1
|
Zhang N, Chen W, Sheng QA, Hu H, Liu J, Lu L, Ni Z, Wu D. Exploring Stibanyl Ligand for Accessing Arsinidene and Arsaketene Adducts, and Phosphaketene. Inorg Chem 2025; 64:1023-1030. [PMID: 39788919 DOI: 10.1021/acs.inorgchem.4c04386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The salt metathesis reaction involving a diamine-based antimony chloride precursor with sodium arsaethynolate in the presence of PMe3 leads to the formation of stibanyl-functionalized PMe3-arsinidene (2). Detailed analyses through single-crystal X-ray diffraction and density functional theory of 2 confirm the presence of covalent Sb-As bonds and reveal its polarized nature with a multiple-bond character. In contrast to the formation of complex 2, substituting PMe3 with xylyl isocyanide or 1,3-diisopropyl-4,5-dimethyl-imidazolin-2-ylidene (IiPr) produces an isocyanide-arsinidene adduct (3) and an IiPr-arsaketene complex (4), respectively. Furthermore, the related reactions of precursor 1 with sodium phosphaethynolate yield both a stibanyl-phosphaketene (5) and a stibanyl-functionalized IiPr-phosphaketene adduct (6).
Collapse
Affiliation(s)
- Ning Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenhao Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Qi-Ao Sheng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Haisheng Hu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiyong Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Linfang Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhigang Ni
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Di Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
2
|
Doleschal ME, Kostenko A, Liu JY, Inoue S. Isolation of a NHC-stabilized heavier nitrile and its conversion into an isonitrile analogue. Nat Chem 2024; 16:2009-2016. [PMID: 39256544 PMCID: PMC11611736 DOI: 10.1038/s41557-024-01618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Nitriles (R-C≡N) have been investigated since the late eighteenth century and are ubiquitous encounters in organic and inorganic syntheses. In contrast, heavier nitriles, which contain the heavier analogues of carbon and nitrogen, are sparsely investigated species. Here we report the synthesis and isolation of a phosphino-silylene featuring an N-heterocyclic carbene-phosphinidene and a highly sterically demanding silyl group as substituents. Due to its unique structural motif, it can be regarded as a Lewis base-stabilized heavier nitrile. The Si-P bond displays multiple bond character and a bent R-Si-P geometry, the latter indicating fundamental differences between heavier and classical nitriles. In solution, a quantitative unusual rearrangement to a phosphasilenylidene occurs. This rearrangement is consistent with theoretical predictions of rearrangements from heavier nitriles to heavier isonitriles. Our preliminary reactivity studies revealed that both isomers exhibit highly nucleophilic silicon centres capable of oxidative addition and coordination to iron tetracarbonyl.
Collapse
Affiliation(s)
- Martin E Doleschal
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker Institute of Silicon Chemistry, Technische Universität Müchen, Garching, Germany
| | - Arseni Kostenko
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker Institute of Silicon Chemistry, Technische Universität Müchen, Garching, Germany
| | - Jin Yu Liu
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker Institute of Silicon Chemistry, Technische Universität Müchen, Garching, Germany
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker Institute of Silicon Chemistry, Technische Universität Müchen, Garching, Germany.
| |
Collapse
|
3
|
Siwatch RK, Yang MC, Su MD, So CW. A Digermanium(III) 1,2-Dication Stabilized by Amidinate and cAAC-Phosphinidenide Ligands. Inorg Chem 2024; 63:8511-8515. [PMID: 38687917 DOI: 10.1021/acs.inorgchem.4c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
A digermanium(III) 1,2-dication comprises two cationic centers located at two interconnected Ge atoms. The strong Coulombic repulsion between two positively charged germanium cations hinders their bond formation. Balancing these two oppositions was achieved by using amidinate and cyclic (alkyl)amino carbene (cAAC)-phosphinidenide ligands, where an amidinato cAAC-phosphinidenidogermylene complex, [LGeP(cAACMe)] (2, where L = PhC(NtBu)2, cAACMe = :C{C(Me)2CH2C(Me)2NAr}, and Ar = 2,6-iPr2C6H3), underwent one-electron oxidation with a bis(phosphinidene) radical cation, [(cAACMe)P]2•+, to form a digermanium(III) 1,2-dication, [LGeP(cAACMe)]22+, in compound 4.
Collapse
Affiliation(s)
- Rahul Kumar Siwatch
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371 Singapore
| | - Ming-Chung Yang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheuk-Wai So
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371 Singapore
| |
Collapse
|
4
|
Weinert HM, Wölper C, Radović A, Cutsail GE, Siera H, Haberhauer G, Schulz S. From Neutral Diarsenes to Diarsene Radical Ions and Diarsene Dications. Chemistry 2024; 30:e202400204. [PMID: 38391392 DOI: 10.1002/chem.202400204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 02/24/2024]
Abstract
Diarsene [L(MeO)GaAs]2 (L=HC[C(Me)N(Ar)]2, Ar=2,6-iPr2C6H3, 4) reacts with MeOTf and MeNHC (MeNHC=1,3,4,5-tetra-methylimidazol-2-ylidene) to the diarsene [L(TfO)GaAs]2 (5) and the carbene-coordinated diarsene [L(MeO)GaAsAs(MeNHC)Ga(OMe)L] (6). The NHC-coordination results in an inversion of the redox properties of the diarsene 4, which shows only a reversible reduction event at E1/2=-2.06 V vs Fc0/+1, whereas the carbene-coordinated diarsene 6 shows a reversible oxidation event at E1/2=-1.31 V vs Fc0/+1. Single electron transfer reactions of 4 and 6 yielded [K[2.2.2.]cryp][L(MeO)GaAs]2 (8) and [L(MeO)GaAsAs(MeNHC)-Ga(OMe)L][B(C6F5)4] (9) containing the radical anion [L(MeO)GaAs]2⋅- (8⋅-) and the NHC-coordinated radical cation [L(MeO)GaAsAs(MeNHC)Ga(OMe)L]⋅+ (9⋅+), respectively, while the salt-elimination reaction of the triflate-coordinated diarsene 5 with Na[B(C6F5)4] gave [LGaAs]2[B(C6F5)4]2 (11) containing the dication [LGaAs]2 2+ (112+). Compounds 1-11 were characterized by 1H and 13C NMR, EPR (8, 9), IR, and UV-Vis spectroscopy and by single crystal X-ray diffraction (sc-XRD). DFT calculations provided a detailed understanding of the electronic nature of the diarsenes (4, 6) and the radical ions (8⋅-, 9⋅+), respectively.
Collapse
Affiliation(s)
- Hanns Micha Weinert
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Aleksa Radović
- Max Planck Institute for Chemical Energy Conversion (CEC), Stiftstraße 34-36, 45470, Mülheim a. d. Ruhr, Germany
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion (CEC), Stiftstraße 34-36, 45470, Mülheim a. d. Ruhr, Germany
| | - Hannah Siera
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Gebhard Haberhauer
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| |
Collapse
|
5
|
Yadav R, Das B, Singh A, Anmol, Sharma A, Majumder C, Kundu S. Bicyclic (alkyl)(amino)carbene (BICAAC)-supported phosphinidenes. Dalton Trans 2023; 52:16680-16687. [PMID: 37960973 DOI: 10.1039/d3dt02765a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Herein, the synthesis and characterization of bicyclic (alkyl)(amino)carbene (BICAAC)-stabilized phosphinidenes (1-4) are reported. Compounds 1-3 were obtained by reacting trihalophosphine [PX3, X = Cl (1), Br (2), I (3)] with BICAAC in THF. A BICAAC-stabilized bis-phosphinidene (4) was obtained from the reduction of compound 2. All four compounds were characterized by X-ray crystallography and heteronuclear NMR spectroscopy. Theoretical calculations indicated the predominant C(carbene)P double bond characteristic in compounds 1-4.
