1
|
Wang JQ, Zhou MQ, Yang DF, Cai LH, Xiang S, Fan X, Zhang J, Zhang Z. Integrating Polyoxometalates and Silver Clusters into Atomically Precise Molecular Heterojunction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404290. [PMID: 39032148 DOI: 10.1002/smll.202404290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Indexed: 07/22/2024]
Abstract
The Ag cluster-POM assemblies have been shown to possess interesting and potentially useful properties. However, there is no precedent example of atomically precise Ag cluster-POM assemblies showing heterojunction effects in photocatalysis. Herein, the synthesis and total structure determination of the periodically distributed molecular heterojunction [Ag12(SCy)6(CH3CN)12(PW12O40)]n (Ag12-PW12) are reported. The assembly of Ag/W clusters into 3D network can endow the resulting binary structure with an aesthetic topology and unique physicochemical properties. More remarkably, the incorporation of Ag12 cluster with PW12 can efficiently facilitate the separation of photogenerated electrons and holes, thus significantly promoting the catalytic efficiency in selective oxidation of sulfides. The Ag12-PW12 heterojunction can be recovered and reused five times with no drastic change in the catalytic performance. This research is expected to assist in the rational design of cluster-based heterojunction catalysts. The increase of catalytic activity of the Ag12-PW12 assembly in comparison with the unassembled Ag12 and PW12 clusters is attributed to the synergistic effect of Ag12 and PW12 clusters, offering the splendid opportunity for deciphering structure-reactivity relationship of heterostructure-coupled photosystem.
Collapse
Affiliation(s)
- Jia-Qi Wang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Meng-Qi Zhou
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Di-Feng Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Li-Hong Cai
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Xi Fan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Jindan Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| |
Collapse
|
2
|
Bhattacharjee S, Mondal S, Ghosh A, Banerjee S, Das AK, Bhaumik A. Rational Design of Highly Porous Donor-Acceptor Based Conjugated Microporous Polymer for Photocatalytic Benzylamine Coupling Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406723. [PMID: 39358942 DOI: 10.1002/smll.202406723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Conjugated microporous polymers (CMPs) are an important class of organic materials with several useful features like, inherent nanoscale porosity, large specific surface area and semiconducting properties, which are very demanding for various sustainable applications. Carbazole building blocks are extensively used in designing photocatalysts due to easy electron donation and hole transportation. In the current study, a new CMP material CBZ-CMP containing carbazole unit used for photocatalytic C═N coupling reaction under blue light irradiation is designed. The CBZ-CMP framework is made through the polycondensation of 4,4'-di(9H-carbazol-9-yl)-1,1'-biphenyl using FeCl3 as a catalyst. The CBZ-CMP shows very high BET surface area of 1536 m2 g-1 together with unimodal porosity (ca. 1.7 nm supermicropore), nanowire-like particle morphology (16-18 nm diameter), and low band gap property. The bi-phenyl moiety functions as the electron accepting center and the carbazole unit acts as the donor center, which accounts for the low band gap energy of CBZ-CMP. This nanoporous semiconducting CBZ-CMP material for photocatalytic benzylamine coupling reaction is explored, where it shows good conversion together with high selectivity under mild reaction conditions. This study offers simple method of preparation of a D-A-D-based porous photocatalyst for sustainable synthesis of value-added organics.
Collapse
Affiliation(s)
- Sudip Bhattacharjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Sumanta Mondal
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Anirban Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Soumadip Banerjee
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Abhijit K Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
3
|
Sun J, Ge X, Gao Y, Zhang M, Zhao Q, Hou G, Wang X, Yin Y, Ouyang J, Na N. Competitive photooxidation of small colorless organics controlled by oxygen vacancies under visible light. Chem Sci 2024:d4sc04531a. [PMID: 39323529 PMCID: PMC11420858 DOI: 10.1039/d4sc04531a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Visible-light photooxidation sensitized by surface attachment of small colorless organics on semiconductor photocatalysts has emerged as an economical method for photocatalytic synthesis or degradation. In particular, heteroatom (X = N and Cl)-containing substrates could undergo either C-N coupling or dechlorination degradation via sensitizing TiO2, but the mechanism in conducting the competitive visible-light sensitized photooxidations is still vague. Herein, the visible-light photooxidation of colorless 4-chlorobenzene-1,2-diamine (o-CAN) on TiO2 was revealed, contributing to selective C-N coupling rather than dechlorination. Oxygen vacancies (OVs) were in situ generated on the TiO2 surface, which could be dominant in weakening the Cl-Ti adsorption of o-CAN and regulating the activation of O2 for selective C-N coupling. The C-N coupling product, functionalized as the sensitizer, further promoted the visible-light photooxidation upon N-Ti and Cl-Ti coordination. This process was then confirmed by on-line mass spectrometric analysis, and the intermediates as well as their kinetics were determined. Thereby, theoretical calculations were employed to verify the roles of OVs in competitive photooxidation and lowering the energy barriers as well. Based on the comprehensive characterizations of both the catalysts and intermediates, this work has provided insights into competitive photooxidations under visible light.
Collapse
Affiliation(s)
- Jianghui Sun
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| | - Xiyang Ge
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Yixuan Gao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Min Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Qi Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Xiaoni Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Yiyan Yin
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Jin Ouyang
- Department of Chemistry, College of Arts and Sciences, Beijing Normal University Zhuhai 519087 China
| | - Na Na
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| |
Collapse
|
4
|
Shukla RK, Yadav RK, Gole VL, Singh S, Gupta NK, Baeg JO. Photocatalytic fixation and oxygenation of NAD +/NADP + and sulfides using solar light: Exploring mechanistic investigations and their impact on synthetic applications. Photochem Photobiol 2024; 100:1235-1246. [PMID: 38054563 DOI: 10.1111/php.13890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 12/07/2023]
Abstract
Sulfur-doped Eosin-B (SDE-B) photocatalysts were synthesized for the first time utilizing sublimed sulfur (S8) as a dopant in an in situ thermal copolymerization technique. Sulfur doping not only increased Eosin-B (E-B) absorption range for solar radiation but also improved fixation and oxygenation capabilities. The doped sulfur bridges the S-S bond by substituting for the edge bromine of the E-B bond. The improved photocatalytic activity of SDE-B in the fixation and oxygenation of NAD+/NADP+ and sulfides using solar light is attributed to the photo-induced hole of SDE-B's high fixation and oxygenation capacity, as well as an efficient suppression of electron and hole recombination. The powerful light-harvesting bridge system created using SDE-B as a photocatalyst works extremely well, resulting in high NADH/NADPH regeneration (79.58/76.36%) and good sulfoxide yields (98.9%) under solar light. This study focuses on the creation and implementation of a sulfur-doped photocatalyst for direct fine chemical regeneration and organic transformation.
Collapse
Affiliation(s)
- Ravindra K Shukla
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Rajesh K Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Vittal L Gole
- Department of Chemical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Satyam Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Navneet Kumar Gupta
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - Jin-Ook Baeg
- Artificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology, Daejeon, Korea
| |
Collapse
|
5
|
Liu Y, Li R, Lv Q, Yu B. Embracing heterogeneous photocatalysis: evolution of photocatalysts in annulation of dimethylanilines and maleimides. Chem Commun (Camb) 2024. [PMID: 39078307 DOI: 10.1039/d4cc02516d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Recent advances in visible-light-promoted construction of tetrahydroquinolines from dimethylanilines and maleimides are documented. Homogeneous and heterogeneous photocatalytic systems, as well as the reaction mechanism, are emphasized. The mechanism of this photocatalytic annulation reaction is quite clear, i.e., dimethylanilines and maleimides serve as the radical precursors and radical acceptors, respectively. This annulation reaction could serve as an excellent platform for evaluating novel oxidative heterogeneous photocatalytic systems, which could further inspire chemists in this field to develop more efficient photocatalytic systems. Significant opportunities are expected in the future for heterogeneous photocatalysis strategies.
