1
|
Öster C, Chevelkov V, Lange A. Evaluation of TOCSY mixing for sensitivity-enhancement in solid-state NMR and application of 4D experiments for side-chain assignments of the full-length 30 kDa membrane protein GlpG. JOURNAL OF BIOMOLECULAR NMR 2025:10.1007/s10858-024-00454-7. [PMID: 39841396 DOI: 10.1007/s10858-024-00454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/05/2024] [Indexed: 01/23/2025]
Abstract
Chemical shift assignments of large membrane proteins by solid-state NMR experiments are challenging. Recent advancements in sensitivity-enhanced pulse sequences, have made it feasible to acquire 1H-detected 4D spectra of these challenging protein samples within reasonable timeframes. However, obtaining unambiguous assignments remains difficult without access to side-chain chemical shifts. Drawing inspiration from sensitivity-enhanced TOCSY experiments in solution NMR, we have explored the potential of 13C- 13C TOCSY mixing as a viable option for triple sensitivity-enhanced 4D experiments aimed at side-chain assignments in solid-state NMR. Through simulations and experimental trials, we have identified optimal conditions to achieve uniform transfer efficiency for both transverse components and to minimize undesired cross-transfers. Our experiments, conducted on the 30 kDa membrane protein GlpG embedded in E. coli liposomes, have demonstrated enhanced sensitivity compared to the most effective dipolar and J-coupling-based 13C- 13C mixing sequences. Notably, a non-uniformly sampled 4D hCXCANH spectrum with exceptionally high sensitivity was obtained in just a few days using a 600 MHz spectrometer equipped with a 1.3 mm probe operating at a magic angle spinning rate of 55 kHz.
Collapse
Affiliation(s)
- Carl Öster
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert- Rössle-Straße 10, 13125, Berlin, Germany.
| | - Veniamin Chevelkov
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert- Rössle-Straße 10, 13125, Berlin, Germany
| | - Adam Lange
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert- Rössle-Straße 10, 13125, Berlin, Germany.
- Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany.
| |
Collapse
|
2
|
Ladizhansky V, Palani RS, Mardini M, Griffin RG. Dipolar Recoupling in Rotating Solids. Chem Rev 2024; 124:12844-12917. [PMID: 39504237 DOI: 10.1021/acs.chemrev.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) has evolved significantly over the past three decades and established itself as a vital tool for the structural analysis of biological macromolecules and materials. This review delves into the development and application of dipolar recoupling techniques in MAS NMR, which are crucial for obtaining detailed structural and dynamic information. We discuss a variety of homonuclear and heteronuclear recoupling methods which are essential for measuring spatial restraints and explain in detail the spin dynamics that these sequences generate. We also explore recent developments in high spinning frequency MAS, proton detection, and dynamic nuclear polarization, underscoring their importance in advancing biomolecular NMR. Our aim is to provide a comprehensive account of contemporary dipolar recoupling methods, their principles, and their application to structural biology and materials, highlighting significant contributions to the field and emerging techniques that enhance resolution and sensitivity in MAS NMR spectroscopy.
Collapse
Affiliation(s)
- Vladimir Ladizhansky
- Biophysics Interdepartmental Group and Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Zheng L, Wang S. Recent advances in solid-state nuclear magnetic resonance studies on membrane fusion proteins. FEBS J 2024. [PMID: 39552293 DOI: 10.1111/febs.17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024]
Abstract
Membrane fusion is an essential biological process that merges two separate lipid bilayers into a whole one. Membrane fusion proteins facilitate this process by bringing lipid bilayers in close proximity to reduce the repulsive energy between membranes. Along with their interactions with membranes, the structures and dynamics of membrane fusion proteins are key to elucidating the mechanisms of membrane fusion. Solid-state NMR (SSNMR) spectroscopy has unique advantages in determining the structures and dynamics of membrane fusion proteins in their membrane-bound states. It has been extensively applied to reveal conformational changes in intermediate states of viral membrane fusion proteins and to characterize the critical lipid-membrane interactions that drive the fusion process. In this review, we summarize recent advancements in SSNMR techniques for studying membrane fusion proteins and their applications in elucidating the mechanisms of membrane fusion.
Collapse
Affiliation(s)
- Lifen Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shenlin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Middleton DA. NMR studies of amyloid interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:63-96. [PMID: 39645351 DOI: 10.1016/j.pnmrs.2024.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 12/09/2024]
Abstract
Amyloid fibrils are insoluble, fibrous nanostructures that accumulate extracellularly in biological tissue during the progression of several human disorders, including Alzheimer's disease (AD) and type 2 diabetes. Fibrils are assembled from protein monomers via the transient formation of soluble, cytotoxic oligomers, and have a common molecular architecture consisting of a spinal core of hydrogen-bonded protein β-strands. For the past 25 years, NMR spectroscopy has been at the forefront of research into the structure and assembly mechanisms of amyloid aggregates. Until the recent boom in fibril structure analysis by cryo-electron microscopy, solid-state NMR was unrivalled in its ability to provide atomic-level models of amyloid fibril architecture. Solution-state NMR has also provided complementary information on the early stages in the amyloid assembly mechanism. Now, both NMR modalities are proving to be valuable in unravelling the complex interactions between amyloid species and a diverse range of physiological metal ions, molecules and surfaces that influence the assembly pathway, kinetics, morphology and clearance in vivo. Here, an overview is presented of the main applications of solid-state and solution-state NMR for studying the interactions between amyloid proteins and biomembranes, glycosaminoglycan polysaccharides, metal ions, polyphenols, synthetic therapeutics and diagnostics. Key NMR methodology is reviewed along with examples of how to overcome the challenges of detecting interactions with aggregating proteins. The review heralds this new role for NMR in providing a comprehensive and pathologically-relevant view of the interactions between protein and non-protein components of amyloid. Coverage of both solid- and solution-state NMR methods and applications herein will be informative and valuable to the broad communities that are interested in amyloid proteins.
Collapse
Affiliation(s)
- David A Middleton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| |
Collapse
|
5
|
Yang Y, Fogeron ML, Malär AA, Lecoq L, Barnes AB, Meier BH, Böckmann A, Callon M. Hepatitis Delta Antigen Retains the Assembly Domain as the Only Rigid Entity. J Am Chem Soc 2024; 146:29531-29539. [PMID: 39412103 DOI: 10.1021/jacs.4c09409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The hepatitis delta virus (HDV) S-HDAg and L-HDAg antigens are the two isoforms of the single protein encoded by the viral genome. Together with the double-stranded RNA genome they form the HDV ribonucleoprotein (RNP) complex. In the context of a divide-and-conquer approach, we used a combination of cell-free protein synthesis and proton (1H)-detected fast magic angle spinning solid-state NMR at highest magnetic field to characterize S-HDAg. We sequentially assigned denovo its isolated N-terminal assembly domain using less than 1 mg of fully protonated protein. Our results show that the assembly domain is the sole rigid component in S-HDAg, with its structure remaining fully conserved within the full-length protein. In contrast, the rest of the protein remains dynamic. This work provides the necessary foundation for future studies of the viral RNP.
Collapse
Affiliation(s)
- Yang Yang
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7 Passage du Vercors, 69367 Lyon, France
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7 Passage du Vercors, 69367 Lyon, France
| | - Alexander A Malär
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7 Passage du Vercors, 69367 Lyon, France
| | - Alexander B Barnes
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Beat H Meier
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7 Passage du Vercors, 69367 Lyon, France
| | - Morgane Callon
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7 Passage du Vercors, 69367 Lyon, France
| |
Collapse
|
6
|
Chin SY, Chen Y, Zhao L, Liu X, Chng CP, Soman A, Nordenskiöld L, Huang C, Shi X, Xue K. Investigating Different Dynamic pHP1α States in Their KCl-Mediated Liquid-Liquid Phase Separation (LLPS) Using Solid-State NMR (SSNMR) and Molecular Dynamic (MD) Simulations. J Phys Chem B 2024; 128:10451-10459. [PMID: 39387162 DOI: 10.1021/acs.jpcb.4c03749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Chromatin phase separation is dynamically regulated by many factors, such as post-translational modifications and effector proteins, and plays a critical role in genomic activities. The liquid-liquid phase separation (LLPS) of chromatin and/or effector proteins has been observed both in vitro and in vivo. However, the underlying mechanisms are largely unknown, and elucidating the physicochemical properties of the phase-separated complexes remains technically challenging. In this study, we detected dynamic, viscous, and intermediate components within the phosphorylated heterochromatin protein 1α (pHP1α) phase-separated system by using modified solid-state NMR (SSNMR) pulse sequences. The basis of these sequences relies on the different time scale of motion detected by heteronuclear Overhauser effect (hetNOE), scalar coupling-based, and dipolar coupling-based transfer schemes in NMR. In comparison to commonly utilized scalar coupling-based methods for studying the dynamic components in phase-separated systems, hetNOE offers more direct insight into molecular dynamics. NMR signals from the three different states in the protein gel were selectively excited and individually studied. Combined with molecular dynamics (MD) simulations, our findings indicate that at low KCl concentration (30 mM), the protein gel displays reduced molecular motion. Conversely, an increase in molecular motion was observed at a high KCl concentration (150 mM), which we attribute to the resultant intermolecular electrostatic interactions regulated by KCl.
Collapse
Affiliation(s)
- Sze Yuet Chin
- Centre of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Yinglu Chen
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province 518172, China
| | - Lei Zhao
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province 518172, China
| | - Xinyi Liu
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province 518172, China
| | - Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 637798 Singapore
| | - Aghil Soman
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 637798 Singapore
| | - Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province 518172, China
| | - Kai Xue
- Centre of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
- School of Physical and Mathematical Science, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
7
|
Vallet A, Ayala I, Perrone B, Hassan A, Simorre JP, Bougault C, Schanda P. MAS NMR experiments of corynebacterial cell walls: Complementary 1H- and CPMAS CryoProbe-enhanced 13C-detected experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 364:107708. [PMID: 38901173 DOI: 10.1016/j.jmr.2024.107708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
Bacterial cell walls are gigadalton-large cross-linked polymers with a wide range of motional amplitudes, including rather rigid as well as highly flexible parts. Magic-angle spinning NMR is a powerful method to obtain atomic-level information about intact cell walls. Here we investigate sensitivity and information content of different homonuclear 13C13C and heteronuclear 1H15N, 1H13C and 15N13C correlation experiments. We demonstrate that a CPMAS CryoProbe yields ca. 8-fold increased signal-to-noise over a room-temperature probe, or a ca. 3-4-fold larger per-mass sensitivity. The increased sensitivity allowed to obtain high-resolution spectra even on intact bacteria. Moreover, we compare resolution and sensitivity of 1H MAS experiments obtained at 100 kHz vs. 55 kHz. Our study provides useful hints for choosing experiments to extract atomic-level details on cell-wall samples.