Collapse
Affiliation(s)
- Ritu Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Bindusagar Das
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Ashi Singh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Anmol
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Ankita Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Chinmoy Majumder
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Subrata Kundu
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
6
|
Nag E, Francis M, Putta D, Roy S. Isolation of (Aryl)-(Imino) Phosphide and (Aryl)-(Phosphaalkene) Amide Complexes of Alkali Metals from Carbene-Phosphinidenes under Reductive-Thermal Rearrangements. Chemistry 2023; 29:e202302120. [PMID: 37665314 DOI: 10.1002/chem.202302120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/05/2023]
Abstract
Two-electron reduction of cyclic alkyl(amino) carbene (cAAC)-supported chloro-phosphinidene cAAC=P-Cl (1) followed by unprecedented thermal rearrangements afforded the alkali metal complexes of (aryl)-(cyclic alkyl(imino)) phosphides 3 a-3 c, 4 a-4 b through migration of the 2,6-diisopropylphenyl (dipp) group from N to the P centre, and the (aryl)-(cyclic alkyl(phosphaalkene)) amide 5 through cleavage of the CMe2 -N bond followed by energetically favoured 5-exo-tet ring-closure in the presence of the alkali metals Cs (3 a-3 c), K (4 a, 4 b), and Li (5). Compound 3 a was found to be photoluminescent (PL), emitting bright orange light under a laboratory UV lamp of wavelength 365 nm with PL quantum yield (ϕPL ) of 2.6 % (λem =600 nm), and an average lifetime (τ) of 4.8 μs. Reaction of 3 a with CuCl and AgOTf afforded (aryl)-(cyclic alkyl(imino)) phosphide-stabilized tetra-nuclear CuI (6), and octa-nuclear AgI (7) clusters, respectively. Moreover, complexes 3 a-3 c provided a direct route for the stabilization of cyclic alkyl(aminoboryl) phosphaalkenes 8 a-8 c when treated with 1-bromo-N,N,N',N'-tetraisopropylboranediamine.
Collapse
Affiliation(s)
- Ekta Nag
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Maria Francis
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Divya Putta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Sudipta Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| |
Collapse
|
7
|
Wu CS, Su MD. Reactivity Analysis of the [2 + 2] Cycloaddition between Group-6 ≡ Group-14 Triple-Bonded Complexes and Acetylene: Insights from Theoretical Studies. Inorg Chem 2023; 62:16388-16400. [PMID: 37768726 DOI: 10.1021/acs.inorgchem.3c02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Theoretical examinations of reactivity for the formal [2 + 2] cycloaddition of Me-C≡C-Ph to Group-6(G6)≡Group-14(G14) triple-bonded organometallic complexes have been carried out using the M06-2X-D3/def2-TZVP level of theory. Our theoretical findings suggest that Me-C≡C-Ph can undergo adduct formation with all G6≡Si complexes, resulting in the generation of four-membered ring structures. However, among the W≡Group-14 complex reactants, only W≡Si-based, W≡Ge-based, and W≡Sn-based organometallic molecules are capable of undergoing a [2 + 2] cycloaddition reaction with Me-C≡C-Ph. Based on energy decomposition analysis, our theoretical investigations demonstrate that the bonding mechanism in such [2 + 2] cycloaddition reactions involves the creation of two dative bonds between singlet fragments (the donor-acceptor model), as opposed to two electron-sharing bonds between triplet fragments. In addition, the examinations based on the activation strain model indicate that the activation barrier of the [2 + 2] cycloaddition reaction is predominantly governed by the geometric deformation energy of the two reactants (G6≡G14-Rea and Me-C≡C-Ph). Our research using the M06-2X method shows that the barrier heights of [2 + 2] cycloaddition reactions between Me-C≡C-Ph and G6≡Si-Rea are dependent on the geometric changes occurring in both fragments during the transition states, consistent with Hammond's postulate.
Collapse
Affiliation(s)
- Chi-Shiun Wu
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
8
|
Zhang ZF, Su MD. Reactivity of the Intramolecular Vicinal Group-13/P- and B/Group-15-Based Frustrate Lewis Pairs with Sulfur Dioxide: Mechanistic Insight from DFT. Inorg Chem 2023; 62:13315-13327. [PMID: 37549232 DOI: 10.1021/acs.inorgchem.3c01611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The emission of SO2 gas by industrialized societies contributes to the occurrence of acid rain in natural environments. In this study, we put forward a theoretical investigation into the capture reactions of SO2. Our analysis centers on the energy profiles of intramolecular 1,2-cyclohexylene-bridged FLP-associated molecules. We will particularly examine the reactions involving G13/P-based (with G13 denoting Group 13 element) and B/G15-based (with G15 representing Group 15 element) FLP-associated molecules. Except for Tl/P-FLP, B/N-FLP, and B/Bi-FLP, our theoretical examinations indicate that the remaining six FLP-associated molecules, namely G13'/P-FLP (G13' = B, Al, Ga, and In) and B/G15 ' -FLP (G15' = P, As, and Sb), can easily undergo SO2 capture reactions due to their energetic feasibility. Particularly, our theoretical findings suggested that 1,2-cyclohexylene-bridged Al/P-FLP, Ga/P-FLP, B/As-FLP, and B/Sb-FLP are capable of undergoing a reversible reaction and returning to the initial reactant state. Our theoretical evidence indicates that the G13-G15 bond length in the 1,2-cyclohexylene-linked G13/G15-FLP can serve as a basis for evaluating the free activation barrier associated with its reaction with SO2. Two theoretical methods, namely, the frontier molecular orbital theory and the energy decomposition analysis-natural orbitals of chemical valence approach, are utilized to investigate the electronic structure and bonding nature of the reactions under consideration. Moreover, the analyses based on the activation strain model revealed that it is the geometrical deformation energies of G13/G15-FLP, which is the key factor that greatly influences the activation barriers of such SO2 capture reactions. Further, our theoretical computations indicate that such capturing reactions of SO2 by intramolecular 1,2-cyclohexylene-linked G13/G15-based FLP-type molecules obey the Hammond postulate.
Collapse
Affiliation(s)
- Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
9
|
Zhang ZF, Su MD. Computational insights into the reactivity for the [2+5] cycloaddition reactions of norbornene-linked group 14 element/P-based and Si/group 15 element-based frustrated Lewis pairs with benzaldehyde. Phys Chem Chem Phys 2023; 25:7423-7435. [PMID: 36847783 DOI: 10.1039/d2cp05135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The element effects of Lewis acid (LA) and Lewis base (LB) on the potential energy surfaces of [2+5] cycloaddition reactions of norbornene-based G14/P-based (G14 = group 14 element) and Si/G15-based (G15 = group 14 element) frustrated Lewis pair (FLP)-type molecules with benzaldehyde were theoretically examined via density functional theory and several sophisticated methods. The theoretical findings indicated that among the above nine norbornene-linked G14/G15-based FLPs, only the Si/N-Rea, Si/P-Rea, and Si/As-Rea FLP-assisted compounds can readily undergo cycloaddition reactions with doubly bonded organic systems from kinetic and thermodynamic viewpoints. The energy decomposition analysis showed that the bonding interactions between the norbornene-based G14/G15-FLPs and benzaldehyde are better described in terms of the singlet-singlet model (donor-acceptor model) rather than the triplet-triplet model (electron-sharing model). In particular, natural orbitals for chemical valence findings revealed that the forward bonding is the lone pair (G15) → p-π*(C) interaction, which is a significantly strong FLP-to-benzaldehyde interaction. However, the back-bonding is the p-π*(G14) ← lone-pair orbital(O) interaction, which is a weak benzaldehyde-to-FLP interaction. The analyses based on the activation strain model showed that the larger the atomic radius of either the G14(LA) or the G15(LB) atom, the greater the G14⋯G15 separation distance in the norbornene-based G14/G15-FLP molecule, the smaller the orbital overlaps between G14/G15-FLP and Ph(H)CO, and the higher the activation barrier during its cycloaddition reaction with benzaldehyde.
Collapse
Affiliation(s)
- Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan.