Collapse
Affiliation(s)
- Yan Liu
- Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering, Zhengzhou, Henan Province 451191, China
| | - Rui Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore.
| | - Qiyan Lv
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Ma Z, Yu B, Liu S, Liu Y, Motokura K, Sun X, Yang Y. Single-Atom palladium engineered cobalt nanocomposite for selective aerobic oxidation of sulfides to sulfoxides. J Colloid Interface Sci 2024; 664:186-197. [PMID: 38460383 DOI: 10.1016/j.jcis.2024.02.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Developing efficient catalysts for the selective oxidation of sulfides to sulfoxides using molecular oxygen as the oxidant is a challenging task. Here, we report a novel catalyst comprising a single atom palladium engineered cobalt nanocomposite (denoted as PdCo@NC-800-0.01) for this reaction. The incorporation of single atom palladium effectively transforms an originally inactive cobalt nanocomposite into a highly efficient and selective catalyst for the oxidation of sulfides. This catalyst PdCo@NC-800-0.01 exhibited outstanding performance in the selective oxidation of sulfides to sulfoxides using O2 as the oxidant in the presence of isobutyraldehyde (IBA) under mild conditions, demonstrating high activity and excellent selectivity for a broad spectrum of sulfides with good tolerance toward various functional groups, including those susceptible to oxidation. Furthermore, the catalyst could be easily recovered and reused up to 10 times without any significant loss in activity and selectivity. Comprehensive characterizations and theoretical calculations revealed that the engineering of cobalt nanocomposite with single atom Pd greatly enhanced the ability to adsorb and activate IBA, leading to the generation of the key acyl radical. This radical then reacted with singlet oxygen 1O2 derived from molecular oxygen, producing reactive oxygen species peroxy radical, which ultimately promoted the catalytic performance.
Collapse
Affiliation(s)
- Zhiming Ma
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang, 110159, China
| | - Bo Yu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiqiang Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190
| | - Yifan Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ken Motokura
- Department of Chemistry and Life Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Xiaoyan Sun
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Yong Yang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Serviou SK, Gkizis PL, Sánchez DP, Plassais N, Gohier F, Cabanetos C, Kokotos CG. Expanding the Use of Benzothioxanthene Imides to Photochemistry: Eco-Friendly Aerobic Oxidation of Sulfides to Sulfoxides. CHEMSUSCHEM 2024:e202400903. [PMID: 38867402 DOI: 10.1002/cssc.202400903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
The sulfoxide moiety is one of the most commonly utilized groups in pharmaceutical and industrial chemistry. The need for sustainability and easy accessibility to sulfoxide moieties is deemed necessary, due to its ubiquity in natural products and potentially pharmaceutically active compounds. In this context, we report herein a sustainable, aerobic and environmentally friendly photochemical protocol based on the use of a benzothioxathene imide as the photocatalyst to selectively oxidize sulfides under mild irradiation (456 nm), in very low catalyst loading (0.01 mol %) and on water. In addition, to demonstrate the compatibility of our protocol with wide scope of substrates, the latter was successfully applied to the synthesis of the biologically-active Sulforaphane and Modafinil.
Collapse
Affiliation(s)
- Stamatis K Serviou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Petros L Gkizis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | | | - Nathan Plassais
- CNRS, MOLTECH-ANJOU, SFR-MATRIX, F-49000, Angers, France
- Department of Physics, University of Seoul, 02504, Seoul, Republic of Korea
| | | | | | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| |
Collapse
|
8
|
Cai B, Huang P, Fang Y, Tian H. Recyclable and Stable Porphyrin-Based Self-Assemblies by Electrostatic Force for Efficient Photocatalytic Organic Transformation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308469. [PMID: 38460154 DOI: 10.1002/advs.202308469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Indexed: 03/11/2024]
Abstract
Development of efficient, stable, and recyclable photocatalysts for organic synthesis is vital for transformation of traditional thermal organic chemistry into green sustainable organic chemistry. In this work, the study reports an electrostatic approach to assemble meso-tetra (4-sulfonate phenyl) porphyrin (TPPS)tetra (4-sulfonate phenyl) porphyrin (TPPS) as a donor and benzyl viologen (BV) as an acceptor into stable and recyclable photocatalyst for an efficient organic transformation reaction - aryl sulfide oxidation. By use of the electrostatic TPPS-BV photocatalysts, 0.1 mmol aryl sulfide with electron-donating group can be completely transformed into aryl sulfoxide in 60 min without overoxidation into sulfone, rendering near 100% yield and selectivity. The photocatalyst can be recycled up to 95% when 10 mg amount is used. Mechanistic study reveals that efficient charge separation between TPPS and BV results in sufficient formation of superoxide which further reacts with the oxidized sulfide by the photocatalyst to produce the sulfoxide. This mechanistic pathway differs significantly from the previously proposed singlet oxygen-dominated process in homogeneous TPPS photocatalysis.
Collapse
Affiliation(s)
- Bin Cai
- Department of Chemistry-Ångström Lab, Uppsala University, Box 523, Uppsala, SE 751 20, Sweden
| | - Ping Huang
- Department of Chemistry-Ångström Lab, Uppsala University, Box 523, Uppsala, SE 751 20, Sweden
| | - Yuan Fang
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30-36, Stockholm, SE 100 44, Sweden
| | - Haining Tian
- Department of Chemistry-Ångström Lab, Uppsala University, Box 523, Uppsala, SE 751 20, Sweden
| |
Collapse
|
9
|
Si X, Zhang Y, Zhang X, Pan X, Wang F, Shao X, Yao Q, Duan W, Huang X, Su J. A Porous Carbazolic Al-MOF for Efficient Aerobic Photo-Oxidation of Sulfides into Sulfoxides under Air. Inorg Chem 2024; 63:4707-4715. [PMID: 38410082 DOI: 10.1021/acs.inorgchem.3c04359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A robust, microporous, and photoactive aluminum-based metal-organic framework (Al-MOF, LCU-600) has been assembled by an in situ-formed [Al3O(CO2)6] trinuclear building unit and a tritopic carbazole ligand. LCU-600 shows a high water stability and permanent porosity for N2 and CO2 adsorption. Notably, the incorporation of photoresponsive carbazole moieties into LCU-600 makes it a highly efficient and recyclable photocatalyst for aerobic photo-oxidation of sulfides into sulfoxides under an air atmosphere at room temperature. Mechanism investigations unveil that photogenerated holes (h+), superoxide radical anion (O2•-), and singlet oxygen (1O2) are critical active spices for the photo-oxidation reaction performed in an air atmosphere.
