1
|
Deamer D. Perspective: Protocells and the Path to Minimal Life. J Mol Evol 2024; 92:530-538. [PMID: 39230713 PMCID: PMC11458682 DOI: 10.1007/s00239-024-10197-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
The path to minimal life involves a series of stages that can be understood in terms of incremental, stepwise additions of complexity ranging from simple solutions of organic compounds to systems of encapsulated polymers capable of capturing nutrients and energy to grow and reproduce. This brief review will describe the initial stages that lead to populations of protocells capable of undergoing selection and evolution. The stages incorporate knowledge of chemical and physical properties of organic compounds, self-assembly of membranous compartments, non-enzymatic polymerization of amino acids and nucleotides followed by encapsulation of polymers to produce protocell populations. The results are based on laboratory simulations related to cyclic hydrothermal conditions on the prebiotic Earth. The final portion of the review looks ahead to what remains to be discovered about this process in order to understand the evolutionary path to minimal life.
Collapse
Affiliation(s)
- David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
2
|
Wang Y, Wang H, Wang S, Fang Y. Carbon- and Nitrogen-Based Complexes as Photocatalysts for Prebiotic and Oxygen Chemistry during Earth Evolution. Angew Chem Int Ed Engl 2024:e202413768. [PMID: 39238431 DOI: 10.1002/anie.202413768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
Sunlight has long served as primary energy source on our planet, shaping the behavior of living organisms. Extensive research has been dedicated to unraveling the evolutionary pathways involved. When the formation of Earth atmosphere, it primarily consisted of small gas molecules, which are considered crucial for the emergence of life. Recent demonstrations have shown that these molecules can also be transformed into semiconductors, with the potential to harness solar energy and catalyze chemical reactions as photocatalysts. Building upon this research, this minireview focuses on the potential revolutionary impact of photocatalysis on Earth. Initially, it examines key reactions, such as the formation of prebiotic molecules and the oxygen evolution reaction via water oxidation. Additionally, various C-N complexes in photocatalysts are explored, showcasing their roles in catalyzing chemical reactions. The conclusion and outlook provide a potential pathway for the evolution of Earth, shedding light on the significance of metal-free photocatalysts in development of Earth.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Huan Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
- Sino-UK International joint Laboratory on photocatalysis for clean energy and advanced chemicals & Materials, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
3
|
Robinson JD, Sammons SR, O'Flaherty DK. Preparation of 2-Aminoimidazole-Activated Substrates for the Study of Nonenzymatic Genome Replication. Curr Protoc 2024; 4:e1119. [PMID: 39183585 DOI: 10.1002/cpz1.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Nonenzymatic genome replication is thought to be an important process for primitive lifeforms, but this has yet to be demonstrated experimentally. Recent studies on the nonenzymatic primer extension mechanism mediated by nucleoside 5'-monophosphates (NMPs) activated with 2-aminoimidazole have revealed that imidazolium-bridged dinucleotide intermediates (N*N) account for the majority of the chemical copying process. As a result, an efficacious synthetic pathway for producing substrates activated with an imidazoyl moiety is desirable. This article provides a detailed protocol for the standard dehydrative redox reaction between NMPs and 2-aminoimidazole to produce nucleotide phosphoroimidazolides. In addition, we describe a similar synthetic pathway to produce N*N in high yields for homodimers. Finally, a simple reversed-phase cation exchange step is described to increase NMP solubility, which significantly increases yields for certain substrates. This approach allows for an efficient and cost-effective methodology to prepare high-quality substrates utilized in origins-of-life studies. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Synthesis of 2-aminoimidazolephosphoroimidazolide-activated cytidine Basic Protocol 2: Synthesis of 2-aminoimidazolium-bridged dicytidyl intermediate Basic Protocol 3: Cation exchange of guanosine 5'-monophosphate disodium salt Alternate Protocol: Synthesis of cytidine 5'-phosphoroimidazolide or 2-aminoimidazolium-bridged dicytidyl from cytidine 5'-monophosphate disodium salt.
Collapse
Affiliation(s)
- James D Robinson
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | - Scott R Sammons
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
4
|
Jia X, Fang Z, Kim SC, Ding D, Zhou L, Szostak JW. Diaminopurine in Nonenzymatic RNA Template Copying. J Am Chem Soc 2024; 146:15897-15907. [PMID: 38818863 PMCID: PMC11177312 DOI: 10.1021/jacs.4c02560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
In the RNA World before the emergence of an RNA polymerase, nonenzymatic template copying would have been essential for the transmission of genetic information. However, the products of chemical copying with the canonical nucleotides (A, U, C, and G) are heavily biased toward the incorporation of G and C, which form a more stable base pair than A and U. We therefore asked whether replacing adenine (A) with diaminopurine (D) might lead to more efficient and less biased nonenzymatic template copying by making a stronger version of the A:U pair. As expected, primer extension substrates containing D bound to U in the template more tightly than substrates containing A. However, primer extension with D exhibited elevated reaction rates on a C template, leading to concerns about fidelity. Our crystallographic studies revealed the nature of the D:C mismatch by showing that D can form a wobble-type base pair with C. We then asked whether competition with G would decrease the mismatched primer extension. We performed nonenzymatic primer extension with all four activated nucleotides on randomized RNA templates containing all four letters and used deep sequencing to analyze the products. We found that the DUCG genetic system exhibited a more even product distribution and a lower mismatch frequency than the canonical AUCG system. Furthermore, primer extension is greatly reduced following all mismatches, including the D:C mismatch. Our study suggests that D deserves further attention for its possible role in the RNA World and as a potentially useful component of artificial nonenzymatic RNA replication systems.
Collapse
Affiliation(s)
- Xiwen Jia
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Howard
Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ziyuan Fang
- Howard
Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Seohyun Chris Kim
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department
of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Dian Ding
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Lijun Zhou
- Department
of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn
Institute
for RNA Innovation, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jack W. Szostak
- Howard
Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Vela-Gallego S, Lewandowski B, Möhler J, Puente A, Gil-Cantero D, Wennemers H, de la Escosura A. Modifying the Catalytic Activity of Lipopeptide Assemblies with Nucleobases. Chemistry 2024; 30:e202303395. [PMID: 37877614 DOI: 10.1002/chem.202303395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 10/26/2023]
Abstract
Biohybrid catalysts that operate in aqueous media are intriguing for systems chemistry. In this paper, we investigate whether control over the self-assembly of biohybrid catalysts can tune their properties. As a model, we use the catalytic activity of functional hybrid molecules consisting of a catalytic H-dPro-Pro-Glu tripeptide, derivatized with fatty acid and nucleobase moieties. This combination of simple biological components merged the catalytic properties of the peptide with the self-assembly of the lipid, and the structural ordering of the nucleobases. The biomolecule hybrids self-assemble in aqueous media into fibrillar assemblies and catalyze the reaction between butanal and nitrostyrene. The interactions between the nucleobases enhanced the order of the supramolecular structures and affected their catalytic activity and stereoselectivity. The results point to the significant control and ordering that nucleobases can provide in the self-assembly of biologically inspired supramolecular catalysts.
Collapse
Affiliation(s)
- Sonia Vela-Gallego
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain
| | - Bartosz Lewandowski
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Jasper Möhler
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Alonso Puente
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain
| | - David Gil-Cantero
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología / CSIC, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Helma Wennemers
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain
- Institute for Advanced Research in Chemistry (IAdChem), Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
6
|
Dantsu Y, Zhang Y, Zhang W. Insight into the structures of unusual base pairs in RNA complexes containing a primer/template/adenosine ligand. RSC Chem Biol 2023; 4:942-951. [PMID: 37920395 PMCID: PMC10619131 DOI: 10.1039/d3cb00137g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/29/2023] [Indexed: 11/04/2023] Open
Abstract
In the prebiotic RNA world, the self-replication of RNA without enzymes can be achieved through the utilization of 2-aminoimidazole activated nucleotides as efficient substrates. The mechanism of RNA nonenzymatic polymerization has been extensively investigated biophysically and structurally by using the model of an RNA primer/template complex which is bound by the imidazolium-bridged or triphosphate-bridged diguanosine intermediate. However, beyond the realm of the guanosine substrate, the structural insight into how alternative activated nucleotides bind and interact with the RNA primer/template complex remains unexplored, which is important for understanding the low reactivity of adenosine and uridine substrates in RNA primer extension, as well as its relationship with the structures. Here we use crystallography as a method and determine a series of high-resolution structures of RNA primer/template complexes bound by ApppG, a close analog of the dinucleotide intermediate containing adenosine and guanosine. The structures show that ApppG ligands bind to the RNA template through both Watson-Crick and noncanonical base pairs, with the primer 3'-OH group far from the adjacent phosphorus atom of the incoming substrate. The structures indicate that when adenosine is included in the imidazolium-bridged intermediate, the complexes are likely preorganized in a suboptimal conformation, making it difficult for the primer to in-line attack the substrate. Moreover, by co-crystallizing the RNA primer/template with chemically activated adenosine and guanosine monomers, we successfully observe the slow formation of the imidazolium-bridged intermediate (Ap-AI-pG) and the preorganized structure for RNA primer extension. Overall, our studies offer a structural explanation for the slow rate of RNA primer extension when using adenosine-5'-phosphoro-2-aminoimidazolide as a substrate during nonenzymatic polymerization.
