1
|
Lin J, Kilani M, Baharfar M, Wang R, Mao G. Understanding the nanoscale phenomena of nucleation and crystal growth in electrodeposition. NANOSCALE 2024; 16:19564-19588. [PMID: 39380552 DOI: 10.1039/d4nr02389g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Electrodeposition is used at the industrial scale to make coatings, membranes, and composites. With better understanding of the nanoscale phenomena associated with the early stage of the process, electrodeposition has potential to be adopted by manufacturers of energy storage devices, advanced electrode materials, fuel cells, carbon dioxide capturing technologies, and advanced sensing electronics. The ability to conduct precise electrochemical measurements using cyclic voltammetry, chronoamperometry, and chronopotentiometry in addition to control of precursor composition and concentration makes electrocrystallization an attractive method to investigate nucleation and early-stage crystal growth. In this article, we review recent findings of nucleation and crystal growth behaviors at the nanoscale, paying close attention to those that deviate from the classical theories in various electrodeposition systems. The review affirms electrodeposition as a valuable method both for gaining new insights into nucleation and crystallization on surfaces and as a low-cost scalable technology for the manufacturing of advanced materials and devices.
Collapse
Affiliation(s)
- Jiancheng Lin
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Mohamed Kilani
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Ren Wang
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, UK
| |
Collapse
|
2
|
Jin B, Chen Y, Pyles H, Baer MD, Legg BA, Wang Z, Washton NM, Mueller KT, Baker D, Schenter GK, Mundy CJ, De Yoreo JJ. Formation, chemical evolution and solidification of the dense liquid phase of calcium (bi)carbonate. NATURE MATERIALS 2024:10.1038/s41563-024-02025-5. [PMID: 39448841 DOI: 10.1038/s41563-024-02025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 09/13/2024] [Indexed: 10/26/2024]
Abstract
Metal carbonates, which are ubiquitous in the near-surface mineral record, are a major product of biomineralizing organisms and serve as important targets for capturing anthropogenic CO2 emissions. However, pathways of carbonate mineralization typically diverge from classical predictions due to the involvement of disordered precursors, such as the dense liquid phase (DLP), yet little is known about DLP formation or solidification processes. Using in situ methods we report that a highly hydrated bicarbonate DLP forms via liquid-liquid phase separation and transforms into hollow hydrated amorphous CaCO3 particles. Acidic proteins and polymers extend DLP lifetimes while leaving the pathway and chemistry unchanged. Molecular simulations suggest that the DLP forms via direct condensation of solvated Ca²+⋅(HCO3-)2 complexes that react due to proximity effects in the confined DLP droplets. Our findings provide insight into CaCO3 nucleation that is mediated by liquid-liquid phase separation, advancing the ability to direct carbonate mineralization and elucidating an often-proposed complex pathway of biomineralization.
Collapse
Affiliation(s)
- Biao Jin
- Physical and Computational Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
- School of Sustainable Energy and Resources, Nanjing University, Suzhou, People's Republic of China
| | - Ying Chen
- Physical and Computational Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Harley Pyles
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Marcel D Baer
- Physical and Computational Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Benjamin A Legg
- Physical and Computational Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Zheming Wang
- Physical and Computational Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nancy M Washton
- Physical and Computational Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karl T Mueller
- Physical and Computational Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Gregory K Schenter
- Physical and Computational Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Christopher J Mundy
- Physical and Computational Sciences, Pacific Northwest National Laboratory, Richland, WA, USA.
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA.
| | - James J De Yoreo
- Physical and Computational Sciences, Pacific Northwest National Laboratory, Richland, WA, USA.
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Zhu Y, Wang Y, Gao Z, Gupta P, Singamaneni S, Zuo X, Jun YS. In Situ Monitoring the Nucleation and Growth of Nanoscale CaCO 3 at the Oil-Water Interface. ACS NANO 2024; 18:26522-26531. [PMID: 39283814 DOI: 10.1021/acsnano.4c02490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Interfaces can actively control the nucleation kinetics, orientations, and polymorphs of calcium carbonate (CaCO3). Prior studies have revealed that CaCO3 formation can be affected by the interplay between chemical functional moieties on solid-liquid or air-liquid interfaces as well as CaCO3's precursors and facets. Yet little is known about the roles of a liquid-liquid interface, specifically an oil-liquid interface, in directing CaCO3 mineralization which are common in natural and engineered systems. Here, by using in situ X-ray scattering techniques to locate a meniscus formed between water and a representative oil, isooctane, we successfully monitored CaCO3 formation at the pliable isooctane-water interface and systematically investigated the pivotal roles of the interface in the formation of CaCO3 (i.e., particle size, its spatial distribution with respect to the interface, and its mineral phase). Different from bulk solution, ∼5 nm CaCO3 nanoparticles form at the isooctane-water interface. They stably exist for a long time (36 h), which can result from interface-stabilized dehydrated prenucleation clusters of CaCO3. There is a clear tendency for enhanced amounts and faster crystallization of CaCO3 at locations closer to isooctane, which is attributed to a higher pH and an easier dehydration environment created by the interface and oil. Our study provides insights into CaCO3 nucleation at an oil-water interface, which can deepen our understanding of pliable interfaces interacting with CaCO3 and benefit mineral scaling control during energy-related subsurface operation.
Collapse
Affiliation(s)
- Yaguang Zhu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ying Wang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Zhenwei Gao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Prashant Gupta
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St Louis, Missouri 63130, United States
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St Louis, Missouri 63130, United States
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
4
|
Ilett M, Afzali M, Abdulkarim B, Aslam Z, Foster S, Burgos-Ruiz M, Kim YY, Meldrum FC, Drummond-Brydson RM. Studying crystallisation processes using electron microscopy: The importance of sample preparation. J Microsc 2024; 295:243-256. [PMID: 38594963 DOI: 10.1111/jmi.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/12/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024]
Abstract
We present a comparison of common electron microscopy sample preparation methods for studying crystallisation processes from solution using both scanning and transmission electron microscopy (SEM and TEM). We focus on two widely studied inorganic systems: calcium sulphate, gypsum (CaSO4·2H2O) and calcium carbonate (CaCO3). We find significant differences in crystallisation kinetics and polymorph selection between the different sample preparation methods, which indicate that drying and chemical quenching can induce severe artefacts that are capable of masking the true native state of the crystallising solution. Overall, these results highlight the importance of cryogenic (cryo)-quenching crystallising solutions and the use of full cryo-TEM as the most reliable method for studying the early stages of crystallisation.
Collapse
Affiliation(s)
- Martha Ilett
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Maryam Afzali
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Bilal Abdulkarim
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Zabeada Aslam
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Stephanie Foster
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Miguel Burgos-Ruiz
- Department of Mineralogy and Petrology, University of Granada, Granada, UK
| | - Yi-Yeoun Kim
- School of Chemistry, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
5
|
Huang Y, Wang N, Wang J, Ji X, Li A, Zhao H, Song W, Huang X, Wang T, Hao H. Unveiling the Factors Influencing Different Nucleation Pathways and Liquid-Liquid Phase Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17786-17795. [PMID: 39120944 DOI: 10.1021/acs.langmuir.4c02276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Exploring nucleation pathways has been a research hot spot in the fields of crystal engineering. In this work, vanillin as a model compound was utilized to explore the factors influencing different nucleation pathways with or without liquid-liquid phase separation (LLPS). A thermodynamic phase diagram of vanillin in the mixed solvent system of water and acetone from 10 to 55 °C was determined. It was found that the occurrence of LLPS might be related to different nucleation pathways. Under the guidance of a thermodynamic phase diagram, Raman spectroscopy and molecular simulation were applied to investigate the influencing factors of different nucleation paths. It was found that the degree of solvation is a key factor determining the nucleation path, and strong solvation could lead to LLPS. Additionally, the molecular self-assembly evolution during the crystallization process was further investigated by using small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS). The findings indicate that larger clusters with a diffuse transition layer may lead to LLPS during the nucleation process.
Collapse
Affiliation(s)
- Yunhai Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Jingkang Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiongtao Ji
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ao Li
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Hongtu Zhao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wenxi Song
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| |
Collapse
|
6
|
Balodis M, Rao Y, Stevanato G, Kellner M, Meibom J, Negroni M, Chmelka BF, Emsley L. Observation of Transient Prenucleation Species of Calcium Carbonate by DNP-Enhanced NMR. J Phys Chem Lett 2024; 15:7954-7961. [PMID: 39074399 PMCID: PMC11318035 DOI: 10.1021/acs.jpclett.4c01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Knowledge of the mechanism by which polymorphic inorganic species, such as carbonates, are formed is crucial to understand and guide the selective crystallization of end products. Recently it has been shown that a key step in the crystallization of calcium carbonate is the formation of intermediate species known as prenucleation clusters. However, the observation of these prenucleation clusters in solution is exceedingly challenging because of their short lifetime and low concentrations. Here, using dissolution DNP-enhanced NMR spectroscopy, we observe signals from prenucleation species of calcium carbonate from which the kinetics of formation and conversion are determined.