Collapse
Affiliation(s)
- Xuezhen Si
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Yanjun Zhang
- Luxi Chemical Group Co., Ltd., New Chemical Materials Industrial Park, Liaocheng 252000, P. R. China
| | - Xiaoying Zhang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Xuze Pan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Fudong Wang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Xiaodong Shao
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Wenzeng Duan
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, and Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Jie Su
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
10
|
Wu X, Zhou J, Tan Q, Li K, Li Q, Correia Carabineiro SA, Lv K. Remarkable Enhancement of Photocatalytic Activity of High-Energy TiO 2 Nanocrystals for NO Oxidation through Surface Defluorination. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11479-11488. [PMID: 38386611 DOI: 10.1021/acsami.3c16994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The superior photocatalytic activity of TiO2 nanocrystals with exposed high-energy (001) facets, achieved through the use of hydrofluoric acid as a shape-directing reagent, is widely reported. However, in this study, we report for the first time the detrimental effect of surface fluorination on the photoreactivity of high-energy faceted TiO2 nanocrystals towards NO oxidation (resulting in a NO removal rate of only 5.9%). This study aims to overcome this limitation by exploring surface defluorination as an effective strategy to enhance the photocatalytic oxidation of NO on TiO2 nanocrystals enclosed with (001) facets. We found that surface defluorination, achieved through either NaOH washing (resulting in an improved NO removal rate of 23.2%) or calcination (yielding an enhanced NO removal rate of 52%), leads to a large increase in the photocatalytic oxidation of NO on TiO2 nanocrystals with enclosed (001) facets. Defluorination processes stimulate charge separation, effectively retarding recombination and significantly promoting the production of reactive oxygen species, including superoxide radicals (·O2-), singlet oxygen (1O2), and hydroxyl radicals (·OH). Both in situ diffuse reflectance infrared Fourier-transform spectroscopy and density functional theory calculations confirm the higher adsorption of NO after defluorination, thus facilitating the oxidation of NO on TiO2 nanocrystals.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan, Hubei Province 430074, China
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technische Universitat Darmstadt, Otto-Berndt-Strasse 3, Darmstadt 64287, Germany
| | - Jie Zhou
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan, Hubei Province 430074, China
- Department of Urology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, China
| | - Qiuyan Tan
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan, Hubei Province 430074, China
| | - Kaining Li
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan, Hubei Province 430074, China
| | - Qin Li
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan, Hubei Province 430074, China
| | - Sónia A Correia Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Kangle Lv
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan, Hubei Province 430074, China
| |
Collapse
|
11
|
Kader DA. Green approach for the fabrication of a ternary nanocatalyst (Ag-ZnONPs@Cy) for visible light-induced photocatalytic reduction of nitroarenes to aminoarenes. RSC Adv 2023; 13:34904-34915. [PMID: 38035233 PMCID: PMC10687522 DOI: 10.1039/d3ra06448d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
In recent times, the incorporation of metal oxide nanoparticles with organic dyes has piqued the interest of numerous researchers due to their diverse applications under visible light instead of UV radiation. This investigation employed a three-step methodology to fabricate cyanidin-sensitized silver-doped zinc oxide nanoparticles (Ag-ZnO@Cy). Initially, cyanidin dye was extracted from fresh black mulberry fruit, followed by the eco-friendly synthesis of Ag-ZnO nanoparticles (Ag-ZnONPs). The successful integration of the prepared cyanidin dye with Ag-ZnONPs was achieved through a straightforward, environmentally benign, and cost-efficient procedure. The resultant ternary composite underwent comprehensive characterization and confirmation utilizing various techniques, such as SEM, FT-IR, EDX, DRS, elemental mapping, and XRD. The experimental results for Ag-ZnONPs@Cy demonstrated that the nanocrystalline wurtzite exhibited spherical shapes with an average crystal size of 27.42 nm. Moreover, the photocatalytic activity of the synthesized Ag-ZnONPs@Cy was meticulously investigated under blue LED light irradiation. This inquiry encompassed examinations of catalyst amount, regeneration, stability, reusability, and the influence of light source on the hydrogenation of nitroarenes to the corresponding aminoarenes. The findings shed light on the potential of this composite for diverse photocatalytic applications.
Collapse
Affiliation(s)
- Dana A Kader
- Department of Chemistry, College of Education, University of Sulaimani Old Campus, Kurdistan Region 46001 Iraq
- Pharmacy Department, Komar University of Science and Technology Kurdistan Region Sulaimani 46001 Iraq
| |
Collapse
|
12
|
Cheng QY, Wang T, Hu J, Chen HY, Xu JJ. In Situ Probing the Short-Lived Intermediates in Visible-Light Heterogeneous Photocatalysis by Mass Spectrometry. Anal Chem 2023; 95:14150-14157. [PMID: 37665645 DOI: 10.1021/acs.analchem.3c03494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Visible-light-mediated heterogeneous photocatalysis has recently emerged as an environmentally friendly and energy-sustainable alternative for organic transformations. Despite the advancements in developing wide varieties of photocatalysts during the past decades, the accurate probing and identification of the photogenerated species, especially the short-lived radical intermediates, are still challenging. In this work, we reported a hybrid ion emitter that integrated with a pico-liter heterogeneous photocatalytic reactor, which was fabricated by depositing the photocatalyst (e.g., TiO2) into the front tip of a quartz micropipette. Benefited from the dual-function feature of the hybrid micropipette (i.e., a clog-free tip-confined pico-liter reactor for heterogeneous photocatalysis and an ion emitter for nanoelectrospray ionization), sensitized photoredox reactions at the catalyst-solution interface can be triggered upon visible-light irradiation using a cheap LED laser (453 nm), and the newly produced transient radical intermediates can be rapidly transformed into gaseous ions for mass spectrometric identification. Using this novel low-delay coupling device, photogenerated intermediates, including the cationic radicals produced during the photooxidation of anilines and the anionic radicals produced during the photoreduction of quinones, were successfully captured by mass spectrometry. We believe that our hybrid photochemical microreactor/ion emitter has provided a new and powerful tool for exploring the complicated heterogeneous photochemical processes, especially their ultrafast initial transformations.
Collapse
Affiliation(s)
- Qiu-Yue Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ting Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jun Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
13
|
Kader DA, Mohammed SJ. Emerging developments in dye-sensitized metal oxide photocatalysis: exploring the design, mechanisms, and organic synthesis applications. RSC Adv 2023; 13:26484-26508. [PMID: 37671346 PMCID: PMC10476557 DOI: 10.1039/d3ra05098j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
In the present day, the incorporation of environmentally conscious practices in the realm of photocatalysis holds a prominent position within the domain of organic synthesis. The imperative to tackle environmental issues linked to catalysts that cannot be recycled, generation of waste, byproducts, and challenges in achieving reaction selectivity during organic synthesis are more crucial than ever. One potential solution involves the integration of recyclable nanomaterials with light as a catalyst, offering the possibility of achieving sustainable and atom-efficient transformations in organic synthesis. Metal oxide nanoparticles exhibit activation capabilities under UV light, constituting a small percentage (4-8%) of sunlight. However, this method lacks sufficient environmental friendliness, and the issue of electron-hole recombination poses a significant hurdle. To tackle these challenges, multiple approaches have been proposed. This comprehensive review article focuses on the efficacy of dyes in enhancing the capabilities of heterogeneous photocatalysts, offering a promising avenue to overcome the constraints associated with metal oxides in their role as photocatalysts. The article delves into the intricate design aspects of dye-sensitized photocatalysts and sheds light on their mechanisms in facilitating organic transformations.
Collapse
Affiliation(s)
- Dana A Kader
- Department of Chemistry, College of Education, University of Sulaimani Old Campus 46001 Kurdistan Region Iraq
| | - Sewara J Mohammed
- Anesthesia Department, College of Health Sciences, Cihan University Sulaimaniya Sulaimani 46001 Kurdistan Region Iraq
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani 46002 Kurdistan Regional Government Iraq
| |
Collapse
|
14
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
15
|
Zhong H, Lu C, Sun XL, Luo Y, Qian Q, Xue H, Yang MQ. Visible-Light-Driven Photocatalytic Dehydrogenation of Alcohols on TiO 2 via Ligand-to-Metal Charge Transfer for Coproduction of H 2 and Aldehydes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37486250 DOI: 10.1021/acsami.3c06701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Developing visible-light-driven photocatalysts for the catalytic dehydrogenation of organics is of great significance for sustainable solar energy utilization. Here, we first report that aromatic alcohols could be efficiently split into H2 and aldehydes over TiO2 under visible-light irradiation through a ligand-to-metal charge transfer (LMCT) mechanism. A series of TiO2 catalysts with different surface contents of the hydroxyl group (-OH) have been synthesized by controlling the hydrothermal and calcination synthesis methods. An optimal H2 production rate of 18.6 μmol h-1 is obtained on TiO2 synthesized from the hydrothermal method with a high content of surface -OH. Experimental characterizations and comparison studies reveal that the surface -OH markedly influences the formation of LMCT complexes and thus changes the visible-light-driven photocatalytic performance. This work is anticipated to inspire further research endeavors in the design and fabrication of visible-light-driven photocatalyst systems based on the LMCT mechanism to realize the simultaneous synthesis of clean fuel and fine chemicals.