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan. .,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
10
|
Nag E, Francis M, Battuluri S, Sinu BB, Roy S. Isolation of Elusive Phosphinidene‐Chlorotetrylenes: The Heavier Cyanogen Chloride Analogues. Chemistry 2022; 28:e202201242. [DOI: 10.1002/chem.202201242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Ekta Nag
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Maria Francis
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Sridhar Battuluri
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Bhavya Bini Sinu
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Sudipta Roy
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| |
Collapse
|
11
|
Nag E, Battuluri S, Sinu BB, Roy S. Carbene-Anchored Boryl- and Stibanyl-Phosphaalkenes as Precursors for Bis-Phosphaalkenyl Dichlorogermane and Mixed-Valence Ag I/Ag II Phosphinidenide. Inorg Chem 2022; 61:13007-13014. [PMID: 35939532 DOI: 10.1021/acs.inorgchem.2c01132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclic alkyl(amino) carbene (cAAC)-anchored boryl- and stibanyl-phosphaalkenes with general formula cAAC = P-ER2 [E = B, R = (NiPr2)2 (3a-c); E = Sb, R = 2,4,6-triisopropylphenyl (5a-b)] have been synthesized and utilized as precursors for the bis-phosphaalkenyl dichlorogermane [(cAAC = P)2GeCl2] (6) and the first molecular example of a neutral polymeric mixed-valence AgI/AgII phosphinidenide complex [(cAACP)2Ag4IAgIICl4]n (7). All compounds have been characterized by single-crystal X-ray diffraction and further investigated by nuclear magnetic resonance (NMR), mass spectrometric analysis, and UV-vis/fluorescence measurements. The paramagnetic complex 7 has been characterized by ESR spectroscopy. Cyclic voltammetry studies of compounds 3/5 have suggested possible one-electron quasi-reversible reductions, indicating their redox noninnocent behavior in solution. Quantum chemical studies revealed the electron-sharing nature of the P-B and P-Sb σ bonds in compounds 3 and 5, and the polar CcAAC = P bonds in compounds 3, 5, and 6 prevailing their phosphaalkene structures over phosphinidenes.
Collapse
Affiliation(s)
- Ekta Nag
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Sridhar Battuluri
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Bhavya Bini Sinu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Sudipta Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
12
|
Kumar Sarkar S, Kundu S, Nazish M, Kretsch J, Herbst‐Irmer R, Stalke D, Parvathy P, Parameswaran P, Roesky HW. A Carbene-Stabilized Boryl-Phosphinidene. Chemistry 2022; 28:e202200913. [PMID: 35357049 PMCID: PMC9322276 DOI: 10.1002/chem.202200913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/23/2022]
Abstract
Herein, the synthesis and characterization of the carbene-stabilized boryl phosphinidenes 1-3 are reported. Compounds 1-3 are obtained by reacting Me-cAAC=PK (Me2 -cAAC=dimethyl cyclic(alkyl)(amino)carbene) and dihaloaryl borane in toluene. All three compounds were characterized by X-ray crystallography. Quantum mechanical studies indicated that these compounds have two lone pairs on the P center viz., an σ-type lone pair and a "hidden" π-type lone pair. Hence, these compounds can act as double Lewis bases, and the basicity of the π-type lone pair is higher than the σ-type lone pair.
Collapse
Affiliation(s)
- Samir Kumar Sarkar
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077GöttingenGermany
| | - Subrata Kundu
- Department of ChemistryIndian Institute of Technology Delhi Hauz KhasNew Delhi110016India
| | - Mohd Nazish
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077GöttingenGermany
| | - Johannes Kretsch
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077GöttingenGermany
| | - Regine Herbst‐Irmer
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077GöttingenGermany
| | - Dietmar Stalke
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077GöttingenGermany
| | - Parameswaran Parvathy
- Department of ChemistryNational Institute of Technology CalicutKozhikodeKerala673601India
| | - Pattiyil Parameswaran
- Department of ChemistryNational Institute of Technology CalicutKozhikodeKerala673601India
| | - Herbert W. Roesky
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077GöttingenGermany
| |
Collapse
|
13
|
Kumar Kushvaha S, Mishra A, Roesky HW, Chandra Mondal K. Recent Advances in the Domain of Cyclic (Alkyl)(Amino) Carbenes. Chem Asian J 2022; 17:e202101301. [PMID: 34989475 PMCID: PMC9307053 DOI: 10.1002/asia.202101301] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/25/2021] [Indexed: 12/03/2022]
Abstract
Isolation of cyclic (alkyl) amino carbenes (cAACs) in 2005 has been a major achievement in the field of stable carbenes due to their better electronic properties. cAACs and bicyclic(alkyl)(amino)carbene (BicAAC) in essence are the most electrophilic as well as nucleophilic carbenes are known till date. Due to their excellent electronic properties in terms of nucleophilic and electrophilic character, cAACs have been utilized in different areas of chemistry, including stabilization of low valent main group and transition metal species, activation of small molecules, and catalysis. The applications of cAACs in catalysis have opened up new avenues of research in the field of cAAC chemistry. This review summarizes the major results of cAAC chemistry published until August 2021.
Collapse
Affiliation(s)
| | - Ankush Mishra
- Department of ChemistryIndian Institute of Technology MadrasChennai600036India
| | - Herbert W. Roesky
- Institute of Inorganic ChemistryTammannstrasse 4D-37077GöttingenGermany
| | | |
Collapse
|
14
|
Yadav R, Sinhababu S, Yadav R, Kundu S. Base-stabilized formally zero-valent mono and diatomic molecular main-group compounds. Dalton Trans 2022; 51:2170-2202. [PMID: 35040452 DOI: 10.1039/d1dt03569j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Various compounds are known for transition metals in their formal zero-oxidation state, while similar compounds of main-group elements are recently realized and limited to only a few examples. Lewis-base-stabilized mono and diatomic molecular species (B2, C, C2, Si, Si2, Ge, Ge2, Sn, P2, As2, Sb2) represent groundbreaking examples of main-group compounds with formally zero-oxidation state. In recent years, the isolation of low-valent main-group compounds has attracted increasing attention of both experimental and theoretical chemists. This is not only due to their fascinating electronic structures and exceptional reactivities, but also their use as valuable precursors for the synthesis of exotic yet important chemical species. This has led to a better understanding of the intricate balance of the donor-acceptor properties of the ligand(s) used to stabilize elements in a formally zero-oxidation state. Owing to the unusual oxidation state of the central element, many compounds containing formally zero-valent elements can efficiently activate otherwise inert small molecules. This review describes the synthesis, characterization, and reactivity of reported mono and diatomic formal zero-oxidation state main-group compounds. This review also emphasizes the comparative description of systems where different ligands are used to stabilize an element in its formal zero-oxidation state.
Collapse
Affiliation(s)
- Ravi Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India. .,Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Soumen Sinhababu
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, USA.
| | - Ritu Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India.
| | - Subrata Kundu
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India.
| |
Collapse
|
15
|
Han Z, Gates DP. Metathesis of P=C Bonds Catalyzed by N-Heterocyclic Carbenes. Chemistry 2021; 27:14594-14599. [PMID: 34459044 DOI: 10.1002/chem.202102384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 11/05/2022]
Abstract
The catalytic metathesis of C=C bonds is a textbook reaction that has no parallel in the widely studied area of multiple bonds involving heavier p-block elements. A high-yielding P=C bond metathesis of phosphaalkenes (ArP=CPh2 , Ar=Mes, o-Tol, Ph) has been discovered that is catalyzed by N-heterocyclic carbenes (NHC=Me2 IMe, Me2 Ii Pr). The products are cyclic oligomers formally derived from ArP=PAr [i. e. cyclo-(ArP)n ; n=3, 4, 5, 6] and Ph2 C=CPh2 . Preliminary mechanistic studies of this remarkable transformation have established NHC=PAr (Ar=Mes, o-Tol, Ph) as key phosphinidene transfer agents. In addition, novel cyclic intermediates, such as, cyclo-(ArP)2 CPh2 and cyclo-(ArP)4 CPh2 have also been observed. This work represents a rare application of non-metal-based catalysts for transformations involving main-group elements.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Derek P Gates
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|
16
|
Zhang ZF, Yang MC, Su MD. Significant Insight into the Origin of Reaction Barriers Determining Dihydrogen Activation by G13-P-P (G13 = Group 13 Element) and G15-P-Ga (G15 = Group 15 Element) Frustrated Lewis Pairs. Inorg Chem 2021; 60:15253-15269. [PMID: 34570484 DOI: 10.1021/acs.inorgchem.1c01809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The heterolytic cleavage of H2 by multiply bonded phosphorus-bridged G13-P-P-Rea (G13 = B, Al, Ga, In, and Tl) and G15-P-Ga-Rea (G15 = N, P, As, Sb, and Bi) frustrated Lewis pairs (FLPs) has been theoretically investigated using density functional theory calculations. For the above nine FLP-type molecules, our theoretical findings suggest that only Al-P-P-Rea, Ga-P-P-Rea, and In-P-P-Rea can undergo the energetically feasible H2 activation reaction from kinetic and thermodynamic viewpoints. Our study based on the activation strain model (ASM) reveals that gaining a better orbital overlap between G13-P-P-Rea and G15-P-Ga-Rea molecules and H2 affected the reaction barriers through the atomic radius of G13 and G15. According to our energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV) results, the bonding of these H2 activation reactions involving G13-P-P-Rea and G15-P-Ga-Rea is dominated by the donor-acceptor interaction (singlet-singlet interaction) rather than the electron-sharing interaction (triplet-triplet interaction). Moreover, our EDA-NOCV evidence reveals that the best description for the above bonding situations is the lone pair(G15) → σ*(H2) interaction rather than the empty p-π-orbital(G13) ← σ(H2) interaction. In particular, the findings in this work based on theoretically calculated geometries and the corresponding relative free energies of the stationary points combined with the results from the above sophisticated methods nicely agree with the famous Hammond postulate.