Collapse
Affiliation(s)
- Yuliya Dantsu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Indianapolis IN 46202 USA
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Indianapolis IN 46202 USA
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Indianapolis IN 46202 USA
| |
Collapse
|
7
|
Nogal N, Sanz-Sánchez M, Vela-Gallego S, Ruiz-Mirazo K, de la Escosura A. The protometabolic nature of prebiotic chemistry. Chem Soc Rev 2023; 52:7359-7388. [PMID: 37855729 PMCID: PMC10614573 DOI: 10.1039/d3cs00594a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 10/20/2023]
Abstract
The field of prebiotic chemistry has been dedicated over decades to finding abiotic routes towards the molecular components of life. There is nowadays a handful of prebiotically plausible scenarios that enable the laboratory synthesis of most amino acids, fatty acids, simple sugars, nucleotides and core metabolites of extant living organisms. The major bottleneck then seems to be the self-organization of those building blocks into systems that can self-sustain. The purpose of this tutorial review is having a close look, guided by experimental research, into the main synthetic pathways of prebiotic chemistry, suggesting how they could be wired through common intermediates and catalytic cycles, as well as how recursively changing conditions could help them engage in self-organized and dissipative networks/assemblies (i.e., systems that consume chemical or physical energy from their environment to maintain their internal organization in a dynamic steady state out of equilibrium). In the article we also pay attention to the implications of this view for the emergence of homochirality. The revealed connectivity between those prebiotic routes should constitute the basis for a robust research program towards the bottom-up implementation of protometabolic systems, taken as a central part of the origins-of-life problem. In addition, this approach should foster further exploration of control mechanisms to tame the combinatorial explosion that typically occurs in mixtures of various reactive precursors, thus regulating the functional integration of their respective chemistries into self-sustaining protocellular assemblies.
Collapse
Affiliation(s)
- Noemí Nogal
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Marcos Sanz-Sánchez
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Sonia Vela-Gallego
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Kepa Ruiz-Mirazo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
- Department of Philosophy, University of the Basque Country, Leioa, Spain
| | - Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemistry (IAdChem), Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
8
|
Welsch F, Kervio E, Tremmel P, Richert C. Prolinyl Nucleotides Drive Enzyme-Free Genetic Copying of RNA. Angew Chem Int Ed Engl 2023; 62:e202307591. [PMID: 37382466 DOI: 10.1002/anie.202307591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
Proline is one of the proteinogenic amino acids. It is found in all kingdoms of life. It also has remarkable activity as an organocatalyst and is of structural importance in many folded polypeptides. Here, we show that prolinyl nucleotides with a phosphoramidate linkage are active building blocks in enzyme- and ribozyme-free copying of RNA in the presence of monosubstituted imidazoles as organocatalysts. Both dinucleotides and mononucleotides are incorporated at the terminus of RNA primers in aqueous buffer, as instructed by the template sequence, in up to eight consecutive extension steps. Our results show that condensation products of amino acids and ribonucleotides can act like nucleoside triphosphates in media devoid of enzymes or ribozymes. Prolinyl nucleotides are metastable building blocks, readily activated by catalysts, helping to explain why the combination of α-amino acids and nucleic acids was selected in molecular evolution.
Collapse
Affiliation(s)
- Franziska Welsch
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Eric Kervio
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Peter Tremmel
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
9
|
Nair KS, Bajaj H. Advances in giant unilamellar vesicle preparation techniques and applications. Adv Colloid Interface Sci 2023; 318:102935. [PMID: 37320960 DOI: 10.1016/j.cis.2023.102935] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Giant unilamellar vesicles (GUVs) are versatile and promising cell-sized bio-membrane mimetic platforms. Their applications range from understanding and quantifying membrane biophysical processes to acting as elementary blocks in the bottom-up assembly of synthetic cells. Definite properties and requisite goals in GUVs are dictated by the preparation techniques critical to the success of their applications. Here, we review key advances in giant unilamellar vesicle preparation techniques and discuss their formation mechanisms. Developments in lipid hydration and emulsion techniques for GUV preparation are described. Novel microfluidic-based techniques involving lipid or surfactant-stabilized emulsions are outlined. GUV immobilization strategies are summarized, including gravity-based settling, covalent linking, and immobilization by microfluidic, electric, and magnetic barriers. Moreover, some of the key applications of GUVs as biomimetic and synthetic cell platforms during the last decade have been identified. Membrane interface processes like phase separation, membrane protein reconstitution, and membrane bending have been deciphered using GUVs. In addition, vesicles are also employed as building blocks to construct synthetic cells with defined cell-like functions comprising compartments, metabolic reactors, and abilities to grow and divide. We critically discuss the pros and cons of preparation technologies and the properties they confer to the GUVs and identify potential techniques for dedicated applications.
Collapse
Affiliation(s)
- Karthika S Nair
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India.
| |
Collapse
|
10
|
Martins-Costa MTC, Ruiz-López MF. Electrostatics and Chemical Reactivity at the Air-Water Interface. J Am Chem Soc 2023; 145:1400-1406. [PMID: 36622259 DOI: 10.1021/jacs.2c12089] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It has been recently discovered that chemical reactions at aqueous interfaces can be orders of magnitude faster compared to conventional bulk phase reactions, but despite its wide-ranging implications, which extend from atmospheric to synthetic chemistry or technological applications, the phenomenon is still incompletely understood. The role of strong electric fields due to space asymmetry and the accumulation of ions at the interface has been claimed as a possible cause from some experiments, but the reorganization of the solvent around the reactive system should provide even greater additional electrostatic contributions that have not yet been analyzed. In this study, with the help of first-principles molecular dynamics simulations, we go deeper into this issue by a careful assessment of solvation electrostatics at the air-water interface. Our simulations confirm that electrostatic forces can indeed be a key factor in rate acceleration compared to bulk solution. Remarkably, the study reveals that the effect cannot simply be attributed to the magnitude of the local electric field and that the fluctuations of the full electrostatic potential resulting from unique dynamical behavior of the solvation shells at the interface must be accounted for. This finding paves the way for future applications of the phenomenon in organic synthesis, especially for charge transfer or redox reactions in thin films and microdroplets.
Collapse
Affiliation(s)
- Marilia T C Martins-Costa
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - Manuel F Ruiz-López
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
11
|
A liquid crystal world for the origins of life. Emerg Top Life Sci 2022; 6:557-569. [PMID: 36373852 DOI: 10.1042/etls20220081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
Nucleic acids (NAs) in modern biology accomplish a variety of tasks, and the emergence of primitive nucleic acids is broadly recognized as a crucial step for the emergence of life. While modern NAs have been optimized by evolution to accomplish various biological functions, such as catalysis or transmission of genetic information, primitive NAs could have emerged and been selected based on more rudimental chemical-physical properties, such as their propensity to self-assemble into supramolecular structures. One such supramolecular structure available to primitive NAs are liquid crystal (LC) phases, which are the outcome of the collective behavior of short DNA or RNA oligomers or monomers that self-assemble into linear aggregates by combinations of pairing and stacking. Formation of NA LCs could have provided many essential advantages for a primitive evolving system, including the selection of potential genetic polymers based on structure, protection by compartmentalization, elongation, and recombination by enhanced abiotic ligation. Here, we review recent studies on NA LC assembly, structure, and functions with potential prebiotic relevance. Finally, we discuss environmental or geological conditions on early Earth that could have promoted (or inhibited) primitive NA LC formation and highlight future investigation axes essential to further understanding of how LCs could have contributed to the emergence of life.