Collapse
Affiliation(s)
- Martins Balodis
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yu Rao
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gabriele Stevanato
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Matthias Kellner
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Josephine Meibom
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mattia Negroni
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Bradley F. Chmelka
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Lyndon Emsley
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Ruiz-Agudo C, Cölfen H. Exploring the Potential of Nonclassical Crystallization Pathways to Advance Cementitious Materials. Chem Rev 2024; 124:7538-7618. [PMID: 38874016 PMCID: PMC11212030 DOI: 10.1021/acs.chemrev.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Understanding the crystallization of cement-binding phases, from basic units to macroscopic structures, can enhance cement performance, reduce clinker use, and lower CO2 emissions in the construction sector. This review examines the crystallization pathways of C-S-H (the main phase in PC cement) and other alternative binding phases, particularly as cement formulations evolve toward increasing SCMs and alternative binders as clinker replacements. We adopt a nonclassical crystallization perspective, which recognizes the existence of critical intermediate steps between ions in solution and the final crystalline phases, such as solute ion associates, dense liquid phases, amorphous intermediates, and nanoparticles. These multistep pathways uncover innovative strategies for controlling the crystallization of binding phases through additive use, potentially leading to highly optimized cement matrices. An outstanding example of additive-controlled crystallization in cementitious materials is the synthetically produced mesocrystalline C-S-H, renowned for its remarkable flexural strength. This highly ordered microstructure, which intercalates soft matter between inorganic and brittle C-S-H, was obtained by controlling the assembly of individual C-S-H subunits. While large-scale production of cementitious materials by a bottom-up self-assembly method is not yet feasible, the fundamental insights into the crystallization mechanism of cement binding phases presented here provide a foundation for developing advanced cement-based materials.
Collapse
Affiliation(s)
- Cristina Ruiz-Agudo
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| |
Collapse
|
8
|
Lu H, Macht M, Rosenberg R, Wiedenbeck E, Lukas M, Qi D, Maltseva D, Zahn D, Cölfen H, Bonn M. Organic Nucleation: Water Rearrangement Reveals the Pathway of Ibuprofen. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307858. [PMID: 38269485 DOI: 10.1002/smll.202307858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/31/2023] [Indexed: 01/26/2024]
Abstract
The organic nucleation of the pharmaceutical ibuprofen is investigated, as triggered by the protonation of ibuprofen sodium salt at elevated pH. The growth and aggregation of nanoscale solution species by Analytical Ultracentrifugation and Molecular Dynamics (MD) simulations is tracked. Both approaches reveal solvated molecules, oligomers, and prenucleation clusters, their size as well as their hydration at different reaction stages. By combining surface-specific vibrational spectroscopy and MD simulations, water interacting with ibuprofen at the air-water interface during nucleation is probed. The results show the structure of water changes upon ibuprofen protonation in response to the charge neutralization. Remarkably, the water structure continues to evolve despite the saturation of protonated ibuprofen at the hydrophobic interface. This further water rearrangement is associated with the formation of larger aggregates of ibuprofen molecules at a late prenucleation stage. The nucleation of ibuprofen involves ibuprofen protonation and their hydrophobic assembly. The results highlight that these processes are accompanied by substantial water reorganization. The critical role of water is possibly relevant for organic nucleation in aqueous environments in general.
Collapse
Affiliation(s)
- Hao Lu
- Department of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing, Zhejiang Province, 314001, P. R. China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Moritz Macht
- Lehrstuhl für Theoretische Chemie/Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Rose Rosenberg
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Eduard Wiedenbeck
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Max Lukas
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Daizong Qi
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Daria Maltseva
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dirk Zahn
- Lehrstuhl für Theoretische Chemie/Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
9
|
Bewernitz MA, Ginder-Vogel M, Wolf SE, Seto J, Constantz BR. A bicarbonate-rich liquid condensed phase in non-saturated solutions in the absence of divalent cations. Front Bioeng Biotechnol 2024; 12:1382047. [PMID: 38745842 PMCID: PMC11091711 DOI: 10.3389/fbioe.2024.1382047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
Bicarbonate (HCO3 -) and sodium (Na+)-containing solutions contain droplets of a separate, bicarbonate-rich liquid condensed phase (LCP) that have higher concentrations of HCO3 - relative to the bulk solution in which they reside. The existence and composition of the LCP droplets has been investigated by nanoparticle tracking analysis, nuclear magnetic resonance spectroscopy, refractive index measurements and X-ray pair distribution function analysis. The bicarbonate-rich LCP species is a previously unaccounted-for, ionic phenomenon which occurs even in solutions with solely monovalent cations. Its existence requires re-evaluation of models used to describe and model aqueous solution physicochemistry, especially those used to describe and model carbonate mineral formation.
Collapse
Affiliation(s)
- Mark A. Bewernitz
- Physical Sciences Department, College of Arts and Sciences, Embry-Riddle Aeronautical University, Daytona Beach, FL, United States
| | - Matthew Ginder-Vogel
- Environmental Chemistry and Technology Program, Department of Civil and Environmental Engineering, University of Wisconsin—Madison, Madison, WI, United States
| | - Stephan E. Wolf
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jong Seto
- Center for Biological Physics and School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - Brent R. Constantz
- Physical Sciences Department, College of Arts and Sciences, Embry-Riddle Aeronautical University, Daytona Beach, FL, United States
- Blue Planet, Ltd., Los Gatos, CA, United States
| |
Collapse
|
10
|
Shen D, Zhou Z, Xu Y, Shao C, Shi Y, Zhao W, Tang R, Pan H, Yu M, Hannig M, Fu B. Reversion of ACP Nanoparticles into Prenucleation Clusters via Surfactant for Promoting Biomimetic Mineralization: A Physicochemical Understanding of Biosurfactant Role in Biomineralization Process. Adv Healthc Mater 2024; 13:e2303488. [PMID: 38265149 DOI: 10.1002/adhm.202303488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/21/2023] [Indexed: 01/25/2024]
Abstract
Amphiphilic biomolecules are abundant in mineralization front of biological hard tissues, which play a vital role in osteogenesis and dental hard tissue formation. Amphiphilic biomolecules function as biosurfactants, however, their biosurfactant role in biomineralization process has never been investigated. This study, for the first time, demonstrates that aggregated amorphous calcium phosphate (ACP) nanoparticles can be reversed into dispersed ultrasmall prenucleation clusters (PNCs) via breakdown and dispersion of the ACP nanoparticles by a surfactant. The reduced surface energy of ACP@TPGS and the electrostatic interaction between calcium ions and the pair electrons on oxygen atoms of C-O-C of D-α-tocopheryl polyethylene glycol succinate (TPGS) provide driving force for breakdown and dispersion of ACP nanoparticles into ultrasmall PNCs which promote in vitro and in vivo biomimetic mineralization. The ACP@TPGS possesses excellent biocompatibility without any irritations to oral mucosa and dental pulp. This study not only introduces surfactant into biomimetic mineralization field, but also excites attention to the neglected biosurfactant role during biomineralization process.
Collapse
Affiliation(s)
- Dongni Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Zihuai Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Yuedan Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Changyu Shao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Ying Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Weijia Zhao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310000, China
| | - Haihua Pan
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang Province, 310000, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66424, Homburg, Saarland, Germany
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| |
Collapse
|
11
|
Gindele MB, Vinod-Kumar S, Rochau J, Boemke D, Groß E, Redrouthu VS, Gebauer D, Mathies G. Colloidal pathways of amorphous calcium carbonate formation lead to distinct water environments and conductivity. Nat Commun 2024; 15:80. [PMID: 38167336 PMCID: PMC10761707 DOI: 10.1038/s41467-023-44381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
CaCO3 is the most abundant biomineral and a major constituent of incrustations arising from water hardness. Polycarboxylates play key roles in controlling mineralization. Herein, we present an analytical and spectroscopic study of polycarboxylate-stabilized amorphous CaCO3 (ACC) and its formation via a dense liquid precursor phase (DLP). Polycarboxylates facilitate pronounced, kinetic bicarbonate entrapment in the DLP. Since bicarbonate is destabilized in the solid state, DLP dehydration towards solid ACC necessitates the formation of locally calcium deficient sites, thereby inhibiting nucleation. Magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy of poly-aspartate-stabilized ACC reveals the presence of two distinct environments. The first contains immobile calcium and carbonate ions and structural water molecules, undergoing restricted, anisotropic motion. In the second environment, water molecules undergo slow, but isotropic motion. Indeed, conductive atomic force microscopy (C-AFM) reveals that ACC conducts electrical current, strongly suggesting that the mobile environment pervades the bulk of ACC, with dissolved hydroxide ions constituting the charge carriers. We propose that the distinct environments arise from colloidally stabilized interfaces of DLP nanodroplets, consistent with the pre-nucleation cluster (PNC) pathway.
Collapse
Affiliation(s)
- Maxim B Gindele
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | - Sanjay Vinod-Kumar
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78464, Konstanz, Germany
| | - Johannes Rochau
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | - Daniel Boemke
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | - Eduard Groß
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
| | | | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany.
| | - Guinevere Mathies
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78464, Konstanz, Germany.
| |
Collapse
|
12
|
Aretxabaleta XM, López-Zorrilla J, Etxebarria I, Manzano H. Multi-step nucleation pathway of C-S-H during cement hydration from atomistic simulations. Nat Commun 2023; 14:7979. [PMID: 38042823 PMCID: PMC10693585 DOI: 10.1038/s41467-023-43500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 11/10/2023] [Indexed: 12/04/2023] Open
Abstract
The Calcium Silicate Hydrate (C-S-H) nucleation is a crucial step during cement hydration and determines to a great extent the rheology, microstructure, and properties of the cement paste. Recent evidence indicates that the C-S-H nucleation involves at least two steps, yet the underlying atomic scale mechanism, the nature of the primary particles and their stability, or how they merge/aggregate to form larger structures is unknown. In this work, we use atomistic simulation methods, specifically DFT, evolutionary algorithms (EA), and Molecular Dynamics (MD), to investigate the structure and formation of C-S-H primary particles (PPs) from the ions in solution, and then discuss a possible formation pathway for the C-S-H nucleation. Our simulations indicate that even for small sizes the most stable clusters encode C-S-H structural motifs, and we identified a C4S4H2 cluster candidate to be the C-S-H basic building block. We suggest a formation path in which small clusters formed by silicate dimers merge into large elongated aggregates. Upon dehydration, the C-S-H basic building blocks can be formed within the aggregates, and eventually crystallize.