Collapse
Affiliation(s)
- Huiling Zhong
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Chengjing Lu
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Xiao-Li Sun
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Yongjin Luo
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Qingrong Qian
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hun Xue
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Min-Quan Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| |
Collapse
|
16
|
Guo Y, Li H, Li B, Su S, Zhong X, Kong D, Chen Y, Song Y. Enhanced Photocatalytic Coupling of Benzylamine to N-Benzylidene Benzylamine over the Organic-Inorganic Composites F70-TiO 2 Based on Fullerenes Derivatives and TiO 2. Molecules 2023; 28:molecules28114301. [PMID: 37298775 DOI: 10.3390/molecules28114301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
The organic-inorganic composites F70-TiO2, based on fullerene with carboxyl group derivatives and TiO2 semiconductor, have been designed and constructed to become an optical-functional photocatalyst via the facile sol-gel method. The composite photocatalyst obtained shows excellent photocatalytic activity for the high-efficiency conversion of benzylamine (BA) to N-benzylidene benzylamine (NBBA) with air pressure at a normal temperature under visible light irradiation. By optimizing the composition, the composites with the 1:15 mass ratio of F70 and TiO2, denoted as F70-TiO2(1:15), demonstrated the highest reaction efficiency for benzylamine (>98% conversion) to N-benzylidene benzylamine (>93% selectivity) in this study. However, pure TiO2 and fullerene derivatives (F70) exhibit decreased conversion (56.3% and 89.7%, respectively) and selectivity (83.8% and 86.0%, respectively). The UV-vis diffuse reflectance spectra (DRS) and Mott-Schottky experiment's results indicate that the introduction of fullerene derivatives into anatase TiO2 would greatly broaden the visible light response range and adjust the energy band positions of the composites, enhancing the sunlight utilization and promoting the photogenerated charge (e--h+) separation and transfer. Specifically, a series of results on the in situ EPR tests and the photo-electrophysical experiment indicate that the separated charges from the hybrid could effectively activate benzylamine and O2 to accelerate the formation of active intermediates, and then couple with free BA molecules to form the desired production of N-BBA. The effective combination, on a molecular scale, between fullerene and titanium dioxide has provided a profound understanding of the photocatalysis mechanism. This work elaborates and makes clear the relationship between the structure and the performance of functional photocatalysts.
Collapse
Affiliation(s)
- Yanmeng Guo
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Hang Li
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Bo Li
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Shizhuo Su
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Xin Zhong
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Derui Kong
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yifan Chen
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yujie Song
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
17
|
Hsieh MH, Su ZH, Wu ET, Huang MH. Photocatalytic Aryl Sulfide Oxidation Using 4-Nitrophenylacetylene-Modified Cu 2O Crystals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11662-11669. [PMID: 36821395 DOI: 10.1021/acsami.2c20120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
4-Nitrophenylacetylene-functionalized Cu2O rhombic dodecahedra and cubes have been used to photocatalyze aryl sulfide oxidation generating aryl sulfoxides. With an oxygen supply and light from a blue light-emitting diode (LED), the reaction can be completed in 12 h with a water and methanol mixed solution. Generally high product yields and excellent product selectivity of sulfoxides over sulfones were achieved. In particular, a thioanisole to methyl phenyl sulfoxide yield of 98% was obtained. A mechanistic study has revealed that photogenerated electrons, holes, and superoxide radicals are involved in the oxidation reaction. The benefit of simple photocatalyst preparation and molecular functionalization to boost catalytic performance shows that surface-controlled ionic solids can be very effective photocatalysts for some organic transformations.
Collapse
Affiliation(s)
- Mu-Han Hsieh
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Zhe-Hong Su
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Er-Ting Wu
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Michael H Huang
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
18
|
Wu J, Kozlowski MC. Visible-Light-Induced Oxidative Coupling of Phenols and Alkenylphenols with a Recyclable, Solid Photocatalyst. Org Lett 2023; 25:907-911. [PMID: 36744826 PMCID: PMC10015407 DOI: 10.1021/acs.orglett.2c04122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A photocatalytic method for phenol and alkenylphenol oxidative coupling is reported using an inexpensive heterogeneous titanium dioxide photocatalyst with air and visible light. During the coupling process, the Ti-substrate complex is activated under visible light through a ligand to metal charge transfer effect, and the diphenol adduct is proposed to form through a radical cation. The heterogeneous TiO2 catalyst remains stable throughout the reaction and can be easily removed and reused multiple times.
Collapse
Affiliation(s)
- Jingze Wu
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Marisa C. Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
19
|
Wu D, Zhang Z, Li X, Han J, Hu Q, Yu Y, Mao Z. Cucurbit[10]uril-based supramolecular radicals: Powerful arms to kill facultative anaerobic bacteria. J Control Release 2023; 354:626-634. [PMID: 36681280 DOI: 10.1016/j.jconrel.2023.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/23/2023]
Abstract
Two water-soluble supramolecular complexes (CB[10]⊃PSA and CB[10]⊃TPE-cyc) are constructed based on the host-guest interaction between cucurbit[10]uril (CB[10]) and perylene diimide derivative (PSA) or tetracationic cyclophane (TPE-cyc). Attributing to the matched redox potential, both supramolecular complexes can be specifically reduced into corresponding supramolecular radical cations or anions by facultative anaerobic E. coli. Benefiting from the strong near-infrared (NIR) absorption, CB[10]⊃PSA radical anions and CB[10]⊃TPE-cyc radical cations act as efficient NIR photosensitizers and perform an excellent antimicrobial activity (close to 100%) via PTT. In addition, the biocompatibility of TPE-cyc is notably improved under the protection of CB[10], guaranteeing its biosafety for in vivo application. CB[10]⊃PSA radical anions and CB[10]⊃TPE-cyc radical cations are in situ generated in the E. coli-infected abscess of mice and effectively inhibit the bacterial infection without obvious system toxicity. It is anticipated that this supramolecular strategy may pave a new way for the selective bacteria inhibition to regulate the balance of different bacterial flora.
Collapse
Affiliation(s)
- Dan Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhankui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xinyue Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jin Han
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China..
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China..
| | - Yuan Yu
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China..
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China..
| |
Collapse
|
20
|
Matsukuma K, Tayu M, Yashiro Y, Yamaguchi T, Ohrui S, Saito N. A Photoredox/Sulfide Dual Catalysis System That Uses Sulfide Radical Cations to Promote Alkene Chlorotrifluoromethylation. Chem Pharm Bull (Tokyo) 2023; 71:695-700. [PMID: 37661375 DOI: 10.1248/cpb.c23-00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Sulfides and their derivatives are among the most important class of reagent in synthetic chemistry. Despite the importance of such compounds, the use of sulfide radical cations in synthetic chemistry is underdeveloped. To address this issue, herein, we describe alkene chlorotrifluoromethylation reactions promoted by photoredox/sulfide dual catalysis systems, which involves sulfide radical cations generated through the oxidation of sulfides by a photoredox catalyst. The high functional group tolerance of this chemistry was demonstrated using natural products and drug molecules as substrate alkenes.
