1
|
Kurpik G, Walczak A, Dydio P, Stefankiewicz AR. Multi-Stimuli-Responsive Network of Multicatalytic Reactions using a Single Palladium/Platinum Catalyst. Angew Chem Int Ed Engl 2024; 63:e202404684. [PMID: 38877818 DOI: 10.1002/anie.202404684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Given her unrivalled proficiency in the synthesis of all molecules of life, nature has been an endless source of inspiration for developing new strategies in organic chemistry and catalysis. However, one feature that remains thus far beyond chemists' grasp is her unique ability to adapt the productivity of metabolic processes in response to triggers that indicate the temporary need for specific metabolites. To demonstrate the remarkable potential of such stimuli-responsive systems, we present a metabolism-inspired network of multicatalytic processes capable of selectively synthesising a range of products from simple starting materials. Specifically, the network is built of four classes of distinct catalytic reactions-cross-couplings, substitutions, additions, and reductions, involving three organic starting materials-terminal alkyne, aryl iodide, and hydrosilane. All starting materials are either introduced sequentially or added to the system at the same time, with no continuous influx of reagents or efflux of products. All processes in the system are catalysed by a multifunctional heteronuclear PdII/PtII complex, whose performance can be controlled by specific additives and external stimuli. The reaction network exhibits a substantial degree of orthogonality between different pathways, enabling the controllable synthesis of ten distinct products with high efficiency and selectivity through simultaneous triggering and suppression mechanisms.
Collapse
Affiliation(s)
- Gracjan Kurpik
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Anna Walczak
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Paweł Dydio
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Artur R Stefankiewicz
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
2
|
Li X, Fomitskaya P, Smaliak VA, Smith BS, Skorb EV, Semenov SN. Selenium catalysis enables negative feedback organic oscillators. Nat Commun 2024; 15:3316. [PMID: 38632338 PMCID: PMC11024130 DOI: 10.1038/s41467-024-47714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
The construction of materials regulated by chemical reaction networks requires regulatory motifs that can be stacked together into systems with desired properties. Multiple autocatalytic reactions producing thiols are known. However, negative feedback loop motifs are unavailable for thiol chemistry. Here, we develop a negative feedback loop based on the selenocarbonates. In this system, thiols induce the release of aromatic selenols that catalyze the oxidation of thiols by organic peroxides. This negative feedback loop has two important features. First, catalytic oxidation of thiols follows Michaelis-Menten-like kinetics, thus increasing nonlinearity for the negative feedback. Second, the strength of the negative feedback can be tuned by varying substituents in selenocarbonates. When combined with the autocatalytic production of thiols in a flow reactor, this negative feedback loop induces sustained oscillations. The availability of this negative feedback motif enables the future construction of oscillatory, homeostatic, adaptive, and other regulatory circuits in life-inspired systems and materials.
Collapse
Affiliation(s)
- Xiuxiu Li
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
- Department of Chemistry and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen, China
| | - Polina Fomitskaya
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Viktoryia A Smaliak
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Barbara S Smith
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University, Saint Petersburg, Russia
| | - Sergey N Semenov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Baretta R, Frasconi M. Electrically Powered Dissipative Hydrogel Networks Reveal Transient Stiffness Properties for Out-of-Equilibrium Operations. J Am Chem Soc 2024; 146:7408-7418. [PMID: 38440849 DOI: 10.1021/jacs.3c12653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Living systems use dissipative processes to enable precise spatiotemporal control over various functions, including the transient modulation of the stiffness of tissues, which, however, is challenging to achieve in soft materials. Here, we report a new platform to program hydrogel films with tunable, time-dependent mechanical properties under out-of-equilibrium conditions, powered by electricity. We show that the lifetime of the transient network of a surface-confined hydrogel film can be effectively controlled by programming the generation of an electrochemically oxidized mediator in the presence of a chemical or photoreducing agent in solution. It is, therefore, electrically possible to direct the transient stiffening or softening of the hydrogel film, enabling high modularity of the material functions with precise spatiotemporal control. Temporally controlled operations of the hydrogel films are demonstrated for the on-demand, dose-controlled release of multiple model protein payloads from electrode arrays using the present electrically powered dissipative system. This demonstration of electrically driven transient modulation of the stiffness properties of hydrogel films represents an important step toward the engineering of dissipative materials for developing future biomedical applications that can harness the temporal, adaptive properties of this new class of materials.
Collapse
Affiliation(s)
- Roberto Baretta
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco Frasconi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
4
|
Ghosh S, Baltussen MG, Ivanov NM, Haije R, Jakštaitė M, Zhou T, Huck WTS. Exploring Emergent Properties in Enzymatic Reaction Networks: Design and Control of Dynamic Functional Systems. Chem Rev 2024; 124:2553-2582. [PMID: 38476077 PMCID: PMC10941194 DOI: 10.1021/acs.chemrev.3c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The intricate and complex features of enzymatic reaction networks (ERNs) play a key role in the emergence and sustenance of life. Constructing such networks in vitro enables stepwise build up in complexity and introduces the opportunity to control enzymatic activity using physicochemical stimuli. Rational design and modulation of network motifs enable the engineering of artificial systems with emergent functionalities. Such functional systems are useful for a variety of reasons such as creating new-to-nature dynamic materials, producing value-added chemicals, constructing metabolic modules for synthetic cells, and even enabling molecular computation. In this review, we offer insights into the chemical characteristics of ERNs while also delving into their potential applications and associated challenges.
Collapse
Affiliation(s)
- Souvik Ghosh
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mathieu G. Baltussen
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Nikita M. Ivanov
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Rianne Haije
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Miglė Jakštaitė
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Tao Zhou
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
5
|
Chen J, Wang H, Long F, Bai S, Wang Y. Dynamic supramolecular hydrogels mediated by chemical reactions. Chem Commun (Camb) 2023; 59:14236-14248. [PMID: 37964743 DOI: 10.1039/d3cc04353c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Supramolecular self-assembly in a biological system is usually dominated by sophisticated metabolic processes (chemical reactions) such as catalysis of enzymes and consumption of high energy chemicals, leading to groups of biomolecules with unique dynamics and functions in an aqueous environment. In recent years, increasing efforts have been made to couple chemical reactions to molecular self-assembly, with the aim of creating supramolecular materials with lifelike properties and functions. In this feature article, after summarising the work of chemical reaction mediated supramolecular hydrogels, we first focus on a typical example where dynamic self-assembly of molecular hydrogels is activated by in situ formation of a hydrazone bond in water. We discuss how the formation of the hydrazone-based supramolecular hydrogels can be controlled in time and space. After that, we describe transient assembly of supramolecular hydrogels powered by out-of-equilibrium chemical reaction networks regulated by chemical fuels, which show unique properties such as finite lifetime, dynamic structures, and regenerative capabilities. Finally, we provide a perspective on the future investigations that need to be done urgently, which range from fundamental research to real-life applications of dynamic supramolecular hydrogels.