Collapse
Affiliation(s)
- Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Chung Yang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
17
|
Liu Y, Keil H, Zhong M, Li J, Yang Z, Herbst‐Irmer R, Stalke D, Roesky HW. MesPX
2
/IsPX
2
as Precursors for the Preparation of Phosphasilenes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202000966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yashuai Liu
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 P. R. China
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Helena Keil
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Mingdong Zhong
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Jiancheng Li
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Zhi Yang
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 P. R. China
| | - Regine Herbst‐Irmer
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Dietmar Stalke
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Herbert W. Roesky
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
18
|
Gorantla SMNVT, Francis M, Roy S, Mondal KC. Bonding and stability of donor ligand-supported heavier analogues of cyanogen halides (L')PSi(X)(L). RSC Adv 2021; 11:6586-6603. [PMID: 35423226 PMCID: PMC8694932 DOI: 10.1039/d0ra10338a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/21/2021] [Indexed: 11/21/2022] Open
Abstract
Fluoro- and chloro-phosphasilynes [X-Si[triple bond, length as m-dash]P (X = F, Cl)] belong to a class of illusive chemical species which are expected to have Si[triple bond, length as m-dash]P multiple bonds. Theoretical investigations of the bonding and stability of the corresponding Lewis base-stabilized species (L')PSi(X)(L) [L' = cAACMe (cyclic alkyl(amino) carbene); L = cAACMe, NHCMe (N-heterocyclic carbene), PMe3, aAAC (acyclic alkyl(amino) carbene); X = Cl, F] have been studied using the energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV) method. The variation of the ligands (L) on the Si-atom leads to different bonding scenarios depending on their σ-donation and π-back acceptance properties. The ligands with higher lying HOMOs prefer profoundly different bonding scenarios than the ligands with lower lying HOMOs. The type of halogen (Cl or F) on the Si-atom was also found to have a significant influence on the overall bonding scenario. The reasonably higher value and endergonic nature of the dissociation energies along with the appreciable HOMO-LUMO energy gap may corroborate to the synthetic viability of the homo and heteroleptic ligand-stabilized elusive PSi(Cl/F) species in the laboratory.
Collapse
Affiliation(s)
| | - Maria Francis
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Sudipta Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | | |
Collapse
|
19
|
Li B, Wölper C, Haberhauer G, Schulz S. Synthesis and Reactivity of Heteroleptic Ga-P-C Allyl Cation Analogues. Angew Chem Int Ed Engl 2021; 60:1986-1991. [PMID: 33034935 PMCID: PMC7894565 DOI: 10.1002/anie.202012595] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 11/28/2022]
Abstract
Oxidative addition of cyclic alkyl(amino)carbene-coordinated phosphinidenes (Me cAAC)PX to LGa affords gallium-coordinated phosphinidenes LGa(X)-P(Me cAAC) (L=HC[C(Me)N(2,6-i-Pr2 C6 H3 )]2 ; X=Cl 1, Br 2), which react with NaBArF 4 and LiAl(ORF )4 to [LGaP(Me cAAC)][An] (An=B(C6 H3 (CF3 )2 )4 3, B(C6 F5 )4 4, Al(OC(CF3 )3 )4 5). The cations in 3-5 show substantial Ga-P double bond character and represent heteronuclear analogues of allyl cations according to quantum chemical calculations. The reaction of 4 with 4-dimethylaminopyridine (dmap) to adduct 6 confirms the strong electrophilic nature of the gallium center, whereas 5 reacts with ethyl isocyanate with C-C bond formation to the γ-C atom of the β-diketiminate ligand and formation of compound 7.
Collapse
Affiliation(s)
- Bin Li
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| | - Christoph Wölper
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| | - Gebhard Haberhauer
- Institute of Organic Chemistry, University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| | - Stephan Schulz
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| |
Collapse
|
20
|
Li B, Wölper C, Haberhauer G, Schulz S. Synthesis and Reactivity of Heteroleptic Ga‐P‐C Allyl Cation Analogues. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bin Li
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen Universitätsstrasse 5–7 45141 Essen Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen Universitätsstrasse 5–7 45141 Essen Germany
| | - Gebhard Haberhauer
- Institute of Organic Chemistry, University of Duisburg-Essen Universitätsstrasse 5–7 45141 Essen Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen Universitätsstrasse 5–7 45141 Essen Germany
| |
Collapse
|
21
|
Nazish M, Siddiqui MM, Kumar Sarkar S, Münch A, Legendre CM, Herbst‐Irmer R, Stalke D, Roesky HW. Synthesis and Coordination Behavior of a New Hybrid Bidentate Ligand with Phosphine and Silylene Donors. Chemistry 2021; 27:1744-1752. [PMID: 33022783 PMCID: PMC7898821 DOI: 10.1002/chem.202003513] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/17/2020] [Indexed: 01/10/2023]
Abstract
This work describes the synthesis and coordination behavior of a new mixed-donor ligand PhC(NtBu)2 SiC6 H4 PPh2 (1) containing both silylene and phosphine donor sites. Ligand 1 was synthesized from a reaction of ortho-lithiated diphenylphosphinobenzene (LiC6 H4 PPh2 ) with chlorosilylene (PhC(NtBu)2 SiCl). Treatment of 1 with Se and GeCl2 resulted in SiIV compounds 2 and 3 by selective oxidation of the silylene donor. This strong σ-donor ligand induces dissociation of CuCl and PhBCl2 leading to formation of ionic complexes 4 and 5 respectively. The reaction of 1 with ZnCl2 and AlCl3 resulted in the formation of chelate complexes 5 and 7, respectively, while treatment with EtAlCl2 and GaCl3 forms monodentate complexes 8 and 9. X-ray analysis of 4 showed that the copper is in the spiro center of the two five-membered rings. Moreover, the copper(I)chloride has not been oxidized but dissociates to Cu+ and [CuCl2 ]- . All the compounds are well characterized by mass spectrometry, elemental analysis, NMR spectroscopy, and single-crystal X-ray diffraction studies.
Collapse
Affiliation(s)
- Mohd Nazish
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | - Mujahuddin M. Siddiqui
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | - Samir Kumar Sarkar
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | - Annika Münch
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | - Christina M. Legendre
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | - Regine Herbst‐Irmer
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | - Dietmar Stalke
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | - Herbert W. Roesky
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| |
Collapse
|
22
|
Kulkarni A, Arumugam S, Francis M, Reddy PG, Nag E, Gorantla SMNVT, Mondal KC, Roy S. Solid-State Isolation of Cyclic Alkyl(Amino) Carbene (cAAC)-Supported Structurally Diverse Alkali Metal-Phosphinidenides. Chemistry 2020; 27:200-206. [PMID: 32810317 DOI: 10.1002/chem.202003505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/12/2020] [Indexed: 01/09/2023]
Abstract
Cyclic alkyl(amino) carbene (cAAC)-supported, structurally diverse alkali metal-phosphinidenides 2-5 of general formula ((cAAC)P-M)n (THF)x [2: M=K, n=2, x=4; 3: M=K, n=6, x=2; 4: M=K, n=4, x=4; 5: M=Na, n=3, x=1] have been synthesized by the reduction of cAAC-stabilized chloro-phosphinidene cAAC=P-Cl (1) utilizing metallic K or KC8 and Na-naphthalenide as reducing agents. Complexes 2-5 have been structurally characterized in solid state by NMR studies and single crystal X-ray diffraction. The proposed mechanism for the electron transfer process has been well-supported by cyclic voltammetry (CV) studies and Density Functional Theory (DFT) calculations. The solid state oligomerization process has been observed to be largely dependent on the ionic radii of alkali metal ions, steric bulk of cAAC ligands and solvation/de-solvation/recombination of the dimeric unit [(cAAC)P-M(THF)x ]2 .
