tianze Cong
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, P. R. China.
| | - Hui Huang
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, P. R. China.
| | - Zeng Fan
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, P. R. China.
| | - Hongwei Liang
- School of Microelectronics, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Lujun Pan
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, P. R. China.
| |
Collapse
|
45
|
Simić M, Stavrakis AK, Sinha A, Premčevski V, Markoski B, Stojanović GM. Portable Respiration Monitoring System with an Embroidered Capacitive Facemask Sensor. BIOSENSORS 2022; 12:bios12050339. [PMID: 35624640 PMCID: PMC9138658 DOI: 10.3390/bios12050339] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 05/27/2023]
Abstract
Respiration monitoring is a very important indicator of health status. It can be used as a marker in the recognition of a variety of diseases, such as sleep apnea, asthma or cardiac arrest. The purpose of the present study is to overcome limitations of the current state of the art in the field of respiration monitoring systems. Our goal was the development of a lightweight handheld device with portable operation and low power consumption. The proposed approach includes a textile capacitive sensor with interdigitated electrodes embroidered into the facemask, integrated with readout electronics. Readout electronics is based on the direct interface of the capacitive sensor and a microcontroller through just one analog and one digital pin. The microcontroller board and sensor are powered by a smartphone or PC through a USB cable. The developed mobile application for the Android™ operating system offers reliable data acquisition and acts as a bridge for data transfer to the remote server. The embroidered sensor was initially tested in a humidity-controlled chamber connected to a commercial impedance analyzer. Finally, in situ testing with 10 volunteering subjects confirmed stable operation with reliable respiration monitoring.
Collapse
Affiliation(s)
- Mitar Simić
- Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (M.S.); (A.K.S.); (A.S.); (G.M.S.)
| | - Adrian K. Stavrakis
- Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (M.S.); (A.K.S.); (A.S.); (G.M.S.)
| | - Ankita Sinha
- Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (M.S.); (A.K.S.); (A.S.); (G.M.S.)
| | - Velibor Premčevski
- Technical Faculty Mihajlo Pupin, University of Novi Sad, 21000 Zrenjanin, Serbia;
| | - Branko Markoski
- Technical Faculty Mihajlo Pupin, University of Novi Sad, 21000 Zrenjanin, Serbia;
| | - Goran M. Stojanović
- Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (M.S.); (A.K.S.); (A.S.); (G.M.S.)
| |
Collapse
|
46
|
Zhu Y, Xia P, Liu J, Fang Z, Du L, Zhao Z. Polyimide-Based High-Performance Film Bulk Acoustic Resonator Humidity Sensor and Its Application in Real-Time Human Respiration Monitoring. MICROMACHINES 2022; 13:758. [PMID: 35630225 PMCID: PMC9143046 DOI: 10.3390/mi13050758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 01/07/2023]
Abstract
Respiration monitoring is vital for human health assessment. Humidity sensing is a promising way to establish a relationship between human respiration and electrical signal. This paper presents a polyimide-based film bulk acoustic resonator (PI-FBAR) humidity sensor operating in resonant frequency and reflection coefficient S11 dual-parameter with high sensitivity and stability, and it is applied in real-time human respiration monitoring for the first time. Both these two parameters can be used to sense different breathing conditions, such as normal breathing and deep breathing, and breathing with different rates such as normal breathing, slow breathing, apnea, and fast breathing. Experimental results also indicate that the proposed humidity sensor has potential applications in predicting the fitness of individual and in the medical field for detecting body fluids loss and daily water intake warning. The respiratory rates measured by our proposed PI-FBAR humidity sensor operating in frequency mode and S11 mode have Pearson correlation of up to 0.975 and 0.982 with that measured by the clinical monitor, respectively. Bland-Altman method analysis results further revealed that both S11 and frequency response are in good agreement with clinical monitor. The proposed sensor combines the advantages of non-invasiveness, high sensitivity and high stability, and it has great potential in human health monitoring.