Collapse
|
21
|
Tivari S, Singh PK, Singh PP, Srivastava V. Visible light-induced photoredox catalyzed C-N coupling of amides with alcohols. RSC Adv 2022; 12:35221-35226. [PMID: 36540212 PMCID: PMC9730743 DOI: 10.1039/d2ra07065k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/02/2022] [Indexed: 03/23/2024] Open
Abstract
A visible-light-mediated method for the construction of N-monoalkylated products from easily available benzamides and benzyl alcohol in the presence of eosin Y has been developed. The reaction proceeded smoothly, for a wide range of derivatives of benzamides and benzyl alcohols, to give the desired products in good to excellent yields. Biological studies, such as those on drug-likeness and molecular docking, are carried out on the molecules.
Collapse
Affiliation(s)
- Shraddha Tivari
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj-211002 Uttar Pradesh India
| | - Pravin K Singh
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj-211002 Uttar Pradesh India
| | - Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Naini Prayagraj-211010 Uttar Pradesh India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj-211002 Uttar Pradesh India
| |
Collapse
|
22
|
Amano F, Akaki Y, Yamakata A. Effects of Hydroxy Groups in Anthraquinone Dyes on Photocatalytic Activity of Visible-light-sensitized Pt-TiO2 for Hydrogen Evolution. CATALYSIS SURVEYS FROM ASIA 2022. [DOI: 10.1007/s10563-022-09370-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Structural Properties and Degradation Efficiency Photocatalyst-based Composite Titanium Dioxide/Activated Carbon by Charge Trap System for Groundwater Reach Phenol Treatment. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
24
|
Chen Y, An H, Chang S, Li Y, Xu T, Zhu Q, Luo H, Huang Y, Wei Y. Two pseudo-polymorphic porous POM-pillared MOFs for sulfide-sulfoxide transformation: Efficient synergistic effects of POM precursors, metal sites and microstructures. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Xu M, Zhang J, Liu L, Cheng X, Hu J, Sha Y, Su Z, Wang Y. Co(NO 3) 2/covalent organic framework nanoparticles for high-efficiency photocatalytic oxidation of thioanisole. Chem Commun (Camb) 2022; 58:6324-6327. [PMID: 35527508 DOI: 10.1039/d2cc01616h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we demonstrated a highly efficient photocatalytic sulfide oxidation reaction at ambient conditions without a sacrificial reagent or redox mediator, by using Co(NO3)2/covalent organic framework nanoparticles as a photocatalyst.
Collapse
Affiliation(s)
- Mingzhao Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, P. R. China
| | - Lifei Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiuyan Cheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingyang Hu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yufei Sha
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhuizhui Su
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanyue Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
26
|
Zhang D, Zou XN, Wang XG, Su J, Luan TX, Fan W, Li PZ, Zhao Y. Highly Effective Photocatalytic Radical Reactions Triggered by a Photoactive Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23518-23526. [PMID: 35537034 DOI: 10.1021/acsami.2c04331] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
On account of their inherent reactive properties, radical reactions play an important role in organic syntheses. The booming photochemistry provides a feasible approach to trigger the generation of radical intermediates in organic reaction processes. Thus, developing effective photocatalysts becomes the key step in radical reactions. In this work, the triphenylamine moiety with photoactivity is successfully embedded in a highly porous and stable metal-organic framework (MOF), and the obtained MOF, namely, Zr-TCA, naturally displays a photoactive property derived from the triphenylamine-based ligand. In photocatalytic studies, the triphenylamine-based Zr-TCA not only exhibits a high catalytic activity on the aerobic oxidation of sulfides via the generation of the superoxide radical anion (O2•-) under light irradiation but also shows good efficiency in the trifluoromethylation of arenes and heteroarenes by the formation of the trifluoromethyl radical (CF3•) as an intermediate. Moreover, the high performance of Zr-TCA can be well maintained over a wide range of substrates in these radical reactions, and the recycled Zr-TCA still retains its excellent photocatalytic activity. The high recyclability and catalytic efficiency to various substrates make the constructed triphenylamine-based Zr-TCA a promising photocatalyst in diverse radical reactions.
Collapse
Affiliation(s)
- Deshan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
| | - Xin-Nan Zou
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
| | - Xiao-Ge Wang
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jie Su
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
| | - Weiliu Fan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237 Shandong Province, P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
27
|
Pratley C, Fenner S, Murphy JA. Nitrogen-Centered Radicals in Functionalization of sp 2 Systems: Generation, Reactivity, and Applications in Synthesis. Chem Rev 2022; 122:8181-8260. [PMID: 35285636 DOI: 10.1021/acs.chemrev.1c00831] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The chemistry of nitrogen-centered radicals (NCRs) has plentiful applications in organic synthesis, and they continue to expand as our understanding of these reactive species increases. The utility of these reactive intermediates is demonstrated in the recent advances in C-H amination and the (di)amination of alkenes. Synthesis of previously challenging structures can be achieved by efficient functionalization of sp2 moieties without prefunctionalization, allowing for faster and more streamlined synthesis. This Review addresses the generation, reactivity, and application of NCRs, including, but not limited to, iminyl, aminyl, amidyl, and aminium species. Contributions from early discovery up to the most recent examples have been highlighted, covering radical initiation, thermolysis, photolysis, and, more recently, photoredox catalysis. Radical-mediated intermolecular amination of (hetero)arenes can occur with a variety of complex amine precursors, generating aniline derivatives, an important class of structures for drug discovery and development. Functionalization of olefins is achievable in high anti-Markovnikov regioselectivity and allows access to difunctionalized structures when the intermediate carbon radicals are trapped. Additionally, the reactivity of NCRs can be harnessed for the rapid construction of N-heterocycles such as pyrrolidines, phenanthridines, quinoxalines, and quinazolinones.
Collapse
Affiliation(s)
- Cassie Pratley
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom.,GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, United Kingdom
| | - Sabine Fenner
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, United Kingdom
| | - John A Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
28
|
Li Y, Cheng X, Jin Y, Li Z, Sun Y, Zou Y, Liu L, Zhang J, Xu W. Highly Crystalline Ag-based Coordination Polymers for Efficient Photocatalytic Oxidation of Sulfides. Chem Asian J 2022; 17:e202200031. [PMID: 35267242 DOI: 10.1002/asia.202200031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/10/2022] [Indexed: 12/12/2022]
Abstract
Coordination polymers (CPs) display great potential for the development of highly active photocatalysts. Herein, we report the fabrication of a highly crystalline CP, [Ag2 BTT]n (BTT=benzene-1,2,4,5-tetrathiol). The crystal structure of [Ag2 BTT]n was resolved and its performance for photocatalytic oxidation of thioanisole was explored. [Ag2 BTT]n is highly active and selective for the photo-oxidation of sulfides to sulfoxides under mild conditions, that is, in air, at room temperature and in the absence of a sacrificial reagent, co-catalyst or redox mediator.