Collapse
Affiliation(s)
- Xabier M Aretxabaleta
- Fisika saila, Euskal Herriko Unibertsitatea UPV/EHU, Sarriena Auzoa z/g, 48940, Leioa, Basque Country, Spain.
| | - Jon López-Zorrilla
- Fisika saila, Euskal Herriko Unibertsitatea UPV/EHU, Sarriena Auzoa z/g, 48940, Leioa, Basque Country, Spain
| | - Iñigo Etxebarria
- Fisika saila, Euskal Herriko Unibertsitatea UPV/EHU, Sarriena Auzoa z/g, 48940, Leioa, Basque Country, Spain
- EHU Quantum Center, Euskal Herriko Unibertsitatea, UPV/EHU, Leioa, Spain
| | - Hegoi Manzano
- Fisika saila, Euskal Herriko Unibertsitatea UPV/EHU, Sarriena Auzoa z/g, 48940, Leioa, Basque Country, Spain.
| |
Collapse
|
13
|
Tong T, Liu X, Li T, Park S, Anger B. A Tale of Two Foulants: The Coupling of Organic Fouling and Mineral Scaling in Membrane Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7129-7149. [PMID: 37104038 DOI: 10.1021/acs.est.3c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Membrane desalination that enables the harvesting of purified water from unconventional sources such as seawater, brackish groundwater, and wastewater has become indispensable to ensure sustainable freshwater supply in the context of a changing climate. However, the efficiency of membrane desalination is greatly constrained by organic fouling and mineral scaling. Although extensive studies have focused on understanding membrane fouling or scaling separately, organic foulants commonly coexist with inorganic scalants in the feedwaters of membrane desalination. Compared to individual fouling or scaling, combined fouling and scaling often exhibits different behaviors and is governed by foulant-scalant interactions, resembling more complex but practical scenarios than using feedwaters containing only organic foulants or inorganic scalants. In this critical review, we first summarize the performance of membrane desalination under combined fouling and scaling, involving mineral scales formed via both crystallization and polymerization. We then provide the state-of-the-art knowledge and characterization techniques pertaining to the molecular interactions between organic foulants and inorganic scalants, which alter the kinetics and thermodynamics of mineral nucleation as well as the deposition of mineral scales onto membrane surfaces. We further review the current efforts of mitigating combined fouling and scaling via membrane materials development and pretreatment. Finally, we provide prospects for future research needs that guide the design of more effective control strategies for combined fouling and scaling to improve the efficiency and resilience of membrane desalination for the treatment of feedwaters with complex compositions.
Collapse
Affiliation(s)
- Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Xitong Liu
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Tianshu Li
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Shinyun Park
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Bridget Anger
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| |
Collapse
|
14
|
Liu C, Shi Z, Zhu J, Liu C, Liu X, Khan NU, Liu S, Wang X, Wang X, Huang F. Armoring a liposome-integrated tissue factor with sacrificial CaCO 3 to form potent self-propelled hemostats. J Mater Chem B 2023; 11:2778-2788. [PMID: 36891927 DOI: 10.1039/d2tb02140d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The development of hemostatic materials suitable for diverse emergency scenarios is of paramount significance, and there is growing interest in wound-site delivery of hemostasis-enhancing agents that can leverage the body's inherent mechanisms. Herein we report the design and performance of a biomimetic nanoparticle system enclosing tissue factor (TF), the most potent known blood coagulation trigger, which was reconstituted into liposomes and shielded by the liposome-templated CaCO3 mineralization. The mineral coatings, which mainly comprised water-soluble amorphous and vateritic phases, synergized with the lipidated TF to improve blood coagulation in vitro. These coatings served as sacrificial masks capable of releasing Ca2+ coagulation factors or propelling the TF-liposomes via acid-aided generation of CO2 bubbles while endowing them with high thermostability under dry conditions. In comparison to commercially available hemostatic particles, CaCO3 mineralized TF-liposomes yielded significantly shorter hemostasis times and less blood loss in vivo. When mixed with organic acids, the CO2-generating formulation further improved hemostasis by delivering TF-liposomes deep into actively bleeding wounds with good biocompatibility, as observed in a rat hepatic injury model. Therefore, the designed composite mimicry of coagulatory components exhibited strong hemostatic efficacy, which in combination with the propulsion mechanism would serve as a versatile approach to treating a variety of severe hemorrhages.
Collapse
Affiliation(s)
- Chengkun Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Zhuang Shi
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Jingyan Zhu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Chang Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Xiaodan Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Naseer Ullah Khan
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Shihai Liu
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266550, China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| |
Collapse
|
15
|
Sowoidnich T, Damidot D, Ludwig HM, Germroth J, Rosenberg R, Cölfen H. The nucleation of C-S-H via prenucleation clusters. J Chem Phys 2023; 158:114309. [PMID: 36948802 DOI: 10.1063/5.0141255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
The nucleation and growth of calcium-silicate-hydrate (C-S-H) is of fundamental importance for the strength development and durability of the concrete. However, the nucleation process of C-S-H is still not fully understood. The present work investigates how C-S-H nucleates by analyzing the aqueous phase of hydrating tricalcium silicate (C3S) by applying inductively coupled plasma-optical emission spectroscopy as well as analytical ultracentrifugation. The results show that the C-S-H formation follows non-classical nucleation pathways associated with the formation of prenucleation clusters (PNCs) of two types. Those PNCs are detected with high accuracy and reproducibility and are two species of the 10 in total, from which the ions (with associated water molecules) are the majority of the species. The evaluation of the density and molar mass of the species shows that the PNCs are much larger than ions, but the nucleation of C-S-H starts with the formation of liquid precursor C-S-H (droplets) with low density and high water content. The growth of these C-S-H droplets is associated with a release of water molecules and a reduction in size. The study gives experimental data on the size, density, molecular mass, and shape and outlines possible aggregation processes of the detected species.
Collapse
Affiliation(s)
- T Sowoidnich
- Bauhaus-Universität Weimar, F.A. Finger-Institute for Building Materials Science, Coudraystr. 11, 99423 Weimar, Germany
| | - D Damidot
- IMT Nord Europe, Institut Mines-Télécom, University Lille, Centre for Materials and Processes Centre, F-59000 Lille, France
| | - H-M Ludwig
- Bauhaus-Universität Weimar, F.A. Finger-Institute for Building Materials Science, Coudraystr. 11, 99423 Weimar, Germany
| | - J Germroth
- University of Konstanz, Physical Chemistry, Department of Chemistry, Universitätsstraße 10, 78457 Konstanz, Germany
| | - R Rosenberg
- University of Konstanz, Physical Chemistry, Department of Chemistry, Universitätsstraße 10, 78457 Konstanz, Germany
| | - H Cölfen
- University of Konstanz, Physical Chemistry, Department of Chemistry, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
16
|
Toufik E, Noukrati H, Rey C, Marsan O, Charvillat C, Cazalbou S, Ben Youcef H, Barroug A, Combes C. On the physicochemical properties, setting chemical reaction, and in vitro bioactivity of aragonite–chitosan composite cement as a bone substitute. NEW J CHEM 2023. [DOI: 10.1039/d2nj05515e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A chitosan gel additive modulates the initial vaterite dissolution–recrystallisation in injectable aragonite-based composite cement and promotes its in vitro bioactivity.