Collapse
Affiliation(s)
- Jingjing Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Hucheng Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Feng Long
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Shengyu Bai
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yiming Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
6
|
Bal S, Ghosh C, Parvin P, Das D. Temporal Self-Regulation of Mechanical Properties via Catalytic Amyloid Polymers of a Short Peptide. NANO LETTERS 2023; 23:9988-9994. [PMID: 37831889 DOI: 10.1021/acs.nanolett.3c03135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
We report a short peptide that accessed dynamic catalytic polymers to demonstrate four-stage (sol-gel-weak gel-strong gel) temporal self-regulation of its mechanical properties. The peptide exploited its intrinsic catalytic capabilities of manipulating C-C bonds (retro-aldolase-like) that resulted in a nonlinear variation in the catalytic rate. The seven-residue sequence exploited two lysines for binding and cleaving the thermodynamically activated substrate that subsequently led to the self-regulation of the mechanical strengths of the polymerized states as a function of time and reaction progress. Interestingly, the polymerization events were modulated by the different catalytic potentials of the two terminal lysines to cleave the substrate, covalently trap the electrophilic products, and subsequently control the mechanical properties of the system.
Collapse
Affiliation(s)
- Subhajit Bal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, India
| | - Chandranath Ghosh
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, India
| | - Payel Parvin
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, India
| |
Collapse
|
7
|
Pattloch S, Dzubiella J. Mean-field models for the chemical fueling of transient soft matter states. SOFT MATTER 2023; 19:7804-7814. [PMID: 37795797 DOI: 10.1039/d3sm00742a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The chemical fueling of transient states (CFTS) is a powerful process to control the nonequilibrium structuring and the homeostatic function of adaptive soft matter systems. Here, we introduce a simple mean-field model of CFTS based on the activation of metastable equilibrium states in a tilted 'Landau' bistable energy landscape along a coarse-grained reaction coordinate (or 'order parameter') triggered by a nonmonotonic two-step chemical fueling reaction. Evaluation of the model in the quasi-static (QS) limit-valid for fast system relaxation-allows us to extract useful analytical laws for the critical activation concentration and duration of the transient states in dependence of physical parameters, such as rate constants, fuel concentrations, and the system's distance to its equilibrium transition point. We apply our model in the QS limit explicitly to recent experiments of CFTS of collapsing responsive microgels and find a very good performance with only a few global and physically interpretable fitting parameters, which can be employed for programmable material design. Moreover, our model framework also allows a thermodynamic analysis of the energy and performed work in the system. Finally, we go beyond the QS limit, where the system's response is slow and retarded versus the chemical reaction, using an overdamped Smoluchowski approach. The latter demonstrates how internal system time scales can be used to tune the time-dependent behavior and programmed delay of the transient states in full nonequilibrium.
Collapse
Affiliation(s)
- Sven Pattloch
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany.
- Cluster of Excellence livMatS@FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, D-79110 Freiburg, Germany
| | - Joachim Dzubiella
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany.
- Cluster of Excellence livMatS@FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, D-79110 Freiburg, Germany
| |
Collapse
|
8
|
Spitzbarth B, Eelkema R. Chemical reaction networks based on conjugate additions on β'-substituted Michael acceptors. Chem Commun (Camb) 2023; 59:11174-11187. [PMID: 37529876 PMCID: PMC10508045 DOI: 10.1039/d3cc02126b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Over the last few decades, the study of more complex, chemical systems closer to those found in nature, and the interactions within those systems, has grown immensely. Despite great efforts, the need for new, versatile, and robust chemistry to apply in CRNs remains. In this Feature Article, we give a brief overview over previous developments in the field of systems chemistry and how β'-substituted Michael acceptors (MAs) can be a great addition to the systems chemist's toolbox. We illustrate their versatility by showcasing a range of examples of applying β'-substituted MAs in CRNs, both as chemical signals and as substrates, to open up the path to many applications ranging from responsive materials, to pathway control in CRNs, drug delivery, analyte detection, and beyond.
Collapse
Affiliation(s)
- Benjamin Spitzbarth
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Rienk Eelkema
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
9
|
Li J, Cui Y, Lu YL, Zhang Y, Zhang K, Gu C, Wang K, Liang Y, Liu CS. Programmable supramolecular chirality in non-equilibrium systems affording a multistate chiroptical switch. Nat Commun 2023; 14:5030. [PMID: 37596287 PMCID: PMC10439165 DOI: 10.1038/s41467-023-40698-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023] Open
Abstract
The dynamic regulation of supramolecular chirality in non-equilibrium systems can provide valuable insights into molecular self-assembly in living systems. Herein, we demonstrate the use of chemical fuels for regulating self-assembly pathway, which thereby controls the supramolecular chirality of assembly in non-equilibrium systems. Depending on the nature of different fuel acids, the system shows pathway-dependent non-equilibrium self-assembly, resulting in either dynamic self-assembly with transient supramolecular chirality or kinetically trapped self-assembly with inverse supramolecular chirality. More importantly, successive conducting of chemical-fueled process and thermal annealing process allows for the sequential programmability of the supramolecular chirality between four different chiral hydrogels, affording a new example of a multistate supramolecular chiroptical switch that can be recycled multiple times. The current finding sheds new light on the design of future supramolecular chiral materials, offering access to alternative self-assembly pathways and kinetically controlled non-equilibrium states.
Collapse
Affiliation(s)
- Jingjing Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yihan Cui
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yi-Lin Lu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Yunfei Zhang
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Kaihuang Zhang
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Chaonan Gu
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Kaifang Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yujia Liang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Chun-Sen Liu
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| |
Collapse
|
10
|
Wang Z, Xiao J, Zhao T, Zhang C, Wang L, He N, Kong Q, Wang X. Transient regulation of gel properties by chemical reaction networks. Chem Commun (Camb) 2023; 59:9818-9831. [PMID: 37497715 DOI: 10.1039/d3cc02479b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Transient regulation of gel properties by chemical reaction networks (CRNs) represents an emerging and effective strategy to program or temporally control the structures, properties, and functions of gel materials in a self-regulated manner. CRNs provide significant opportunities to construct complex or sustainable gels with excellent dynamic features, thus expanding the application scope of these materials. CRN-based methods for transiently regulating the gel properties are receiving increasing attention, and the related fields are worth further studying. This feature article focuses on the CRN-mediated transient regulation of six properties of gels, which are transient gelation, transient liquefaction of gels, transient assembly of macroscopic gels, temporary actuation of gels, transient healing ability of kinetically inert gels, and cascade reaction-based self-reporting of external stimuli. Recent advances that showcase the six properties of gels controlled by CRNs are featured, the characterization and structural elucidation of gels are detailed, and the significance, achievements, and expectations of this field are discussed. The strategy of transient regulation of gel properties via CRNs is potentially useful for building the next generation of adaptive functional materials.