Collapse
Affiliation(s)
- Alicia Vallet
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71, avenue des martyrs, Grenoble, 38000, France
| | - Isabel Ayala
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71, avenue des martyrs, Grenoble, 38000, France
| | | | - Alia Hassan
- Bruker Biospin, Fällanden, 8117, Switzerland
| | - Jean-Pierre Simorre
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71, avenue des martyrs, Grenoble, 38000, France
| | - Catherine Bougault
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71, avenue des martyrs, Grenoble, 38000, France.
| | - Paul Schanda
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria.
| |
Collapse
|
8
|
Gallo A, Mansueto S, Emendato A, Fusco G, De Simone A. α-Synuclein and Mitochondria: Probing the Dynamics of Disordered Membrane-protein Regions Using Solid-State Nuclear Magnetic Resonance. JACS AU 2024; 4:2372-2380. [PMID: 38938811 PMCID: PMC11200226 DOI: 10.1021/jacsau.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
The characterization of intrinsically disordered regions (IDRs) in membrane-associated proteins is of crucial importance to elucidate key biochemical processes, including cellular signaling, drug targeting, or the role of post-translational modifications. These protein regions pose significant challenges to powerful analytical techniques of molecular structural investigations. We here applied magic angle spinning solid-state nuclear magnetic resonance to quantitatively probe the structural dynamics of IDRs of membrane-bound α-synuclein (αS), a disordered protein whose aggregation is associated with Parkinson's disease (PD). We focused on the mitochondrial binding of αS, an interaction that has functional and pathological relevance in neuronal cells and that is considered crucial for the underlying mechanisms of PD. Transverse and longitudinal 15N relaxation revealed that the dynamical properties of IDRs of αS bound to the outer mitochondrial membrane (OMM) are different from those of the cytosolic state, thus indicating that regions generally considered not to interact with the membrane are in fact affected by the spatial proximity with the lipid bilayer. Moreover, changes in the composition of OMM that are associated with lipid dyshomeostasis in PD were found to significantly perturb the topology and dynamics of IDRs in the membrane-bound state of αS. Taken together, our data underline the importance of characterizing IDRs in membrane proteins to achieve an accurate understanding of the role that these elusive protein regions play in numerous biochemical processes occurring on cellular surfaces.
Collapse
Affiliation(s)
- Angelo Gallo
- Department
of Chemistry, University of Turin, Via Giuria 7, Turin 10124, Italy
| | - Silvia Mansueto
- Department
of Pharmacy, University of Naples, Via Montesano 49, Naples 80131, Italy
| | - Alessandro Emendato
- Department
of Pharmacy, University of Naples, Via Montesano 49, Naples 80131, Italy
| | - Giuliana Fusco
- Department
of Pharmacy, University of Naples, Via Montesano 49, Naples 80131, Italy
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Alfonso De Simone
- Department
of Pharmacy, University of Naples, Via Montesano 49, Naples 80131, Italy
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| |
Collapse
|
9
|
Nimerovsky E, Kosteletos S, Lange S, Becker S, Lange A, Andreas LB. Homonuclear Simplified Preservation of Equivalent Pathways Spectroscopy. J Phys Chem Lett 2024; 15:6272-6278. [PMID: 38856103 PMCID: PMC11194807 DOI: 10.1021/acs.jpclett.4c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Recently developed homonuclear transverse mixing optimal control pulses (hTROP) revealed an elegant way to enhance the detected signal in multidimensional magic-angle spinning (MAS) nuclear magnetic resonance experiments. Inspired by their work, we present two homonuclear simplified preservation of equivalent pathways spectroscopy (hSPEPS) sequences for recoupling CA-CO and CA-CB dipolar couplings under fast and ultrafast MAS rates, theoretically enabling a √2 improvement in sensitivity for each indirect dimension. The efficiencies of hSPEPS are evaluated for non-deuterated samples of influenza A M2 and bacterial rhomboid protease GlpG under two different external magnetic fields (600 and 1200 MHz) and MAS rates (55 and 100 kHz). Three-dimensional (H)CA(CO)NH, (H)CO(CA)NH, and (H)CB(CA)NH spectra demonstrate the high robustness of hSPEPS elements to excite carbon-carbon correlations, especially in the (H)CB(CA)NH spectrum, where hSPEPS outperforms the J-based sequence by a factor of, on average, 2.85.
Collapse
Affiliation(s)
- Evgeny Nimerovsky
- Department
of NMR-Based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Spyridon Kosteletos
- Department
of Molecular Biophysics, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Sascha Lange
- Department
of Molecular Biophysics, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Stefan Becker
- Department
of NMR-Based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Adam Lange
- Department
of Molecular Biophysics, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Loren B. Andreas
- Department
of NMR-Based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
10
|
Forster MC, Tekwani Movellan K, Najbauer EE, Becker S, Andreas LB. Magic-angle spinning NMR structure of Opa60 in lipid bilayers. J Struct Biol X 2024; 9:100098. [PMID: 39010882 PMCID: PMC11247266 DOI: 10.1016/j.yjsbx.2024.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 07/17/2024] Open
Abstract
Here we report the structure of Opa60 in lipid bilayers using proton-detected magic-angle spinning nuclear magnetic resonance (MAS NMR). Preparations including near-native oligosaccharide lipids reveal a consistent picture of a stable transmembrane beta barrel with a minor increase in the structured region as compared with the previously reported detergent structure. The large variable loops known to interact with host proteins could not be detected, confirming their dynamic nature even in a lipid bilayer environment. The structure provides a starting point for investigation of the functional role of Opa60 in gonococcal infection, which is understood to involve interaction with host proteins. At the same time, it demonstrates the recent advances in proton-detected methodology for membrane protein structure determination at atomic resolution by MAS NMR.
Collapse
Affiliation(s)
- Marcel C. Forster
- Department of NMR-based Structural Biology, Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Kumar Tekwani Movellan
- Department of NMR-based Structural Biology, Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Eszter E. Najbauer
- Department of NMR-based Structural Biology, Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Loren B. Andreas
- Department of NMR-based Structural Biology, Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| |
Collapse
|
11
|
Golota NC, Michael B, Saliba EP, Linse S, Griffin RG. Structural characterization of E22G Aβ 1-42 fibrils via1H detected MAS NMR. Phys Chem Chem Phys 2024; 26:14664-14674. [PMID: 38715538 PMCID: PMC11110645 DOI: 10.1039/d4cp00553h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
Amyloid fibrils have been implicated in the pathogenesis of several neurodegenerative diseases, the most prevalent example being Alzheimer's disease (AD). Despite the prevalence of AD, relatively little is known about the structure of the associated amyloid fibrils. This has motivated our studies of fibril structures, extended here to the familial Arctic mutant of Aβ1-42, E22G-Aβ1-42. We found E22G-AβM0,1-42 is toxic to Escherichia coli, thus we expressed E22G-Aβ1-42 fused to the self-cleavable tag NPro in the form of its EDDIE mutant. Since the high surface activity of E22G-Aβ1-42 makes it difficult to obtain more than sparse quantities of fibrils, we employed 1H detected magic angle spinning (MAS) nuclear magnetic resonance (NMR) experiments to characterize the protein. The 1H detected 13C-13C methods were first validated by application to fully protonated amyloidogenic nanocrystals of GNNQQNY, and then applied to fibrils of the Arctic mutant of Aβ, E22G-Aβ1-42. The MAS NMR spectra indicate that the biosynthetic samples of E22G-Aβ1-42 fibrils comprise a single conformation with 13C chemical shifts extracted from hCH, hNH, and hCCH spectra that are very similar to those of wild type Aβ1-42 fibrils. These results suggest that E22G-Aβ1-42 fibrils have a structure similar to that of wild type Aβ1-42.
Collapse
Affiliation(s)
- Natalie C Golota
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Brian Michael
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Edward P Saliba
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sara Linse
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, Lund, SE 22100, Sweden
| | - Robert G Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
12
|
Kumar R, Le Marchand T, Adam L, Bobrovs R, Chen G, Fridmanis J, Kronqvist N, Biverstål H, Jaudzems K, Johansson J, Pintacuda G, Abelein A. Identification of potential aggregation hotspots on Aβ42 fibrils blocked by the anti-amyloid chaperone-like BRICHOS domain. Nat Commun 2024; 15:965. [PMID: 38302480 PMCID: PMC10834949 DOI: 10.1038/s41467-024-45192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
Protein misfolding can generate toxic intermediates, which underlies several devastating diseases, such as Alzheimer's disease (AD). The surface of AD-associated amyloid-β peptide (Aβ) fibrils has been suggested to act as a catalyzer for self-replication and generation of potentially toxic species. Specifically tailored molecular chaperones, such as the BRICHOS protein domain, were shown to bind to amyloid fibrils and break this autocatalytic cycle. Here, we identify a site on the Aβ42 fibril surface, consisting of three C-terminal β-strands and particularly the solvent-exposed β-strand stretching from residues 26-28, which is efficiently sensed by a designed variant of Bri2 BRICHOS. Remarkably, while only a low amount of BRICHOS binds to Aβ42 fibrils, fibril-catalyzed nucleation processes are effectively prevented, suggesting that the identified site acts as a catalytic aggregation hotspot, which can specifically be blocked by BRICHOS. Hence, these findings provide an understanding how toxic nucleation events can be targeted by molecular chaperones.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Tanguy Le Marchand
- Université de Lyon, Centre de Resonance Magnétique Nucléaire (CRMN) à Très Hauts Champs de Lyon (UMR 5082 - CNRS, ENS Lyon, UCB Lyon 1), 69100, Villeurbanne, France
| | - Laurène Adam
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Raitis Bobrovs
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Jēkabs Fridmanis
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Nina Kronqvist
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Henrik Biverstål
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Guido Pintacuda
- Université de Lyon, Centre de Resonance Magnétique Nucléaire (CRMN) à Très Hauts Champs de Lyon (UMR 5082 - CNRS, ENS Lyon, UCB Lyon 1), 69100, Villeurbanne, France
| | - Axel Abelein
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden.
| |
Collapse
|
13
|
Klein A, Vasa SK, Linser R. 5D solid-state NMR spectroscopy for facilitated resonance assignment. JOURNAL OF BIOMOLECULAR NMR 2023; 77:229-245. [PMID: 37943392 PMCID: PMC10687145 DOI: 10.1007/s10858-023-00424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023]
Abstract
1H-detected solid-state NMR spectroscopy has been becoming increasingly popular for the characterization of protein structure, dynamics, and function. Recently, we showed that higher-dimensionality solid-state NMR spectroscopy can aid resonance assignments in large micro-crystalline protein targets to combat ambiguity (Klein et al., Proc. Natl. Acad. Sci. U.S.A. 2022). However, assignments represent both, a time-limiting factor and one of the major practical disadvantages within solid-state NMR studies compared to other structural-biology techniques from a very general perspective. Here, we show that 5D solid-state NMR spectroscopy is not only justified for high-molecular-weight targets but will also be a realistic and practicable method to streamline resonance assignment in small to medium-sized protein targets, which such methodology might not have been expected to be of advantage for. Using a combination of non-uniform sampling and the signal separating algorithm for spectral reconstruction on a deuterated and proton back-exchanged micro-crystalline protein at fast magic-angle spinning, direct amide-to-amide correlations in five dimensions are obtained with competitive sensitivity compatible with common hardware and measurement time commitments. The self-sufficient backbone walks enable efficient assignment with very high confidence and can be combined with higher-dimensionality sidechain-to-backbone correlations from protonated preparations into minimal sets of experiments to be acquired for simultaneous backbone and sidechain assignment. The strategies present themselves as potent alternatives for efficient assignment compared to the traditional assignment approaches in 3D, avoiding user misassignments derived from ambiguity or loss of overview and facilitating automation. This will ease future access to NMR-based characterization for the typical solid-state NMR targets at fast MAS.