Collapse
Affiliation(s)
- Aditya Kulkarni
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Selvakumar Arumugam
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Maria Francis
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Pulikanti Guruprasad Reddy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Ekta Nag
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | | | - Kartik Chandra Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Sudipta Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| |
Collapse
|
23
|
Agarwal A, Bose SK. Bonding Relationship between Silicon and Germanium with Group 13 and Heavier Elements of Groups 14-16. Chem Asian J 2020; 15:3784-3806. [PMID: 33006219 DOI: 10.1002/asia.202001043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Indexed: 11/10/2022]
Abstract
The topic of heavier main group compounds possessing multiple bonds is the subject of momentous interest in modern organometallic chemistry. Importantly, there is an excitement involving the discovery of unprecedented compounds with unique bonding modes. The research in this area is still expanding, particularly the reactivity aspects of these compounds. This article aims to describe the overall developments reported on the stable derivatives of silicon and germanium involved in multiple bond formation with other group 13, and heavier groups 14, 15, and 16 elements. The synthetic strategies, structural features, and their reactivity towards different nucleophiles, unsaturated organic substrates, and in small molecule activation are discussed. Further, their physical and chemical properties are described based on their spectroscopic and theoretical studies.
Collapse
Affiliation(s)
- Abhishek Agarwal
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University) Jain Global Campus, Bangalore, 562112, India
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University) Jain Global Campus, Bangalore, 562112, India
| |
Collapse
|
24
|
Kundu S. Pincer-Type Ligand-Assisted Catalysis and Small-Molecule Activation by non-VSEPR Main-Group Compounds. Chem Asian J 2020; 15:3209-3224. [PMID: 32794320 DOI: 10.1002/asia.202000800] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/11/2020] [Indexed: 12/21/2022]
Abstract
In 2005, a facile dihydrogen activation was reported by the Power group using an alkyne analog of germanium [ArGe≡GeAr; Ar=2,6-Trip2 -C6 H3 (Trip=2,4,6-i Pr3 -C6 H2 )]. After that, a significant progress has been made in the activation of various small molecules by main-group compounds, and a variety of stoichiometric and catalytic processes have been formulated using the p-block elements. In this regard, compounds containing low-valent main-group elements with a frontier orbitals of relatively small energy gaps or compounds forming frustrated Lewis pair (FLP) became quite successful. In spite of these promising stoichiometric and catalytic transformations, redox-cycling catalysts based on main-group elements remain extremely rare. Recently, it has been observed that pincer type ligands supported geometry constrained main-group compounds are capable of acting as redox catalysts similar to those of the transition metals. In this review, we focus on the synthesis and the structural aspects of the geometry constrained main-group compounds using pincer ligands. Emphasis has been placed on their applications on catalytic activity and small molecules activation.
Collapse
Affiliation(s)
- Subrata Kundu
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
25
|
Yang MC, Su MD. A theoretical study of the reactivity of ethene and benzophenone with a hyper-coordinated alkene containing a so-called E=E (E = C, Si, Ge, Sn, and Pb) unit. Dalton Trans 2020; 49:12842-12853. [PMID: 32902537 DOI: 10.1039/d0dt01914c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity of a reported hyper-coordinated alkene (Rea-E; Rea = reactant; E = group 14 element) featuring a central E[double bond, length as m-dash]E moiety was theoretically analyzed using DFT (density functional theory) and the EDA-NOCV (energy decomposition analysis-natural orbitals for chemical valence) method. M06-2X/def2-SVP and B3LYP-D3/def2-SVP results demonstrate that five Rea-E molecules have an energy minimum as their structures have no imaginary frequency. Theoretical examinations based on three types of bond order calculations (Wiberg, Mayer, and Fuzzy), the LOL (localized orbital locator) analyses, Lewis structures and the NBO (natural bond orbital) analyses suggest that a very weak central Si-Si single bond and an extremely weak central Ge-Ge single bond, rather than a double bond, are present in the Rea-Si and Rea-Ge molecules, respectively. On the other hand, no bond is found between the two central group 14 atoms in Rea-C, Rea-Sn, and Rea-Pb. The theoretical investigation demonstrates that the reactivity of the Rea-E compound decreases in the order Rea-Si > Rea-Ge > Rea-C, a trend that results from the differences in the atomic radii of the group 14 elements. Carbon has the smallest atomic radius in the group 14 family, causing steric crowding between Rea-C and other attacking species. This circumstance, in turn, increases the activation energies of its addition reactions and renders these reactions energetically infeasible. For the cyclic product of Rea-Ge, the theoretical evidence reveals that the comparatively large atomic radius of Ge induces the weakest Pauli repulsions and the smallest overlap integrals between Rea-Ge and the other doubly bonded molecules. This situation, in turn, makes the overall cyclization reaction of Rea-Ge endothermic. As a result, only the silicon-centered molecule, Rea-Si, can undergo the [2 + 2] cycloaddition reactions with doubly bonded molecules without kinetic or thermodynamic difficulty, which agrees well with the available experimental findings.
Collapse
Affiliation(s)
- Ming-Chung Yang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan and Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
26
|
Liu Y, Keil H, Yang Z, Herbst‐Irmer R, Roesky HW, Stalke D. Phosphorus Silicon Compounds from the Reduction of MesP(H)SiCl
2
Ph/Carbene with and without Metal. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yashuai Liu
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
- School of Chemistry and Chemical Engineering Beijing Institute of Technology 102488 Beijing P. R. China
| | - Helena Keil
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Zhi Yang
- School of Chemistry and Chemical Engineering Beijing Institute of Technology 102488 Beijing P. R. China
| | - Regine Herbst‐Irmer
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Herbert W. Roesky
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Dietmar Stalke
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
27
|
Yang MC, Su MD. A mechanistic study of the activation of small molecules (H 2 and C 2H 2) by group 14 analogues of selenophene. NEW J CHEM 2020. [DOI: 10.1039/d0nj01077d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the reactivity influenced by group 14 elements (E = C, Si, Ge, Sn, and Pb), which are used as substituents in heterocyclic five-membered rings, was theoretically examined by using density functional theory (B3PW91/def2-SVP).
Collapse
Affiliation(s)
- Ming-Chung Yang
- Department of Applied Chemistry
- National Chiayi University
- Chiayi 60004
- Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry
- National Chiayi University
- Chiayi 60004
- Taiwan
- Department of Medicinal and Applied Chemistry
| |
Collapse
|
28
|
Nesterov V, Baierl R, Hanusch F, Ferao AE, Inoue S. N-Heterocyclic Carbene-Stabilized Germanium and Tin Analogues of Heavier Nitriles: Synthesis, Reactivity, and Catalytic Application. J Am Chem Soc 2019; 141:14576-14580. [DOI: 10.1021/jacs.9b08741] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Vitaly Nesterov
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Ramona Baierl
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Franziska Hanusch
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Arturo Espinosa Ferao
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| |
Collapse
|
29
|
Sinhababu S, Siddiqui MM, Sarkar SK, Münch A, Herbst‐Irmer R, George A, Parameswaran P, Stalke D, Roesky HW. Treatment of Silylene-Phosphinidene with Chalcogens Resulted Exclusively in the Formation of Silicon-Bonded Chalcogens. Chemistry 2019; 25:11422-11426. [PMID: 31282057 PMCID: PMC6771779 DOI: 10.1002/chem.201902661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Indexed: 11/12/2022]
Abstract
Chalcogen-bonded silicon phosphinidenes LSi(E)-P-Me cAAC (E=S (1); Se (2); Te (3); L=PhC(NtBu)2 ; Me cAAC=C(CH2 )(CMe2 )2 N-2,6-iPr2 C6 H3 )) were synthesized from the reactions of silylene-phosphinidene LSi-P-Me cAAC (A) with elemental chalcogens. All the compounds reported herein have been characterized by multinuclear NMR, elemental analyses, LIFDI-MS, and single-crystal X-ray diffraction techniques. Furthermore, the regeneration of silylene-phosphinidene (A) was achieved from the reactions of 2-3 with L'Al (L'=HC{(CMe)(2,6-iPr2 C6 H3 N)}2 ). Theoretical studies on chalcogen-bonded silicon phosphinidenes indicate that the Si-E (E=S, Se, Te) bond can be best represented as charge-separated electron-sharing σ-bonding interaction between [LSi-P-Me cAAC]+ and E- . The partial double-bond character of Si-E is attributed to significant hyperconjugative donation from the lone pair on E- to the Si-N and Si-P σ*-molecular orbitals.