Collapse
|
12
|
Rhys NH. Exploring the realm of soft matter biophysics: an early career perspective. Emerg Top Life Sci 2022; 6:ETLS20220110. [PMID: 36541191 DOI: 10.1042/etls20220110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
This special issue of Emerging Topics in Life Sciences presents a selection of reviews that give insight into the vast array of research taking place in the fields of soft matter and biophysics, and where these two intersect. The reviews here cover the full range from the fundamentals of how biological systems may have assembled to how we can use this insight to develop and exploit new biomaterials for the future, all informed through the lens of the physical sciences. This issue has been both written and edited by early career researchers, highlighting the cutting-edge contributions that this generation of researchers is bringing to the field.
Collapse
Affiliation(s)
- Natasha H Rhys
- Department of Physics, King's College London, London WC2R 2LS, U.K
| |
Collapse
|
13
|
Abstract
Viruses are the most abundant biological entities on Earth, and yet, they have not received enough consideration in astrobiology. Viruses are also extraordinarily diverse, which is evident in the types of relationships they establish with their host, their strategies to store and replicate their genetic information and the enormous diversity of genes they contain. A viral population, especially if it corresponds to a virus with an RNA genome, can contain an array of sequence variants that greatly exceeds what is present in most cell populations. The fact that viruses always need cellular resources to multiply means that they establish very close interactions with cells. Although in the short term these relationships may appear to be negative for life, it is evident that they can be beneficial in the long term. Viruses are one of the most powerful selective pressures that exist, accelerating the evolution of defense mechanisms in the cellular world. They can also exchange genetic material with the host during the infection process, providing organisms with capacities that favor the colonization of new ecological niches or confer an advantage over competitors, just to cite a few examples. In addition, viruses have a relevant participation in the biogeochemical cycles of our planet, contributing to the recycling of the matter necessary for the maintenance of life. Therefore, although viruses have traditionally been excluded from the tree of life, the structure of this tree is largely the result of the interactions that have been established throughout the intertwined history of the cellular and the viral worlds. We do not know how other possible biospheres outside our planet could be, but it is clear that viruses play an essential role in the terrestrial one. Therefore, they must be taken into account both to improve our understanding of life that we know, and to understand other possible lives that might exist in the cosmos.
Collapse
Affiliation(s)
- Ignacio de la Higuera
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, OR, United States
| | - Ester Lázaro
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz, Spain
| |
Collapse
|
14
|
Strom KR, Szostak JW. Folding and Duplex Formation in Sequence-Defined Aniline Benzaldehyde Oligoarylacetylenes. J Am Chem Soc 2022; 144:18350-18358. [PMID: 36174969 PMCID: PMC9562438 DOI: 10.1021/jacs.2c06268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In all known genetic
polymers, molecular recognition
via hydrogen
bonding between complementary subunits underpins their ability to
encode and transmit information, to form sequence-defined duplexes,
and to fold into catalytically active forms. Reversible covalent interactions
between complementary subunits provide a different way to encode information,
and potentially function, in sequence-defined oligomers. Here, we
examine six oligoarylacetylene trimers composed of aniline and benzaldehyde
subunits. Four of these trimers self-pair to form two-rung duplex
structures, and two form macrocyclic 1,3-folded structures. The equilibrium
proportions of these structures can be driven to favor each of the
observed structures almost entirely depending upon the concentration
of trimers and an acid catalyst. Quenching the acidic trimer solutions
with an organic base kinetically traps all species such that they
can be isolated and characterized. Mixtures of complementary trimers
form exclusively sequence-specific 3-rung duplexes. Our results suggest
that reversible covalent bonds could in principle guide the formation
of more complex folded conformations of longer oligomers.
Collapse
Affiliation(s)
- Kyle R Strom
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| |
Collapse
|
15
|
Vela-Gallego S, Pardo-Botero Z, Moya C, de la Escosura A. Collective adaptability in a replication network of minimal nucleobase sequences. Chem Sci 2022; 13:10715-10724. [PMID: 36320689 PMCID: PMC9491195 DOI: 10.1039/d2sc02419e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/05/2022] [Indexed: 12/05/2022] Open
Abstract
A major challenge for understanding the origins of life is to explore how replication networks can engage in an evolutionary process. Herein, we shed light on this problem by implementing a network constituted by two different types of extremely simple biological components: the amino acid cysteine and the canonical nucleobases adenine and thymine, connected through amide bonds to the cysteine amino group and oxidation of its thiol into three possible disulfides. Supramolecular and kinetic analyses revealed that both self- and mutual interactions between such dinucleobase compounds drive their assembly and replication pathways. Those pathways involving sequence complementarity led to enhanced replication rates, suggesting a potential bias for selection. The interplay of synergistic dynamics and competition between replicators was then simulated, under conditions that are not easily accessible with experiments, in an open reactor parametrized and constrained with the unprecedentedly complete experimental kinetic data obtained for our replicative network. Interestingly, the simulations show bistability, as a selective amplification of different species depending on the initial mixture composition. Overall, this network configuration can favor a collective adaptability to changes in the availability of feedstock molecules, with disulfide exchange reactions serving as 'wires' that connect the different individual auto- and cross-catalytic pathways.
Collapse
Affiliation(s)
- Sonia Vela-Gallego
- Department of Organic Chemistry, Universidad Autónoma de Madrid Campus de Cantoblanco 28049 Madrid Spain
| | | | - Cristian Moya
- Department of Organic Chemistry, Universidad Autónoma de Madrid Campus de Cantoblanco 28049 Madrid Spain
| | - Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma de Madrid Campus de Cantoblanco 28049 Madrid Spain
- Institute for Advanced Research in Chemistry (IAdChem) Cantoblanco 28049 Madrid Spain
| |
Collapse
|
16
|
Brady MP, Tostevin R, Tosca NJ. Marine phosphate availability and the chemical origins of life on Earth. Nat Commun 2022; 13:5162. [PMID: 36056017 PMCID: PMC9440033 DOI: 10.1038/s41467-022-32815-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Prebiotic systems chemistry suggests that high phosphate concentrations were necessary to synthesise molecular building blocks and sustain primitive cellular systems. However, current understanding of mineral solubility predicts negligible phosphate concentrations for most natural waters, yet the role of Fe2+, ubiquitous on early Earth, is poorly quantified. Here we determine the solubility of Fe(II)-phosphate in synthetic seawater as a function of pH and ionic strength, integrate these observations into a thermodynamic model that predicts phosphate concentrations across a range of aquatic conditions, and validate these predictions against modern anoxic sediment pore waters. Experiments and models show that Fe2+ significantly increases the solubility of all phosphate minerals in anoxic systems, suggesting that Hadean and Archean seawater featured phosphate concentrations ~103–104 times higher than currently estimated. This suggests that seawater readily met the phosphorus requirements of emergent cellular systems and early microbial life, perhaps fueling primary production during the advent of oxygenic photosynthesis. Phosphate is critical for all life on Earth but its origins have remained enigmatic. Experiments indicate that phosphate may have been abundant in ancient Fe-rich seawater, providing a crucial ingredient for the origins of life on Earth.
Collapse
Affiliation(s)
- Matthew P Brady
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Rosalie Tostevin
- Department of Geological Sciences, University of Cape Town, Cape Town, 7700, South Africa
| | - Nicholas J Tosca
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK.
| |
Collapse
|
17
|
Imai M, Sakuma Y, Kurisu M, Walde P. From vesicles toward protocells and minimal cells. SOFT MATTER 2022; 18:4823-4849. [PMID: 35722879 DOI: 10.1039/d1sm01695d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In contrast to ordinary condensed matter systems, "living systems" are unique. They are based on molecular compartments that reproduce themselves through (i) an uptake of ingredients and energy from the environment, and (ii) spatially and timely coordinated internal chemical transformations. These occur on the basis of instructions encoded in information molecules (DNAs). Life originated on Earth about 4 billion years ago as self-organised systems of inorganic compounds and organic molecules including macromolecules (e.g. nucleic acids and proteins) and low molar mass amphiphiles (lipids). Before the first living systems emerged from non-living forms of matter, functional molecules and dynamic molecular assemblies must have been formed as prebiotic soft matter systems. These hypothetical cell-like compartment systems often are called "protocells". Other systems that are considered as bridging units between non-living and living systems are called "minimal cells". They are synthetic, autonomous and sustainable reproducing compartment systems, but their constituents are not limited to prebiotic substances. In this review, we focus on both membrane-bounded (vesicular) protocells and minimal cells, and provide a membrane physics background which helps to understand how morphological transformations of vesicle systems might have happened and how vesicle reproduction might be coupled with metabolic reactions and information molecules. This research, which bridges matter and life, is a great challenge in which soft matter physics, systems chemistry, and synthetic biology must take joined efforts to better understand how the transformation of protocells into living systems might have occurred at the origin of life.