Collapse
Affiliation(s)
- Zhongrui Wang
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Jing Xiao
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Ting Zhao
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Chunxiao Zhang
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Luping Wang
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Nan He
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Qingming Kong
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
11
|
Qin J, Dong B, Wang W, Cao L. Self-regulating bioinspired supramolecular photonic hydrogels based on chemical reaction networks for monitoring activities of enzymes and biofuels. J Colloid Interface Sci 2023; 649:344-354. [PMID: 37352565 DOI: 10.1016/j.jcis.2023.06.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Inspired by the way many living organisms utilize chemical/biological reactions to regulate their skin and respond to stimuli in the external environment, we have developed a self-regulating hydrogel design by incorporating chemical reaction networks (CRNs) into biomimetic photonic crystal hydrogels. In this hydrogel system, we used host-guest supramolecular non-covalent bonds between beta-cyclodextrin (β-CD) and ferrocene (Fc) as partial crosslinkers and designed a CRN involving enzyme-fuel couples of horseradish peroxidase (HRP)/H2O2 and glucose oxidase (GOD)/d-glucose, by which the responsive hydrogel was transformed into a glucose-driven self-regulating hydrogel. Due to the biomimetic structural color in the hydrogel, the progress of the chemical reaction was accompanied by a change in the color of the hydrogel. Based on this principle, the designed supramolecular photonic hydrogel (SPH) can not only achieve naked-eye detection of H2O2 and glucose concentrations with the assistance of a smartphone but also monitor the reactions of HRP and GOD enzymes and determine their activity parameters. The sensitivity and stability of the sensor have been proven. In addition, due to the reversibility of the chemical reaction network, the sensor can be reused, thus having the potential to serve as a low-cost point-of-care sensor. The SPH was ultimately used to detect glucose in human plasma and H2O2 in liver tumor tissue. The results are comparable with commercial assay kits. By redesigning the chemical reaction network in the hydrogel, it is expected to be used for detecting other enzymes or fuels.
Collapse
Affiliation(s)
- Junjie Qin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Bohua Dong
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Wei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China; Aramco Research Center-Boston, Aramco Services Company, Cambridge, MA 02139, United States
| | - Lixin Cao
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China.
| |
Collapse
|
12
|
Olivieri E, Gasch B, Quintard G, Naubron JV, Quintard A. Dissipative Acid-Fueled Reprogrammable Supramolecular Materials. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24720-24728. [PMID: 35580903 DOI: 10.1021/acsami.2c01608] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Smart materials reversibly changing properties in response to a stimuli are promising for a broad array of applications. In this article, we report the use of trichloroacetic acid (TCA) as fuel to create new types of time-controlled materials switching reversibly from a gel to a solution (gel-sol-gel cycle). Applying various neutral amines as organogelators, TCA addition induces amine protonation, switching the system to a solution, while TCA decarboxylation over time enables a return to the initial gel state. Consequently, the newly obtained materials possess interesting time-dependent properties applied in the generation of remoldable objects, as an erasing ink, as chiroptical switches, or for the generation of new types of electrical systems.
Collapse
Affiliation(s)
- Enzo Olivieri
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Baptiste Gasch
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Guilhem Quintard
- Université de Lyon, INSA LYON, Ingénierie des Matériaux Polymères IMP-UMR CNRS 5223, F 69621 Villeurbanne, France
| | - Jean-Valère Naubron
- Aix Marseille Univ, CNRS, Centrale Marseille, Spectropole, FR1739 Marseille, France
| | - Adrien Quintard
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| |
Collapse
|
13
|
Paikar A, Novichkov AI, Hanopolskyi AI, Smaliak VA, Sui X, Kampf N, Skorb EV, Semenov SN. Spatiotemporal Regulation of Hydrogel Actuators by Autocatalytic Reaction Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106816. [PMID: 34910837 DOI: 10.1002/adma.202106816] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Regulating hydrogel actuators with chemical reaction networks is instrumental for constructing life-inspired smart materials. Herein, hydrogel actuators are engineered that are regulated by the autocatalytic front of thiols. The actuators consist of two layers. The first layer, which is regular polyacrylamide hydrogel, is in a strained conformation. The second layer, which is polyacrylamide hydrogel with disulfide crosslinks, maintains strain in the first layer. When thiols released by the autocatalytic front reduce disulfide crosslinks, the hydrogel actuates by releasing the mechanical strain in the first layer. The autocatalytic front is sustained by the reaction network, which uses thiouronium salts, disulfides of β-aminothiols, and maleimide as starting components. The gradual actuation by the autocatalytic front enables movements such as gradual unrolling, screwing, and sequential closing of "fingers." This actuation also allows the transmission of chemical signals in a relay fashion and the conversion of a chemical signal to an electrical signal. Locations and times of spontaneous initiation of autocatalytic fronts can be preprogrammed in the spatial distribution of the reactants in the hydrogel. To approach the functionality of living matter, the actuators triggered by an autocatalytic front can be integrated into smart materials regulated by chemical circuits.
Collapse
Affiliation(s)
- Arpita Paikar
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Alexander I Novichkov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Anton I Hanopolskyi
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Viktoryia A Smaliak
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Xiaomeng Sui
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Nir Kampf
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University, Saint Petersburg, 191002, Russia
| | - Sergey N Semenov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
14
|
Abstract
Stimuli-responsive DNA-based hydrogels are attracting growing interest because of their smart responsiveness, excellent biocompatibility, regulated biodegradability, and programmable design properties. Integration of reconfigurable DNA architectures and switchable supramolecular moieties (as cross-linkers) in hydrogels by responding to external stimuli provides an ideal approach for the reversible tuning structural and mechanical properties of the hydrogels, which can be exploited in the development of intelligent DNA-based materials. This review highlights recent advances in the design of responsive pure DNA hydrogels, DNA-polymer hybrid hydrogels, and autonomous DNA-based hydrogels with transient behaviors. A variety of chemically and physically triggered DNA-based stimuli-responsive hydrogels and their versatile applications in biosensing, biocatalysis, cell culture and separation, drug delivery, shape memory, self-healing, and robotic actuators are summarized. Finally, we address the key challenges that the field will face in the coming years, and future prospects are identified.