Collapse
Affiliation(s)
- Alexander Klein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Suresh K Vasa
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Rasmus Linser
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.
| |
Collapse
|
14
|
Callon M, Luder D, Malär AA, Wiegand T, Římal V, Lecoq L, Böckmann A, Samoson A, Meier BH. High and fast: NMR protein-proton side-chain assignments at 160 kHz and 1.2 GHz. Chem Sci 2023; 14:10824-10834. [PMID: 37829013 PMCID: PMC10566471 DOI: 10.1039/d3sc03539e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023] Open
Abstract
The NMR spectra of side-chain protons in proteins provide important information, not only about their structure and dynamics, but also about the mechanisms that regulate interactions between macromolecules. However, in the solid-state, these resonances are particularly difficult to resolve, even in relatively small proteins. We show that magic-angle-spinning (MAS) frequencies of 160 kHz, combined with a high magnetic field of 1200 MHz proton Larmor frequency, significantly improve their spectral resolution. We investigate in detail the gain for MAS frequencies between 110 and 160 kHz MAS for a model sample as well as for the hepatitis B viral capsid assembled from 120 core-protein (Cp) dimers. For both systems, we found a significantly improved spectral resolution of the side-chain region in the 1H-13C 2D spectra. The combination of 160 kHz MAS frequency with a magnetic field of 1200 MHz, allowed us to assign 61% of the aliphatic protons of Cp. The side-chain proton assignment opens up new possibilities for structural studies and further characterization of protein-protein or protein-nucleic acid interactions.
Collapse
Affiliation(s)
| | | | | | | | - Václav Římal
- Physical Chemistry, ETH Zürich 8093 Zürich Switzerland
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086, CNRS, Université de Lyon, Labex Ecofect 7 passage du Vercors 69367 Lyon France
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086, CNRS, Université de Lyon, Labex Ecofect 7 passage du Vercors 69367 Lyon France
| | - Ago Samoson
- Institute of Cybernetics, Spin Design Laboratory, Tallinn University of Technology Tallinn Estonia
| | - Beat H Meier
- Physical Chemistry, ETH Zürich 8093 Zürich Switzerland
| |
Collapse
|
15
|
Bahri S, Safeer A, Adler A, Smedes H, van Ingen H, Baldus M. 1H-detected characterization of carbon-carbon networks in highly flexible protonated biomolecules using MAS NMR. JOURNAL OF BIOMOLECULAR NMR 2023; 77:111-119. [PMID: 37289305 PMCID: PMC10307723 DOI: 10.1007/s10858-023-00415-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/28/2023] [Indexed: 06/09/2023]
Abstract
In the last three decades, the scope of solid-state NMR has expanded to exploring complex biomolecules, from large protein assemblies to intact cells at atomic-level resolution. This diversity in macromolecules frequently features highly flexible components whose insoluble environment precludes the use of solution NMR to study their structure and interactions. While High-resolution Magic-Angle Spinning (HR-MAS) probes offer the capacity for gradient-based 1H-detected spectroscopy in solids, such probes are not commonly used for routine MAS NMR experiments. As a result, most exploration of the flexible regime entails either 13C-detected experiments, the use of partially perdeuterated systems, or ultra-fast MAS. Here we explore proton-detected pulse schemes probing through-bond 13C-13C networks to study mobile protein sidechains as well as polysaccharides in a broadband manner. We demonstrate the use of such schemes to study a mixture of microtubule-associated protein (MAP) tau and human microtubules (MTs), and the cell wall of the fungus Schizophyllum commune using 2D and 3D spectroscopy, to show its viability for obtaining unambiguous correlations using standard fast-spinning MAS probes at high and ultra-high magnetic fields.
Collapse
Affiliation(s)
- Salima Bahri
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Adil Safeer
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Agnes Adler
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Hanneke Smedes
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Hugo van Ingen
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Liu J, Wu XL, Zeng YT, Hu ZH, Lu JX. Solid-state NMR studies of amyloids. Structure 2023; 31:230-243. [PMID: 36750098 DOI: 10.1016/j.str.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/10/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Amyloids have special structural properties and are involved in many aspects of biological function. In particular, amyloids are the cause or hallmarks of a group of notorious and incurable neurodegenerative diseases. The extraordinary high molecular weight and aggregation states of amyloids have posed a challenge for researchers studying them. Solid-state NMR (SSNMR) has been extensively applied to study the structures and dynamics of amyloids for the past 20 or more years and brought us tremendous progress in understanding their structure and related diseases. These studies, at the same time, helped to push SSNMR technical developments in sensitivity and resolution. In this review, some interesting research studies and important technical developments are highlighted to give the reader an overview of the current state of this field.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xia-Lian Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu-Teng Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhi-Heng Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun-Xia Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
17
|
Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem Rev 2023; 123:918-988. [PMID: 36542732 PMCID: PMC10319395 DOI: 10.1021/acs.chemrev.2c00197] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo196-8558, Japan
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa230-0045, Japan
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad500 046, India
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan41809-1055, United States
| |
Collapse
|
18
|
Ahlawat S, Mopidevi SMV, Taware PP, Raran-Kurussi S, Mote KR, Agarwal V. Assignment of aromatic side-chain spins and characterization of their distance restraints at fast MAS. J Struct Biol X 2022; 7:100082. [PMID: 36618437 PMCID: PMC9817166 DOI: 10.1016/j.yjsbx.2022.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/18/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
The assignment of aromatic side-chain spins has always been more challenging than assigning backbone and aliphatic spins. Selective labeling combined with mutagenesis has been the approach for assigning aromatic spins. This manuscript reports a method for assigning aromatic spins in a fully protonated protein by connecting them to the backbone atoms using a low-power TOBSY sequence. The pulse sequence employs residual polarization and sequential acquisitions techniques to record HN- and HC-detected spectra in a single experiment. The unambiguous assignment of aromatic spins also enables the characterization of 1H-1H distance restraints involving aromatic spins. Broadband (RFDR) and selective (BASS-SD) recoupling sequences were used to generate HN-ΗC, HC-HN and HC-HC restraints involving the side-chain proton spins of aromatic residues. This approach has been demonstrated on a fully protonated U-[13C,15N] labeled GB1 sample at 95-100 kHz MAS.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Subbarao Mohana Venkata Mopidevi
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Pravin P. Taware
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Sreejith Raran-Kurussi
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Kaustubh R. Mote
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| |
Collapse
|
19
|
Cell-free synthesis of amyloid fibrils with infectious properties and amenable to sub-milligram magic-angle spinning NMR analysis. Commun Biol 2022; 5:1202. [DOI: 10.1038/s42003-022-04175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractStructural investigations of amyloid fibrils often rely on heterologous bacterial overexpression of the protein of interest. Due to their inherent hydrophobicity and tendency to aggregate as inclusion bodies, many amyloid proteins are challenging to express in bacterial systems. Cell-free protein expression is a promising alternative to classical bacterial expression to produce hydrophobic proteins and introduce NMR-active isotopes that can improve and speed up the NMR analysis. Here we implement the cell-free synthesis of the functional amyloid prion HET-s(218-289). We present an interesting case where HET-s(218-289) directly assembles into infectious fibril in the cell-free expression mixture without the requirement of denaturation procedures and purification. By introducing tailored 13C and 15N isotopes or CF3 and 13CH2F labels at strategic amino-acid positions, we demonstrate that cell-free synthesized amyloid fibrils are readily amenable to high-resolution magic-angle spinning NMR at sub-milligram quantity.
Collapse
|
20
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
21
|
Blahut J, Brandl MJ, Pradhan T, Reif B, Tošner Z. Sensitivity-Enhanced Multidimensional Solid-State NMR Spectroscopy by Optimal-Control-Based Transverse Mixing Sequences. J Am Chem Soc 2022; 144:17336-17340. [PMID: 36074981 DOI: 10.1021/jacs.2c06568] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, proton-detected magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy has become an attractive tool to study the structure and dynamics of insoluble proteins at atomic resolution. The sensitivity of the employed multidimensional experiments can be systematically improved when both transversal components of the magnetization are transferred simultaneously after an evolution period. The method of preservation of equivalent pathways has been explored in solution-state NMR; however, it does not find widespread application due to relaxation issues connected with increased molecular size. We present here for the first time heteronuclear transverse mixing sequences for correlation experiments at moderate and fast MAS frequencies. Optimal control allows to boost the signal-to-noise ratio (SNR) beyond the expected factor of 2 for each indirect dimension. In addition to the carbon-detected sensitivity-enhanced 2D NCA experiment, we present a novel proton-detected, doubly sensitivity-enhanced 3D hCANH pulse sequence for which we observe a 3-fold improvement in SNR compared to the conventional experimental implementation. The sensitivity gain turned out to be essential to unambiguously characterize a minor fibril polymorph of a human lambda-III immunoglobulin light chain protein that escaped detection so far.