Collapse
Affiliation(s)
- Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Yuka Sakuma
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Minoru Kurisu
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| |
Collapse
|
18
|
Whitaker D, Powner MW. Prebiotic synthesis and triphosphorylation of 3'-amino-TNA nucleosides. Nat Chem 2022; 14:766-774. [PMID: 35778563 DOI: 10.1038/s41557-022-00982-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Nucleosides are essential to the emergence of life, and so their synthesis is a key challenge for prebiotic chemistry. Although amino-nucleosides have enhanced reactivity in water compared with ribonucleosides, they are assumed to be prebiotically irrelevant due to perceived difficulties with their selective formation. Here we demonstrate that 3'-amino-TNA nucleosides (TNA, threose nucleic acid) are formed diastereoselectively and regiospecifically from prebiotic feedstocks in four high-yielding steps. Phosphate provides an unexpected resolution, leading to spontaneous purification of the genetically relevant threo-isomer. Furthermore, 3'-amino-TNA nucleosides are shown to be phosphorylated directly in water, under mild conditions with cyclic trimetaphosphate, forming a nucleoside triphosphate (NTP) in a manner not feasible for canonical nucleosides. Our results suggest 3'-amino-TNA nucleosides may have been present on the early Earth, and the ease with which these NTPs form, alongside the inherent selectivity for the Watson-Crick base-pairing threo-monomer, warrants further study of the role they could play during the emergence of life.
Collapse
Affiliation(s)
- Daniel Whitaker
- Department of Chemistry, University College London, London, UK
| | | |
Collapse
|
19
|
Carr CE. Resolving the History of Life on Earth by Seeking Life As We Know It on Mars. ASTROBIOLOGY 2022; 22:880-888. [PMID: 35467949 PMCID: PMC9298492 DOI: 10.1089/ast.2021.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
An origin of Earth life on Mars would resolve significant inconsistencies between the inferred history of life and Earth's geologic history. Life as we know it utilizes amino acids, nucleic acids, and lipids for the metabolic, informational, and compartment-forming subsystems of a cell. Such building blocks may have formed simultaneously from cyanosulfidic chemical precursors in a planetary surface scenario involving ultraviolet light, wet-dry cycling, and volcanism. On the inferred water world of early Earth, such an origin would have been limited to volcanic island hotspots. A cyanosulfidic origin of life could have taken place on Mars via photoredox chemistry, facilitated by orders-of-magnitude more sub-aerial crust than early Earth, and an earlier transition to oxidative conditions that could have been involved in final fixation of the genetic code. Meteoritic bombardment may have generated transient habitable environments and ejected and transferred life to Earth. Ongoing and future missions to Mars offer an unprecedented opportunity to confirm or refute evidence consistent with a cyanosulfidic origin of life on Mars, search for evidence of ancient life, and constrain the evolution of Mars' oxidation state over time. We should seek to prove or refute a martian origin for life on Earth alongside other possibilities.
Collapse
Affiliation(s)
- Christopher E. Carr
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Address correspondence to: Christopher E. Carr, ESM Building, Room G10, 620 Cherry St NW, Atlanta, GA 30332, USA
| |
Collapse
|
20
|
Gözen I, Köksal ES, Põldsalu I, Xue L, Spustova K, Pedrueza-Villalmanzo E, Ryskulov R, Meng F, Jesorka A. Protocells: Milestones and Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106624. [PMID: 35322554 DOI: 10.1002/smll.202106624] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The origin of life is still one of humankind's great mysteries. At the transition between nonliving and living matter, protocells, initially featureless aggregates of abiotic matter, gain the structure and functions necessary to fulfill the criteria of life. Research addressing protocells as a central element in this transition is diverse and increasingly interdisciplinary. The authors review current protocell concepts and research directions, address milestones, challenges and existing hypotheses in the context of conditions on the early Earth, and provide a concise overview of current protocell research methods.
Collapse
Affiliation(s)
- Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Elif Senem Köksal
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Inga Põldsalu
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Lin Xue
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Karolina Spustova
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Esteban Pedrueza-Villalmanzo
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- Department of Physics, University of Gothenburg, Universitetsplatsen 1, Gothenburg, 40530, Sweden
| | - Ruslan Ryskulov
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Fanda Meng
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Aldo Jesorka
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| |
Collapse
|
21
|
Guindani C, da Silva LC, Cao S, Ivanov T, Landfester K. Synthetic Cells: From Simple Bio-Inspired Modules to Sophisticated Integrated Systems. Angew Chem Int Ed Engl 2022; 61:e202110855. [PMID: 34856047 PMCID: PMC9314110 DOI: 10.1002/anie.202110855] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/08/2021] [Indexed: 12/01/2022]
Abstract
Bottom-up synthetic biology is the science of building systems that mimic the structure and function of living cells from scratch. To do this, researchers combine tools from chemistry, materials science, and biochemistry to develop functional and structural building blocks to construct synthetic cell-like systems. The many strategies and materials that have been developed in recent decades have enabled scientists to engineer synthetic cells and organelles that mimic the essential functions and behaviors of natural cells. Examples include synthetic cells that can synthesize their own ATP using light, maintain metabolic reactions through enzymatic networks, perform gene replication, and even grow and divide. In this Review, we discuss recent developments in the design and construction of synthetic cells and organelles using the bottom-up approach. Our goal is to present representative synthetic cells of increasing complexity as well as strategies for solving distinct challenges in bottom-up synthetic biology.
Collapse
Affiliation(s)
- Camila Guindani
- Chemical Engineering ProgramCOPPEFederal University of Rio de Janeiro, PEQ/COPPE/UFRJ, CEP 21941-972Rio de JaneiroRJBrazil
| | - Lucas Caire da Silva
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Shoupeng Cao
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Tsvetomir Ivanov
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Katharina Landfester
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
22
|
RNA World Modeling: A Comparison of Two Complementary Approaches. ENTROPY 2022; 24:e24040536. [PMID: 35455198 PMCID: PMC9027272 DOI: 10.3390/e24040536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Despite years of dedicated research, scientists are still not sure what the first ”living” cell would have looked like. One of the most well-known hypotheses is the RNA world hypothesis, which assumes that, in the beginning, life relied on RNA molecules instead of DNA as information carriers and primitive enzymes. The population of such RNAs is made up of self-replicating molecules (replicases) that could make copies of themselves and parasite molecules that could only be copied by replicases. In this study, we further investigated the interplay between these hypothetical prebiotic RNA species, since it plays a crucial role in generating diversity and complexity in prebiotic molecular evolution. We compared two approaches that are commonly used to investigate such simple prebiotic systems, representing different modeling and observation scales—namely, microscopic and macroscopic. In both cases, we were able to obtain consistent results. Abstract The origin of life remains one of the major scientific questions in modern biology. Among many hypotheses aiming to explain how life on Earth started, RNA world is probably the most extensively studied. It assumes that, in the very beginning, RNA molecules served as both enzymes and as genetic information carriers. However, even if this is true, there are many questions that still need to be answered—for example, whether the population of such molecules could achieve stability and retain genetic information for many generations, which is necessary in order for evolution to start. In this paper, we try to answer this question based on the parasite–replicase model (RP model), which divides RNA molecules into enzymes (RNA replicases) capable of catalyzing replication and parasites that do not possess replicase activity but can be replicated by RNA replicases. We describe the aforementioned system using partial differential equations and, based on the analysis of the simulation, surmise general rules governing its evolution. We also compare this approach with one where the RP system is modeled and implemented using a multi-agent modeling technique. We show that approaching the description and analysis of the RP system from different perspectives (microscopic represented by MAS and macroscopic depicted by PDE) provides consistent results. Therefore, applying MAS does not lead to erroneous results and allows us to study more complex situations where many cases are concerned, which would not be possible through the PDE model.