Collapse
Affiliation(s)
- Yang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiuyan Cheng
- CAS Key Laboratory of Colloid, Interface and Thermodynamics, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yigang Jin
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ze Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yimeng Sun
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ye Zou
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liyao Liu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianling Zhang
- CAS Key Laboratory of Colloid, Interface and Thermodynamics, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Xu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
29
|
Visible-light-promoted aerobic oxidation of sulfides and sulfoxides in ketone solvents. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Lan X, Wang J, Li Q, Wang A, Zhang Y, Yang X, Bai G. Acetylene/Vinylene-Bridged π-Conjugated Covalent Triazine Polymers for Photocatalytic Aerobic Oxidation Reactions under Visible Light Irradiation. CHEMSUSCHEM 2022; 15:e202102455. [PMID: 34962075 DOI: 10.1002/cssc.202102455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Solar-driven photocatalytic chemical transformation provides a sustainable strategy to produce valuable feedstock, but designing photocatalysts with high efficiency remains challenging. Herein, two acetylene- or vinylene-bridged π-conjugated covalent triazine polymers, A-CTP-DPA and V-CTP-DPE, were successfully fabricated toward metal-free photocatalytic oxidation under visible light irradiation. Compared to the one without acetylene or vinylene bridge, both resulting polymers exhibited superior activity in photocatalytic selective oxidation of sulfides and oxidative coupling of amines; in particular, A-CTP-DPA delivered an optimal photocatalytic performance. The superior activity was attributed to the broadened spectral response range, effective separation, rapid transportation of photogenerated charge carriers, and abundant active sites for photogenerated electrons due to the existence of the acetylene bridge in the framework. This work highlights the potential of acetylene and vinylene bridges in tuning catalytic efficiency of organic semiconductors, providing a guideline for the design of efficient photocatalysts.
Collapse
Affiliation(s)
- Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Juan Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Qing Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Aiqing Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Yize Zhang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Xianheng Yang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Guoyi Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| |
Collapse
|
31
|
Skolia E, Gkizis PL, Kokotos CG. Aerobic Photocatalysis: Oxidation of Sulfides to Sulfoxides. Chempluschem 2022; 87:e202200008. [PMID: 35199489 DOI: 10.1002/cplu.202200008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Indexed: 12/19/2022]
Abstract
Sulfoxides constitute one of the most important functional groups in organic chemistry found in numerous pharmaceuticals and natural products. Sulfoxides are usually obtained from the oxidation of the corresponding sulfides. Among various oxidants, oxygen or air are considered the greenest and most sustainable reagent. Photochemistry and photocatalysis is increasingly applied in new, as well as traditional, yet demanding, reaction, like the aerobic oxidation of sulfides to sulfoxides, since photocatalysis has provided the means to access them in mild and effective ways. In this review, we will summarize the photochemical protocols that have been developed for the oxidation of sulfides to sulfoxides, employing air or oxygen as the oxidant. The aim of this review is to present: i) a historical overview, ii) the key mechanistic studies and proposed mechanisms and iii) categorize the different catalytic systems in literature.
Collapse
Affiliation(s)
- Elpida Skolia
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis 15771, Athens, Greece
| | - Petros L Gkizis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis 15771, Athens, Greece
| | - Chistoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis 15771, Athens, Greece
| |
Collapse
|
32
|
Yu YH, Huang SL, Yang GY. [Ru(NꓥNꓥN)2-Ce]-based Framework for Photocatalytic Sulfide Oxidation and Hydrogen Production. CrystEngComm 2022. [DOI: 10.1039/d2ce00397j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using photosensitized Ru(NꓥNꓥN)2-metalloligand, a series of Ce-frameworks were synthesized. The incorporation of visible-light-responsive Ru(NꓥNꓥN)2-unit endows the Ce-frameworks with photocatalytic activities in both sulfide oxidation and hydrogen production. The doping of...
Collapse
|
33
|
Wang L, Shen D, Zhang H, Mo B, Wu J, Hou H. Z-Scheme In 2 S 3 /NU-1000 Heterojunction for Boosting Photo-Oxidation of Sulfide into Sulfoxide under Ambient Conditions. Chemistry 2021; 28:e202103466. [PMID: 34889478 DOI: 10.1002/chem.202103466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/10/2022]
Abstract
Photocatalytic oxidation of sulfide into sulfoxide has attracted extensive attention as an environmentally friendly strategy for chemical transformations or toxic chemicals degradation. Herein, we construct a series of In2 S3 /NU-1000 heterojunction photocatalysts, which can efficiently catalyze the oxidation of sulfides to form sulfoxides as the sole product under LED lamp (full-spectrum) illumination in air at room temperature. Especially, the sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES), can also be photocatalytically oxidized with In2 S3 /NU-1000 to afford nontoxic 2-chloroethyl ethyl sulfoxide (CEESO) selectively and effectively. In contrast, individual NU-1000 and In2 S3 show very low catalytic activity on this reaction. The significantly improved photocatalytic activity is ascribed to the constructing of an efficient Z-scheme photocatalysts In2 S3 /NU-1000, which exhibits the enhancement of light harvesting, the promotion of photogenerated electron-hole separation, and the retention of high porosity of the parent MOF. Moreover, mechanism studies in photocatalytic oxidation reveal that the superoxide radical (. O2 - ) and singlet oxygen (1 O2 ) are the main oxidative species in the oxidation system. This work exploits the opportunities for the construction of porous Z-scheme photocatalysts based on the photoactive MOFs materials and inorganic semiconductors for promoting catalytic organic transformations. More importantly, it provides a route to the rational design of efficient photocatalysts for the detoxification of mustard gas.
Collapse
Affiliation(s)
- Lianlian Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Dalong Shen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Heyao Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Bingyan Mo
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jie Wu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Hongwei Hou
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
34
|
Li J, Zhao J, Ma C, Yu Z, Zhu H, Yun L, Meng Q. Visible-Light-Driven Oxidative Cleavage of Alkenes Using Water-Soluble CdSe Quantum Dots. CHEMSUSCHEM 2021; 14:4985-4992. [PMID: 34494393 DOI: 10.1002/cssc.202101504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The oxidative cleavage of C=C bonds is an important chemical reaction, which is a popular reaction in the photocatalytic field. However, high catalyst-loading and low turnover number (TON) are general shortcomings in reported visible-light-driven reactions. Herein, the direct oxidative cleavage of C=C bonds through water-soluble CdSe quantum dots (QDs) is described under visible-light irradiation at room temperature with high TON (up to 3.7×104 ). Under the same conditions, water-soluble CdSe QDs could also oxidize sulfides to sulfoxides with 51-84 % yields and TONs up to 3.4×104 . The key features of this photocatalytic protocol include high TONs, wide substrates scope, low catalyst loadings, simple and mild reaction conditions, and molecular O2 as the oxidant.
Collapse
Affiliation(s)
- Jianing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Jingnan Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Cunfei Ma
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Zongyi Yu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Hongfei Zhu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Lei Yun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Qingwei Meng
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
- Ningbo Institute, Dalian University of Technology, Ningbo, Zhejiang, 315016, P. R. China
| |
Collapse
|
35
|
Park JK, Lee S. Sulfoxide and Sulfone Synthesis via Electrochemical Oxidation of Sulfides. J Org Chem 2021; 86:13790-13799. [PMID: 34549959 DOI: 10.1021/acs.joc.1c01657] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The oxidation of diaryl sulfides and aryl alkyl sulfides to the corresponding sulfoxides and sulfones under electrochemical conditions is reported. Sulfoxides are selectively obtained in good yield under a constant current of 5 mA for 10 h in DMF, while sulfones are formed as the major product under a constant current of 10 or 20 mA for 10 h in MeOH. The oxygen of both the sulfoxide and sulfone function is derived from water.