Collapse
Affiliation(s)
- Jan Blahut
- Department of Chemistry, Faculty of Science, Charles University, Albertov 6, 12842 Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16610, Prague, Czech Republic
| | - Matthias J Brandl
- Bayerisches NMR Zentrum (BNMRZ) at Department Chemie, Technische Universität München (TUM), 85747 Garching, Germany
| | - Tejaswini Pradhan
- Bayerisches NMR Zentrum (BNMRZ) at Department Chemie, Technische Universität München (TUM), 85747 Garching, Germany
| | - Bernd Reif
- Bayerisches NMR Zentrum (BNMRZ) at Department Chemie, Technische Universität München (TUM), 85747 Garching, Germany.,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, 85764 Neuherberg, Germany
| | - Zdeněk Tošner
- Department of Chemistry, Faculty of Science, Charles University, Albertov 6, 12842 Prague, Czech Republic
| |
Collapse
|
22
|
Hung I, Keeler EG, Mao W, Gor'kov PL, Griffin RG, Gan Z. Residue-Specific High-Resolution 17O Solid-State Nuclear Magnetic Resonance of Peptides: Multidimensional Indirect 1H Detection and Magic-Angle Spinning. J Phys Chem Lett 2022; 13:6549-6558. [PMID: 35830592 PMCID: PMC9888599 DOI: 10.1021/acs.jpclett.2c01777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxygen is an integral component of proteins but remains sparsely studied because its only NMR active isotope, 17O, has low sensitivity, low resolution, and large quadrupolar couplings. These issues are addressed here with efficient isotopic labeling, high magnetic fields, fast sample spinning, and 1H detection in conjunction with multidimensional experiments to observe oxygen sites specific to each amino acid residue. Notably, cross-polarization at high sample spinning frequencies provides efficient 13C ↔ 17O polarization transfer. The use of 17O for initial polarization is found to provide better sensitivity per unit time compared to 1H. Sharp isotropic 17O peaks are obtained by using a low-power multiple-quantum sequence, which in turn allows extraction of quadrupolar parameters for each oxygen site. Finally, the potential to determine sequential assignments and long-range distance restraints is demonstrated by using 3D 1H/13C/17O experiments, suggesting that such methods can become an essential tool for biomolecular structure determination.
Collapse
Affiliation(s)
- Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Eric G Keeler
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wenping Mao
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Peter L Gor'kov
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| |
Collapse
|
23
|
Le Marchand T, Schubeis T, Bonaccorsi M, Paluch P, Lalli D, Pell AJ, Andreas LB, Jaudzems K, Stanek J, Pintacuda G. 1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning. Chem Rev 2022; 122:9943-10018. [PMID: 35536915 PMCID: PMC9136936 DOI: 10.1021/acs.chemrev.1c00918] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 02/08/2023]
Abstract
Since the first pioneering studies on small deuterated peptides dating more than 20 years ago, 1H detection has evolved into the most efficient approach for investigation of biomolecular structure, dynamics, and interactions by solid-state NMR. The development of faster and faster magic-angle spinning (MAS) rates (up to 150 kHz today) at ultrahigh magnetic fields has triggered a real revolution in the field. This new spinning regime reduces the 1H-1H dipolar couplings, so that a direct detection of 1H signals, for long impossible without proton dilution, has become possible at high resolution. The switch from the traditional MAS NMR approaches with 13C and 15N detection to 1H boosts the signal by more than an order of magnitude, accelerating the site-specific analysis and opening the way to more complex immobilized biological systems of higher molecular weight and available in limited amounts. This paper reviews the concepts underlying this recent leap forward in sensitivity and resolution, presents a detailed description of the experimental aspects of acquisition of multidimensional correlation spectra with fast MAS, and summarizes the most successful strategies for the assignment of the resonances and for the elucidation of protein structure and conformational dynamics. It finally outlines the many examples where 1H-detected MAS NMR has contributed to the detailed characterization of a variety of crystalline and noncrystalline biomolecular targets involved in biological processes ranging from catalysis through drug binding, viral infectivity, amyloid fibril formation, to transport across lipid membranes.
Collapse
Affiliation(s)
- Tanguy Le Marchand
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Tobias Schubeis
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Marta Bonaccorsi
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Biochemistry and Biophysics, Stockholm
University, Svante Arrhenius
väg 16C SE-106 91, Stockholm, Sweden
| | - Piotr Paluch
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Università
del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Andrew J. Pell
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106
91 Stockholm, Sweden
| | - Loren B. Andreas
- Department
for NMR-Based Structural Biology, Max-Planck-Institute
for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Kristaps Jaudzems
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006 Latvia
- Faculty
of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Jan Stanek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Guido Pintacuda
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
24
|
Paluch P, Augustyniak R, Org ML, Vanatalu K, Kaldma A, Samoson A, Stanek J. NMR Assignment of Methyl Groups in Immobilized Proteins Using Multiple-Bond 13C Homonuclear Transfers, Proton Detection, and Very Fast MAS. Front Mol Biosci 2022; 9:828785. [PMID: 35425812 PMCID: PMC9002630 DOI: 10.3389/fmolb.2022.828785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
In nuclear magnetic resonance spectroscopy of proteins, methyl protons play a particular role as extremely sensitive reporters on dynamics, allosteric effects, and protein–protein interactions, accessible even in high-molecular-weight systems approaching 1 MDa. The notorious issue of their chemical shift assignment is addressed here by a joint use of solid-state 1H-detected methods at very fast (nearly 100 kHz) magic-angle spinning, partial deuteration, and high-magnetic fields. The suitability of a series of RF schemes is evaluated for the efficient coherence transfer across entire 13C side chains of methyl-containing residues, which is key for establishing connection between methyl and backbone 1H resonances. The performance of ten methods for recoupling of either isotropic 13C–13C scalar or anisotropic dipolar interactions (five variants of TOBSY, FLOPSY, DIPSI, WALTZ, RFDR, and DREAM) is evaluated experimentally at two state-of-the-art magic-angle spinning (55 and 94.5 kHz) and static magnetic field conditions (18.8 and 23.5 T). Model isotopically labeled compounds (alanine and Met-Leu-Phe tripeptide) and ILV-methyl and amide-selectively protonated, and otherwise deuterated chicken α-spectrin SH3 protein are used as convenient reference systems. Spin dynamics simulations in SIMPSON are performed to determine optimal parameters of these RF schemes, up to recently experimentally attained spinning frequencies (200 kHz) and B0 field strengths (28.2 T). The concept of linearization of 13C side chain by appropriate isotope labeling is revisited and showed to significantly increase sensitivity of methyl-to-backbone correlations. A resolution enhancement provided by 4D spectroscopy with non-uniform (sparse) sampling is demonstrated to remove ambiguities in simultaneous resonance assignment of methyl proton and carbon chemical shifts.
Collapse
Affiliation(s)
- Piotr Paluch
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Łódź, Poland
| | | | - Mai-Liis Org
- Tallin University of Technology, Tallinn, Estonia
| | | | - Ats Kaldma
- Tallin University of Technology, Tallinn, Estonia
| | - Ago Samoson
- Tallin University of Technology, Tallinn, Estonia
| | - Jan Stanek
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
- *Correspondence: Jan Stanek,
| |
Collapse
|
25
|
Abstract
In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Nils-Alexander Lakomek
- University of Düsseldorf, Institute for Physical Biology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| |
Collapse
|
26
|
Klein A, Vasa SK, Söldner B, Grohe K, Linser R. Unambiguous Side-Chain Assignments for Solid-State NMR Structure Elucidation of Nondeuterated Proteins via a Combined 5D/4D Side-Chain-to-Backbone Experiment. J Phys Chem Lett 2022; 13:1644-1651. [PMID: 35147439 DOI: 10.1021/acs.jpclett.1c04075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to fast-magic-angle-spinning technology, proton-detected solid-state NMR has been facilitating the analysis of insoluble, crystalline, sedimented, and membrane proteins. However, potential applications have been largely restricted by limited access to side-chain resonances. The recent availability of spinning frequencies exceeding 100 kHz in principle now allows direct probing of all protons without the need for partial deuteration. This potentiates both the number of accessible target proteins and possibilities to exploit side-chain protons as reporters on distances and interactions. Their low dispersion, however, has severely compromised their chemical-shift assignment, which is a prerequisite for their use in downstream applications. Herein, we show that unambiguous correlations are obtained from 5D methodology by which the side-chain resonances are directly connected with the backbone. When further concatenated with simultaneous 4D intra-side-chain correlations, this yields comprehensive assignments in the side chains and hence allows a high density of distance restraints for high-resolution structure calculation from minimal amounts of protein.
Collapse
Affiliation(s)
- Alexander Klein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Suresh K Vasa
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Benedikt Söldner
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Kristof Grohe
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Rasmus Linser
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| |
Collapse
|
27
|
Najbauer EE, Tekwani Movellan K, Giller K, Benz R, Becker S, Griesinger C, Andreas LB. Structure and Gating Behavior of the Human Integral Membrane Protein VDAC1 in a Lipid Bilayer. J Am Chem Soc 2022; 144:2953-2967. [PMID: 35164499 PMCID: PMC8874904 DOI: 10.1021/jacs.1c09848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
The voltage-dependent
anion channel (VDAC), the most abundant protein
in the outer mitochondrial membrane, is responsible for the transport
of all ions and metabolites into and out of mitochondria. Larger than
any of the β-barrel structures determined to date by magic-angle
spinning (MAS) NMR, but smaller than the size limit of cryo-electron
microscopy (cryo-EM), VDAC1’s 31 kDa size has long been a bottleneck
in determining its structure in a near-native lipid bilayer environment.
Using a single two-dimensional (2D) crystalline sample of human VDAC1
in lipids, we applied proton-detected fast magic-angle spinning NMR
spectroscopy to determine the arrangement of β strands. Combining
these data with long-range restraints from a spin-labeled sample,
chemical shift-based secondary structure prediction, and previous
MAS NMR and atomic force microscopy (AFM) data, we determined the
channel’s structure at a 2.2 Å root-mean-square deviation
(RMSD). The structure, a 19-stranded β-barrel, with an N-terminal
α-helix in the pore is in agreement with previous data in detergent,
which was questioned due to the potential for the detergent to perturb
the protein’s functional structure. Using a quintuple mutant
implementing the channel’s closed state, we found that dynamics
are a key element in the protein’s gating behavior, as channel
closure leads to the destabilization of not only the C-terminal barrel
residues but also the α2 helix. We showed that cholesterol,
previously shown to reduce the frequency of channel closure, stabilizes
the barrel relative to the N-terminal helix. Furthermore, we observed
channel closure through steric blockage by a drug shown to selectively
bind to the channel, the Bcl2-antisense oligonucleotide G3139.