Collapse
Affiliation(s)
- Yusi Zhu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (J.L.); (Z.F.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Xia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (J.L.); (Z.F.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jihang Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (J.L.); (Z.F.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Fang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (J.L.); (Z.F.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Lidong Du
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (J.L.); (Z.F.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan Zhao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (J.L.); (Z.F.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Yeon SY, Seo M, Kim Y, Hong H, Chung TD. Paper-based electrochromic glucose sensor with polyaniline on indium tin oxide nanoparticle layer as the optical readout. Biosens Bioelectron 2022; 203:114002. [DOI: 10.1016/j.bios.2022.114002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 01/26/2023]
|
48
|
Qiu C, Wu F, Han W, Yuce MR. A Wearable Bioimpedance Chest Patch for Real-Time Ambulatory Respiratory Monitoring. IEEE Trans Biomed Eng 2022; 69:2970-2981. [PMID: 35275808 DOI: 10.1109/tbme.2022.3158544] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE This paper aims to introduce a wearable solution and a low-complexity algorithm for real-time continuous ambulatory respiratory monitoring. METHODS A wearable chest-worn patch is designed using a bioimpedance (BioZ) sensor to measure the changes in chest impedance caused by breathing. Besides, a medical-grade infrared temperature sensor is utilized to monitor body temperature. The computing algorithm implemented on the patch enables computation of breath-by-breath respiratory rate and chest temperature in real-time. Two wireless communication protocols are included in the system, namely Bluetooth and Long Range (LoRa), which enable both short-range and long-range data transmission. RESULTS The breathing rate measured in static (i.e., standing, sitting, supine, and lateral lying) and dynamic (i.e., walking, running, and cycling) positions by our device yielded an accuracy of more than 97.8% and 98.5% to the ground truth, respectively. Additionally, the devices performance is evaluated in real-world scenarios both indoors and outdoors. CONCLUSION The proposed system is capable of measuring breathing rate throughout a variety of daily activities. To the best of our knowledge, this is the first BioZ-based wearable patch capable of detecting breath-by-breath respiratory rate in real-time remotely under unrestricted ambulatory conditions. SIGNIFICANCE This study establishes a strategy for continuous respiratory monitoring that could aid in the early detection of cardiopulmonary disorders in everyday life.
Collapse
|
49
|
Falco A, Marín-Sánchez A, Loghin FC, Castillo E, Salinas-Castillo A, Salmerón JF, Rivadeneyra A. Paper and Salt: Biodegradable NaCl-Based Humidity Sensors for Sustainable Electronics. FRONTIERS IN ELECTRONICS 2022. [DOI: 10.3389/felec.2022.838472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Flexible and thin-film humidity sensors are currently attracting the attention of the scientific community due to their portability and reduced size, which are highly useful traits for use in the Internet o Things (IoT) industry. Furthermore, in order to perform efficient and profitable mass production, it is necessary to develop a cost-effective and reproducible fabrication process and materials. Green fabrication methods and biodegradable materials would also minimize the environmental impact and create a sustainable IoT development. In this paper, flexible humidity sensors based on a common salt (NaCl) sensing layer are reported. Our sensors and the fabrication techniques employed, such as dip and spray coating, provide a biodegradable, low cost, and highly reproducible device. One of the sensors reported presents a typical resistive behaviour from 40% RH up to 85% RH with a sensitivity of −0.21 (Z/%RH). The performance of the sensors obtained with several fabrication techniques is studied and reported at multiple frequencies from 100 Hz to 10 MHz, showcasing its versatility and robustness.
Collapse
|
50
|
Han J, Tcho I, Jeon S, Yu J, Kim W, Choi Y. Self-Powered Artificial Mechanoreceptor Based on Triboelectrification for a Neuromorphic Tactile System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105076. [PMID: 35032113 PMCID: PMC8948587 DOI: 10.1002/advs.202105076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/01/2021] [Indexed: 05/19/2023]
Abstract
A self-powered artificial mechanoreceptor module is demonstrated with a triboelectric nanogenerator (TENG) as a pressure sensor with sustainable energy harvesting and a biristor as a neuron. By mimicking a biological mechanoreceptor, it simultaneously detects the pressure and encodes spike signals to act as an input neuron of a spiking neural network (SNN). A self-powered neuromorphic tactile system composed of artificial mechanoreceptor modules with an energy harvester can greatly reduce the power consumption compared to the conventional tactile system based on von Neumann computing, as the artificial mechanoreceptor module itself does not demand an external energy source and information is transmitted with spikes in a SNN. In addition, the system can detect low pressures near 3 kPa due to the high output range of the TENG. It therefore can be advantageously applied to robotics, prosthetics, and medical and healthcare devices, which demand low energy consumption and low-pressure detection levels. For practical applications of the neuromorphic tactile system, classification of handwritten digits is demonstrated with a software-based simulation. Furthermore, a fully hardware-based breath-monitoring system is implemented using artificial mechanoreceptor modules capable of detecting wind pressure of exhalation in the case of pulmonary respiration and bending pressure in the case of abdominal breathing.
Collapse
Affiliation(s)
- Joon‐Kyu Han
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Il‐Woong Tcho
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Seung‐Bae Jeon
- Electronics Engineering DepartmentHanbat National University125 Dongseo‐daero, Yuseong‐guDaejeon34158Republic of Korea
| | - Ji‐Man Yu
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Weon‐Guk Kim
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Yang‐Kyu Choi
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|