Collapse
Affiliation(s)
- E. Toufik
- Mohammed VI Polytechnic University, HTMR-Lab, 43150, Benguerir, Morocco
- Cadi Ayyad University, Faculty of Sciences Semlalia, SCIMATOP-PIB, 40000, Marrakech, Morocco
- CIRIMAT, Université de Toulouse, CNRS, ENSIACET, 4 allée EmileMonso, 31030 Toulouse Cedex 4, France
| | - H. Noukrati
- Mohammed VI Polytechnic University, ISSB-P, 43150, Benguerir, Morocco
| | - C. Rey
- CIRIMAT, Université de Toulouse, CNRS, ENSIACET, 4 allée EmileMonso, 31030 Toulouse Cedex 4, France
| | - O. Marsan
- CIRIMAT, Université de Toulouse, CNRS, ENSIACET, 4 allée EmileMonso, 31030 Toulouse Cedex 4, France
| | - C. Charvillat
- CIRIMAT, Université de Toulouse, CNRS, ENSIACET, 4 allée EmileMonso, 31030 Toulouse Cedex 4, France
| | - S. Cazalbou
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 31062, Toulouse, France
| | - H. Ben Youcef
- Mohammed VI Polytechnic University, HTMR-Lab, 43150, Benguerir, Morocco
| | - A. Barroug
- Cadi Ayyad University, Faculty of Sciences Semlalia, SCIMATOP-PIB, 40000, Marrakech, Morocco
- Mohammed VI Polytechnic University, ISSB-P, 43150, Benguerir, Morocco
| | - C. Combes
- CIRIMAT, Université de Toulouse, CNRS, ENSIACET, 4 allée EmileMonso, 31030 Toulouse Cedex 4, France
| |
Collapse
|
17
|
Huang Y, Wang J, Wang N, Li X, Ji X, Yang J, Zhou L, Wang T, Huang X, Hao H. Molecular mechanism of liquid–liquid phase separation in preparation process of crystalline materials. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Zhang MH, Xiao W, Wang WM, Zhang R, Zhang CL, Zhang XC, Zhang LL. Highly sensitive detection of broadband terahertz waves using aqueous salt solutions. OPTICS EXPRESS 2022; 30:39142-39151. [PMID: 36258461 DOI: 10.1364/oe.472753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Water-based coherent detection of broadband terahertz (THz) wave has been recently proposed with superior performances, which can alleviate the limited detection bandwidth and high probe laser energy requirement in the solid- and air-based detection schemes, respectively. Here, we demonstrate that the water-based detection method can be extended to the aqueous salt solutions and the sensitivity can be significantly enhanced. The THz coherent detection signal intensity scales linearly with the third-order nonlinear susceptibility χ(3) or quadratically with the linear refractive index η0 of the aqueous salt solutions, while the incoherent detection signal intensity scales quadratically with χ(3) or quartically with η0, proving the underlying mechanism is the four-wave mixing. Both the coherent and incoherent detection signal intensities appear positive correlation with the solution concentration. These results imply that the liquid-based THz detection scheme could provide a new technique to measure χ(3) and further investigate the physicochemical properties in the THz band for various liquids.
Collapse
|
19
|
Duchstein P, Schodder PI, Leupold S, Dao TQN, Kababya S, Cicconi MR, de Ligny D, Pipich V, Eike D, Schmidt A, Zahn D, Wolf SE. Small-Molecular-Weight Additives Modulate Calcification by Interacting with Prenucleation Clusters on the Molecular Level. Angew Chem Int Ed Engl 2022; 61:e202208475. [PMID: 35785466 PMCID: PMC9796263 DOI: 10.1002/anie.202208475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 01/01/2023]
Abstract
Small-molecular-weight (MW) additives can strongly impact amorphous calcium carbonate (ACC), playing an elusive role in biogenic, geologic, and industrial calcification. Here, we present molecular mechanisms by which these additives regulate stability and composition of both CaCO3 solutions and solid ACC. Potent antiscalants inhibit ACC precipitation by interacting with prenucleation clusters (PNCs); they specifically trigger and integrate into PNCs or feed PNC growth actively. Only PNC-interacting additives are traceable in ACC, considerably stabilizing it against crystallization. The selective incorporation of potent additives in PNCs is a reliable chemical label that provides conclusive chemical evidence that ACC is a molecular PNC-derived precipitate. Our results reveal additive-cluster interactions beyond established mechanistic conceptions. They reassess the role of small-MW molecules in crystallization and biomineralization while breaking grounds for new sustainable antiscalants.
Collapse
Affiliation(s)
- Patrick Duchstein
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department of Chemistry and PharmacyChair for Theoretical Chemistry/Computer Chemistry Centre (CCC)Nägelsbachstrasse 2591058ErlangenGermany
| | - Philipp I. Schodder
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| | - Simon Leupold
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| | - Thi Q. N. Dao
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| | - Shifi Kababya
- Schulich Faculty of Chemistry and the Russell Berrie Nanotechnology InstituteTechnion-Israel Institute of TechnologyHaifa32000Israel
| | - Maria R. Cicconi
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| | - Dominique de Ligny
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| | - Vitaliy Pipich
- Jülich Centre for Neutron Science (JCNS)Forschungszentrum Jülich GmbHOutstation at FRM IILichtenbergstrasse 185747GarchingGermany
| | - David Eike
- The Procter & Gamble CompanyMason Business Center8700 Mason-Montgomery RoadMasonOH 45040USA
| | - Asher Schmidt
- Schulich Faculty of Chemistry and the Russell Berrie Nanotechnology InstituteTechnion-Israel Institute of TechnologyHaifa32000Israel
| | - Dirk Zahn
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department of Chemistry and PharmacyChair for Theoretical Chemistry/Computer Chemistry Centre (CCC)Nägelsbachstrasse 2591058ErlangenGermany
| | - Stephan E. Wolf
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| |
Collapse
|
20
|
Durelle M, Charton S, Gobeaux F, Chevallard C, Belloni L, Testard F, Trépout S, Carriere D. Coexistence of Transient Liquid Droplets and Amorphous Solid Particles in Nonclassical Crystallization of Cerium Oxalate. J Phys Chem Lett 2022; 13:8502-8508. [PMID: 36066503 DOI: 10.1021/acs.jpclett.2c01829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Crystallization from solution often occurs via "nonclassical" routes; that is, it involves transient, non-crystalline states like reactant-rich liquid droplets and amorphous particles. However, in mineral crystals, the well-defined thermodynamic character of liquid droplets and whether they convert─or not─into amorphous phases have remained unassessed. Here, by combining cryo-transmission electron microscopy and X-ray scattering down to a 250 ms reaction time, we unveil that crystallization of cerium oxalate involves a metastable chemical equilibrium between transient liquid droplets and solid amorphous particles: contrary to the usual expectation, reactant-rich droplets do not evolve into amorphous solids. Instead, at concentrations above 2.5 to 10 mmol L-1, both amorphous and reactant-rich liquid phases coexist for several tens of seconds and their molar fractions remain constant and follow the lever rule in a multicomponent phase diagram. Such a metastable chemical equilibrium between solid and liquid precursors has been so far overlooked in multistep nucleation theories and highlights the interest of rationalizing phase transformations using multicomponent phase diagrams not only when designing and recycling rare earths materials but also more generally when describing nonclassical crystallization.
Collapse
Affiliation(s)
- Maxime Durelle
- CEA, DES, ISEC, DMRC, Univ. Montpellier, 30207 Marcoule, France
- Université Paris-Saclay, CNRS, CEA, NIMBE, LIONS, 91191 Gif-sur-Yvette, France
| | - Sophie Charton
- CEA, DES, ISEC, DMRC, Univ. Montpellier, 30207 Marcoule, France
| | - Frédéric Gobeaux
- Université Paris-Saclay, CNRS, CEA, NIMBE, LIONS, 91191 Gif-sur-Yvette, France
| | - Corinne Chevallard
- Université Paris-Saclay, CNRS, CEA, NIMBE, LIONS, 91191 Gif-sur-Yvette, France
| | - Luc Belloni
- Université Paris-Saclay, CNRS, CEA, NIMBE, LIONS, 91191 Gif-sur-Yvette, France
| | - Fabienne Testard
- Université Paris-Saclay, CNRS, CEA, NIMBE, LIONS, 91191 Gif-sur-Yvette, France
| | - Sylvain Trépout
- Institut Curie, Université PSL, CNRS UMS2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France
| | - David Carriere
- Université Paris-Saclay, CNRS, CEA, NIMBE, LIONS, 91191 Gif-sur-Yvette, France
| |
Collapse
|
21
|
Ramnarain V, Georges T, Ortiz Peña N, Ihiawakrim D, Longuinho M, Bulou H, Gervais C, Sanchez C, Azaïs T, Ersen O. Monitoring of CaCO 3 Nanoscale Structuration through Real-Time Liquid Phase Transmission Electron Microscopy and Hyperpolarized NMR. J Am Chem Soc 2022; 144:15236-15251. [PMID: 35971919 DOI: 10.1021/jacs.2c05731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium carbonate (CaCO3) is one of the most significant biominerals in nature. Living organisms are able to control its biomineralization by means of an organic matrix to tailor a myriad of hybrid functional materials. The soluble organic components are often proteins rich in acidic amino-acids such as l-aspartic acid. While several studies have demonstrated the influence of amino acids on the crystallization of calcium carbonate, nanoscopic insight of their impact on CaCO3 mineralization, in particular at the early stages, is still lacking. Herein, we implement liquid phase-transmission electron microscopy (LP-TEM) in order to visualize in real-time and at the nanoscale the prenucleation stages of CaCO3 formation. We observe that l-aspartic acid favors the formation of individual and aggregated prenucleation clusters which are found stable for several minutes before the transformation into amorphous nanoparticles. Combination with hyperpolarized solid state nuclear magnetic resonance (DNP NMR) and density functional theory (DFT) calculations allow shedding light on the underlying mechanism at the prenucleation stage. The promoting nature of l-aspartic acid with respect to prenucleation clusters is explained by specific interactions with both Ca2+ and carbonates and the stabilization of the Ca2+-CO32-/HCO3- ion pairs favoring the formation and stabilization of the CaCO3 transient precursors. The study of prenucleation stages of mineral formation by the combination of in situ LP-TEM, advanced analytical techniques (including hyperpolarized solid-state NMR), and numerical modeling allows the real-time monitoring of prenucleation species formation and evolution and the comprehension of their relative stability.