Collapse
Affiliation(s)
- Eszter E Najbauer
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Kumar Tekwani Movellan
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Karin Giller
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Roland Benz
- Life Sciences and Chemistry, Jacobs University of Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Loren B Andreas
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| |
Collapse
|
28
|
Johansen NT, Bonaccorsi M, Bengtsen T, Larsen AH, Tidemand FG, Pedersen MC, Huda P, Berndtsson J, Darwish T, Yepuri NR, Martel A, Pomorski TG, Bertarello A, Sansom MS, Rapp M, Crehuet R, Schubeis T, Lindorff-Larsen K, Pintacuda G, Arleth L. Mg 2+-dependent conformational equilibria in CorA and an integrated view on transport regulation. eLife 2022; 11:71887. [PMID: 35129435 PMCID: PMC8865849 DOI: 10.7554/elife.71887] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
The CorA family of proteins regulates the homeostasis of divalent metal ions in many bacteria, archaea, and eukaryotic mitochondria, making it an important target in the investigation of the mechanisms of transport and its functional regulation. Although numerous structures of open and closed channels are now available for the CorA family, the mechanism of the transport regulation remains elusive. Here, we investigated the conformational distribution and associated dynamic behaviour of the pentameric Mg2+ channel CorA at room temperature using small-angle neutron scattering (SANS) in combination with molecular dynamics (MD) simulations and solid-state nuclear magnetic resonance spectroscopy (NMR). We find that neither the Mg2+-bound closed structure nor the Mg2+-free open forms are sufficient to explain the average conformation of CorA. Our data support the presence of conformational equilibria between multiple states, and we further find a variation in the behaviour of the backbone dynamics with and without Mg2+. We propose that CorA must be in a dynamic equilibrium between different non-conducting states, both symmetric and asymmetric, regardless of bound Mg2+ but that conducting states become more populated in Mg2+-free conditions. These properties are regulated by backbone dynamics and are key to understanding the functional regulation of CorA.
Collapse
Affiliation(s)
| | - Marta Bonaccorsi
- Centre de RMN à Très hauts Champs de Lyon, UMR 5280, CNRS, University of Lyon, Villeurbanne, France
| | - Tone Bengtsen
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Andreas Haahr Larsen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Copenhagen E, Denmark
| | | | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Copenhagen E, Denmark
| | - Pie Huda
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Jens Berndtsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Tamim Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, Lucas Heights, Australia
| | - Nageshewar Rao Yepuri
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, Lucas Heights, Australia
| | | | - Thomas Günther Pomorski
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrea Bertarello
- Centre de RMN à Très hauts Champs de Lyon, UMR 5280, CNRS, University of Lyon, Villeurbanne, France
| | - Mark Sp Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mikaela Rapp
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ramon Crehuet
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Tobias Schubeis
- Centre de RMN à Très hauts Champs de Lyon, UMR 5280, CNRS, University of Lyon, Villeurbanne, France
| | | | - Guido Pintacuda
- Centre de RMN à Très hauts Champs de Lyon, UMR 5280, CNRS, University of Lyon, Villeurbanne, France
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Li M, Reichert P, Narasimhan C, Sorman B, Xu W, Cote A, Su Y. Investigating Crystalline Protein Suspension Formulations of Pembrolizumab from MAS NMR Spectroscopy. Mol Pharm 2022; 19:936-952. [PMID: 35107019 DOI: 10.1021/acs.molpharmaceut.1c00915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Developing biological formulations to maintain the chemical and structural integrity of therapeutic antibodies remains a significant challenge. Monoclonal antibody (mAb) crystalline suspension formulation is a promising alternative for high concentration subcutaneous drug delivery. It demonstrates many merits compared to the solution formulation to reach a high concentration at the reduced viscosity and enhanced stability. One main challenge in drug development is the lack of high-resolution characterization of the crystallinity and stability of mAb microcrystals in the native formulations. Conventional analytical techniques often cannot evaluate structural details of mAb microcrystals in the native suspension due to the presence of visible particles, relatively small crystal size, high protein concentration, and multicomponent nature of a liquid formulation. This study demonstrates the first high-resolution characterization of mAb microcrystalline suspension using magic angle spinning (MAS) NMR spectroscopy. Crystalline suspension formulation of pembrolizumab (Keytruda, Merck & Co., Inc., Kenilworth, NJ 07033, U.S.) is utilized as a model system. Remarkably narrow 13C spectral linewidth of approximately 29 Hz suggests a high order of crystallinity and conformational homogeneity of pembrolizumab crystals. The impact of thermal stress and dehydration on the structure, dynamics, and stability of these mAb crystals in the formulation environment is evaluated. Moreover, isotopic labeling and heteronuclear 13C and 15N spectroscopies have been utilized to identify the binding of caffeine in the pembrolizumab crystal lattice, providing molecular insights into the cocrystallization of the protein and ligand. Our study provides valuable structural details for facilitating the design of crystalline suspension formulation of Keytruda and demonstrates the high potential of MAS NMR as an advanced tool for biophysical characterization of biological therapeutics.
Collapse
Affiliation(s)
- Mingyue Li
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Paul Reichert
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Bradley Sorman
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Aaron Cote
- Biologics Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
30
|
Klein A, Rovó P, Sakhrani VV, Wang Y, Holmes JB, Liu V, Skowronek P, Kukuk L, Vasa SK, Güntert P, Mueller LJ, Linser R. Atomic-resolution chemical characterization of (2x)72-kDa tryptophan synthase via four- and five-dimensional 1H-detected solid-state NMR. Proc Natl Acad Sci U S A 2022; 119:e2114690119. [PMID: 35058365 PMCID: PMC8795498 DOI: 10.1073/pnas.2114690119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
NMR chemical shifts provide detailed information on the chemical properties of molecules, thereby complementing structural data from techniques like X-ray crystallography and electron microscopy. Detailed analysis of protein NMR data, however, often hinges on comprehensive, site-specific assignment of backbone resonances, which becomes a bottleneck for molecular weights beyond 40 to 45 kDa. Here, we show that assignments for the (2x)72-kDa protein tryptophan synthase (665 amino acids per asymmetric unit) can be achieved via higher-dimensional, proton-detected, solid-state NMR using a single, 1-mg, uniformly labeled, microcrystalline sample. This framework grants access to atom-specific characterization of chemical properties and relaxation for the backbone and side chains, including those residues important for the catalytic turnover. Combined with first-principles calculations, the chemical shifts in the β-subunit active site suggest a connection between active-site chemistry, the electrostatic environment, and catalytically important dynamics of the portal to the β-subunit from solution.
Collapse
Affiliation(s)
- Alexander Klein
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Petra Rovó
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
| | - Varun V Sakhrani
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Yangyang Wang
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Jacob B Holmes
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Viktoriia Liu
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Patricia Skowronek
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
| | - Laura Kukuk
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Suresh K Vasa
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Peter Güntert
- Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
- Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
- Department of Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Leonard J Mueller
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Rasmus Linser
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany;
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| |
Collapse
|
31
|
Liang L, Ji Y, Chen K, Gao P, Zhao Z, Hou G. Solid-State NMR Dipolar and Chemical Shift Anisotropy Recoupling Techniques for Structural and Dynamical Studies in Biological Systems. Chem Rev 2022; 122:9880-9942. [PMID: 35006680 DOI: 10.1021/acs.chemrev.1c00779] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the development of NMR methodology and technology during the past decades, solid-state NMR (ssNMR) has become a particularly important tool for investigating structure and dynamics at atomic scale in biological systems, where the recoupling techniques play pivotal roles in modern high-resolution MAS NMR. In this review, following a brief introduction on the basic theory of recoupling in ssNMR, we highlight the recent advances in dipolar and chemical shift anisotropy recoupling methods, as well as their applications in structural determination and dynamical characterization at multiple time scales (i.e., fast-, intermediate-, and slow-motion). The performances of these prevalent recoupling techniques are compared and discussed in multiple aspects, together with the representative applications in biomolecules. Given the recent emerging advances in NMR technology, new challenges for recoupling methodology development and potential opportunities for biological systems are also discussed.
Collapse
Affiliation(s)
- Lixin Liang
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Ji
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Pan Gao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Zhenchao Zhao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
32
|
Bahri S, Silvers R, Michael B, Jaudzems K, Lalli D, Casano G, Ouari O, Lesage A, Pintacuda G, Linse S, Griffin RG. 1H detection and dynamic nuclear polarization-enhanced NMR of Aβ 1-42 fibrils. Proc Natl Acad Sci U S A 2022; 119:e2114413119. [PMID: 34969859 PMCID: PMC8740738 DOI: 10.1073/pnas.2114413119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
Several publications describing high-resolution structures of amyloid-β (Aβ) and other fibrils have demonstrated that magic-angle spinning (MAS) NMR spectroscopy is an ideal tool for studying amyloids at atomic resolution. Nonetheless, MAS NMR suffers from low sensitivity, requiring relatively large amounts of samples and extensive signal acquisition periods, which in turn limits the questions that can be addressed by atomic-level spectroscopic studies. Here, we show that these drawbacks are removed by utilizing two relatively recent additions to the repertoire of MAS NMR experiments-namely, 1H detection and dynamic nuclear polarization (DNP). We show resolved and sensitive two-dimensional (2D) and three-dimensional (3D) correlations obtained on 13C,15N-enriched, and fully protonated samples of M0Aβ1-42 fibrils by high-field 1H-detected NMR at 23.4 T and 18.8 T, and 13C-detected DNP MAS NMR at 18.8 T. These spectra enable nearly complete resonance assignment of the core of M0Aβ1-42 (K16-A42) using submilligram sample quantities, as well as the detection of numerous unambiguous internuclear proximities defining both the structure of the core and the arrangement of the different monomers. An estimate of the sensitivity of the two approaches indicates that the DNP experiments are currently ∼6.5 times more sensitive than 1H detection. These results suggest that 1H detection and DNP may be the spectroscopic approaches of choice for future studies of Aβ and other amyloid systems.