Collapse
Affiliation(s)
- Soumen Sinhababu
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077 GöttingenGermany
| | - Mujahuddin M. Siddiqui
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077 GöttingenGermany
| | - Samir Kumar Sarkar
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077 GöttingenGermany
| | - Annika Münch
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077 GöttingenGermany
| | - Regine Herbst‐Irmer
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077 GöttingenGermany
| | - Anjana George
- Department of ChemistryNational Institute of Technology CalicutNIT Campus P.O., Kozhikode673601KeralaIndia
| | - Pattiyil Parameswaran
- Department of ChemistryNational Institute of Technology CalicutNIT Campus P.O., Kozhikode673601KeralaIndia
| | - Dietmar Stalke
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077 GöttingenGermany
| | - Herbert W. Roesky
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077 GöttingenGermany
| |
Collapse
|
30
|
Li W, Kundu S, Köhler C, Li J, Dutta S, Yang Z, Stalke D, Herbst-Irmer R, Stückl AC, Schwederski B, Koley D, Kaim W, Roesky HW. Cyclic Alkyl(amino) Carbene-Stabilized Monoradicals of Organosilicon(IV) Compounds with Small Substituents. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Wenling Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Subrata Kundu
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Christian Köhler
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Jiancheng Li
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Sayan Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - Zhi Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - A. Claudia Stückl
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Brigitte Schwederski
- Institut für Anorganische Chemie, Universität Stuttgart, 70569 Stuttgart, Germany
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - Wolfgang Kaim
- Institut für Anorganische Chemie, Universität Stuttgart, 70569 Stuttgart, Germany
| | - Herbert W. Roesky
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| |
Collapse
|
31
|
Li W, Köhler C, Yang Z, Stalke D, Herbst-Irmer R, Roesky HW. Synthesis of Cyclic Alkyl(amino) Carbene Stabilized Silylenes with Small N-Donating Substituents. Chemistry 2019; 25:1193-1197. [PMID: 30444550 DOI: 10.1002/chem.201805267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/12/2018] [Indexed: 11/09/2022]
Abstract
Lewis base cAACs stabilized monomeric silylenes with halogen or methyl substituents at the silicon center have not been reported due to the strong σ-donor and π-acceptor character of cAAC. To prepare these monomeric silylenes, we used the silicon(IV) precursors 5 and 6 with a nitrogen donor group L (L=o-C6 H4 NMe2 ). The cAAC-stabilized (cAAC=C(CH2 )(CMe2 )2 N-Ar, Ar=2,6-iPr2 C6 H3 ) silylenes LSiCl(cAAC) (7) and LSiMe(cAAC) (8) were synthesized by reduction of LSiCl3 and LSiMeCl2 with two equivalents of KC8 in the presence of one equivalent of cAAC, respectively. Compounds 7 and 8 were characterized by single-crystal X-ray crystallography, NMR spectroscopy, and elemental analysis. Compounds 7 and 8 are stable in the solid state as well as in solution at room temperature for at least four months under inert conditions.
Collapse
Affiliation(s)
- Wenling Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China.,Institute of Inorganic Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Christian Köhler
- Institute of Inorganic Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Zhi Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Dietmar Stalke
- Institute of Inorganic Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Regine Herbst-Irmer
- Institute of Inorganic Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Herbert W Roesky
- Institute of Inorganic Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| |
Collapse
|
32
|
Yang MC, Su MD. Theoretical investigations of the reactivity of neutral molecules that feature an MM (M = B, Al, Ga, In, and Tl) double bond. NEW J CHEM 2019. [DOI: 10.1039/c9nj01294j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The geometry, the electronic structure and the reactivity of compounds that feature a central MM (M = group 13 element) double bond with two sterically bulky ligands (L1 = tBu2MeSi and L2 = NHCiPr), L1L2MML1L2 (Rea-MM) are studied at the B3LYP-D3(BJ)/def2-SVP level of theory.
Collapse
Affiliation(s)
- Ming-Chung Yang
- Department of Applied Chemistry, National Chiayi University
- Chiayi 60004
- Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University
- Chiayi 60004
- Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University
- Kaohsiung 80708
| |
Collapse
|
33
|
Chu X, Song C, Yang Y, Zeng X. Oxidation of a phosphinidene oxide: formation of a dioxaphosphirane oxide with oxygen scrambling. Chem Commun (Camb) 2018; 55:245-248. [PMID: 30534675 DOI: 10.1039/c8cc08945k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidation of a prototypical phosphinidene oxide FP[double bond, length as m-dash]O has been studied in O2-doped Ar and N2 matrices at 10 K. Upon 266 nm laser irradiation, FP[double bond, length as m-dash]O combines with O2 and yields the cyclic peroxide, dioxaphosphirane oxide FP([double bond, length as m-dash]O)(O2). Unexpected oxygen scrambling occurs during the oxygenation as evidenced by the observation of a 1 : 2 mixture of FP([double bond, length as m-dash]16O)(18O18O) and FP([double bond, length as m-dash]18O)(16O18O) when 18O2 was used. Quantum chemical calculations suggest that the scrambling happens via the intermediacy of the low-lying triplet FPO3 by passing minimum energy crossing points (MECPs). In addition, inorganic dioxophosphorane FP([double bond, length as m-dash]O)2 has been also identified among the oxidation products of FP[double bond, length as m-dash]O.
Collapse
Affiliation(s)
- Xianxu Chu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | | | | | | |
Collapse
|
34
|
Doddi A, Bockfeld D, Tamm M. Synthesis and Structures of RhI
and IrI
Complexes Supported by N-Heterocyclic Carbene-Phosphinidene Adducts. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Adinarayana Doddi
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Dirk Bockfeld
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
35
|
Chu X, Yang Y, Lu B, Wu Z, Qian W, Song C, Xu X, Abe M, Zeng X. Methoxyphosphinidene and Isomeric Methylphosphinidene Oxide. J Am Chem Soc 2018; 140:13604-13608. [PMID: 30301345 DOI: 10.1021/jacs.8b09201] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A rare oxyphosphinidene (Me-OP) has been generated in the triplet ground state through either photolysis (266 nm) or flash-vacuum pyrolysis (FVP, 700 °C) of methoxydiazidophosphine MeOP(N3)2. Upon ArF laser irradiation (193 nm), an unprecedented isomerization from Me-OP to the long-sought methylphosphinidene oxide (Me-PO) occurs in cryogenic Ne- and N2-matrices. Alternatively, the latter can be efficiently generated through photolysis (193 nm) or FVP (ca. 700 °C) of methylphosphoryl diazide MeP(O)(N3)2, in which the elusive nitrene intermediate MeP(O)(N3)N in the triplet ground state has been also observed by IR (with 15N-labeling) and EPR (| D/ hc| = 1.545 cm-1 and | E/ hc| = 0.003 95 cm-1) spectroscopy.