Collapse
Affiliation(s)
- Vinavadini Ramnarain
- Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, Cedex 2, France.,ICFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Tristan Georges
- Laboratoire de Chimie de Matière Condensée de Paris, Sorbonne Université, 75005 Paris, France
| | - Nathaly Ortiz Peña
- Laboratoire Matériaux et Phénomènes Quantiques, 75025 Paris, Cedex 13, France
| | - Dris Ihiawakrim
- Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, Cedex 2, France.,ICFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Mariana Longuinho
- CBPF, Rua Dr. Xavier Sigaud, 150 Urca I, CEP 22290-180, Rio de Janeiro, Brasil.,UFRJ, Av Pedro Calmon, 550 Edificio da Reitoria, Iha de do Fundao, CEP 21941-901 Rio de Janeiro, Brasil
| | - Hervé Bulou
- Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, Cedex 2, France.,ICFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Christel Gervais
- Laboratoire de Chimie de Matière Condensée de Paris, Sorbonne Université, 75005 Paris, France
| | - Clément Sanchez
- Laboratoire de Chimie de Matière Condensée de Paris, Sorbonne Université, 75005 Paris, France.,USIAS, Université de Strasbourg, 67000 Strasbourg, France
| | - Thierry Azaïs
- Laboratoire de Chimie de Matière Condensée de Paris, Sorbonne Université, 75005 Paris, France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, Cedex 2, France.,ICFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
22
|
Li CG, Liu C, Xu WH, Shan MG, Wu HX. Formation mechanisms and supervisory prediction of scaling in water supply pipelines: A review. WATER RESEARCH 2022; 222:118922. [PMID: 35932708 DOI: 10.1016/j.watres.2022.118922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/04/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The scaling problem in the water supply pipeline will increase the resistance coefficient of the pipeline and the pressure of the water supply pipeline, which will not only affect the operation safety of the water supply pipeline, but also cause energy waste. The scale in the pipeline will also enrich heavy metal ions and pathogenic microorganisms, affecting the safety of water supply water quality and causing secondary pollution of water quality. At present, a lot of research has been done on the composition structure and crystallization process of the scale. The study found that calcite is the main component of the scale; the scale process is a heterogeneous nucleation process induced by heavy metal particles and their corrosion products in the pipeline. The introduction of electrochemical detection technology, density functional theory and molecular dynamics simulation has greatly improved the accuracy and timeliness of water scaling conditions detection and realized the visualization of scaling mechanism. In this paper, the measurement methods of the scale in the water supply pipeline and the corresponding material composition and crystal structure characteristics are reviewed, and the mechanism of the scale and the water quality conditions are summarized. At the end of this paper, based on summarizing the existing water quality scaling tendency evaluation methods, it is proposed to establish a water quality potential scaling risk assessment framework based on Puckorius scaling index (PSI) and electrochemical impedance spectroscopy (EIS) in the future.
Collapse
Affiliation(s)
- Chang-Geng Li
- College of Environment, Hohai University, Nanjing 210098, China
| | - Cheng Liu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Wen-Hui Xu
- College of Environment, Hohai University, Nanjing 210098, China
| | - Ming-Gang Shan
- College of Environment, Hohai University, Nanjing 210098, China
| | - Hai-Xia Wu
- Jiangsu Heqinghaiyan Environment Co., LTD., Suqian 223800, China
| |
Collapse
|
23
|
Duchstein P, Schodder PI, Leupold S, Dao TQN, Kababya S, Cicconi MR, de Ligny D, Pipich V, Eike D, Schmidt A, Zahn D, Wolf SE. Small‐Molecular‐Weight Additives Modulate Calcification by Interacting with Prenucleation Clusters on the Molecular Level. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Philipp I. Schodder
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute for Glass and Ceramics GERMANY
| | - Simon Leupold
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute for Glass and Ceramics GERMANY
| | - Thi Q. N. Dao
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute for Glass and Ceramics GERMANY
| | - Shifi Kababya
- Technion Israel Institute of Technology Schulich Faculty of Chemistry ISRAEL
| | - Maria R. Cicconi
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute for Glass and Ceramics GERMANY
| | - Dominique de Ligny
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Lehrstuhl für Glas und Keramik GERMANY
| | - Vitaliy Pipich
- Forschungszentrum Jülich: Forschungszentrum Julich GmbH Garching GERMANY
| | | | - Asher Schmidt
- Technion Israel Institute of Technology Schulich Faculty of Chemistry ISRAEL
| | - Dirk Zahn
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry Department GERMANY
| | - Stephan E. Wolf
- Friedrich-Alexander University Erlangen-Nürnberg – Institute of Glass and Ceramics Department of Materials Science and Engineering Martensstrasse 5 91058 Erlangen GERMANY
| |
Collapse
|
24
|
Li Q, Kölbel J, Davis MP, Korter TM, Bond AD, Threlfall T, Zeitler JA. In Situ Observation of the Structure of Crystallizing Magnesium Sulfate Heptahydrate Solutions with Terahertz Transmission Spectroscopy. CRYSTAL GROWTH & DESIGN 2022; 22:3961-3972. [PMID: 35673396 PMCID: PMC9165030 DOI: 10.1021/acs.cgd.2c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Terahertz time-domain spectroscopy in a transmission geometry combined with visual analysis was used to investigate the crystallization process of MgSO4 solution. Careful spectral analysis of both a feature at 1.6 THz and the overall magnitude of absorption allowed the extraction of information about the liquid phase before and during crystallization, aiding the investigation of solvation dynamics and the behavior of molecular species at phase boundaries. The method was reproducibly applied to a number of measurements on a series of solutions of three chosen concentrations at different temperatures. When increasing temperature at the end of the measurement, the dissolution of crystals was observed as well. The temperature-dependent absorption data of the semicrystalline systems were converted to the solvent concentrations using a recently developed method. Solutions of a series of concentrations were also investigated in the temperature range of 4-25 °C. The results were compared to the theoretical calculated values, and the consistent differences proved the existence of a hydration shell around the salt ions whose behavior is different from bulk water. Future work will focus on triggering nucleation at specific positions in order to study the very beginning of the crystallization process. MgSO4 heptahydrate is used as a model system in this study, while the concept and the setup can be applied to other systems.
Collapse
Affiliation(s)
- Qi Li
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Johanna Kölbel
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Margaret P. Davis
- Department
of Chemistry, Syracuse University, 1-046 Center for Science and Technology, Syracuse, New York 13244, United States
| | - Timothy M. Korter
- Department
of Chemistry, Syracuse University, 1-046 Center for Science and Technology, Syracuse, New York 13244, United States
| | - Andrew D. Bond
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Terrence Threlfall
- Department
of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K.
| | - J. Axel Zeitler
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| |
Collapse
|
25
|
Schodder PI, Gindele MB, Ott A, Rückel M, Ettl R, Boyko V, Kellermeier M. Probing the effects of polymers on the early stages of calcium carbonate formation by stoichiometric co-titration. Phys Chem Chem Phys 2022; 24:9978-9989. [PMID: 35319032 DOI: 10.1039/d1cp05606a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Potentiometric titrations are a powerful tool to study the early stages of the precipitation of minerals such as calcium carbonate and were used among others for the discovery and characterisation of key precursors like prenucleation clusters. Here we present a modified procedure for conducting such titration experiments, in which the reactants (i.e. calcium and (bi)carbonate ions) are added simultaneously in stoichiometric amounts, while both the amount of free calcium and the optical transmission of the solution are monitored online. Complementarily, the species occurring at distinct stages of the crystallisation process were studied using cryogenic transmission electron microscopy. This novel routine was applied to investigate CaCO3 nucleation in the absence and presence of polymeric additives with different chemical functionalities. The obtained results provide new insights into the critical steps underlying nucleation and subsequent ripening, such as the role of liquid mineral-rich phases and their transformation into solid particles. The studied polymers proved to interfere at multiple stages along the complex mineralisation pathway of calcium carbonate, with both the degree and mode of interaction depending on the chosen polymer chemistry. In this way, the methodology developed in this work allows the mechanisms of antiscalants - or crystallisation modifiers in general - to be elucidated at an advanced level of detail.
Collapse
Affiliation(s)
- Philipp I Schodder
- Material Physics, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany. .,Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Martensstrasse 5, D-91058 Erlangen, Germany
| | - Maxim B Gindele
- Material Physics, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany. .,Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, D-30167 Hannover, Germany
| | - Andreas Ott
- Material Physics, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany.
| | - Markus Rückel
- Material Physics, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany.
| | - Roland Ettl
- Care Chemicals, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| | - Volodymyr Boyko
- Formulation Platform, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| | - Matthias Kellermeier
- Material Physics, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany.
| |
Collapse
|
26
|
King M, Avaro JT, Peter C, Hauser K, Gebauer D. Solvent-mediated isotope effects strongly influence the early stages of calcium carbonate formation: exploring D 2O vs. H 2O in a combined computational and experimental approach. Faraday Discuss 2022; 235:36-55. [PMID: 35388817 DOI: 10.1039/d1fd00078k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In experimental studies, heavy water (D2O) is employed, e.g., so as to shift the spectroscopic solvent background, but any potential effects of this solvent exchange on reaction pathways are often neglected. While the important role of light water (H2O) during the early stages of calcium carbonate formation has been realized, studies into the actual effects of aqueous solvent exchanges are scarce. Here, we present a combined computational and experimental approach to start to fill this gap. We extended a suitable force field for molecular dynamics (MD) simulations. Experimentally, we utilised advanced titration assays and time-resolved attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. We find distinct effects in various mixtures of the two aqueous solvents, and in pure H2O or D2O. Disagreements between the computational results and experimental data regarding the stabilities of ion associates might be due to the unexplored role of HDO, or an unprobed complex phase behaviour of the solvent mixtures in the simulations. Altogether, however, our data suggest that calcium carbonate formation might proceed "more classically" in D2O. Also, there are indications for the formation of new structures in amorphous and crystalline calcium carbonates. There is huge potential towards further improving the understanding of mineralization mechanisms by studying solvent-mediated isotope effects, also beyond calcium carbonate. Last, it must be appreciated that H2O and D2O have significant, distinct effects on mineralization mechanisms, and that care has to be taken when experimental data from D2O studies are used, e.g., for the development of H2O-based computer models.