Collapse
Affiliation(s)
- Salima Bahri
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Robert Silvers
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Brian Michael
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kristaps Jaudzems
- Centre de Résonance Magnétique Nucléaire (RMN) à Très Hauts Champs, CNRS/École Normale Supérieure Lyon/Claude Bernard University Lyon 1, Université de Lyon, Villeurbanne 69100, France
| | - Daniela Lalli
- Centre de Résonance Magnétique Nucléaire (RMN) à Très Hauts Champs, CNRS/École Normale Supérieure Lyon/Claude Bernard University Lyon 1, Université de Lyon, Villeurbanne 69100, France
| | - Gilles Casano
- Institut de Chimie Radicalaire, CNRS/Aix Marseille Université, Marseille 13013, France
| | - Olivier Ouari
- Institut de Chimie Radicalaire, CNRS/Aix Marseille Université, Marseille 13013, France
| | - Anne Lesage
- Centre de Résonance Magnétique Nucléaire (RMN) à Très Hauts Champs, CNRS/École Normale Supérieure Lyon/Claude Bernard University Lyon 1, Université de Lyon, Villeurbanne 69100, France
| | - Guido Pintacuda
- Centre de Résonance Magnétique Nucléaire (RMN) à Très Hauts Champs, CNRS/École Normale Supérieure Lyon/Claude Bernard University Lyon 1, Université de Lyon, Villeurbanne 69100, France
| | - Sara Linse
- Department of Chemistry, Lund University, Lund SE 22362, Sweden
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139;
| |
Collapse
|
33
|
Lends A, Berbon M, Habenstein B, Nishiyama Y, Loquet A. Protein resonance assignment by solid-state NMR based on 1H-detected 13C double-quantum spectroscopy at fast MAS. JOURNAL OF BIOMOLECULAR NMR 2021; 75:417-427. [PMID: 34813018 DOI: 10.1007/s10858-021-00386-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Solid-state NMR spectroscopy is a powerful technique to study insoluble and non-crystalline proteins and protein complexes at atomic resolution. The development of proton (1H) detection at fast magic-angle spinning (MAS) has considerably increased the analytical capabilities of the technique, enabling the acquisition of 1H-detected fingerprint experiments in few hours. Here an approach based on double-quantum (DQ) 13C spectroscopy, detected on 1H, is proposed for fast MAS regime (> 60 kHz) to perform the sequential assignment of insoluble proteins of small size, without any specific deuteration requirement. By combining two three-dimensional 1H detected experiments correlating a 13C DQ dimension respectively to its intra-residue and sequential 15 N-1H pairs, a sequential walk through DQ (Ca + CO) resonance is obtained. The approach takes advantage of fast MAS to achieve an efficient sensitivity and the addition of a DQ dimension provides spectral features useful for the resonance assignment process.
Collapse
Affiliation(s)
- Alons Lends
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France.
| | - Mélanie Berbon
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Birgit Habenstein
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Yusuke Nishiyama
- RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa, 230-0045, Japan.
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo, 196-8558, Japan.
| | - Antoine Loquet
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France.
| |
Collapse
|
34
|
Xue K, Movellan KT, Zhang XC, Najbauer EE, Forster MC, Becker S, Andreas LB. Towards a native environment: structure and function of membrane proteins in lipid bilayers by NMR. Chem Sci 2021; 12:14332-14342. [PMID: 34880983 PMCID: PMC8580007 DOI: 10.1039/d1sc02813h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/07/2021] [Indexed: 01/17/2023] Open
Abstract
Solid-state NMR (ssNMR) is a versatile technique that can be used for the characterization of various materials, ranging from small molecules to biological samples, including membrane proteins. ssNMR can probe both the structure and dynamics of membrane proteins, revealing protein function in a near-native lipid bilayer environment. The main limitation of the method is spectral resolution and sensitivity, however recent developments in ssNMR hardware, including the commercialization of 28 T magnets (1.2 GHz proton frequency) and ultrafast MAS spinning (<100 kHz) promise to accelerate acquisition, while reducing sample requirement, both of which are critical to membrane protein studies. Here, we review recent advances in ssNMR methodology used for structure determination of membrane proteins in native and mimetic environments, as well as the study of protein functions such as protein dynamics, and interactions with ligands, lipids and cholesterol.
Collapse
Affiliation(s)
- Kai Xue
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Kumar Tekwani Movellan
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Xizhou Cecily Zhang
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Eszter E Najbauer
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Marcel C Forster
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Stefan Becker
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Loren B Andreas
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| |
Collapse
|
35
|
Schubeis T, Stanek J, Pintacuda G. Backbone assignment of crystalline E. coli maltose binding protein. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:317-322. [PMID: 33864192 DOI: 10.1007/s12104-021-10023-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
The E.coli maltose binding protein (MBP) is a 42.5 kDa molecule widely employed in many biotechnology applications. Because of its molecular size, it has become the main model system for the development of solution NMR methods adapted to large biomolecular targets. Here, we report virtually complete (~ 90%) backbone resonance assignments obtained on a microcrystalline sample of MBP with 1H-detected solid-state NMR at fast (> 100 kHz) magic-angle spinning. We additionally present the detailed description of the methodology employed for the preparation of the sample and the acquisition and analysis of the NMR spectra. The chemical shifts, obtained with a single uniformly 15N, 13C-labelled and fully-protonated sample and about 2 weeks on a 800 MHz NMR spectrometer, have been deposited to the BMRB under the accession number 50089.
Collapse
Affiliation(s)
- Tobias Schubeis
- Centre de Résonance Magnétique Nucléaire à Très Hauts champs (UMR 5082, CNRS/Ecole Normale Supérieure de Lyon/Université Claude Bernard Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Jan Stanek
- Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02089, Warsaw, Poland
| | - Guido Pintacuda
- Centre de Résonance Magnétique Nucléaire à Très Hauts champs (UMR 5082, CNRS/Ecole Normale Supérieure de Lyon/Université Claude Bernard Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France.
| |
Collapse
|
36
|
Wickramasinghe A, Xiao Y, Kobayashi N, Wang S, Scherpelz KP, Yamazaki T, Meredith SC, Ishii Y. Sensitivity-Enhanced Solid-State NMR Detection of Structural Differences and Unique Polymorphs in Pico- to Nanomolar Amounts of Brain-Derived and Synthetic 42-Residue Amyloid-β Fibrils. J Am Chem Soc 2021; 143:11462-11472. [PMID: 34308630 PMCID: PMC10279877 DOI: 10.1021/jacs.1c03346] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid-β (Aβ) fibrils in neuritic plaques are a hallmark of Alzheimer's disease (AD). Since the 42-residue Aβ (Aβ42) fibril is the most pathogenic among different Aβ species, its structural characterization is crucial to our understanding of AD. While several polymorphs have been reported for Aβ40, previous studies of Aβ42 fibrils prepared at neutral pH detected essentially only one structure, with an S-shaped β-sheet arrangement (e.g., Xiao et al. Nat. Struct. Mol. Biol. 2015, 22, 499). Herein, we demonstrate the feasibility of characterizing the structure of trace amounts of brain-derived and synthetic amyloid fibrils by sensitivity-enhanced 1H-detected solid-state NMR (SSNMR) under ultrafast magic angle spinning. By taking advantage of the high sensitivity of this technique, we first demonstrate its applicability for the high-throughput screening of trace amounts of selectively 13C- and 15N-labeled Aβ42 fibril prepared with ∼0.01% patient-derived amyloid (ca. 4 pmol) as a seed. The comparison of 2D 13C/1H SSNMR data revealed marked structural differences between AD-derived Aβ42 (∼40 nmol or ∼200 μg) and synthetic fibrils in less than 10 min, confirming the feasibility of assessing the fibril structure from ∼1 pmol of brain amyloid seed in ∼2.5 h. We also present the first structural characterization of synthetic fully protonated Aβ42 fibril by 1H-detected 3D and 4D SSNMR. With procedures assisted by automated assignments, main-chain resonance assignments were completed for trace amounts (∼42 nmol) of a fully protonated amyloid fibril in the 1H-detection approach. The results suggest that this Aβ42 fibril exhibits a novel fold or polymorph structure.
Collapse
Affiliation(s)
- Ayesha Wickramasinghe
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- NMR Division, RIKEN SPring-8 Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yiling Xiao
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Naohiro Kobayashi
- NMR Division, RIKEN SPring-8 Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Songlin Wang
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Kathryn P. Scherpelz
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Toshio Yamazaki
- NMR Division, RIKEN SPring-8 Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Stephen C. Meredith
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Yoshitaka Ishii
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- NMR Division, RIKEN SPring-8 Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
37
|
Chávez M, Wiegand T, Malär A, Meier B, Ernst M. Residual dipolar line width in magic-angle spinning proton solid-state NMR. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:499-509. [PMID: 37904755 PMCID: PMC10539731 DOI: 10.5194/mr-2-499-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/24/2021] [Indexed: 11/01/2023]
Abstract
Magic-angle spinning is routinely used to average anisotropic interactions in solid-state nuclear magnetic resonance (NMR). Due to the fact that the homonuclear dipolar Hamiltonian of a strongly coupled spin system does not commute with itself at different time points during the rotation, second-order and higher-order terms lead to a residual dipolar line broadening in the observed resonances. Additional truncation of the residual broadening due to isotropic chemical-shift differences can be observed. We analyze the residual line broadening in coupled proton spin systems based on theoretical calculations of effective Hamiltonians up to third order using Floquet theory and compare these results to numerically obtained effective Hamiltonians in small spin systems. We show that at spinning frequencies beyond 75 kHz, second-order terms dominate the residual line width, leading to a 1 / ω r dependence of the second moment which we use to characterize the line width. However, chemical-shift truncation leads to a partial ω r - 2 dependence of the line width which looks as if third-order effective Hamiltonian terms are contributing significantly. At slower spinning frequencies, cross terms between the chemical shift and the dipolar coupling can contribute in third-order effective Hamiltonians. We show that second-order contributions not only broaden the line, but also lead to a shift of the center of gravity of the line. Experimental data reveal such spinning-frequency-dependent line shifts in proton spectra in model substances that can be explained by line shifts induced by the second-order dipolar Hamiltonian.