Collapse
|
23
|
Göppel T, Rosenberger JH, Altaner B, Gerland U. Thermodynamic and Kinetic Sequence Selection in Enzyme-Free Polymer Self-Assembly Inside a Non-Equilibrium RNA Reactor. Life (Basel) 2022; 12:life12040567. [PMID: 35455058 PMCID: PMC9032526 DOI: 10.3390/life12040567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
The RNA world is one of the principal hypotheses to explain the emergence of living systems on the prebiotic Earth. It posits that RNA oligonucleotides acted as both carriers of information as well as catalytic molecules, promoting their own replication. However, it does not explain the origin of the catalytic RNA molecules. How could the transition from a pre-RNA to an RNA world occur? A starting point to answer this question is to analyze the dynamics in sequence space on the lowest level, where mononucleotide and short oligonucleotides come together and collectively evolve into larger molecules. To this end, we study the sequence-dependent self-assembly of polymers from a random initial pool of short building blocks via templated ligation. Templated ligation requires two strands that are hybridized adjacently on a third strand. The thermodynamic stability of such a configuration crucially depends on the sequence context and, therefore, significantly influences the ligation probability. However, the sequence context also has a kinetic effect, since non-complementary nucleotide pairs in the vicinity of the ligation site stall the ligation reaction. These sequence-dependent thermodynamic and kinetic effects are explicitly included in our stochastic model. Using this model, we investigate the system-level dynamics inside a non-equilibrium ‘RNA reactor’ enabling a fast chemical activation of the termini of interacting oligomers. Moreover, the RNA reactor subjects the oligomer pool to periodic temperature changes inducing the reshuffling of the system. The binding stability of strands typically grows with the number of complementary nucleotides forming the hybridization site. While shorter strands unbind spontaneously during the cold phase, larger complexes only disassemble during the temperature peaks. Inside the RNA reactor, strand growth is balanced by cleavage via hydrolysis, such that the oligomer pool eventually reaches a non-equilibrium stationary state characterized by its length and sequence distribution. How do motif-dependent energy and stalling parameters affect the sequence composition of the pool of long strands? As a critical factor for self-enhancing sequence selection, we identify kinetic stalling due to non-complementary base pairs at the ligation site. Kinetic stalling enables cascades of self-amplification that result in a strong reduction of occupied states in sequence space. Moreover, we discuss the significance of the symmetry breaking for the transition from a pre-RNA to an RNA world.
Collapse
|
24
|
Li L, Fang Y, Xia Y, Bo C, Fan Y. Monosaccharides driving the formation of conjugated linoleic acid vesicles in near-neutral solutions via weak noncovalent bonding interactions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Guindani C, Silva LC, Cao S, Ivanov T, Landfester K. Synthetic Cells: From Simple Bio‐Inspired Modules to Sophisticated Integrated Systems. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Camila Guindani
- Chemical Engineering Program COPPE Federal University of Rio de Janeiro, PEQ/COPPE/UFRJ, CEP 21941-972 Rio de Janeiro RJ Brazil
| | - Lucas Caire Silva
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Shoupeng Cao
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Tsvetomir Ivanov
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Katharina Landfester
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
26
|
Jia TZ, Nishikawa S, Fujishima K. Sequencing the Origins of Life. BBA ADVANCES 2022; 2:100049. [PMID: 37082609 PMCID: PMC10074849 DOI: 10.1016/j.bbadva.2022.100049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/10/2023] Open
Abstract
One goal of origins of life research is to understand how primitive informational and catalytic biopolymers emerged and evolved. Recently, a number of sequencing techniques have been applied to analysis of replicating and evolving primitive biopolymer systems, providing a sequence-specific and high-resolution view of primitive chemical processes. Here, we review application of sequencing techniques to analysis of synthetic and primitive nucleic acids and polypeptides. This includes next-generation sequencing of primitive polymerization and evolution processes, followed by discussion of other novel biochemical techniques that could contribute to sequence analysis of primitive biopolymer driven chemical systems. Further application of sequencing to origins of life research, perhaps as a life detection technology, could provide insight into the origin and evolution of informational and catalytic biopolymers on early Earth or elsewhere.
Collapse
Affiliation(s)
- Tony Z. Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Blue Marble Space Institute of Science, 600 1st Ave, Floor 1, Seattle, WA 98104, USA
- Corresponding author
| | - Shota Nishikawa
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa-shi, Kanagawa 252-0882, Japan
| |
Collapse
|
27
|
Han J, Kervio E, Richert C. High Fidelity Enzyme-Free Primer Extension with an Ethynylpyridone Thymidine Analog. Chemistry 2021; 27:15918-15921. [PMID: 34559417 PMCID: PMC9293356 DOI: 10.1002/chem.202102996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/07/2022]
Abstract
High fidelity base pairing is important for the transmission of genetic information. Weak base pairs can lower fidelity, complicating sequencing, amplification and replication of DNA. Thymidine 5'-monophosphate (TMP) is the most weakly pairing nucleotide among the canonical deoxynucleotides, causing high errors rates in enzyme-free primer extension. Here we report the synthesis of an ethynylpyridone C-nucleoside analog of 3'-amino-2',3'-dideoxythymidine monophosphate and its incorporation in a growing strand by enzyme-free primer extension. The ethynylpyridone C-nucleotide accelerates extension more than five-fold, reduces misincorporation and readily displaces TMP in competition experiments. The results bode well for the use of the C-nucleoside as replacements for thymidine in practical applications.
Collapse
Affiliation(s)
- Jianyang Han
- Institut für Organische ChemieUniversität Stuttgart70569StuttgartGermany
| | - Eric Kervio
- Institut für Organische ChemieUniversität Stuttgart70569StuttgartGermany
| | - Clemens Richert
- Institut für Organische ChemieUniversität Stuttgart70569StuttgartGermany
| |
Collapse
|
28
|
Domingo E, García-Crespo C, Lobo-Vega R, Perales C. Mutation Rates, Mutation Frequencies, and Proofreading-Repair Activities in RNA Virus Genetics. Viruses 2021; 13:1882. [PMID: 34578463 PMCID: PMC8473064 DOI: 10.3390/v13091882] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022] Open
Abstract
The error rate displayed during template copying to produce viral RNA progeny is a biologically relevant parameter of the replication complexes of viruses. It has consequences for virus-host interactions, and it represents the first step in the diversification of viruses in nature. Measurements during infections and with purified viral polymerases indicate that mutation rates for RNA viruses are in the range of 10-3 to 10-6 copying errors per nucleotide incorporated into the nascent RNA product. Although viruses are thought to exploit high error rates for adaptation to changing environments, some of them possess misincorporation correcting activities. One of them is a proofreading-repair 3' to 5' exonuclease present in coronaviruses that may decrease the error rate during replication. Here we review experimental evidence and models of information maintenance that explain why elevated mutation rates have been preserved during the evolution of RNA (and some DNA) viruses. The models also offer an interpretation of why error correction mechanisms have evolved to maintain the stability of genetic information carried out by large viral RNA genomes such as the coronaviruses.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Rebeca Lobo-Vega
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain;
| | - Celia Perales
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain;
| |
Collapse
|
29
|
Cruz-Rosas HI, Miramontes P. Spatial Information in the Emergence of Life. Front Genet 2021; 12:672780. [PMID: 34567060 PMCID: PMC8458620 DOI: 10.3389/fgene.2021.672780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Information in living systems is part of a complex relationship between the internal organization and functionality of life. In a cell, both genetic-coding sequences and molecular-shape recognition are sources of biological information. For folded polymers, its spatial arrangement contains general references about conditions that shaped them, as imprints, defining the data for spatial (conformational) information. Considering the origin of life problem, prebiotic dynamics of matching and transfer of molecular shapes may emerge as a flow of information in prebiotic assemblages. The property of carrying information in molecular conformations is only displayed at this system organization level. Accordingly, spatial information is a resource for active system responses toward milieu disturbances. Propagation of resilient conformations could be the substrate for structural maintenance through dynamical molecular scaffolding. The above is a basis for adaptive behavior in potentially biogenic systems. Starting from non-structured populations of carrying-information polymers, in the present contribution, we advance toward an entire theoretical framework considering the active role of these polymers to support the emergence of adaptive response in systems that manage conformational information flow. We discuss this scenario as a previous step for the arising of sequential information carried out by genetic polymers.