Collapse
Affiliation(s)
- Michael King
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Jonathan T Avaro
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany.,Empa, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Christine Peter
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University of Hannover, Callinstr. 9, 30167 Hannover, Germany.
| |
Collapse
|
27
|
Merle M, Soulié J, Sassoye C, Roblin P, Rey C, Bonhomme C, Combes C. Pyrophosphate-stabilised amorphous calcium carbonate for bone substitution: toward a doping-dependent cluster-based model. CrystEngComm 2022. [DOI: 10.1039/d2ce00936f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multiscale and multitool advanced characterisation of pyrophosphate-stabilised amorphous calcium carbonates allowed building a cluster-based model paving the way for tunable biomaterials.
Collapse
Affiliation(s)
- Marion Merle
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| | - Jérémy Soulié
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| | | | - Pierre Roblin
- LGC, Université de Toulouse, CNRS, 118 Route de Narbonne Bâtiment 2R1, Toulouse, France
| | - Christian Rey
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| | | | - Christèle Combes
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| |
Collapse
|
28
|
Kimura Y, Katsuno H, Yamazaki T. Possible embryo and precursor of crystalline nuclei of calcium carbonate observed by LC-TEM. Faraday Discuss 2022; 235:81-94. [DOI: 10.1039/d1fd00125f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several different building blocks or precursors play an important role in the early stages of crystallization of calcium carbonate (CaCO3). Substantial number of studies have been conducted to understand the...
Collapse
|
29
|
Song N, Li J, Li B, Pan E, Gao J, Ma Y. In vitro crystallization of calcium carbonate mediated by proteins extracted from P. placenta shells. CrystEngComm 2022. [DOI: 10.1039/d2ce00692h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ASM extracted from the shells of P. placenta can stabilize ACC and inhibit secondary nucleation for 10 hours, and an explosive secondary nucleation and quick crystal growth from 50 nm to 10 μm can be finished on the shell surface in one hour.
Collapse
Affiliation(s)
- Ningjing Song
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiangfeng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ercai Pan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Gao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yurong Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
30
|
Valavanis D, Ciocci P, Meloni GN, Morris P, Lemineur JF, McPherson IJ, Kanoufi F, Unwin PR. Hybrid scanning electrochemical cell microscopy-interference reflection microscopy (SECCM-IRM): tracking phase formation on surfaces in small volumes. Faraday Discuss 2021; 233:122-148. [PMID: 34909815 DOI: 10.1039/d1fd00063b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We describe the combination of scanning electrochemical cell microscopy (SECCM) and interference reflection microscopy (IRM) to produce a compelling technique for the study of interfacial processes and to track the SECCM meniscus status in real-time. SECCM allows reactions to be confined to well defined nm-to-μm-sized regions of a surface, and for experiments to be repeated quickly and easily at multiple locations. IRM is a highly surface-sensitive technique which reveals processes happening (very) close to a substrate with temporal and spatial resolution commensurate with typical electrochemical techniques. By using thin transparent conductive layers on glass as substrates, IRM can be coupled to SECCM, to allow real-time in situ optical monitoring of the SECCM meniscus and of processes that occur within it at the electrode/electrolyte interface. We first use the technique to assess the stability of the SECCM meniscus during voltammetry at an indium tin oxide (ITO) electrode at close to neutral pH, demonstrating that the meniscus contact area is rather stable over a large potential window and reproducible, varying by only ca. 5% over different SECCM approaches. At high cathodic potentials, subtle electrowetting is easily detected and quantified. We also look inside the meniscus to reveal surface changes at extreme cathodic potentials, assigned to the possible formation of indium nanoparticles. Finally, we examine the effect of meniscus size and driving potential on CaCO3 precipitation at the ITO electrode as a result of electrochemically-generated pH swings. We are able to track the number, spatial distribution and morphology of material with high spatiotemporal resolution and rationalise some of the observed deposition patterns with finite element method modelling of reactive-transport. Growth of solid phases on surfaces from solution is an important pathway to functional materials and SECCM-IRM provides a means for in situ or in operando visualisation and tracking of these processes with improved fidelity. We anticipate that this technique will be particularly powerful for the study of phase formation processes, especially as the high throughput nature of SECCM-IRM (where each spot is a separate experiment) will allow for the creation of large datasets, exploring a wide experimental parameter landscape.
Collapse
Affiliation(s)
| | - Paolo Ciocci
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France.
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Peter Morris
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Ian J McPherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
31
|
Wu M, Jiang X, Meng Y, Niu Y, Yuan Z, Xiao W, Li X, Ruan X, Yan X, He G. High selective synthesis of CaCO3 superstructures via ultra-homoporous interfacial crystallizer. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
32
|
Finney AR, McPherson IJ, Unwin PR, Salvalaglio M. Electrochemistry, ion adsorption and dynamics in the double layer: a study of NaCl(aq) on graphite. Chem Sci 2021; 12:11166-11180. [PMID: 34522314 PMCID: PMC8386640 DOI: 10.1039/d1sc02289j] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Graphite and related sp2 carbons are ubiquitous electrode materials with particular promise for use in e.g., energy storage and desalination devices, but very little is known about the properties of the carbon–electrolyte double layer at technologically relevant concentrations. Here, the (electrified) graphite–NaCl(aq) interface was examined using constant chemical potential molecular dynamics (CμMD) simulations; this approach avoids ion depletion (due to surface adsorption) and maintains a constant concentration, electroneutral bulk solution beyond the surface. Specific Na+ adsorption at the graphite basal surface causes charging of the interface in the absence of an applied potential. At moderate bulk concentrations, this leads to accumulation of counter-ions in a diffuse layer to balance the effective surface charge, consistent with established models of the electrical double layer. Beyond ∼0.6 M, however, a combination of over-screening and ion crowding in the double layer results in alternating compact layers of charge density perpendicular to the interface. The transition to this regime is marked by an increasing double layer size and anomalous negative shifts to the potential of zero charge with incremental changes to the bulk concentration. Our observations are supported by changes to the position of the differential capacitance minimum measured by electrochemical impedance spectroscopy, and are explained in terms of the screening behaviour and asymmetric ion adsorption. Furthermore, a striking level of agreement between the differential capacitance from solution evaluated in simulations and measured in experiments allows us to critically assess electrochemical capacitance measurements which have previously been considered to report simply on the density of states of the graphite material at the potential of zero charge. Our work shows that the solution side of the double layer provides the more dominant contribution to the overall measured capacitance. Finally, ion crowding at the highest concentrations (beyond ∼5 M) leads to the formation of liquid-like NaCl clusters confined to highly non-ideal regions of the double layer, where ion diffusion is up to five times slower than in the bulk. The implications of changes to the speciation of ions on reactive events in the double layer are discussed. CμMD reveals multi-layer electrolyte screening in the double layer beyond 0.6 M, which affects ion activities, speciation and mobility; asymmetric charge screening explains concentration dependent changes to electrochemical properties.![]()
Collapse
Affiliation(s)
- Aaron R Finney
- Thomas Young Centre and Department of Chemical Engineering, University College London London WC1E 7JE UK
| | - Ian J McPherson
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Matteo Salvalaglio
- Thomas Young Centre and Department of Chemical Engineering, University College London London WC1E 7JE UK
| |
Collapse
|
33
|
Attenuated Total Reflection at THz Wavelengths: Prospective Use of Total Internal Reflection and Polariscopy. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Capabilities of the attenuated total reflection (ATR) at THz wavelengths for increased sub-surface depth characterisation of (bio-)materials are presented. The penetration depth of a THz evanescent wave in biological samples is dependent on the wavelength and temperature and can reach 0.1–0.5 mm depth, due to the strong refractive index change ∼0.4 of the ice-water transition; this is quite significant and important when studying biological samples. Technical challenges are discussed when using ATR for uneven, heterogeneous, high refractive index samples with the possibility of frustrated total internal reflection (a breakdown of the ATR reflection mode into transmission mode). Local field enhancements at the interface are discussed with numerical/analytical examples. Maxwell’s scaling is used to model the behaviour of absorber–scatterer inside the materials at the interface with the ATR prism for realistic complex refractive indices of bio-materials. The modality of ATR with a polarisation analysis is proposed, and its principle is illustrated, opening an invitation for its experimental validation. The sensitivity of the polarised ATR mode to the refractive index between the sample and ATR prism is numerically modelled and experimentally verified for background (air) spectra. The design principles of polarisation active optical elements and spectral filters are outlined. The results and proposed concepts are based on experimental conditions at the THz beamline of the Australian Synchrotron.