Collapse
Affiliation(s)
- Jin Kyu Park
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
36
|
Krylov IB, Lopat’eva ER, Subbotina IR, Nikishin GI, Yu B, Terent’ev AO. Mixed hetero-/homogeneous TiO2/N-hydroxyimide photocatalysis in visible-light-induced controllable benzylic oxidation by molecular oxygen. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63831-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Zhang Q, Sun Y, Li H, Tang K, Zhong YW, Wang D, Guo Y, Liu Y. Synthesis of Two-Dimensional C-C Bonded Truxene-Based Covalent Organic Frameworks by Irreversible Brønsted Acid-Catalyzed Aldol Cyclotrimerization. RESEARCH 2021; 2021:9790705. [PMID: 34549185 PMCID: PMC8435030 DOI: 10.34133/2021/9790705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/12/2021] [Indexed: 11/06/2022]
Abstract
The synthesis of new C-C bonded two-dimensional (2D) covalent organic frameworks (COFs) is highly desirable. Here, a simple but effective synthetic strategy has been developed using an irreversible Brønsted acid-catalyzed aldol cyclotrimerization reaction by virtue of truxene as a linkage. Nonolefin C-C bonded 2D truxene-based covalent organic frameworks (Tru-COFs) were constructed by polymerization of 1,3,5-triindanonebenzene (TDB). The structure formation was confirmed by wide-angle X-ray scattering, Fourier-transform infrared spectroscopy, and solid-state 13C CP/MAS NMR. The results showed that the Tru-COFs were porous (645 m2/g) and chemically stable. Benzyl methylene in conjugated Tru-COFs more effectively produced photoinduced radicals than the model truxene compound. Due to the radical photoresponsiveness, Tru-COFs were efficient catalysts for photocatalytic oxidation of sulfides. We expect that this will provide a new synthetic methodology to obtain C-C bonded functional 2D COFs.
Collapse
Affiliation(s)
- Qingsong Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunlong Sun
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haijing Li
- University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Tang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Sun QX, Chen H, Liu S, Wang XQ, Duan XH, Guo LN. Iron-Catalyzed Thiolation and Selenylation of Cycloalkyl Hydroperoxides via C-C Bond Cleavage. J Org Chem 2021; 86:11987-11997. [PMID: 34374284 DOI: 10.1021/acs.joc.1c01366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A cheap iron-catalyzed C-C bond cleavage/thiolation and selenylation of cycloalkyl hydroperoxides are presented. This redox-neutral protocol provides efficient access to diverse distal keto-functionalized thioethers and selenium compounds. Remarkably, only some amounts of disulfides are required for this transformation.
Collapse
Affiliation(s)
- Qing-Xin Sun
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - He Chen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuai Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiao-Qiang Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
39
|
Cheng Z, Gao X, Yao L, Wei Z, Qin G, Zhang Y, Wang B, Xia Y, Abdukader A, Xue F, Jin W, Liu C. Electrochemical Scalable Sulfoxidation of Sulfides with Molecular Oxygen and Water. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhen Cheng
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Xinglian Gao
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Lingling Yao
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Zhaoxin Wei
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Guohui Qin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Ablimit Abdukader
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| |
Collapse
|
40
|
Ramanathan S, Moorthy S, Ramasundaram S, Rajan HK, Vishwanath S, Selvinsimpson S, Durairaj A, Kim B, Vasanthkumar S. Grape Seed Extract Assisted Synthesis of Dual-Functional Anatase TiO 2 Decorated Reduced Graphene Oxide Composite for Supercapacitor Electrode Material and Visible Light Photocatalytic Degradation of Bromophenol Blue Dye. ACS OMEGA 2021; 6:14734-14747. [PMID: 34151056 PMCID: PMC8209795 DOI: 10.1021/acsomega.0c02325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/12/2021] [Indexed: 05/26/2023]
Abstract
The grape extract is a potential natural reducing agent because of its high phenolic content. The extracts of seeds, skin, and pulp of grape were prepared by digestion, grinding, and soxhlet methods and used for reducing graphene oxide (GO). The reduced GO made using the soxhlet extract of grape seed (GRGO) was hydrothermally treated with titanium dioxide (TiO2) for the synthesis of GRGO-TiO2 nanocomposite. The X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), UV-vis, photoluminescence, and Raman spectra studies further confirmed the formation of GRGO and the GRGO-TiO2 hybrid. Scanning electron microscope and transmission electron microscope studies showed the decoration of spherical TiO2 particles (<100 nm) on the few-layered GRGO sheets. The GRGO-TiO2 hybrid was explored as a working electrode for supercapacitors and visible light photocatalyst for water decontamination. GRGO-TiO2 showed higher specific capacitance (175 F g-1) than GRGO (150 F g-1) and TiO2 (125 F g-1) in an aqueous electrolyte. GRGO-TiO2 exhibited 83.6% capacitance retention even after 2000 cycles, indicating the good stability of the material. Further, under visible light irradiation (λ > 400 nm), GRGO-TiO2 showed ∼30% higher photo-oxidation of the bromophenol blue (BPB) dye than TiO2. Also, GRGO-TiO2 decreased the total organic carbon content of BPB from 92 to 18 ppm. Overall, the soxhlet extract of grape seed was found to be a cost-effective reducing agent for the preparation of GRGO, which is a suitable material to be used in supercapacitors and photocatalysis.
Collapse
Affiliation(s)
- Subramanian Ramanathan
- Department
of Chemistry, Karunya Institute of Technology
and Sciences (KITS), Karunya Nagar, Coimbatore 641-114, Tamil Nadu, India
| | - Sasikumar Moorthy
- Department
of Physics, Bishop Heber College (Affiliated
to Bharathidasan University), Tiruchirappalli 620017, India
| | - Subramaniyan Ramasundaram
- Smart
Microsystems and Advanced materials Lab (SMALL), School of Mechatronics
Engineering, Korea University of Technology
and Education, Cheonan, Chungnam 31253, Republic of Korea
| | - Hari Krishna Rajan
- Department
of Chemistry, M.S. Ramaiah Institute of
Technology, Bangalore 560054, Karnataka, India
| | - Sujayakumar Vishwanath
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798 Singapore
| | | | - Arulappan Durairaj
- School
of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Byungki Kim
- Smart
Microsystems and Advanced materials Lab (SMALL), School of Mechatronics
Engineering, Korea University of Technology
and Education, Cheonan, Chungnam 31253, Republic of Korea
| | - Samuel Vasanthkumar
- Department
of Chemistry, Karunya Institute of Technology
and Sciences (KITS), Karunya Nagar, Coimbatore 641-114, Tamil Nadu, India
| |
Collapse
|
41
|
Jiao Y, Đorđević L, Mao H, Young RM, Jaynes T, Chen H, Qiu Y, Cai K, Zhang L, Chen XY, Feng Y, Wasielewski MR, Stupp SI, Stoddart JF. A Donor-Acceptor [2]Catenane for Visible Light Photocatalysis. J Am Chem Soc 2021; 143:8000-8010. [PMID: 34028258 DOI: 10.1021/jacs.1c01493] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Colored charge-transfer complexes can be formed by the association between electron-rich donor and electron-deficient acceptor molecules, bringing about the narrowing of HOMO-LUMO energy gaps so that they become capable of harnessing visible light. In an effort to facilitate the use of these widespread, but nonetheless weak, interactions for visible light photocatalysis, it is important to render the interactions strong and robust. Herein, we employ a well-known donor-acceptor [2]catenane-formed by the mechanical interlocking of cyclobis(paraquat-p-phenylene) and 1,5-dinaphtho[38]crown-10-in which the charge-transfer interactions between two 4,4'-bipyridinium and two 1,5-dioxynaphthalene units are enhanced by mechanical bonding, leading to increased absorption of visible light, even at low concentrations in solution. As a result, since this [2]catenane can generate persistent bipyridinium radical cations under continuous visible-light irradiation without the need for additional photosensitizers, it can display good catalytic activity in both photo-reductions and -oxidations, as demonstrated by hydrogen production-in the presence of platinum nanoparticles-and aerobic oxidation of organic sulfides, such as l-methionine, respectively. This research, which highlights the usefulness of nanoconfinement present in mechanically interlocked molecules for the reinforcement of weak interactions, can not only expand the potential of charge-transfer interactions in solar energy conversion and synthetic photocatalysis but also open up new possibilities for the development of active artificial molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Luka Đorđević
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Center for Bio-inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haochuan Mao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ryan M Young
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Tyler Jaynes
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Center for Bio-inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hongliang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yunyan Qiu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kang Cai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Center for Bio-inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Medicine, Northwestern University, 676 North St. Clair Street, Chicago, Illinois 60611, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
42
|
Zou XN, Zhang D, Luan TX, Li Q, Li L, Li PZ, Zhao Y. Incorporating Photochromic Triphenylamine into a Zirconium-Organic Framework for Highly Effective Photocatalytic Aerobic Oxidation of Sulfides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20137-20144. [PMID: 33886272 DOI: 10.1021/acsami.1c03083] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A zirconium-based metal-organic framework (MOF) was successfully constructed via solvothermal assembly of a triphenylamine-based tricarboxylate ligand and Zr(IV) salt, the structure simulation of which revealed that it possesses a two-dimensional layered framework with a relatively rare dodecnuclear Zr12 cluster as the inorganic building unit. The inherent photo-responsive property derived from the incorporated photochromic triphenylamine groups combined with its high stability makes the constructed MOF an efficient heterogeneous photocatalyst for the oxidation of sulfides, which is a fundamentally important reaction type in both environmental and pharmaceutical industries. The photocatalytic activity of the constructed MOF was first investigated under various conditions with thioanisole as a representative sulfide substrate. The MOF exhibited both high efficiency and selectivity on aerobic oxidation of thioanisole in methanol utilizing molecular oxygen in air as the oxidant under blue light irradiation for 10 h. Its high photocatalytic performance was also observed when extending the sulfide substrate to diverse thioanisole derivatives and even a sulfur-containing nerve agent simulant (2-chloroethyl ethyl sulfide). The high photocatalytic efficiency and selectivity to a broad set of sulfide substrates make the triphenylamine-incorporating zirconium-based MOF a highly promising heterogeneous photocatalyst.