Collapse
Affiliation(s)
- Matías Chávez
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Thomas Wiegand
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Alexander A. Malär
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Beat H. Meier
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
38
|
Jaudzems K, Kirsteina A, Schubeis T, Casano G, Ouari O, Bogans J, Kazaks A, Tars K, Lesage A, Pintacuda G. Struktur eines an virusähnliche Partikel gekoppelten Antigens: Analyse einer Impfstoff‐Formulierung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kristaps Jaudzems
- Latvian Institute of Organic Synthesis Aizkraukles 21 Riga LV-1006 Lettland
| | - Anna Kirsteina
- Latvian Biomedical Research and Study Centre Ratsupites 1 k1 Riga LV-1067 Lettland
| | - Tobias Schubeis
- Very High Field NMR Center of Lyon – UMR 5082 CNRS ENS Lyon UCB Lyon 1) University of Lyon F-69100 Villeurbanne Frankreich
| | - Gilles Casano
- Institut de Chimie Radicalaire Universität Aix-Marseille F-13013 Marseille Frankreich
| | - Olivier Ouari
- Institut de Chimie Radicalaire Universität Aix-Marseille F-13013 Marseille Frankreich
| | - Janis Bogans
- Latvian Biomedical Research and Study Centre Ratsupites 1 k1 Riga LV-1067 Lettland
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre Ratsupites 1 k1 Riga LV-1067 Lettland
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre Ratsupites 1 k1 Riga LV-1067 Lettland
| | - Anne Lesage
- Very High Field NMR Center of Lyon – UMR 5082 CNRS ENS Lyon UCB Lyon 1) University of Lyon F-69100 Villeurbanne Frankreich
| | - Guido Pintacuda
- Very High Field NMR Center of Lyon – UMR 5082 CNRS ENS Lyon UCB Lyon 1) University of Lyon F-69100 Villeurbanne Frankreich
| |
Collapse
|
39
|
Jaudzems K, Kirsteina A, Schubeis T, Casano G, Ouari O, Bogans J, Kazaks A, Tars K, Lesage A, Pintacuda G. Structural Analysis of an Antigen Chemically Coupled on Virus-Like Particles in Vaccine Formulation. Angew Chem Int Ed Engl 2021; 60:12847-12851. [PMID: 33750007 DOI: 10.1002/anie.202013189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 12/15/2022]
Abstract
Structure determination of adjuvant-coupled antigens is essential for rational vaccine development but has so far been hampered by the relatively low antigen content in vaccine formulations and by their heterogeneous composition. Here we show that magic-angle spinning (MAS) solid-state NMR can be used to assess the structure of the influenza virus hemagglutinin stalk long alpha helix antigen, both in its free, unformulated form and once chemically coupled to the surface of large virus-like particles (VLPs). The sensitivity boost provided by high-field dynamic nuclear polarization (DNP) and proton detection at fast MAS rates allows to overcome the penalty associated with the antigen dilution. Comparison of the MAS NMR fingerprints between the free and VLP-coupled forms of the antigen provides structural evidence of the conservation of its native fold upon bioconjugation. This work demonstrates that high-sensitivity MAS NMR is ripe to play a major role in vaccine design, formulation studies, and manufacturing process development.
Collapse
Affiliation(s)
- Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Anna Kirsteina
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k1, Riga, LV-1067, Latvia
| | - Tobias Schubeis
- Centre de RMN à Très Hauts Champs de Lyon-UMR 5082 (CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 69100, Villeurbanne, France
| | - Gilles Casano
- Institut de Chimie Radicalaire, AixMarseille Université, 13013, Marseille, France
| | - Olivier Ouari
- Institut de Chimie Radicalaire, AixMarseille Université, 13013, Marseille, France
| | - Janis Bogans
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k1, Riga, LV-1067, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k1, Riga, LV-1067, Latvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k1, Riga, LV-1067, Latvia
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs de Lyon-UMR 5082 (CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 69100, Villeurbanne, France
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs de Lyon-UMR 5082 (CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 69100, Villeurbanne, France
| |
Collapse
|
40
|
Abstract
Neurodegenerative disorders are frequently associated with β-sheet-rich amyloid deposits. Amyloid-forming proteins can aggregate under different structural conformations known as strains, which can exhibit a prion-like behavior and distinct pathophenotypes. Precise molecular determinants defining strain specificity and cross-strain interactions (cross-seeding) are currently unknown. The HET-s prion protein from the fungus Podospora anserina represents a model system to study the fundamental properties of prion amyloids. Here, we report the amyloid prion structure of HELLF, a distant homolog of the model prion HET-s. We find that these two amyloids, sharing only 17% sequence identity, have nearly identical β-solenoid folds but lack cross-seeding ability in vivo, indicating that prion specificity can differ in extremely similar amyloid folds. We engineer the HELLF sequence to explore the limits of the sequence-to-fold conservation and to pinpoint determinants of cross-seeding and prion specificity. We find that amyloid fold conservation occurs even at an exceedingly low level of identity to HET-s (5%). Next, we derive a HELLF-based sequence, termed HEC, able to breach the cross-seeding barrier in vivo between HELLF and HET-s, unveiling determinants controlling cross-seeding at residue level. These findings show that virtually identical amyloid backbone structures might not be sufficient for cross-seeding and that critical side-chain positions could determine the seeding specificity of an amyloid fold. Our work redefines the conceptual boundaries of prion strain and sheds light on key molecular features concerning an important class of pathogenic agents.
Collapse
|
41
|
Porat G, Lusky OS, Dayan N, Goldbourt A. Nonuniformly sampled exclusively- 13 C/ 15 N 4D solid-state NMR experiments: Assignment and characterization of IKe phage capsid. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:237-246. [PMID: 32603513 DOI: 10.1002/mrc.5072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/11/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
An important step in the process of protein research by NMR is the assignment of chemical shifts. In the coat protein of IKe bacteriophage, there are 53 residues making up a long helix resulting in relatively high spectral ambiguity. Assignment thus requires the collection of a set of three-dimensional (3D) experiments and the preparation of sparsely labeled samples. Increasing the dimensionality can facilitate fast and reliable assignment of IKe and of larger proteins. Recent progress in nonuniform sampling techniques made the application of multidimensional NMR solid-state experiments beyond 3D more practical. 4D 1 H-detected experiments have been demonstrated in high-fields and at spinning speeds of 60 kHz and higher but are not practical at spinning speeds of 10-20 kHz for fully protonated proteins. Here, we demonstrate the applicability of a nonuniformly sampled 4D 13 C/15 N-only correlation experiment performed at a moderate field of 14.1 T, which can incorporate sufficiently long acquisition periods in all dimensions. We show how a single CANCOCX experiment, supported by several 2D carbon-based correlation experiments, is utilized for the assignment of heteronuclei in the coat protein of the IKe bacteriophage. One sparsely labeled sample was used to validate sidechain assignment of several hydrophobic-residue sidechains. A comparison to solution NMR studies of isolated IKe coat proteins embedded in micelles points to key residues involved in structural rearrangement of the capsid upon assembly of the virus. The benefits of 4D to a quicker assignment are discussed, and the method may prove useful for studying proteins at relatively low fields.
Collapse
Affiliation(s)
- Gal Porat
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716, USA
| | - Orr Simon Lusky
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Nir Dayan
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
- Schulich Faculty of Chemistry, Technion-Institute of Technology, Haifa, Israel
| | - Amir Goldbourt
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| |
Collapse
|
42
|
Vallet A, Favier A, Brutscher B, Schanda P. ssNMRlib: a comprehensive library and tool box for acquisition of solid-state nuclear magnetic resonance experiments on Bruker spectrometers. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:331-345. [PMID: 37904819 PMCID: PMC10500710 DOI: 10.5194/mr-1-331-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/16/2020] [Indexed: 11/01/2023]
Abstract
We introduce ssNMRlib, a comprehensive suite of pulse sequences and jython scripts for user-friendly solid-state nuclear magnetic resonance (NMR) data acquisition, parameter optimization and storage on Bruker spectrometers. ssNMRlib allows the straightforward setup of even highly complex multi-dimensional solid-state NMR experiments with a few clicks from an intuitive graphical interface directly from the Bruker Topspin acquisition software. ssNMRlib allows the setup of experiments in a magnetic-field-independent manner and thus facilitates the workflow in a multi-spectrometer setting with a centralized library. Safety checks furthermore assist the user in experiment setup. Currently hosting more than 140 1D to 4D experiments, primarily for biomolecular solid-state NMR, the library can be easily customized and new experiments are readily added as new templates. ssNMRlib is part of the previously introduced NMRlib library, which comprises many solution-NMR pulse sequences and macros.
Collapse
Affiliation(s)
- Alicia Vallet
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044 Grenoble, France
| | - Adrien Favier
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044 Grenoble, France
| | - Bernhard Brutscher
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044 Grenoble, France
| | - Paul Schanda
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044 Grenoble, France
| |
Collapse
|
43
|
Lacabanne D, Boudet J, Malär AA, Wu P, Cadalbert R, Salmon L, Allain FHT, Meier BH, Wiegand T. Protein Side-Chain-DNA Contacts Probed by Fast Magic-Angle Spinning NMR. J Phys Chem B 2020; 124:11089-11097. [PMID: 33238710 PMCID: PMC7734624 DOI: 10.1021/acs.jpcb.0c08150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Protein–nucleic
acid interactions are essential in a variety
of biological events ranging from the replication of genomic DNA to
the synthesis of proteins. Noncovalent interactions guide such molecular
recognition events, and protons are often at the center of them, particularly
due to their capability of forming hydrogen bonds to the nucleic acid
phosphate groups. Fast magic-angle spinning experiments (100 kHz)
reduce the proton NMR line width in solid-state NMR of fully protonated
protein–DNA complexes to such an extent that resolved proton
signals from side-chains coordinating the DNA can be detected. We
describe a set of NMR experiments focusing on the detection of protein
side-chains from lysine, arginine, and aromatic amino acids and discuss
the conclusions that can be obtained on their role in DNA coordination.
We studied the 39 kDa enzyme of the archaeal pRN1 primase complexed
with DNA and characterize protein–DNA contacts in the presence
and absence of bound ATP molecules.
Collapse
Affiliation(s)
| | - Julien Boudet
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Pengzhi Wu
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.,Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Loic Salmon
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.,Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
44
|
Schubeis T, Schwarzer TS, Le Marchand T, Stanek J, Movellan KT, Castiglione K, Pintacuda G, Andreas LB. Resonance assignment of the outer membrane protein AlkL in lipid bilayers by proton-detected solid-state NMR. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:295-300. [PMID: 32607893 DOI: 10.1007/s12104-020-09964-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Most commonly small outer membrane proteins, possessing between 8 and 12 β-strands, are not involved in transport but fulfill diverse functions such as cell adhesion or binding of ligands. An intriguing exception are the 8-stranded β-barrel proteins of the OmpW family, which are implicated in the transport of small molecules. A representative example is AlkL from Pseudomonas putida GPoI, which functions as a passive importer of hydrophobic molecules. This role is of high interest with respect to both fundamental biological understanding and industrial applications in biocatalysis, since this protein is frequently utilized in biotransformation of alkanes. While the transport function of AlkL is generally accepted, a controversy in the transport mechanism still exists. In order to address this, we are pursuing a structural study of recombinantly produced AlkL reconstituted in lipid bilayers using solid-state NMR spectroscopy. In this manuscript we present 1H, 13C and 15N chemical shift assignments obtained via a suite of 3D experiments employing high magnetic fields (1 GHz and 800 MHz) and the latest magic-angle spinning (MAS) approaches at fast (60-111) kHz rates. We additionally analyze the secondary structure prediction in comparison with those of published structures of homologous proteins.