Collapse
|
34
|
Huang Y, Rao A, Huang S, Chang C, Drechsler M, Knaus J, Chan JCC, Raiteri P, Gale JD, Gebauer D. Aufdeckung der Rolle von Hydrogencarbonat‐Ionen bei der Bildung von Calciumcarbonat im nahezu neutralen pH‐Bereich. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yu‐Chieh Huang
- Fachbereich Chemie, Physikalische Chemie Universität Konstanz Deutschland
| | - Ashit Rao
- Physics of Complex Fluids Group and MESA+ Institute Faculty of Science and Technology University of Twente Enschede Niederlande
| | - Shing‐Jong Huang
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Chun‐Yu Chang
- Department of Chemistry National Taiwan University Taipei Taiwan
| | | | - Jennifer Knaus
- Fachbereich Chemie, Physikalische Chemie Universität Konstanz Deutschland
- stimOS GmbH Konstanz Deutschland
| | | | - Paolo Raiteri
- Curtin Institute for Computation/, The Institute for Geoscience Research (TIGeR) School of Molecular and Life Sciences Curtin University Perth Australien
| | - Julian D. Gale
- Curtin Institute for Computation/, The Institute for Geoscience Research (TIGeR) School of Molecular and Life Sciences Curtin University Perth Australien
| | - Denis Gebauer
- Institut für Anorganische Chemie Leibniz Universität Hannover Callinstraße 9 30167 Hannover Deutschland
| |
Collapse
|
35
|
Huang YC, Rao A, Huang SJ, Chang CY, Drechsler M, Knaus J, Chan JCC, Raiteri P, Gale JD, Gebauer D. Uncovering the Role of Bicarbonate in Calcium Carbonate Formation at Near-Neutral pH. Angew Chem Int Ed Engl 2021; 60:16707-16713. [PMID: 33973691 PMCID: PMC8362096 DOI: 10.1002/anie.202104002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Indexed: 11/30/2022]
Abstract
Mechanistic pathways relevant to mineralization are not well‐understood fundamentally, let alone in the context of their biological and geological environments. Through quantitative analysis of ion association at near‐neutral pH, we identify the involvement of HCO3− ions in CaCO3 nucleation. Incorporation of HCO3− ions into the structure of amorphous intermediates is corroborated by solid‐state nuclear magnetic resonance spectroscopy, complemented by quantum mechanical calculations and molecular dynamics simulations. We identify the roles of HCO3− ions as being through (i) competition for ion association during the formation of ion pairs and ion clusters prior to nucleation and (ii) incorporation as a significant structural component of amorphous mineral particles. The roles of HCO3− ions as active soluble species and structural constituents in CaCO3 formation are of fundamental importance and provide a basis for a better understanding of physiological and geological mineralization.
Collapse
Affiliation(s)
- Yu-Chieh Huang
- Department of Chemistry, Physical Chemistry, University of Konstanz, Konstanz, Germany
| | - Ashit Rao
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Shing-Jong Huang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Chun-Yu Chang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | | | - Jennifer Knaus
- Department of Chemistry, Physical Chemistry, University of Konstanz, Konstanz, Germany.,stimOS GmbH, Konstanz, Germany
| | | | - Paolo Raiteri
- Curtin Institute for Computation/, The Institute for Geoscience Research (TIGeR), School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Julian D Gale
- Curtin Institute for Computation/, The Institute for Geoscience Research (TIGeR), School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University of Hannover, Callinstraße 9, 30167, Hannover, Germany
| |
Collapse
|
36
|
Kashin AS, Boiko DA, Ananikov VP. Neural Network Analysis of Electron Microscopy Video Data Reveals the Temperature-Driven Microphase Dynamics in the Ions/Water System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007726. [PMID: 33938144 DOI: 10.1002/smll.202007726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Real-time field-emission scanning electron microscopy (FE-SEM) measurements and neural network analysis were successfully merged to observe the temperature-induced behavior of soft liquid microdomains in mixtures of different ionic liquids with water. The combination of liquid FE-SEM and in situ heating techniques revealed temperature-driven solution restructuring for ions/water systems with different water states and their critical point behavior expressed in a rapid switch between thermal expansion and shrinkage of liquid microphases at temperatures of ≈100-130 °C, which was directly recorded on electron microscopy videos. Automation of FE-SEM video analysis by a neural network approach allowed quantification of the morphological changes in ions/water systems during heating on the basis of thousands of images processed with a speed almost equal to the frame rate of original electron microscopy videos. Tracking and evolution of the micro-heterogeneous domains, hypothesized in the Ioliomics concept, was mapped and quantified for the first time. The present study describes the concept for quick acquisition of big data in electron microscopy, develops rapid neural network analysis and shows how to link microscopic data to fundamental molecular properties.
Collapse
Affiliation(s)
- Alexey S Kashin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russian Federation
| | - Daniil A Boiko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russian Federation
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russian Federation
| |
Collapse
|
37
|
Backus EHG, Schaefer J, Bonn M. Probing the Mineral-Water Interface with Nonlinear Optical Spectroscopy. Angew Chem Int Ed Engl 2021; 60:10482-10501. [PMID: 32558984 PMCID: PMC8247323 DOI: 10.1002/anie.202003085] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/18/2020] [Indexed: 12/21/2022]
Abstract
The interaction between minerals and water is manifold and complex: the mineral surface can be (de)protonated by water, thereby changing its charge; mineral ions dissolved into the aqueous phase screen the surface charges. Both factors affect the interaction with water. Intrinsically molecular-level processes and interactions govern macroscopic phenomena, such as flow-induced dissolution, wetting, and charging. This realization is increasingly prompting molecular-level studies of mineral-water interfaces. Here, we provide an overview of recent developments in surface-specific nonlinear spectroscopy techniques such as sum frequency and second harmonic generation (SFG/SHG), which can provide information about the molecular arrangement of the first few layers of water molecules at the mineral surface. The results illustrate the subtleties of both chemical and physical interactions between water and the mineral as well as the critical role of mineral dissolution and other ions in solution for determining those interactions.
Collapse
Affiliation(s)
- Ellen H. G. Backus
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of Physical ChemistryUniversity of ViennaWähringer Strasse 421090ViennaAustria
| | - Jan Schaefer
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Mischa Bonn
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
38
|
Backus EHG, Schaefer J, Bonn M. Untersuchung der Mineral‐Wasser‐Grenzschicht mit nicht‐linearer optischer Spektroskopie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202003085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ellen H. G. Backus
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
- Institut für Physikalische Chemie Universität Wien Währinger Straße 42 1090 Wien Österreich
| | - Jan Schaefer
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - Mischa Bonn
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| |
Collapse
|
39
|
Lu H, Huang YC, Hunger J, Gebauer D, Cölfen H, Bonn M. Role of Water in CaCO 3 Biomineralization. J Am Chem Soc 2021; 143:1758-1762. [PMID: 33471507 PMCID: PMC7877725 DOI: 10.1021/jacs.0c11976] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Biomineralization occurs in aqueous
environments. Despite the ubiquity
and relevance of CaCO3 biomineralization, the role of water
in the biomineralization process has remained elusive. Here, we demonstrate
that water reorganization accompanies CaCO3 biomineralization
for sea urchin spine generation in a model system. Using surface-specific
vibrational spectroscopy, we probe the water at the interface of the
spine-associated protein during CaCO3 mineralization. Our
results show that, while the protein structure remains unchanged,
the structure of interfacial water is perturbed differently in the
presence of both Ca2+ and CO32– compared to the addition of only Ca2+. This difference
is attributed to the condensation of prenucleation mineral species.
Our findings are consistent with a nonclassical mineralization pathway
for sea urchin spine generation and highlight the importance of protein
hydration in biomineralization.
Collapse
Affiliation(s)
- Hao Lu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yu-Chieh Huang
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany
| | - Johannes Hunger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Denis Gebauer
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany.,Institute of Inorganic Chemistry, Leibniz University of Hannover, 30167 Hannover, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz 78464, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
40
|
Finney A, Salvalaglio M. Multiple Pathways in NaCl Homogeneous Crystal Nucleation. Faraday Discuss 2021; 235:56-80. [DOI: 10.1039/d1fd00089f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NaCl crystal nucleation from metastable solutions has long been considered to occur according to a single-step mechanism where the growth in the size and crystalline order of the emerging nuclei...
Collapse
|
41
|
Gindele MB, Steingrube LV, Gebauer D. Generality of liquid precursor phases in gas diffusion-based calcium carbonate synthesis. CrystEngComm 2021. [DOI: 10.1039/d1ce00225b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We confirm the presence of liquid calcium carbonate precursor species in absence of additives in gas diffusion systems.
Collapse
Affiliation(s)
- Maxim B. Gindele
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstraße 9, D 30167 Hannover, Germany
| | - Luisa Vanessa Steingrube
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstraße 9, D 30167 Hannover, Germany
| | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstraße 9, D 30167 Hannover, Germany
| |
Collapse
|
42
|
Lu W, Zhang E, Amarasinghe C, Kostko O, Ahmed M. Probing Self-Assembly in Arginine-Oleic Acid Solutions with Terahertz Spectroscopy and X-ray Scattering. J Phys Chem Lett 2020; 11:9507-9514. [PMID: 33108726 DOI: 10.1021/acs.jpclett.0c02593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A study of the formation of microstructures in the reaction of oleic acid with arginine elucidates dynamical self-assembly processes at the molecular level. Terahertz spectroscopy combined with density functional calculations reveals the initial hydrogen-bonding motifs in the assembly process, leading to the formation of micelles and vesicles. Small-angle X-ray scattering measurements allow for kinetic analysis of the growth processes of these nanostructures, revealing a prenucleation pathway of vesicles and micelles which lead to spongelike structures. This final stage of the assembly into spongelike aggregates is investigated with optical microscopy. The formed structures only occur at pH > 8 and are resistant to extreme acidic and basic conditions. A mechanistic pathway to the formation of the spongelike aggregates is described.