Collapse
Affiliation(s)
- Xianxu Chu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Yang Yang
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Bo Lu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Zhuang Wu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Weiyu Qian
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Chao Song
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Xinfang Xu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science , Hiroshima University , 1-3-1 Kagamiyama , Higashihiroshima , Hiroshima 739-8526 , Japan
| | - Xiaoqing Zeng
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| |
Collapse
|
36
|
Siddiqui MM, Sinhababu S, Dutta S, Kundu S, Ruth PN, Münch A, Herbst‐Irmer R, Stalke D, Koley D, Roesky HW. Silanylidene and Germanylidene Anions: Valence‐Isoelectronic Species to the Well‐Studied Phosphinidene. Angew Chem Int Ed Engl 2018; 57:11776-11780. [DOI: 10.1002/anie.201805936] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/03/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Mujahuddin M. Siddiqui
- Institut für Anorganische ChemieUniversität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Soumen Sinhababu
- Institut für Anorganische ChemieUniversität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Sayan Dutta
- Department of Chemical SciencesIISER Kolkata Mohanpur 741 246 India
| | - Subrata Kundu
- Institut für Anorganische ChemieUniversität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Paul Niklas Ruth
- Institut für Anorganische ChemieUniversität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Annika Münch
- Institut für Anorganische ChemieUniversität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Regine Herbst‐Irmer
- Institut für Anorganische ChemieUniversität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Dietmar Stalke
- Institut für Anorganische ChemieUniversität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Debasis Koley
- Department of Chemical SciencesIISER Kolkata Mohanpur 741 246 India
| | - Herbert W. Roesky
- Institut für Anorganische ChemieUniversität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
37
|
Siddiqui MM, Sinhababu S, Dutta S, Kundu S, Ruth PN, Münch A, Herbst-Irmer R, Stalke D, Koley D, Roesky HW. Silanylidene and Germanylidene Anions: Valence-Isoelectronic Species to the Well-Studied Phosphinidene. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mujahuddin M. Siddiqui
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Soumen Sinhababu
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Sayan Dutta
- Department of Chemical Sciences; IISER Kolkata; Mohanpur 741 246 India
| | - Subrata Kundu
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Paul Niklas Ruth
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Annika Münch
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Debasis Koley
- Department of Chemical Sciences; IISER Kolkata; Mohanpur 741 246 India
| | - Herbert W. Roesky
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
38
|
Kundu S, Sinhababu S, Siddiqui MM, Luebben AV, Dittrich B, Yang T, Frenking G, Roesky HW. Comparison of Two Phosphinidenes Binding to Silicon(IV)dichloride as well as to Silylene. J Am Chem Soc 2018; 140:9409-9412. [PMID: 30011193 DOI: 10.1021/jacs.8b06230] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyclic alkyl(amino) carbene (cAAC) anchored silylene with two phosphinidenes was isolated as (cAAC)Si{P(cAAC)}2 (3) at room temperature, which was synthesized from the reduction of (Cl2)Si{P(cAAC)}2 (2) using 2 equiv of KC8. Compound 2 resulted from the reaction of 2 equiv of (cAAC)PK (1) with 1 equiv of SiCl4. Compounds 2 and 3 are the first examples where two terminal phosphinidenes are binding each to a silicon center characterized by single crystal X-ray structural analysis. Furthermore, the structure and bonding of compounds 2 and 3 have been investigated by theoretical methods for comparison.
Collapse
Affiliation(s)
- Subrata Kundu
- Institut für Anorganische Chemie , Universität Göttingen , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Soumen Sinhababu
- Institut für Anorganische Chemie , Universität Göttingen , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Mujahuddin M Siddiqui
- Institut für Anorganische Chemie , Universität Göttingen , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Anna V Luebben
- Institut für Anorganische Chemie , Universität Göttingen , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Birger Dittrich
- Anorganische und Strukturchemie II , Heinrich Heine-Universität Düsseldorf , Gebäude 26.42.01.21, Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| | - Tao Yang
- Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerweinstrasse 4 , 35032 Marburg , Germany
| | - Gernot Frenking
- Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerweinstrasse 4 , 35032 Marburg , Germany
| | - Herbert W Roesky
- Institut für Anorganische Chemie , Universität Göttingen , Tammannstrasse 4 , D-37077 Göttingen , Germany
| |
Collapse
|
39
|
Nesterov V, Reiter D, Bag P, Frisch P, Holzner R, Porzelt A, Inoue S. NHCs in Main Group Chemistry. Chem Rev 2018; 118:9678-9842. [PMID: 29969239 DOI: 10.1021/acs.chemrev.8b00079] [Citation(s) in RCA: 547] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since the discovery of the first stable N-heterocyclic carbene (NHC) in the beginning of the 1990s, these divalent carbon species have become a common and available class of compounds, which have found numerous applications in academic and industrial research. Their important role as two-electron donor ligands, especially in transition metal chemistry and catalysis, is difficult to overestimate. In the past decade, there has been tremendous research attention given to the chemistry of low-coordinate main group element compounds. Significant progress has been achieved in stabilization and isolation of such species as Lewis acid/base adducts with highly tunable NHC ligands. This has allowed investigation of numerous novel types of compounds with unique electronic structures and opened new opportunities in the rational design of novel organic catalysts and materials. This Review gives a general overview of this research, basic synthetic approaches, key features of NHC-main group element adducts, and might be useful for the broad research community.
Collapse
Affiliation(s)
- Vitaly Nesterov
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Dominik Reiter
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Prasenjit Bag
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Philipp Frisch
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Richard Holzner
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Amelie Porzelt
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| |
Collapse
|
40
|
Krachko T, Slootweg JC. N-Heterocyclic Carbene-Phosphinidene Adducts: Synthesis, Properties, and Applications. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800459] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tetiana Krachko
- Van ‘t Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904, PO Box 94157 1090 GD Amsterdam The Netherlands
| | - J. Chris Slootweg
- Van ‘t Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904, PO Box 94157 1090 GD Amsterdam The Netherlands
| |
Collapse
|
41
|
Guang J, Duwald R, Maddaluno J, Oulyadi H, Lakhdar S, Gaumont AC, Harrison-Marchand A. Synthesis and Identification of Aryl and Alkyl Gem-Dilithium Phosphido-Boranes: A Boost to the Chemistry of Phosphandiides. Chemistry 2018. [PMID: 29533492 DOI: 10.1002/chem.201800742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jie Guang
- Normandie Université, UNIROUEN, INSA de Rouen, CNRS; Laboratoire COBRA (UMR 6014 & FR 3038); 76000 Rouen France
| | - Romain Duwald
- Normandie Université, UNIROUEN, INSA de Rouen, CNRS; Laboratoire COBRA (UMR 6014 & FR 3038); 76000 Rouen France
| | - Jacques Maddaluno
- Normandie Université, UNIROUEN, INSA de Rouen, CNRS; Laboratoire COBRA (UMR 6014 & FR 3038); 76000 Rouen France
| | - Hassan Oulyadi
- Normandie Université, UNIROUEN, INSA de Rouen, CNRS; Laboratoire COBRA (UMR 6014 & FR 3038); 76000 Rouen France
| | - Sami Lakhdar
- Normandie Université, ENSICAEN, UNICAEN, CNRS; Laboratoire LCMT (UMR 6507 & FR 3038); 14000 Caen France
| | - Annie-Claude Gaumont
- Normandie Université, ENSICAEN, UNICAEN, CNRS; Laboratoire LCMT (UMR 6507 & FR 3038); 14000 Caen France
| | - Anne Harrison-Marchand
- Normandie Université, UNIROUEN, INSA de Rouen, CNRS; Laboratoire COBRA (UMR 6014 & FR 3038); 76000 Rouen France
| |
Collapse
|
42
|
Sinhababu S, Kundu S, Paesch AN, Herbst-Irmer R, Stalke D, Fernández I, Frenking G, Stückl AC, Schwederski B, Kaim W, Roesky HW. A Route to Base Coordinate Silicon Difluoride and the Silicon Trifluoride Radical. Chemistry 2018; 24:1264-1268. [DOI: 10.1002/chem.201705773] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Soumen Sinhababu
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Subrata Kundu
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Alexander N. Paesch
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro, de Innovación en Química Avanzada; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Gernot Frenking
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Strasse 35032 Marburg Germany
- Institute of Advanced Synthesis; School of Chemistry and Molecular Engineering; Jiangsu National Synergetic Innovation Center for Advanced Materials; Nanjing Tech University; Nanjing P.R. China
| | - A. Claudia Stückl
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Brigitte Schwederski
- Universität Stuttgart; Institut für Anorganische Chemie; Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Wolfgang Kaim
- Universität Stuttgart; Institut für Anorganische Chemie; Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Herbert W. Roesky
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
43
|
Xiong Y, Yao S, Kostenko A, Driess M. An isolable β-diketiminato chlorosilylene. Dalton Trans 2018; 47:2152-2155. [DOI: 10.1039/c8dt00121a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The first β-diketiminate ligated chlorosilylene has been synthesised and isolated from the corresponding β-diketiminato dichlorohydrosilane through dehydrochlorination with an N-heterocyclic carbene.