Collapse
Affiliation(s)
- Hugo I. Cruz-Rosas
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Pedro Miramontes
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
30
|
Tauber C, Wamser R, Arkona C, Tügend M, Abdul Aziz UB, Pach S, Schulz R, Jochmans D, Wolber G, Neyts J, Rademann J. Chemische Evolution antiviraler Wirkstoffe gegen Enterovirus D68 durch Proteintemplat‐gesteuerte Knoevenagelreaktionen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Carolin Tauber
- Fachbereich Biologie, Chemie and Pharmazie Institut für Pharmazie Medizinische Chemie Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Deutschland
| | - Rebekka Wamser
- Fachbereich Biologie, Chemie and Pharmazie Institut für Pharmazie Medizinische Chemie Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Deutschland
| | - Christoph Arkona
- Fachbereich Biologie, Chemie and Pharmazie Institut für Pharmazie Medizinische Chemie Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Deutschland
| | - Marisa Tügend
- Fachbereich Biologie, Chemie and Pharmazie Institut für Pharmazie Medizinische Chemie Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Deutschland
| | - Umer Bin Abdul Aziz
- Fachbereich Biologie, Chemie and Pharmazie Institut für Pharmazie Medizinische Chemie Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Deutschland
| | - Szymon Pach
- Fachbereich Biologie, Chemie and Pharmazie Institut für Pharmazie Medizinische Chemie Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Deutschland
| | - Robert Schulz
- Fachbereich Biologie, Chemie and Pharmazie Institut für Pharmazie Medizinische Chemie Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Deutschland
| | - Dirk Jochmans
- Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgien
| | - Gerhard Wolber
- Fachbereich Biologie, Chemie and Pharmazie Institut für Pharmazie Medizinische Chemie Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Deutschland
| | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgien
| | - Jörg Rademann
- Fachbereich Biologie, Chemie and Pharmazie Institut für Pharmazie Medizinische Chemie Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Deutschland
| |
Collapse
|
31
|
Tauber C, Wamser R, Arkona C, Tügend M, Abdul Aziz UB, Pach S, Schulz R, Jochmans D, Wolber G, Neyts J, Rademann J. Chemical Evolution of Antivirals Against Enterovirus D68 through Protein-Templated Knoevenagel Reactions. Angew Chem Int Ed Engl 2021; 60:13294-13301. [PMID: 33749121 PMCID: PMC8252737 DOI: 10.1002/anie.202102074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 02/06/2023]
Abstract
The generation of bioactive molecules from inactive precursors is a crucial step in the chemical evolution of life, however, mechanistic insights into this aspect of abiogenesis are scarce. Here, we investigate the protein-catalyzed formation of antivirals by the 3C-protease of enterovirus D68. The enzyme induces aldol condensations yielding inhibitors with antiviral activity in cells. Kinetic and thermodynamic analyses reveal that the bioactivity emerges from a dynamic reaction system including inhibitor formation, alkylation of the protein target by the inhibitors, and competitive addition of non-protein nucleophiles to the inhibitors. The most active antivirals are slowly reversible inhibitors with elongated target residence times. The study reveals first examples for the chemical evolution of bio-actives through protein-catalyzed, non-enzymatic C-C couplings. The discovered mechanism works under physiological conditions and might constitute a native process of drug development.
Collapse
Affiliation(s)
- Carolin Tauber
- Department of Biology, Chemistry and PharmacyInstitute of PharmacyMedicinal ChemistryFreie Universität BerlinKönigin-Luise-Str. 2+414195BerlinGermany
| | - Rebekka Wamser
- Department of Biology, Chemistry and PharmacyInstitute of PharmacyMedicinal ChemistryFreie Universität BerlinKönigin-Luise-Str. 2+414195BerlinGermany
| | - Christoph Arkona
- Department of Biology, Chemistry and PharmacyInstitute of PharmacyMedicinal ChemistryFreie Universität BerlinKönigin-Luise-Str. 2+414195BerlinGermany
| | - Marisa Tügend
- Department of Biology, Chemistry and PharmacyInstitute of PharmacyMedicinal ChemistryFreie Universität BerlinKönigin-Luise-Str. 2+414195BerlinGermany
| | - Umer Bin Abdul Aziz
- Department of Biology, Chemistry and PharmacyInstitute of PharmacyMedicinal ChemistryFreie Universität BerlinKönigin-Luise-Str. 2+414195BerlinGermany
| | - Szymon Pach
- Department of Biology, Chemistry and PharmacyInstitute of PharmacyMedicinal ChemistryFreie Universität BerlinKönigin-Luise-Str. 2+414195BerlinGermany
| | - Robert Schulz
- Department of Biology, Chemistry and PharmacyInstitute of PharmacyMedicinal ChemistryFreie Universität BerlinKönigin-Luise-Str. 2+414195BerlinGermany
| | - Dirk Jochmans
- Department of Microbiology, Immunology and TransplantationRega InstituteKU LeuvenLeuvenBelgium
| | - Gerhard Wolber
- Department of Biology, Chemistry and PharmacyInstitute of PharmacyMedicinal ChemistryFreie Universität BerlinKönigin-Luise-Str. 2+414195BerlinGermany
| | - Johan Neyts
- Department of Microbiology, Immunology and TransplantationRega InstituteKU LeuvenLeuvenBelgium
| | - Jörg Rademann
- Department of Biology, Chemistry and PharmacyInstitute of PharmacyMedicinal ChemistryFreie Universität BerlinKönigin-Luise-Str. 2+414195BerlinGermany
| |
Collapse
|
32
|
Acceleration of lipid reproduction by emergence of microscopic motion. Nat Commun 2021; 12:2959. [PMID: 34011926 PMCID: PMC8134444 DOI: 10.1038/s41467-021-23022-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/03/2021] [Indexed: 11/09/2022] Open
Abstract
Self-reproducing molecules abound in nature where they support growth and motion of living systems. In artificial settings, chemical reactions can also show complex kinetics of reproduction, however integrating self-reproducing molecules into larger chemical systems remains a challenge towards achieving higher order functionality. Here, we show that self-reproducing lipids can initiate, sustain and accelerate the movement of octanol droplets in water. Reciprocally, the chemotactic movement of the octanol droplets increases the rate of lipid reproduction substantially. Reciprocal coupling between bond-forming chemistry and droplet motility is thus established as an effect of the interplay between molecular-scale events (the self-reproduction of lipid molecules) and microscopic events (the chemotactic movement of the droplets). This coupling between molecular chemistry and microscopic motility offers alternative means of performing work and catalysis in micro-heterogeneous environments.
Collapse
|
33
|
Duzdevich D, Carr CE, Ding D, Zhang SJ, Walton TS, Szostak JW. Competition between bridged dinucleotides and activated mononucleotides determines the error frequency of nonenzymatic RNA primer extension. Nucleic Acids Res 2021; 49:3681-3691. [PMID: 33744957 PMCID: PMC8053118 DOI: 10.1093/nar/gkab173] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/12/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Nonenzymatic copying of RNA templates with activated nucleotides is a useful model for studying the emergence of heredity at the origin of life. Previous experiments with defined-sequence templates have pointed to the poor fidelity of primer extension as a major problem. Here we examine the origin of mismatches during primer extension on random templates in the simultaneous presence of all four 2-aminoimidazole-activated nucleotides. Using a deep sequencing approach that reports on millions of individual template-product pairs, we are able to examine correct and incorrect polymerization as a function of sequence context. We have previously shown that the predominant pathway for primer extension involves reaction with imidazolium-bridged dinucleotides, which form spontaneously by the reaction of two mononucleotides with each other. We now show that the sequences of correctly paired products reveal patterns that are expected from the bridged dinucleotide mechanism, whereas those associated with mismatches are consistent with direct reaction of the primer with activated mononucleotides. Increasing the ratio of bridged dinucleotides to activated mononucleotides, either by using purified components or by using isocyanide-based activation chemistry, reduces the error frequency. Our results point to testable strategies for the accurate nonenzymatic copying of arbitrary RNA sequences.
Collapse
Affiliation(s)
- Daniel Duzdevich
- To whom correspondence should be addressed. Tel: +1 617 726 5102; Fax: +1 617 643 332;
| | - Christopher E Carr
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Dian Ding
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Stephanie J Zhang
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Travis S Walton
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jack W Szostak
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
34
|
Yang S, Schaeffer G, Mattia E, Markovitch O, Liu K, Hussain AS, Ottelé J, Sood A, Otto S. Chemical Fueling Enables Molecular Complexification of Self-Replicators*. Angew Chem Int Ed Engl 2021; 60:11344-11349. [PMID: 33689197 PMCID: PMC8251556 DOI: 10.1002/anie.202016196] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/09/2021] [Indexed: 12/21/2022]
Abstract
Unravelling how the complexity of living systems can (have) emerge(d) from simple chemical reactions is one of the grand challenges in contemporary science. Evolving systems of self-replicating molecules may hold the key to this question. Here we show that, when a system of replicators is subjected to a regime where replication competes with replicator destruction, simple and fast replicators can give way to more complex and slower ones. The structurally more complex replicator was found to be functionally more proficient in the catalysis of a model reaction. These results show that chemical fueling can maintain systems of replicators out of equilibrium, populating more complex replicators that are otherwise not readily accessible. Such complexification represents an important requirement for achieving open-ended evolution as it should allow improved and ultimately also new functions to emerge.