Collapse
Affiliation(s)
- Wenchao Lu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Emily Zhang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- College of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Chandika Amarasinghe
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
43
|
Morris PD, McPherson IJ, Meloni GN, Unwin PR. Nanoscale kinetics of amorphous calcium carbonate precipitation in H 2O and D 2O. Phys Chem Chem Phys 2020; 22:22107-22115. [PMID: 32990693 DOI: 10.1039/d0cp03032e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calcium carbonate (CaCO3) is one of the most well-studied and abundant natural materials on Earth. Crystallisation of CaCO3 is often observed to proceed via an amorphous calcium carbonate (ACC) phase, as a precursor to more stable crystalline polymorphs such as vaterite and calcite. Despite its importance, the kinetics of ACC formation have proved difficult to study, in part due to rapid precipitation at moderate supersaturations, and the instability of ACC with respect to all other polymorphs. However, ACC can be stabilised under confinement conditions, such as those provided by a nanopipette. This paper demonstrates electrochemical mixing of a Ca2+ salt (CaCl2) and a HCO3- salt (NaHCO3) in a nanopipette to repeatedly and reversibly precipitate nanoparticles of ACC under confined conditions, as confirmed by scanning transmission electron microscopy (STEM). Measuring the current as a function of applied potential across the end of the nanopipette and time provides millisecond-resolved measurements of the induction time for ACC precipitation. We demonstrate that under conditions of electrochemical mixing, ACC precipitation is extremely fast, and highly pH sensitive with an apparent third order dependence on CO32- concentration. Furthermore, the rate is very similar for the equivalent CO32- concentrations in D2O, suggesting that neither ion dehydration nor HCO3- deprotonation represent significant energetic barriers to the formation of ACC. Finite element method simulations of the electrochemical mixing process enable the supersaturation to be estimated for all conditions and accurately predict the location of precipitation.
Collapse
Affiliation(s)
- Peter D Morris
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | | | | |
Collapse
|
44
|
Study on preparation and crystalline transformation of nano- and micro-CaCO3 by supercritical carbon dioxide. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
45
|
Finney AR, Innocenti Malini R, Freeman CL, Harding JH. Amino Acid and Oligopeptide Effects on Calcium Carbonate Solutions. CRYSTAL GROWTH & DESIGN 2020; 20:3077-3092. [PMID: 32581657 PMCID: PMC7304842 DOI: 10.1021/acs.cgd.9b01693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/08/2020] [Indexed: 05/04/2023]
Abstract
Biological organisms display sophisticated control of nucleation and crystallization of minerals. In order to mimic living systems, deciphering the mechanisms by which organic molecules control the formation of mineral phases from solution is a key step. We have used computer simulations to investigate the effects of the amino acids arginine, aspartic acid, and glycine on species that form in solutions of calcium carbonate (CaCO3) at lower and higher levels of supersaturation. This provides net positive, negative, and neutral additives. In addition, we have prepared simulations containing hexapeptides of the amino acids to consider the effect of additive size on the solution species. We find that additives have limited impact on the formation of extended, liquid-like CaCO3 networks in supersaturated solutions. Additives control the amount of (bi)carbonate in solution, but more importantly, they are able to stabilize these networks on the time scales of the simulations. This is achieved by coordinating the networks and assembled additive clusters in solutions. The association leads to subtle changes in the coordination of CaCO3 and reduced mobility of the cations. We find that the number of solute association sites and the size and topology of the additives are more important than their net charge. Our results help to understand why polymer additives are so effective at stabilizing dense liquid CaCO3 phases.
Collapse
Affiliation(s)
- Aaron R. Finney
- Department
of Materials Science and Engineering, University
of Sheffield, Sheffield S1 3JD, United Kingdom
- Department
of Chemical Engineering, University College
London, London WC1E 6BT, United Kingdom
- E-mail:
| | - Riccardo Innocenti Malini
- Laboratory
for Biomimetic Membranes and Textiles, EMPA,
Swiss Federal Laboratories for Materials Science and Technology, St. Gallen 9014, Switzerland
| | - Colin L. Freeman
- Department
of Materials Science and Engineering, University
of Sheffield, Sheffield S1 3JD, United Kingdom
| | - John H. Harding
- Department
of Materials Science and Engineering, University
of Sheffield, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
46
|
Raiteri P, Schuitemaker A, Gale JD. Ion Pairing and Multiple Ion Binding in Calcium Carbonate Solutions Based on a Polarizable AMOEBA Force Field and Ab Initio Molecular Dynamics. J Phys Chem B 2020; 124:3568-3582. [PMID: 32259444 DOI: 10.1021/acs.jpcb.0c01582] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The speciation of calcium carbonate in water is important to the geochemistry of the world's oceans and has ignited significant debate regarding the mechanism by which nucleation occurs. Here, it is vital to be able to quantify the thermodynamics of ion pairing versus higher order association processes in order to distinguish between possible pathways. Given that it is experimentally challenging to quantify such species, here we determine the thermodynamics for ion pairing and multiple binding of calcium carbonate species using bias-enhanced molecular dynamics. In order to examine the uncertainties underlying these results, we derived a new polarizable force field for both calcium carbonate and bicarbonate in water based on the AMOEBA model to compare against our earlier rigid ion model, both of which are further benchmarked against ab initio molecular dynamics for the ion pair. Both force fields consistently indicate that the association of calcium carbonate ion pairs to form larger species is stable, though with an equilibrium constant that is lower than for ion pairing itself.
Collapse
Affiliation(s)
- Paolo Raiteri
- Curtin Institute for Computation/The Institute for Geoscience Research (TIGeR), School of Molecular and Life Sciences, Curtin University, P.O. Box U1987, Perth, Western Australia 6845, Australia
| | - Alicia Schuitemaker
- Curtin Institute for Computation/The Institute for Geoscience Research (TIGeR), School of Molecular and Life Sciences, Curtin University, P.O. Box U1987, Perth, Western Australia 6845, Australia
| | - Julian D Gale
- Curtin Institute for Computation/The Institute for Geoscience Research (TIGeR), School of Molecular and Life Sciences, Curtin University, P.O. Box U1987, Perth, Western Australia 6845, Australia
| |
Collapse
|
47
|
Avaro JT, Wolf SLP, Hauser K, Gebauer D. Stable Prenucleation Calcium Carbonate Clusters Define Liquid-Liquid Phase Separation. Angew Chem Int Ed Engl 2020; 59:6155-6159. [PMID: 31943581 PMCID: PMC7187218 DOI: 10.1002/anie.201915350] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/07/2020] [Indexed: 01/25/2023]
Abstract
Liquid-liquid phase separation (LLPS) is an intermediate step during the precipitation of calcium carbonate, and is assumed to play a key role in biomineralization processes. Here, we have developed a model where ion association thermodynamics in homogeneous phases determine the liquid-liquid miscibility gap of the aqueous calcium carbonate system, verified experimentally using potentiometric titrations, and kinetic studies based on stopped-flow ATR-FTIR spectroscopy. The proposed mechanism explains the variable solubilities of solid amorphous calcium carbonates, reconciling previously inconsistent literature values. Accounting for liquid-liquid amorphous polymorphism, the model also provides clues to the mechanism of polymorph selection. It is general and should be tested for systems other than calcium carbonate to provide a new perspective on the physical chemistry of LLPS mechanisms based on stable prenucleation clusters rather than un-/metastable fluctuations in biomineralization, and beyond.
Collapse
Affiliation(s)
- Jonathan T. Avaro
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Stefan L. P. Wolf
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Karin Hauser
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Denis Gebauer
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
- Present address: Institute of Inorganic ChemistryLeibniz University of HannoverCallinstrasse 930167HannoverGermany
| |
Collapse
|
48
|
Lukić MJ, Gebauer D, Rose A. Nonclassical nucleation towards separation and recycling science: Iron and aluminium (Oxy)(hydr)oxides. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Avaro JT, Wolf SLP, Hauser K, Gebauer D. Stabile Calciumcarbonat‐Pränukleationscluster bestimmen die Flüssig‐flüssig‐Phasenseparation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jonathan T. Avaro
- Fachbereich ChemieUniversität Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
| | - Stefan L. P. Wolf
- Fachbereich ChemieUniversität Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
| | - Karin Hauser
- Fachbereich ChemieUniversität Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
| | - Denis Gebauer
- Fachbereich ChemieUniversität Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
- Derzeitige Adresse: Institut für Anorganische ChemieLeibniz Universität Hannover Callinstraße 9 30167 Hannover Deutschland
| |
Collapse
|
50
|
Hosseinpour S, Roeters SJ, Bonn M, Peukert W, Woutersen S, Weidner T. Structure and Dynamics of Interfacial Peptides and Proteins from Vibrational Sum-Frequency Generation Spectroscopy. Chem Rev 2020; 120:3420-3465. [DOI: 10.1021/acs.chemrev.9b00410] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saman Hosseinpour
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | | | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Sander Woutersen
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 EP Amsterdam, The Netherlands
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|