Collapse
Affiliation(s)
- Chen Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, No. 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
15
|
Pille J, Aloi A, Le DHT, Vialshin I, van de Laar N, Kevenaar K, Merkx M, Voets IK, van Hest JCM. Pathway-Dependent Co-Assembly of Elastin-Like Polypeptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007234. [PMID: 33690936 DOI: 10.1002/smll.202007234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/22/2021] [Indexed: 06/12/2023]
Abstract
In natural systems, temperature-induced assembly of biomolecules can lead to the formation of distinct assembly states, created out of the same set of starting compounds, based on the heating trajectory followed. Until now it has been difficult to achieve similar behavior in synthetic polymer mixtures. Here, a novel pathway-dependent assembly based on stimulus-responsive polymers is shown. When a mixture of mono- and diblock copolymers, based on elastin-like polypeptides, is heated with a critical heating rate co-assembled particles are created that are monodisperse, stable, and have tunable hydrodynamic radii between 20 and 120 nm. Below this critical heating rate, the constituents separately form polymer assemblies. This process is kinetically driven and reversible in thermodynamically closed systems. Using the co-assembly pathway, fluorescent proteins and bioluminescent enzymes are encapsulated with high efficiency. Encapsulated cargo shows unperturbed function even after delivery into cells. The pathway-dependent co-assembly of elastin-like polypeptides is not only of fundamental interest from a materials science perspective, allowing the formation of multiple distinct assemblies from the same starting compounds, which can be interconverted by going back to the molecularly dissolved states. It also enables a versatile way for constructing highly effective vehicles for the cellular delivery of biomolecular cargo.
Collapse
Affiliation(s)
- Jan Pille
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, the Netherlands
| | - Antonio Aloi
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, the Netherlands
| | - Duc H T Le
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, the Netherlands
| | - Ilia Vialshin
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, the Netherlands
| | - Nathalie van de Laar
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, the Netherlands
| | - Kirsten Kevenaar
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, the Netherlands
| | - Maarten Merkx
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, the Netherlands
| | - Ilja K Voets
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, the Netherlands
| | - Jan C M van Hest
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, the Netherlands
| |
Collapse
|
16
|
Wei Q, Bai J, Wang H, Ma G, Li X, Zhang W, Hu Z. Photo-induced programmable degradation of carboxymethyl chitosan-based hydrogels. Carbohydr Polym 2021; 256:117609. [PMID: 33483085 DOI: 10.1016/j.carbpol.2020.117609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/16/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Hydrogels are widely used in the biomedical field, due to their high similarity to native extracellular matrix (ECM). Most responsive hydrogels could only passively receive stimuli and independently change their properties. In this study, a photosensitive o-nitrobenzyl (NB) ester linker of polyethylene glycol (PEG) with maleimido (Mal) as terminal groups (PEG-NB-Mal) and a 5-methylfurfuryl (mF) grafted carboxymethyl chitosan (CMCS) derivative (CMCS-mF) were synthesized and used to prepare functional hydrogels via Diels-Alder (DA) reactions. The hydrogel exhibited programmable degradation properties after sequential exposure to UV light and acid treatments. It can maintain high integrity upon the single stimuli, the cascade acid and UV light treatments or the cascade UV light and alkaline treatments. Moreover, the hydrogel exhibited well controlled release profile of rhodamine B (RB). In summary, such CMCS-based hydrogels show great potential in biomedical applications. In addition, the usage of photo-induced cascade reaction in sequential degradation hydrogels can be extended to design other types of programmable smart materials.
Collapse
Affiliation(s)
- Qingcong Wei
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Jiahao Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huan Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guanglei Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinjuan Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Weiwei Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Zhiguo Hu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
17
|
Fan X, Walther A. Autonomous Transient pH Flips Shaped by Layered Compartmentalization of Antagonistic Enzymatic Reactions. Angew Chem Int Ed Engl 2021; 60:3619-3624. [PMID: 33098236 PMCID: PMC7898518 DOI: 10.1002/anie.202009542] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/10/2020] [Indexed: 12/13/2022]
Abstract
Transient signaling orchestrates complex spatiotemporal behaviour in living organisms via (bio)chemical reaction networks (CRNs). Compartmentalization of signal processing is an important aspect for controlling such networks. However, artificial CRNs mostly focus on homogeneous solutions to program autonomous self-assembling systems, which limits their accessible behaviour and tuneability. Here, we introduce layered compartments housing antagonistic pH-modulating enzymes and demonstrate that transient pH signals in a supernatant solution can be programmed based on spatial delays. This overcomes limitations of activity mismatches of antagonistic enzymes in solution and allows to flexibly program acidic and alkaline pH lifecycles beyond the possibilities of homogeneous solutions. Lag time, lifetime, and the pH minima and maxima can be precisely programmed by adjusting spatial and kinetic conditions. We integrate these spatially controlled pH flips with switchable peptides, furnishing time-programmed self-assemblies and hydrogel material system.
Collapse
Affiliation(s)
- Xinlong Fan
- ABMS Lab-Active Adaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Str. 3179104FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Str. 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Andreas Walther
- ABMS Lab-Active Adaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Str. 3179104FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Str. 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
18
|
Fan X, Walther A. Autonomous Transient pH Flips Shaped by Layered Compartmentalization of Antagonistic Enzymatic Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xinlong Fan
- A3BMS Lab-Active Adaptive and Autonomous Bioinspired Materials Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Str. 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| | - Andreas Walther
- A3BMS Lab-Active Adaptive and Autonomous Bioinspired Materials Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Str. 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|
19
|
Li P, Zhong Y, Wang X, Hao J. Enzyme-Regulated Healable Polymeric Hydrogels. ACS CENTRAL SCIENCE 2020; 6:1507-1522. [PMID: 32999926 PMCID: PMC7517121 DOI: 10.1021/acscentsci.0c00768] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 05/11/2023]
Abstract
The enzyme-regulated healable polymeric hydrogels are a kind of emerging soft material capable of repairing the structural defects and recovering the hydrogel properties, wherein their fabrication, self-healing, or degradation is mediated by enzymatic reactions. Despite achievements that have been made in controllable cross-linking and de-cross-linking of hydrogels by utilizing enzyme-catalyzed reactions in the past few years, this substrate-specific strategy for regulating healable polymeric hydrogels remains in its infancy, because both the intelligence and practicality of current man-made enzyme-regulated healable materials are far below the levels of living organisms. A systematic summary of current achievements and a reasonable prospect at this point can play positive roles for the future development in this field. This Outlook focuses on the emerging and rapidly developing research area of bioinspired enzyme-regulated self-healing polymeric hydrogel systems. The enzymatic fabrication and degradation of healable polymeric hydrogels, as well as the enzymatically regulated self-healing of polymeric hydrogels, are reviewed. The functions and applications of the enzyme-regulated healable polymeric hydrogels are discussed.