Collapse
Affiliation(s)
- Shuo Yang
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Gael Schaeffer
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Elio Mattia
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Omer Markovitch
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Origins CenterUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - Kai Liu
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Andreas S. Hussain
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Jim Ottelé
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Ankush Sood
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Sijbren Otto
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
35
|
Dreher Y, Jahnke K, Bobkova E, Spatz JP, Göpfrich K. Division and Regrowth of Phase‐Separated Giant Unilamellar Vesicles**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yannik Dreher
- Biophysical Engineering Group Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Department of Physics and Astronomy Heidelberg University 69120 Heidelberg Germany
| | - Kevin Jahnke
- Biophysical Engineering Group Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Department of Physics and Astronomy Heidelberg University 69120 Heidelberg Germany
| | - Elizaveta Bobkova
- Biophysical Engineering Group Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Department of Physics and Astronomy Heidelberg University 69120 Heidelberg Germany
| | - Joachim P. Spatz
- Department of Cellular Biophysics Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Institute for Molecular Systems Engineering (IMSE) Heidelberg University Im Neuenheimer Feld 225 69120 Heidelberg Germany
- Max Planck School Matter to Life Jahnstraße 29 69120 Heidelberg Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Department of Physics and Astronomy Heidelberg University 69120 Heidelberg Germany
| |
Collapse
|
36
|
Srinivasan S, Torres AG, Ribas de Pouplana L. Inosine in Biology and Disease. Genes (Basel) 2021; 12:600. [PMID: 33921764 PMCID: PMC8072771 DOI: 10.3390/genes12040600] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
The nucleoside inosine plays an important role in purine biosynthesis, gene translation, and modulation of the fate of RNAs. The editing of adenosine to inosine is a widespread post-transcriptional modification in transfer RNAs (tRNAs) and messenger RNAs (mRNAs). At the wobble position of tRNA anticodons, inosine profoundly modifies codon recognition, while in mRNA, inosines can modify the sequence of the translated polypeptide or modulate the stability, localization, and splicing of transcripts. Inosine is also found in non-coding and exogenous RNAs, where it plays key structural and functional roles. In addition, molecular inosine is an important secondary metabolite in purine metabolism that also acts as a molecular messenger in cell signaling pathways. Here, we review the functional roles of inosine in biology and their connections to human health.
Collapse
Affiliation(s)
- Sundaramoorthy Srinivasan
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; (S.S.); (A.G.T.)
| | - Adrian Gabriel Torres
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; (S.S.); (A.G.T.)
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; (S.S.); (A.G.T.)
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
37
|
Vanhille-Campos C, Šarić A. Modelling the dynamics of vesicle reshaping and scission under osmotic shocks. SOFT MATTER 2021; 17:3798-3806. [PMID: 33629089 DOI: 10.1039/d0sm02012e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We study the effects of osmotic shocks on lipid vesicles via coarse-grained molecular dynamics simulations by explicitly considering the solute in the system. We find that depending on their nature (hypo- or hypertonic) such shocks can lead to bursting events or engulfing of external material into inner compartments, among other morphology transformations. We characterize the dynamics of these processes and observe a separation of time scales between the osmotic shock absorption and the shape relaxation. Our work consequently provides an insight into the dynamics of compartmentalization in vesicular systems as a result of osmotic shocks, which can be of interest in the context of early proto-cell development and proto-cell compartmentalisation.
Collapse
Affiliation(s)
- Christian Vanhille-Campos
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK.
| | | |
Collapse
|
38
|
Yang S, Schaeffer G, Mattia E, Markovitch O, Liu K, Hussain AS, Ottelé J, Sood A, Otto S. Chemical Fueling Enables Molecular Complexification of Self‐Replicators**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shuo Yang
- Centre for Systems Chemistry Stratingh Institute University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Gael Schaeffer
- Centre for Systems Chemistry Stratingh Institute University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Elio Mattia
- Centre for Systems Chemistry Stratingh Institute University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Omer Markovitch
- Centre for Systems Chemistry Stratingh Institute University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- Origins Center University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Kai Liu
- Centre for Systems Chemistry Stratingh Institute University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Andreas S. Hussain
- Centre for Systems Chemistry Stratingh Institute University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jim Ottelé
- Centre for Systems Chemistry Stratingh Institute University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ankush Sood
- Centre for Systems Chemistry Stratingh Institute University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry Stratingh Institute University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
39
|
Dreher Y, Jahnke K, Bobkova E, Spatz JP, Göpfrich K. Division and Regrowth of Phase-Separated Giant Unilamellar Vesicles*. Angew Chem Int Ed Engl 2021; 60:10661-10669. [PMID: 33355974 PMCID: PMC8252472 DOI: 10.1002/anie.202014174] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/13/2020] [Indexed: 01/01/2023]
Abstract
Success in the bottom‐up assembly of synthetic cells will depend on strategies for the division of protocellular compartments. Here, we describe the controlled division of phase‐separated giant unilamellar lipid vesicles (GUVs). We derive an analytical model based on the vesicle geometry, which makes four quantitative predictions that we verify experimentally. We find that the osmolarity ratio required for division is 2
, independent of the GUV size, while asymmetric division happens at lower osmolarity ratios. Remarkably, we show that a suitable osmolarity change can be triggered by water evaporation, enzymatic decomposition of sucrose or light‐triggered uncaging of CMNB‐fluorescein. The latter provides full spatiotemporal control, such that a target GUV undergoes division whereas the surrounding GUVs remain unaffected. Finally, we grow phase‐separated vesicles from single‐phased vesicles by targeted fusion of the opposite lipid type with programmable DNA tags to enable subsequent division cycles.
Collapse
Affiliation(s)
- Yannik Dreher
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| | - Kevin Jahnke
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| | - Elizaveta Bobkova
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.,Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany.,Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
40
|
Kim SC, O'Flaherty DK, Giurgiu C, Zhou L, Szostak JW. The Emergence of RNA from the Heterogeneous Products of Prebiotic Nucleotide Synthesis. J Am Chem Soc 2021; 143:3267-3279. [PMID: 33636080 DOI: 10.1021/jacs.0c12955] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in prebiotic chemistry are beginning to outline plausible pathways for the synthesis of the canonical ribonucleotides and their assembly into oligoribonucleotides. However, these reaction pathways suggest that many noncanonical nucleotides are likely to have been generated alongside the standard ribonucleotides. Thus, the oligomerization of prebiotically synthesized nucleotides is likely to have led to a highly heterogeneous collection of oligonucleotides comprised of a wide range of types of nucleotides connected by a variety of backbone linkages. How then did relatively homogeneous RNA emerge from this primordial heterogeneity? Here we focus on nonenzymatic template-directed primer extension as a process that would have strongly enriched for homogeneous RNA over the course of multiple cycles of replication. We review the effects on copying the kinetics of nucleotides with altered nucleobase and sugar moieties, when they are present as activated monomers and when they are incorporated into primer and template oligonucleotides. We also discuss three variations in backbone connectivity, all of which are nonheritable and regenerate native RNA upon being copied. The kinetic superiority of RNA synthesis suggests that nonenzymatic copying served as a chemical selection mechanism that allowed relatively homogeneous RNA to emerge from a complex mixture of prebiotically synthesized nucleotides and oligonucleotides.
Collapse
Affiliation(s)
- Seohyun Chris Kim
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Derek K O'Flaherty
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Constantin Giurgiu
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
41
|
Song EY, Jiménez EI, Lin H, Le Vay K, Krishnamurthy R, Mutschler H. Prebiotically Plausible RNA Activation Compatible with Ribozyme-Catalyzed Ligation. Angew Chem Int Ed Engl 2021; 60:2952-2957. [PMID: 33128282 PMCID: PMC7898671 DOI: 10.1002/anie.202010918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/29/2020] [Indexed: 01/04/2023]
Abstract
RNA-catalyzed RNA ligation is widely believed to be a key reaction for primordial biology. However, since typical chemical routes towards activating RNA substrates are incompatible with ribozyme catalysis, it remains unclear how prebiotic systems generated and sustained pools of activated building blocks needed to form increasingly larger and complex RNA. Herein, we demonstrate in situ activation of RNA substrates under reaction conditions amenable to catalysis by the hairpin ribozyme. We found that diamidophosphate (DAP) and imidazole drive the formation of 2',3'-cyclic phosphate RNA mono- and oligonucleotides from monophosphorylated precursors in frozen water-ice. This long-lived activation enables iterative enzymatic assembly of long RNAs. Our results provide a plausible scenario for the generation of higher-energy substrates required to fuel ribozyme-catalyzed RNA synthesis in the absence of a highly evolved metabolism.