Collapse
Affiliation(s)
- Yun Xiong
- Technische Universität Berlin
- Department of Chemistry: Metalorganics and Inorganic Materials
- D-10623 Berlin
- Germany
| | - Shenglai Yao
- Technische Universität Berlin
- Department of Chemistry: Metalorganics and Inorganic Materials
- D-10623 Berlin
- Germany
| | - Arseni Kostenko
- Technische Universität Berlin
- Department of Chemistry: Metalorganics and Inorganic Materials
- D-10623 Berlin
- Germany
| | - Matthias Driess
- Technische Universität Berlin
- Department of Chemistry: Metalorganics and Inorganic Materials
- D-10623 Berlin
- Germany
| |
Collapse
|
44
|
Kundu S, Sinhababu S, Luebben AV, Mondal T, Koley D, Dittrich B, Roesky HW. Reagent for Introducing Base-Stabilized Phosphorus Atoms into Organic and Inorganic Compounds. J Am Chem Soc 2017; 140:151-154. [DOI: 10.1021/jacs.7b11977] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Subrata Kundu
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Soumen Sinhababu
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Anna V. Luebben
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Totan Mondal
- Department
of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - Debasis Koley
- Department
of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - Birger Dittrich
- Anorganische
und Strukturchemie II, Heinrich Heine-Universität Düsseldorf, Gebäude
26.42.01.21, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Herbert W. Roesky
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077 Göttingen, Germany
| |
Collapse
|
45
|
Dostál L. Quest for stable or masked pnictinidenes: Emerging and exciting class of group 15 compounds. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.10.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Mandal D, Dolai R, Chrysochos N, Kalita P, Kumar R, Dhara D, Maiti A, Narayanan RS, Rajaraman G, Schulzke C, Chandrasekhar V, Jana A. Stepwise Reversible Oxidation of N-Peralkyl-Substituted NHC–CAAC Derived Triazaalkenes: Isolation of Radical Cations and Dications. Org Lett 2017; 19:5605-5608. [DOI: 10.1021/acs.orglett.7b02721] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debdeep Mandal
- TIFR Centre for Interdisciplinary Sciences Hyderabad, 21, Brundavan Colony, Narsingi, Hyderabad 500075, India
| | - Ramapada Dolai
- TIFR Centre for Interdisciplinary Sciences Hyderabad, 21, Brundavan Colony, Narsingi, Hyderabad 500075, India
| | - Nicolas Chrysochos
- Institut
für Biochemie, Ernst-Moritz-Arndt Universität Greifswald, Felix-Hausdorff-Straße 4, D-17487 Greifswald, Germany
| | - Pankaj Kalita
- School
of Chemical Sciences, National Institute of Science Education and Research, Bhimpur-Padampur, Jatni, Khurda, Bhubaneswar 752050, Odisha, India
| | - Ravi Kumar
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Dhara
- TIFR Centre for Interdisciplinary Sciences Hyderabad, 21, Brundavan Colony, Narsingi, Hyderabad 500075, India
| | - Avijit Maiti
- TIFR Centre for Interdisciplinary Sciences Hyderabad, 21, Brundavan Colony, Narsingi, Hyderabad 500075, India
| | | | - Gopalan Rajaraman
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Carola Schulzke
- Institut
für Biochemie, Ernst-Moritz-Arndt Universität Greifswald, Felix-Hausdorff-Straße 4, D-17487 Greifswald, Germany
| | - Vadapalli Chandrasekhar
- TIFR Centre for Interdisciplinary Sciences Hyderabad, 21, Brundavan Colony, Narsingi, Hyderabad 500075, India
- Department
of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Anukul Jana
- TIFR Centre for Interdisciplinary Sciences Hyderabad, 21, Brundavan Colony, Narsingi, Hyderabad 500075, India
| |
Collapse
|
47
|
Barozzino-Consiglio G, Hamdoun G, Fressigné C, Harrison-Marchand A, Maddaluno J, Oulyadi H. A Combined 1
H/6
Li NMR DOSY Strategy Finally Uncovers the Structure of Isopropyllithium in THF. Chemistry 2017; 23:12475-12479. [DOI: 10.1002/chem.201702990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 11/09/2022]
Affiliation(s)
| | - Ghanem Hamdoun
- Normandie Université, UNIROUEN, INSA de Rouen, CNRS; Laboratoire COBRA (UMR 6014 & FR 3038); 76000 Rouen France
| | - Catherine Fressigné
- Normandie Université, UNIROUEN, INSA de Rouen, CNRS; Laboratoire COBRA (UMR 6014 & FR 3038); 76000 Rouen France
| | - Anne Harrison-Marchand
- Normandie Université, UNIROUEN, INSA de Rouen, CNRS; Laboratoire COBRA (UMR 6014 & FR 3038); 76000 Rouen France
| | - Jacques Maddaluno
- Normandie Université, UNIROUEN, INSA de Rouen, CNRS; Laboratoire COBRA (UMR 6014 & FR 3038); 76000 Rouen France
| | - Hassan Oulyadi
- Normandie Université, UNIROUEN, INSA de Rouen, CNRS; Laboratoire COBRA (UMR 6014 & FR 3038); 76000 Rouen France
| |
Collapse
|
48
|
Roy S, Mondal KC, Kundu S, Li B, Schürmann CJ, Dutta S, Koley D, Herbst-Irmer R, Stalke D, Roesky HW. Two Structurally Characterized Conformational Isomers with Different C−P Bonds. Chemistry 2017. [DOI: 10.1002/chem.201702870] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sudipta Roy
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
- Dept. of Chemistry; IISER Tirupati; Karakambadi Road 517507 Tirupati, Andhra Pradesh India
| | - Kartik Chandra Mondal
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
- IIT Madras; Chennai India
| | - Subrata Kundu
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Bin Li
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Christian J. Schürmann
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Sayan Dutta
- Dept. of Chemical Sciences; IISER Kolkata; Mohanpur 741246 India
| | - Debasis Koley
- Dept. of Chemical Sciences; IISER Kolkata; Mohanpur 741246 India
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| | - Herbert W. Roesky
- Institut für Anorganische Chemie; Universität Göttingen; Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
49
|
Nesterov V, Breit NC, Inoue S. Advances in Phosphasilene Chemistry. Chemistry 2017; 23:12014-12039. [DOI: 10.1002/chem.201700829] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Vitaly Nesterov
- Department of Chemistry; Institute of Silicon Chemistry and Catalysis Research Center Technische Universität München; Lichtenbergstr. 4 85748 Garching Germany
| | - Nora C. Breit
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 115 10623 Berlin Germany
| | - Shigeyoshi Inoue
- Department of Chemistry; Institute of Silicon Chemistry and Catalysis Research Center Technische Universität München; Lichtenbergstr. 4 85748 Garching Germany
| |
Collapse
|
50
|
Yao S, Grossheim Y, Kostenko A, Ballestero-Martínez E, Schutte S, Bispinghoff M, Grützmacher H, Driess M. Facile Access to NaOC≡As and Its Use as an Arsenic Source To Form Germylidenylarsinidene Complexes. Angew Chem Int Ed Engl 2017; 56:7465-7469. [DOI: 10.1002/anie.201703731] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/28/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Shenglai Yao
- Department of Chemistry: Metalorganics and Inorganic Materials; Technische Universität Berlin; Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Yves Grossheim
- Department of Chemistry: Metalorganics and Inorganic Materials; Technische Universität Berlin; Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Arseni Kostenko
- Department of Chemistry: Metalorganics and Inorganic Materials; Technische Universität Berlin; Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Ernesto Ballestero-Martínez
- Department of Chemistry: Metalorganics and Inorganic Materials; Technische Universität Berlin; Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Stefan Schutte
- Department of Chemistry: Metalorganics and Inorganic Materials; Technische Universität Berlin; Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Mark Bispinghoff
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir-Prelog Weg 1, Hönggerberg 8093 Zürich Switzerland
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir-Prelog Weg 1, Hönggerberg 8093 Zürich Switzerland
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials; Technische Universität Berlin; Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| |
Collapse
|