Collapse
Affiliation(s)
- Panpan Li
- National
Engineering Research Center for Colloidal Materials, School of Chemistry
and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yuanbo Zhong
- National
Engineering Research Center for Colloidal Materials, School of Chemistry
and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xu Wang
- National
Engineering Research Center for Colloidal Materials, School of Chemistry
and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingcheng Hao
- Key
Laboratory of Colloid and Interface Chemistry and Key Laboratory of
Special Aggregated Materials of the Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
20
|
Gräwe A, Ranglack J, Weber W, Stein V. Engineering artificial signalling functions with proteases. Curr Opin Biotechnol 2020; 63:1-7. [DOI: 10.1016/j.copbio.2019.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 01/01/2023]
|
21
|
Walther A. Viewpoint: From Responsive to Adaptive and Interactive Materials and Materials Systems: A Roadmap. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905111. [PMID: 31762134 PMCID: PMC7612550 DOI: 10.1002/adma.201905111] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/13/2019] [Indexed: 05/17/2023]
Abstract
Soft matter systems and materials are moving toward adaptive and interactive behavior, which holds outstanding promise to make the next generation of intelligent soft materials systems inspired from the dynamics and behavior of living systems. But what is an adaptive material? What is an interactive material? How should classical responsiveness or smart materials be delineated? At present, the literature lacks a comprehensive discussion on these topics, which is however of profound importance in order to identify landmark advances, keep a correct and noninflating terminology, and most importantly educate young scientists going into this direction. By comparing different levels of complex behavior in biological systems, this Viewpoint strives to give some definition of the various different materials systems characteristics. In particular, the importance of thinking in the direction of training and learning materials, and metabolic or behavioral materials is highlighted, as well as communication and information-processing systems. This Viewpoint aims to also serve as a switchboard to further connect the important fields of systems chemistry, synthetic biology, supramolecular chemistry and nano- and microfabrication/3D printing with advanced soft materials research. A convergence of these disciplines will be at the heart of empowering future adaptive and interactive materials systems with increasingly complex and emergent life-like behavior.
Collapse
Affiliation(s)
- Andreas Walther
- A3BMS Lab-Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstr. 19, 79104, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110, Freiburg, Germany
| |
Collapse
|
22
|
Maguire OR, Wong ASY, Baltussen MG, van Duppen P, Pogodaev AA, Huck WTS. Dynamic Environments as a Tool to Preserve Desired Output in a Chemical Reaction Network. Chemistry 2020; 26:1676-1682. [PMID: 31808965 DOI: 10.1002/chem.201904725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/28/2019] [Indexed: 12/31/2022]
Abstract
Current efforts to design functional molecular systems have overlooked the importance of coupling out-of-equilibrium behaviour with changes in the environment. Here, the authors use an oscillating reaction network and demonstrate that the application of environmental forcing, in the form of periodic changes in temperature and in the inflow of the concentration of one of the network components, removes the dependency of the periodicity of this network on temperature or flow rates and enforces a stable periodicity across a wide range of conditions. Coupling a system to a dynamic environment can thus be used as a simple tool to regulate the output of a network. In addition, the authors show that coupling can also induce an increase in behavioural complexity to include quasi-periodic oscillations.
Collapse
Affiliation(s)
- Oliver R Maguire
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Albert S Y Wong
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Mathieu G Baltussen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Peer van Duppen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Aleksandr A Pogodaev
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Wang H, Jia L, Cong L, Yu H, Wang X. Enzymatically mediated, physiologically triggered N-palmitoyl chitosan hydrogels with temporally modulated high injectability. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Lai W, Xiong X, Wang F, Li Q, Li L, Fan C, Pei H. Nonlinear Regulation of Enzyme-Free DNA Circuitry with Ultrasensitive Switches. ACS Synth Biol 2019; 8:2106-2112. [PMID: 31461263 DOI: 10.1021/acssynbio.9b00208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA is used to construct synthetic chemical reaction networks (CRNs), such as inorganic oscillators and gene regulatory networks. Nonlinear regulation with a simpler molecular mechanism is particularly important in large-scale CRNs with complex dynamics, such as bistability, adaptation, and oscillation of cellular functions. Here we introduce a new approach based on ultrasensitive switches as modular regulatory elements to nonlinearly regulate DNA-based CRNs. The nonlinear behavior of the systems can be finely tuned by programmable regulation of the linker length and the ligand binding sites, of which the Hill coefficients (nH) are in the range of 1.00-2.32. By integrating two different strand displacement reactions with low-order nonlinearities (nH ≈ 1.44 and 1.54), we could construct CRNs exhibiting high-order nonlinearities with Hill coefficients of up to ∼2.70. In addition, this could provide an efficient approach for designing CRNs at will with complex chemical dynamics by incorporating our design with previously developed enzyme-free DNA circuits.
Collapse
Affiliation(s)
- Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Xiewei Xiong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Fei Wang
- School of Chemistry and Chemical Engineering and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Qian Li
- School of Chemistry and Chemical Engineering and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
25
|
Schaffter SW, Schulman R. Building in vitro transcriptional regulatory networks by successively integrating multiple functional circuit modules. Nat Chem 2019; 11:829-838. [PMID: 31427767 DOI: 10.1038/s41557-019-0292-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 06/13/2019] [Indexed: 02/04/2023]
Abstract
The regulation of cellular dynamics and responses to stimuli by genetic regulatory networks suggests how in vitro chemical reaction networks might analogously direct the dynamics of synthetic materials or chemistries. A key step in developing genetic regulatory network analogues capable of this type of sophisticated regulation is the integration of multiple coordinated functions within a single network. Here, we demonstrate how such functional integration can be achieved using in vitro transcriptional genelet circuits that emulate essential features of cellular genetic regulatory networks. By successively incorporating functional genelet modules into a bistable circuit, we construct an integrated regulatory network that dynamically changes its state in response to upstream stimuli and coordinates the timing of downstream signal expression. We use quantitative models to guide module integration and develop strategies to mitigate undesired interactions between network components that arise as the size of the network increases. This approach could enable the construction of in vitro networks capable of multifaceted chemical and material regulation.
Collapse
Affiliation(s)
- Samuel W Schaffter
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
26
|
Yang D, Fan J, Cao F, Deng Z, Pojman JA, Ji L. Immobilization adjusted clock reaction in the urea–urease–H+ reaction system. RSC Adv 2019; 9:3514-3519. [PMID: 35518065 PMCID: PMC9060300 DOI: 10.1039/c8ra09244c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/18/2019] [Indexed: 12/21/2022] Open
Abstract
The bell-shaped reactivity-pH curve is the fundamental reason that the temporal programmable kinetic switch in clock reactions can be obtained in bio-competitive enzymatic reactions. In this work, urease was loaded on small resin particles through ionic binding. Experimental results reveal that the immobilization not only increased the stability of the enzyme and the reproducibility of the clock reaction, but also shifted the bell-shaped activity curve to lower pHs. The latter change enables the clock reaction to occur from an initial pH of 2.3, where the free enzyme had already lost its activity. Two mechanisms explain the influence of the immobilization on the clock reaction. Immobilization modified the pH sensitive functional groups on the enzyme, shifting the activity curve to a more acidic region, and reduced diffusion alters the enzyme dynamics. The reported immobilization shifts the bell-shaped reactivity-pH curve to lower pHs and enables the clock reaction to occur from a very low initial pH, where the free enzyme had already lost its activity.![]()
Collapse
Affiliation(s)
- Dan Yang
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| | - Junhe Fan
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| | - Fengyi Cao
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| | - Zuojun Deng
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| | - John A. Pojman
- Department of Chemistry
- Louisiana State University
- Baton Rouge
- USA
| | - Lin Ji
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| |
Collapse
|
27
|
Hoque J, Sangaj N, Varghese S. Stimuli-Responsive Supramolecular Hydrogels and Their Applications in Regenerative Medicine. Macromol Biosci 2019; 19:e1800259. [PMID: 30295012 PMCID: PMC6333493 DOI: 10.1002/mabi.201800259] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/10/2018] [Indexed: 12/16/2022]
Abstract
Supramolecular hydrogels are a class of self-assembled network structures formed via non-covalent interactions of the hydrogelators. These hydrogels capable of responding to external stimuli are considered to be smart materials due to their ability to undergo sol-gel and/or gel-sol transition upon subtle changes in their surroundings. Such stimuli-responsive hydrogels are intriguing biomaterials with applications in tissue engineering, delivery of cells and drugs, modulating tissue environment to promote innate tissue repair, and imaging for medical diagnostics among others. This review summarizes the recent developments in stimuli-responsive supramolecular hydrogels and their potential applications in regenerative medicine. Specifically, various structural aspects of supramolecular hydrogelators involved in self-assembly, the role of external stimuli in tuning/controlling their phase transitions, and how these functions could be harnessed to advance applications in regenerative medicine are focused on. Finally, the key challenges and future prospects for these versatile materials are briefly described.