Collapse
Affiliation(s)
- Xin-Nan Zou
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, P. R. China
| | - Deshan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, P. R. China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, P. R. China
| | - Qiang Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, P. R. China
| | - Lei Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, P. R. China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, P. R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
43
|
Qiao X, Lin Y, Li J, Ma W, Zhao J. All at once arrangement of both oxygen atoms of dioxygen into aliphatic C(sp3)-C(sp3) bonds for hydroxyketone difunctionalization. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9949-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Sun J, Fan X, Lu H, Tan H, Zhang Y, Wang Y, Zhao Y, Ouyang J, Na N. Observation of intermediates by online mass spectrometry to demonstrate the multiple mechanisms of dye-sensitized photocatalysis. Chem Commun (Camb) 2021; 57:3921-3924. [PMID: 33871525 DOI: 10.1039/d1cc00908g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Online mass spectrometry was applied to reveal multiple mechanisms of visible-light irradiated dye-sensitized photocatalysis for o-phenylenediamine oxidation. The reactants, products and short-lived intermediates were recorded and dynamically tracked. Dimer and unexpected trimer intermediates were observed to deduce the stepwise aerobic photooxidation mechanism with multiple routes, which was supported by theoretical calculations.
Collapse
Affiliation(s)
- Jianghui Sun
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, P. R. China.
| | - Xuchan Fan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, P. R. China.
| | - Hua Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, P. R. China.
| | - Hongwei Tan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, P. R. China.
| | - Ying Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, P. R. China.
| | - Yan Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, P. R. China.
| | - Yunling Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, P. R. China.
| | - Jin Ouyang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, P. R. China.
| | - Na Na
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, P. R. China.
| |
Collapse
|
45
|
Macroporous-mesoporous C-, S-, N-doped titania microspheres via the polyHIPE microspheres templates. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.08.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Ma DM, Yu X, Ding A, Guo H, Qian DJ. Interfacial self-assembled thioxathone monolayers on the surfaces of silica nanoparticles as efficient heterogeneous photocatalysts for the selective oxidation of aromatic thioethers under air atmosphere. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Jozeliūnaitė A, Valčeckas D, Orentas E. Fullerene soot and a fullerene nanodispersion as recyclable heterogeneous off-the-shelf photocatalysts. RSC Adv 2021; 11:4104-4111. [PMID: 35424373 PMCID: PMC8694487 DOI: 10.1039/d0ra10147h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/29/2020] [Indexed: 11/21/2022] Open
Abstract
Metal-free heterogeneous photocatalysis, which requires no prior catalyst immobilization or chemical modification and can operate in green solvents, represents a highly-sought after, yet currently still underdeveloped, synthetic method. In this report we present a comparative study which aims to evaluate the use of unmodified fullerene soot and a fullerene nanodispersion as non-soluble and quasi-soluble carbon-based photocatalysts, respectively, for sulfide oxidation and other transformations using oxygen as an oxidant in ethanol. A wide range of sulfoxides were successfully prepared with good yields and chemoselectivity using a very low catalyst loading. The fullerene soot photocatalyst is easily recovered and shows excellent stability of the catalytic properties. The reaction was shown to proceed via a singlet oxygen pathway and has a high selectivity for aliphatic sulfides, whereas the oxidation of thioanisoles can be accomplished using an amine mediated electron transfer mechanism. The applicability of the fullerene nanodispersion as a general purpose photocatalyst was demonstrated in radical cyclization, boronic acid oxidation and imine formation reactions.
Collapse
Affiliation(s)
| | - Domantas Valčeckas
- Department of Organic Chemistry Naugarduko 24 Vilnius LT-03225 Lithuania
| | - Edvinas Orentas
- Department of Organic Chemistry Naugarduko 24 Vilnius LT-03225 Lithuania
- Center for Physical Sciences and Technology Saulėtekio Av. 3 LT-10257 Vilnius Lithuania
| |
Collapse
|
48
|
Feng X, Pi Y, Song Y, Xu Z, Li Z, Lin W. Integration of Earth-Abundant Photosensitizers and Catalysts in Metal–Organic Frameworks Enhances Photocatalytic Aerobic Oxidation. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05053] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xuanyu Feng
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Yunhong Pi
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yang Song
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Ziwan Xu
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Zhong Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
49
|
Wu B, Jiang X, Liu Y, Li QY, Zhao X, Wang XJ. Vinylene-bridged donor–acceptor type porous organic polymers for enhanced photocatalysis of amine oxidative coupling reactions under visible light. RSC Adv 2021; 11:33653-33660. [PMID: 35497515 PMCID: PMC9042297 DOI: 10.1039/d1ra06118f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022] Open
Abstract
Two vinylene-bridged D–A structural POPs are constructed by the electron-rich triarylamine and electron-deficient tricyanomesitylene, which exhibited highly effective photocatalytic activities for aerobic oxidative coupling of amines to imine.
Collapse
Affiliation(s)
- Bang Wu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Xinyue Jiang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Yang Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Qiu-Yan Li
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Xinsheng Zhao
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Xiao-Jun Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
50
|
Dang TY, Li RH, Tian HR, Wang Q, Lu Y, Liu SX. Tandem-like vanadium cluster chains in a polyoxovanadate-based metal–organic framework for efficient catalytic oxidation of sulfides. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00799h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The vanadium cluster chain in V-Ni-MOF can efficiently catalyze the oxidation of sulfides with hydrogen peroxide as the oxidant, achieving the complete conversion from sulfides to sulfones within 1 hour at 40 °C.
Collapse
Affiliation(s)
- Tian-Yi Dang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Run-Han Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Hong-Rui Tian
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Qian Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Ying Lu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Shu-Xia Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| |
Collapse
|