Collapse
Affiliation(s)
- Tobias Schubeis
- Centre de RMN à Très Hauts Champs de Lyon (FRE 2034 - CNRS, UCB Lyon 1, ENS Lyon), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Tom S Schwarzer
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Tanguy Le Marchand
- Centre de RMN à Très Hauts Champs de Lyon (FRE 2034 - CNRS, UCB Lyon 1, ENS Lyon), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Jan Stanek
- Centre de RMN à Très Hauts Champs de Lyon (FRE 2034 - CNRS, UCB Lyon 1, ENS Lyon), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Kumar Tekwani Movellan
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Kathrin Castiglione
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
- Institute of Bioprocess Engineering, FAU Erlangen-Nürnberg, Paul-Gordan Str. 3, 91052, Erlangen, Germany
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs de Lyon (FRE 2034 - CNRS, UCB Lyon 1, ENS Lyon), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France.
| | - Loren B Andreas
- Centre de RMN à Très Hauts Champs de Lyon (FRE 2034 - CNRS, UCB Lyon 1, ENS Lyon), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France.
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
45
|
Schledorn M, Malär AA, Torosyan A, Penzel S, Klose D, Oss A, Org M, Wang S, Lecoq L, Cadalbert R, Samoson A, Böckmann A, Meier BH. Protein NMR Spectroscopy at 150 kHz Magic-Angle Spinning Continues To Improve Resolution and Mass Sensitivity. Chembiochem 2020; 21:2540-2548. [PMID: 32501630 PMCID: PMC7497035 DOI: 10.1002/cbic.202000341] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 12/21/2022]
Abstract
Spectral resolution is the key to unleashing the structural and dynamic information contained in NMR spectra. Fast magic-angle spinning (MAS) has recently revolutionized the spectroscopy of biomolecular solids. Herein, we report a further remarkable improvement in the resolution of the spectra of four fully protonated proteins and a small drug molecule by pushing the MAS rotation frequency higher (150 kHz) than the more routinely used 100 kHz. We observed a reduction in the average homogeneous linewidth by a factor of 1.5 and a decrease in the observed linewidth by a factor 1.25. We conclude that even faster MAS is highly attractive and increases mass sensitivity at a moderate price in overall sensitivity.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Klose
- Physical ChemistryETH Zürich8093ZürichSwitzerland
| | - Andres Oss
- Institute of Health TechnologiesTallinn University of TechnologyAkadeemia tee 15a12618TallinnEstonia
| | - Mai‐Liis Org
- Institute of Health TechnologiesTallinn University of TechnologyAkadeemia tee 15a12618TallinnEstonia
| | - Shishan Wang
- Institut de Biologie et Chimie des Protéines MMSB UMR 5086 CNRS/Université de Lyon, Labex Ecofect7 passage du Vercors69367LyonFrance
| | - Lauriane Lecoq
- Institut de Biologie et Chimie des Protéines MMSB UMR 5086 CNRS/Université de Lyon, Labex Ecofect7 passage du Vercors69367LyonFrance
| | | | - Ago Samoson
- Institute of Health TechnologiesTallinn University of TechnologyAkadeemia tee 15a12618TallinnEstonia
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines MMSB UMR 5086 CNRS/Université de Lyon, Labex Ecofect7 passage du Vercors69367LyonFrance
| | | |
Collapse
|
46
|
A β-barrel for oil transport through lipid membranes: Dynamic NMR structures of AlkL. Proc Natl Acad Sci U S A 2020; 117:21014-21021. [PMID: 32817429 PMCID: PMC7474606 DOI: 10.1073/pnas.2002598117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Here we show how AlkL, a minimalistic outer-membrane protein from oil-consuming bacteria, exploits dynamics of extracellular loops to channel substrate across the polysaccharide barrier and into the hydrophobic interior of the outer membrane. This work represents a unique example of a side-by-side atomic-level structure determination by solution NMR in detergents and by solid-state NMR in lipid bilayers, which critically demonstrates the importance of a lipid environment to investigate function. Corroborating our experimental measurements, molecular-dynamics simulations capture substrate transit via lateral openings. The capacity to unravel membrane protein function under near-native conditions, fueled by the latest method developments, opens up a new frontier for their investigation, and provides thereby for improved fundamental insights into biological processes. The protein AlkL is known to increase permeability of the outer membrane of bacteria for hydrophobic molecules, yet the mechanism of transport has not been determined. Differing crystal and NMR structures of homologous proteins resulted in a controversy regarding the degree of structure and the role of long extracellular loops. Here we solve this controversy by determining the de novo NMR structure in near-native lipid bilayers, and by accessing structural dynamics relevant to hydrophobic substrate permeation through molecular-dynamics simulations and by characteristic NMR relaxation parameters. Dynamic lateral exit sites large enough to accommodate substrates such as carvone or octane occur through restructuring of a barrel extension formed by the extracellular loops.
Collapse
|
47
|
Li M, Lu X, Xu W, Troup GM, McNevin MJ, Nie H, Su Y. Quantifying Pharmaceutical Formulations from Proton Detected Solid-State NMR under Ultrafast Magic Angle Spinning. J Pharm Sci 2020; 109:3045-3053. [PMID: 32679211 DOI: 10.1016/j.xphs.2020.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Probing form conversions of active pharmaceutical ingredients in solid dosages is critical for understanding the physicochemical stability of drug substances in formulations. The multicomponent and low drug loading nature of drug products often results in challenges to quantify the phase stability, at a low detection limit and with the chemical resolution that differentiate drug molecules and excipients, for routine laboratory techniques. Recent advancement of ultrafast magic angle spinning (UF-MAS) enables proton-detected solid-state nuclear magnetic resonance (ssNMR) techniques to characterize pharmaceutical materials with enhanced resolution and sensitivity. This study demonstrates one of the first documented cases implementing 60 kHz UF-MAS techniques to quantify the minor content of pioglitazone free base (PIO-FB) in a binary system with its hydrochloride salt (PIO-HCl) and a multicomponent formulation with typical excipients. One-dimensional 1H methods can unambiguously differentiate the two forms and exhibit a limit of detection at 1.77% (w/w). Moreover, we extended it to a two-dimensional 1H-1H correlation for minimizing peak overlap and successfully quantifying approximately 2.0% (w/w) PIO-FB in a multicomponent formulation. These results have demonstrated that 1H ssNMR as a novel method to quantify solid dosages at a higher resolution and faster acquisition than conventional 13C techniques.
Collapse
Affiliation(s)
- Mingyue Li
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Xingyu Lu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Gregory M Troup
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Michael J McNevin
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Haichen Nie
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA.
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, IN 47907, USA; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
48
|
Li M, Meng F, Tsutsumi Y, Amoureux JP, Xu W, Lu X, Zhang F, Su Y. Understanding Molecular Interactions in Rafoxanide–Povidone Amorphous Solid Dispersions from Ultrafast Magic Angle Spinning NMR. Mol Pharm 2020; 17:2196-2207. [DOI: 10.1021/acs.molpharmaceut.0c00317] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mingyue Li
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Fan Meng
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
- Bruker Biospin, 34 Rue de l’Industrie, F-67166 Wissembourg, France
- Riken NMR Science and Development Division, Yokohama, 230-0045 Kanagawa Japan
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Xingyu Lu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Feng Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
49
|
Friedrich D, Perodeau J, Nieuwkoop AJ, Oschkinat H. MAS NMR detection of hydrogen bonds for protein secondary structure characterization. JOURNAL OF BIOMOLECULAR NMR 2020; 74:247-256. [PMID: 32185644 PMCID: PMC7211791 DOI: 10.1007/s10858-020-00307-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/09/2020] [Indexed: 05/26/2023]
Abstract
Hydrogen bonds are essential for protein structure and function, making experimental access to long-range interactions between amide protons and heteroatoms invaluable. Here we show that measuring distance restraints involving backbone hydrogen atoms and carbonyl- or α-carbons enables the identification of secondary structure elements based on hydrogen bonds, provides long-range contacts and validates spectral assignments. To this end, we apply specifically tailored, proton-detected 3D (H)NCOH and (H)NCAH experiments under fast magic angle spinning (MAS) conditions to microcrystalline samples of SH3 and GB1. We observe through-space, semi-quantitative correlations between protein backbone carbon atoms and multiple amide protons, enabling us to determine hydrogen bonding patterns and thus to identify β-sheet topologies and α-helices in proteins. Our approach shows the value of fast MAS and suggests new routes in probing both secondary structure and the role of functionally-relevant protons in all targets of solid-state MAS NMR.
Collapse
Affiliation(s)
- Daniel Friedrich
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA, 02215, USA
| | - Jacqueline Perodeau
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd., Piscataway, NJ, 08854, United States
| | - Andrew J Nieuwkoop
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd., Piscataway, NJ, 08854, United States.
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany.
| |
Collapse
|
50
|
Sharma K, Madhu PK, Agarwal V, Mote KR. Simultaneous recording of intra- and inter-residue linking experiments for backbone assignments in proteins at MAS frequencies higher than 60 kHz. JOURNAL OF BIOMOLECULAR NMR 2020; 74:229-237. [PMID: 31894471 DOI: 10.1007/s10858-019-00292-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Obtaining site-specific assignments for the NMR spectra of proteins in the solid state is a significant bottleneck in deciphering their biophysics. This is primarily due to the time-intensive nature of the experiments. Additionally, the low resolution in the [Formula: see text]-dimension requires multiple complementary experiments to be recorded to lift degeneracies in assignments. We present here an approach, gleaned from the techniques used in multiple-acquisition experiments, which allows the recording of forward and backward residue-linking experiments in a single experimental block. Spectra from six additional pathways are also recovered from the same experimental block, without increasing the probe duty cycle. These experiments give intra- and inter residue connectivities for the backbone [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] resonances and should alone be sufficient to assign these nuclei in proteins at MAS frequencies > 60 kHz. The validity of this approach is tested with experiments on a standard tripeptide N-formyl methionyl-leucine-phenylalanine (f-MLF) at a MAS frequency of 62.5 kHz, which is also used as a test-case for determining the sensitivity of each of the experiments. We expect this approach to have an immediate impact on the way assignments are obtained at MAS frequencies [Formula: see text].
Collapse
Affiliation(s)
- Kshama Sharma
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally, Serlingampally Mandal, Rangareddy District, Hyderabad, 500107, India
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally, Serlingampally Mandal, Rangareddy District, Hyderabad, 500107, India
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally, Serlingampally Mandal, Rangareddy District, Hyderabad, 500107, India.
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally, Serlingampally Mandal, Rangareddy District, Hyderabad, 500107, India.
| |
Collapse
|