Collapse
Affiliation(s)
- Jiaul Hoque
- Department of Orthopaedic Surgery, Duke University, Durham 27710, NC,
| | - Nivedita Sangaj
- Department of Orthopaedic Surgery, Duke University, Durham 27710, NC
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Department of Biomedical Engineering, Department of Mechanical Engineering and Materials Science, Duke University, Durham 27710, NC
| |
Collapse
|
28
|
Jo SM, Wurm FR, Landfester K. Biomimetic Cascade Network between Interactive Multicompartments Organized by Enzyme-Loaded Silica Nanoreactors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34230-34237. [PMID: 30212628 DOI: 10.1021/acsami.8b11198] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Physical separation of reactions by interactive multicompartments in biological cells is an attractive motif to design efficient microreactors that create biomimetic cascade reactions. We present an aqueous compartment with three different subcompartments that comprise of silica nanoreactors with encapsulated enzymes, namely, β-glucosidase, glucose oxidase, and peroxidase, providing a model cascade reaction in confinement. The encapsulated enzymes retain their activity as the substrate can reach the active site and the silica shell further protects the enzymes from external stresses, such as heat and proteolytic degradation. We demonstrate the biomimetic cascade reaction in between the compartments ("organelles") inside of an additional microconfinement (water-in-oil emulsion). This strategy will allow us to design efficient multicompartmentalized reactors for further biological and organic reactions.
Collapse
Affiliation(s)
- Seong-Min Jo
- Max Planck Institute for Polymer Research , Ackermannweg 10 , D-55128 Mainz , Germany
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research , Ackermannweg 10 , D-55128 Mainz , Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research , Ackermannweg 10 , D-55128 Mainz , Germany
| |
Collapse
|
29
|
Helwig B, van Sluijs B, Pogodaev AA, Postma SGJ, Huck WTS. Bottom-Up Construction of an Adaptive Enzymatic Reaction Network. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Britta Helwig
- Radboud University; Institute for Molecules and Materials; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Bob van Sluijs
- Radboud University; Institute for Molecules and Materials; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Aleksandr A. Pogodaev
- Radboud University; Institute for Molecules and Materials; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Sjoerd G. J. Postma
- Radboud University; Institute for Molecules and Materials; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Wilhelm T. S. Huck
- Radboud University; Institute for Molecules and Materials; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
30
|
Helwig B, van Sluijs B, Pogodaev AA, Postma SGJ, Huck WTS. Bottom-Up Construction of an Adaptive Enzymatic Reaction Network. Angew Chem Int Ed Engl 2018; 57:14065-14069. [DOI: 10.1002/anie.201806944] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/13/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Britta Helwig
- Radboud University; Institute for Molecules and Materials; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Bob van Sluijs
- Radboud University; Institute for Molecules and Materials; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Aleksandr A. Pogodaev
- Radboud University; Institute for Molecules and Materials; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Sjoerd G. J. Postma
- Radboud University; Institute for Molecules and Materials; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Wilhelm T. S. Huck
- Radboud University; Institute for Molecules and Materials; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
31
|
Aper SJA, den Hamer A, Wouters SFA, Lemmens LJM, Ottmann C, Brunsveld L, Merkx M. Protease-Activatable Scaffold Proteins as Versatile Molecular Hubs in Synthetic Signaling Networks. ACS Synth Biol 2018; 7:2216-2225. [PMID: 30125482 PMCID: PMC6154215 DOI: 10.1021/acssynbio.8b00217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protease signaling and scaffold-induced control of protein-protein interactions represent two important mechanisms for intracellular signaling. Here we report a generic and modular approach to control the activity of scaffolding proteins by protease activity, creating versatile molecular platforms to construct synthetic signaling networks. Using 14-3-3 proteins as a structurally well-characterized and important class of scaffold proteins, three different architectures were explored to achieve optimal protease-mediated control of scaffold activity, fusing either one or two monovalent inhibitory ExoS peptides or a single bivalent ExoS peptide to T14-3-3 using protease-cleavable linkers. Analysis of scaffolding activity before and after protease-induced cleavage revealed optimal control of 14-3-3 activity for the system that contained monovalent ExoS peptides fused to both the N-and C-terminus, each blocking a single T14-3-3 binding site. The protease-activatable 14-3-3 scaffolds were successfully applied to construct a three-step signaling cascade in which dimerization and activation of FGG-caspase-9 on an orthogonal supramolecular platform resulted in activation of a 14-3-3 scaffold, which in turn allowed 14-3-3-templated complementation of a split-luciferase. In addition, by combining 14-3-3-templated activation of caspase-9 with a caspase-9-activatable 14-3-3 scaffold, the first example of a synthetic self-activating protease signaling network was created. Protease-activatable 14-3-3 proteins thus represent a modular platform whose properties can be rationally engineered to fit different applications, both to create artificial in vitro synthetic molecular networks and as a novel signaling hub to re-engineer intracellular signaling pathways.
Collapse
Affiliation(s)
- Stijn J. A. Aper
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anniek den Hamer
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Simone F. A. Wouters
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lenne J. M. Lemmens
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Maarten Merkx
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
32
|
Fern J, Schulman R. Modular DNA strand-displacement controllers for directing material expansion. Nat Commun 2018; 9:3766. [PMID: 30217991 PMCID: PMC6138645 DOI: 10.1038/s41467-018-06218-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/17/2018] [Indexed: 12/05/2022] Open
Abstract
Soft materials that swell or change shape in response to external stimuli show extensive promise in regenerative medicine, targeted therapeutics, and soft robotics. Generally, a stimulus for shape change must interact directly with the material, limiting the types of stimuli that may be used and necessitating high stimulus concentrations. Here, we show how DNA strand-displacement controllers within hydrogels can mediate size change by interpreting, amplifying, and integrating stimuli and releasing signals that direct the response. These controllers tune the time scale and degree of DNA-crosslinked hydrogel swelling and can actuate dramatic material size change in response to <100 nM of a specific biomolecular input. Controllers can also direct swelling in response to small molecules or perform logic. The integration of these stimuli-responsive materials with biomolecular circuits is a major step towards autonomous soft robotic systems in which sensing and actuation are implemented by biomolecular reaction networks. Materials which change shape in response to a trigger are of interest for soft robotics and targeted therapeutic delivery. Here, the authors report on the development of DNA-crosslinked hydrogels which can expand upon the detection of different biomolecular inputs mediated by DNA strand-displacement.
Collapse
Affiliation(s)
- Joshua Fern
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rebecca Schulman
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
33
|
Tao X, Zheng B, Bai T, Li MH, Ling J. Polymerization of N-Substituted Glycine N-Thiocarboxyanhydride through Regioselective Initiation of Cysteamine: A Direct Way toward Thiol-Capped Polypeptoids. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00259] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xinfeng Tao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, Chimie ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Botuo Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Min-Hui Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, Chimie ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris, France
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, 100029 Beijing, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
34
|
Semenov SN, Ainla A, Skorb EV, Postma SGJ. Four-Variable Model of an Enzymatic Oscillator Based on Trypsin. Isr J Chem 2018. [DOI: 10.1002/ijch.201700146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sergey N. Semenov
- Department of Chemistry and Chemical Biology; Harvard University; 12 Oxford Street MA 02138 USA
- Institute for Molecules and Materials; Radboud University Nijmegen; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Alar Ainla
- INL - International Iberian Nanotechnology Laboratory; Avenida Mestre José Veiga s/n 4715-330 Braga Portugal
| | - Ekaterina V. Skorb
- SCAMT Laboratory; ITMO University; St. Petersburg 197101 Russian Federation
| | - Sjoerd G. J. Postma
- Institute for Molecules and Materials; Radboud University Nijmegen; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
35
|
Wojciechowski JP, Martin AD, Thordarson P. Kinetically Controlled Lifetimes in Redox-Responsive Transient Supramolecular Hydrogels. J Am Chem Soc 2018; 140:2869-2874. [DOI: 10.1021/jacs.7b12198] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jonathan P. Wojciechowski
- School of Chemistry, the Australian
Centre for Nanomedicine and The ARC Centre of Excellence in Convergent
Bio-Nano Science and Technology, the University of New South Wales, Sydney, NSW 2052, Australia
| | - Adam D. Martin
- School of Chemistry, the Australian
Centre for Nanomedicine and The ARC Centre of Excellence in Convergent
Bio-Nano Science and Technology, the University of New South Wales, Sydney, NSW 2052, Australia
| | - Pall Thordarson
- School of Chemistry, the Australian
Centre for Nanomedicine and The ARC Centre of Excellence in Convergent
Bio-Nano Science and Technology, the University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
36
|
Li S, Yi J, Yu X, Shi H, Zhu J, Wang L. Preparation and Characterization of Acid Resistant Double Cross-Linked Hydrogel for Potential Biomedical Applications. ACS Biomater Sci Eng 2018; 4:872-883. [DOI: 10.1021/acsbiomaterials.7b00818] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Shubin Li
- Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, P.R. China
| | - Juanjuan Yi
- Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, P.R. China
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Xuemei Yu
- Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, P.R. China
| | - Huijie Shi
- The First Affiliated Hospital of Harbin Medical University, 23 Post Road, Nangang District, Harbin 150001, P.R. China
| | - Jiang Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Lu Wang
- Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, P.R. China
| |
Collapse
|
37
|
Cangialosi A, Yoon C, Liu J, Huang Q, Guo J, Nguyen TD, Gracias DH, Schulman R. DNA sequence-directed shape change of photopatterned hydrogels via high-degree swelling. Science 2018; 357:1126-1130. [PMID: 28912239 DOI: 10.1126/science.aan3925] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/16/2017] [Indexed: 12/18/2022]
Abstract
Shape-changing hydrogels that can bend, twist, or actuate in response to external stimuli are critical to soft robots, programmable matter, and smart medicine. Shape change in hydrogels has been induced by global cues, including temperature, light, or pH. Here we demonstrate that specific DNA molecules can induce 100-fold volumetric hydrogel expansion by successive extension of cross-links. We photopattern up to centimeter-sized gels containing multiple domains that undergo different shape changes in response to different DNA sequences. Experiments and simulations suggest a simple design rule for controlled shape change. Because DNA molecules can be coupled to molecular sensors, amplifiers, and logic circuits, this strategy introduces the possibility of building soft devices that respond to diverse biochemical inputs and autonomously implement chemical control programs.
Collapse
Affiliation(s)
- Angelo Cangialosi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - ChangKyu Yoon
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jiayu Liu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Qi Huang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jingkai Guo
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Thao D Nguyen
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA. .,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA. .,Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
38
|
Hu Y, Pérez-Mercader J. Microfluidics Fabrication of Self-Oscillating Microgel Clusters with Tailored Temperature-Responsive Properties Using Polymersomes as "Microreactors". LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14058-14065. [PMID: 29137458 DOI: 10.1021/acs.langmuir.7b03166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Poly(N-isopropylacrylamide)-based microgel clusters were successfully prepared using polymersomes as "microreactors", which were fabricated through microfluidics. The clusters were formed from the cross-linking reaction between ruthenium/amino group dual functionalized poly(N-isopropylacrylamide) microgels and linear poly(N-isopropylacrylamide)-r-(N-acryloxysuccinimide)-based polymer linkers under neutral pH conditions. By simply adjusting the ratio of N-isopropylacrylamide to N-acryloxysuccinimide in the polymer cross-linkers, the internal structures of the clusters can be controlled; hence, the temperature response of the clusters can be regulated. It was demonstrated that these different microgel clusters showed various degrees of chemomechanical oscillations when the clusters were exposed to a catalyst-free solution containing Belousov-Zhabotinsky reaction substrates.
Collapse
Affiliation(s)
- Yuandu Hu
- Department of Earth and Planetary Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Juan Pérez-Mercader
- Department of Earth and Planetary Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
- Santa Fe Institute, Santa Fe, New Mexico 87501, United States
| |
Collapse
|
39
|
Che H, Buddingh' BC, van Hest JCM. Self-Regulated and Temporal Control of a "Breathing" Microgel Mediated by Enzymatic Reaction. Angew Chem Int Ed Engl 2017; 56:12581-12585. [PMID: 28772021 PMCID: PMC5656812 DOI: 10.1002/anie.201706716] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 07/20/2017] [Indexed: 12/15/2022]
Abstract
Naturally occurring systems have the ability to self-regulate, which plays a key role in their structural and functional adaptation. The autonomous behavior in living systems is biocatalytically controlled by the continuous consumption of energy to remain in a non-equilibrium condition. In this work, we show the construction of a self-regulated "breathing" microgel that uses chemical fuels to keep the system in the out-of-equilibrium state. The enzyme urease is utilized to program a feedback-induced pH change, which in turn tunes the size switch and fluorescence intensity of the microgel. A continuous supply of chemical fuels to the system allows the process to be reversible. This microgel with tunable autonomous properties provides insights into the design of artificial systems and dynamic soft materials.
Collapse
Affiliation(s)
- Hailong Che
- Bio-organic chemistryEindhoven University of TechnologyP.O. Box 513 (STO 3.31)5600 MBEindhovenThe Netherlands
| | - Bastiaan C. Buddingh'
- Bio-organic chemistryEindhoven University of TechnologyP.O. Box 513 (STO 3.31)5600 MBEindhovenThe Netherlands
| | - Jan C. M. van Hest
- Bio-organic chemistryEindhoven University of TechnologyP.O. Box 513 (STO 3.31)5600 MBEindhovenThe Netherlands
| |
Collapse
|
40
|
Che H, Buddingh' BC, van Hest JCM. Self‐Regulated and Temporal Control of a “Breathing” Microgel Mediated by Enzymatic Reaction. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706716] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hailong Che
- Bio-organic chemistry Eindhoven University of Technology P.O. Box 513 (STO 3.31) 5600 MB Eindhoven The Netherlands
| | - Bastiaan C. Buddingh'
- Bio-organic chemistry Eindhoven University of Technology P.O. Box 513 (STO 3.31) 5600 MB Eindhoven The Netherlands
| | - Jan C. M. van Hest
- Bio-organic chemistry Eindhoven University of Technology P.O. Box 513 (STO 3.31) 5600 MB Eindhoven The Netherlands
| |
Collapse
|
41
|
Affiliation(s)
- Yasunori Okamoto
- Department of Chemistry; University of Basel; Spitalstrasse 51 4056 Basel Switzerland
| | - Thomas R. Ward
- Department of Chemistry; University of Basel; Spitalstrasse 51 4056 Basel Switzerland
| |
Collapse
|
42
|
Okamoto Y, Ward TR. Cross-Regulation of an Artificial Metalloenzyme. Angew Chem Int Ed Engl 2017; 56:10156-10160. [PMID: 28485105 PMCID: PMC5575532 DOI: 10.1002/anie.201702181] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/26/2017] [Indexed: 11/18/2022]
Abstract
Cross-regulation of complex biochemical reaction networks is an essential feature of living systems. In a biomimetic spirit, we report on our efforts to program the temporal activation of an artificial metalloenzyme via cross-regulation by a natural enzyme. In the presence of urea, urease slowly releases ammonia that reversibly inhibits an artificial transfer hydrogenase. Addition of an acid, which acts as fuel, allows to maintain the system out of equilibrium.
Collapse
Affiliation(s)
- Yasunori Okamoto
- Department of ChemistryUniversity of BaselSpitalstrasse 514056BaselSwitzerland
| | - Thomas R. Ward
- Department of ChemistryUniversity of BaselSpitalstrasse 514056BaselSwitzerland
| |
Collapse
|
43
|
Heinen L, Heuser T, Steinschulte A, Walther A. Antagonistic Enzymes in a Biocatalytic pH Feedback System Program Autonomous DNA Hydrogel Life Cycles. NANO LETTERS 2017; 17:4989-4995. [PMID: 28656771 DOI: 10.1021/acs.nanolett.7b02165] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Enzymes regulate complex functions and active behavior in natural systems and have shown increasing prospect for developing self-regulating soft matter systems. Striving for advanced autonomous hydrogel materials with fully programmable, self-regulated life cycles, we combine two enzymes with an antagonistic pH-modulating effect in a feedback-controlled biocatalytic reaction network (BRN) and couple it to pH-responsive DNA hydrogels to realize hydrogel systems with distinct preprogrammable lag times and lifetimes in closed systems. The BRN enables precise and orthogonal internal temporal control of the "ON" and "OFF" switching times of the temporary gel state by modulation of programmable, nonlinear pH changes. The time scales are tunable by variation of the enzyme concentrations and additional buffer substances. The resulting material system operates in full autonomy after injection of the chemical fuels driving the BRN. The concept may open new applications inherent to DNA hydrogels, for instance, autonomous shape memory behavior for soft robotics. We further foresee general applicability to achieve autonomous life cycles in other pH switchable systems.
Collapse
Affiliation(s)
- Laura Heinen
- Institute for Macromolecular Chemistry, Stefan-Meier-Strasse 31, University of Freiburg , 79104 Freiburg, Germany
- Freiburg Materials Research Center, Stefan-Meier-Strasse 21, University of Freiburg , 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg , 79110 Freiburg, Germany
| | - Thomas Heuser
- DWI - Leibniz Institute for Interactive Materials , Forckenbeckstrasse 50, D-52074 Aachen, Germany
| | - Alexander Steinschulte
- Institute of Physical Chemistry, RWTH Aachen University , Landoltweg 2, 52056 Aachen, Germany
| | - Andreas Walther
- Institute for Macromolecular Chemistry, Stefan-Meier-Strasse 31, University of Freiburg , 79104 Freiburg, Germany
- Freiburg Materials Research Center, Stefan-Meier-Strasse 21, University of Freiburg , 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg , 79110 Freiburg, Germany
| |
Collapse
|
44
|
Lubbe AS, van Leeuwen T, Wezenberg SJ, Feringa BL. Designing dynamic functional molecular systems. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.06.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Bánsági T, Taylor AF. Ester hydrolysis: Conditions for acid autocatalysis and a kinetic switch. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
|
47
|
Amoeba-like self-oscillating polymeric fluids with autonomous sol-gel transition. Nat Commun 2017; 8:15862. [PMID: 28703123 PMCID: PMC5511347 DOI: 10.1038/ncomms15862] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
In the field of polymer science, many kinds of polymeric material systems that show a sol-gel transition have been created. However, most systems are unidirectional stimuli-responsive systems that require physical signals such as a change in temperature. Here, we report on the design of a block copolymer solution that undergoes autonomous and periodic sol-gel transition under constant conditions without any on–off switching through external stimuli. The amplitude of this self-oscillation of the viscosity is about 2,000 mPa s. We also demonstrate an intermittent forward motion of a droplet of the polymer solution synchronized with the autonomous sol-gel transition. This polymer solution bears the potential to become the base for a type of slime-like soft robot that can transform its shape kaleidoscopically and move autonomously, which is associated with the living amoeba that moves forward by a repeated sol-gel transition. Most polymeric materials that show sol-gel transitions are unidirectional and stimuli-responsive systems. Here the authors show a block copolymer solution that undergoes autonomous and periodic sol-gel transitions under constant conditions.
Collapse
|