Collapse
Affiliation(s)
- Emilie Yeonwha Song
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Eddy Ivanhoe Jiménez
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA92037USA
| | - Huacan Lin
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA92037USA
| | - Kristian Le Vay
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | | | - Hannes Mutschler
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
- Technical University DortmundOtto-Hahn-Strasse 4a44227DortmundGermany
| |
Collapse
|
42
|
Rasmussen B, Muhling J, Fischer W. Greenalite Nanoparticles in Alkaline Vent Plumes as Templates for the Origin of Life. ASTROBIOLOGY 2021; 21:246-259. [PMID: 33085498 PMCID: PMC7876356 DOI: 10.1089/ast.2020.2270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/07/2020] [Indexed: 05/07/2023]
Abstract
Mineral templates are thought to have played keys roles in the emergence of life. Drawing on recent findings from 3.45-2.45 billion-year-old iron-rich hydrothermal sedimentary rocks, we hypothesize that greenalite (Fe3Si2O5(OH)4) was a readily available mineral in hydrothermal environments, where it may have acted as a template and catalyst in polymerization, vesicle formation and encapsulation, and protocell replication. We argue that venting of dissolved Fe2+ and SiO2(aq) into the anoxic Hadean ocean favored the precipitation of nanometer-sized particles of greenalite in hydrothermal plumes, producing a continuous flow of free-floating clay templates that traversed the ocean. The mixing of acidic, metal-bearing hydrothermal plumes from volcanic ridge systems with more alkaline, organic-bearing plumes generated by serpentinization of ultramafic rocks brought together essential building blocks for life in solutions conducive to greenalite precipitation. We suggest that the extreme disorder in the greenalite crystal lattice, producing structural modulations resembling parallel corrugations (∼22 Å wide) on particle edges, promoted the assembly and alignment of linear RNA-type molecules (∼20 Å diameter). In alkaline solutions, greenalite nanoparticles could have accelerated the growth of membrane vesicles, while their encapsulation allowed RNA-type molecules to continue to form on the mineral templates, potentially enhancing the growth and division of primitive cell membranes. Once self-replicating RNA evolved, the mineral template became redundant, and protocells were free to replicate and roam the ocean realm.
Collapse
Affiliation(s)
- B. Rasmussen
- School of Earth Sciences, The University of Western Australia, Perth, Australia
| | - J.R. Muhling
- School of Earth Sciences, The University of Western Australia, Perth, Australia
| | - W.W. Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
43
|
Zhou L, Ding D, Szostak JW. The virtual circular genome model for primordial RNA replication. RNA (NEW YORK, N.Y.) 2021; 27:1-11. [PMID: 33028653 PMCID: PMC7749632 DOI: 10.1261/rna.077693.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/02/2020] [Indexed: 05/13/2023]
Abstract
We propose a model for the replication of primordial protocell genomes that builds upon recent advances in the nonenzymatic copying of RNA. We suggest that the original genomes consisted of collections of oligonucleotides beginning and ending at all possible positions on both strands of one or more virtual circular sequences. Replication is driven by feeding with activated monomers and by the activation of monomers and oligonucleotides in situ. A fraction of the annealed configurations of the protocellular oligonucleotides would allow for template-directed oligonucleotide growth by primer extension or ligation. Rearrangements of these annealed configurations, driven either by environmental fluctuations or occurring spontaneously, would allow for continued oligonucleotide elongation. Assuming that shorter oligonucleotides were more abundant than longer ones, replication of the entire genome could occur by the growth of all oligonucleotides by as little as one nucleotide on average. We consider possible scenarios that could have given rise to such protocell genomes, as well as potential routes to the emergence of catalytically active ribozymes and thus the more complex cells of the RNA World.
Collapse
Affiliation(s)
- Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dian Ding
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
44
|
Tran QP, Adam ZR, Fahrenbach AC. Prebiotic Reaction Networks in Water. Life (Basel) 2020; 10:E352. [PMID: 33339192 PMCID: PMC7765580 DOI: 10.3390/life10120352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023] Open
Abstract
A prevailing strategy in origins of life studies is to explore how chemistry constrained by hypothetical prebiotic conditions could have led to molecules and system level processes proposed to be important for life's beginnings. This strategy has yielded model prebiotic reaction networks that elucidate pathways by which relevant compounds can be generated, in some cases, autocatalytically. These prebiotic reaction networks provide a rich platform for further understanding and development of emergent "life-like" behaviours. In this review, recent advances in experimental and analytical procedures associated with classical prebiotic reaction networks, like formose and Miller-Urey, as well as more recent ones are highlighted. Instead of polymeric networks, i.e., those based on nucleic acids or peptides, the focus is on small molecules. The future of prebiotic chemistry lies in better understanding the genuine complexity that can result from reaction networks and the construction of a centralised database of reactions useful for predicting potential network evolution is emphasised.
Collapse
Affiliation(s)
| | - Zachary R. Adam
- Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721, USA;
| | | |
Collapse
|
45
|
Song EY, Jiménez EI, Lin H, Le Vay K, Krishnamurthy R, Mutschler H. Präbiotisch plausible RNA‐Aktivierung kompatibel mit ribozymkatalysierter Ligation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emilie Yeonwha Song
- Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Deutschland
| | - Eddy Ivanhoe Jiménez
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Huacan Lin
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Kristian Le Vay
- Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Deutschland
| | | | - Hannes Mutschler
- Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Deutschland
- TU Dortmund University Otto-Hahn-Straße 4a 44227 Dortmund Deutschland
| |
Collapse
|
46
|
Lopez A, Fayolle D, Fiore M, Strazewski P. Chemical Analysis of Lipid Boundaries after Consecutive Growth and Division of Supported Giant Vesicles. iScience 2020; 23:101677. [PMID: 33163935 PMCID: PMC7609504 DOI: 10.1016/j.isci.2020.101677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 11/17/2022] Open
Abstract
The reproduction of the shape of giant vesicles usually results in the increase of their "population" size. This may be achieved on giant vesicles by appropriately supplying "mother" vesicles with membranogenic amphiphiles. The next "generation" of "daughter" vesicles obtained from this "feeding" is inherently difficult to distinguish from the original mothers. Here we report on a method for the consecutive feeding with different fatty acids that each provoke membrane growth and detachment of daughter vesicles from glass microsphere-supported phospholipidic mother vesicles. We discovered that a saturated fatty acid was carried over to the next generation of mothers better than two unsaturated congeners. This has an important bearing on the growth and replication of primitive compartments at the early stages of life. Microsphere-supported vesicles are also a precise analytical tool.
Collapse
Affiliation(s)
- Augustin Lopez
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Bâtiment Edgar Lederer, 1 Rue Victor Grignard, 69622 Villeurbanne Cedex, France
| | - Dimitri Fayolle
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Bâtiment Edgar Lederer, 1 Rue Victor Grignard, 69622 Villeurbanne Cedex, France
| | - Michele Fiore
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Bâtiment Edgar Lederer, 1 Rue Victor Grignard, 69622 Villeurbanne Cedex, France
| | - Peter Strazewski
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Bâtiment Edgar Lederer, 1 Rue Victor Grignard, 69622 Villeurbanne Cedex, France
| |
Collapse
|
47
|
Clark BC, Kolb VM. Macrobiont: Cradle for the Origin of Life and Creation of a Biosphere. Life (Basel) 2020; 10:life10110278. [PMID: 33198206 PMCID: PMC7697624 DOI: 10.3390/life10110278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Although the cellular microorganism is the fundamental unit of biology, the origin of life (OoL) itself is unlikely to have occurred in a microscale environment. The macrobiont (MB) is the macro-scale setting where life originated. Guided by the methodologies of Systems Analysis, we focus on subaerial ponds of scale 3 to 300 m diameter. Within such ponds, there can be substantial heterogeneity, on the vertical, horizontal, and temporal scales, which enable multi-pot prebiotic chemical evolution. Pond size-sensitivities for several figures of merit are mathematically formulated, leading to the expectation that the optimum pond size for the OoL is intermediate, but biased toward smaller sizes. Sensitivities include relative access to nutrients, energy sources, and catalysts, as sourced from geological, atmospheric, hydrospheric, and astronomical contributors. Foreshores, especially with mudcracks, are identified as a favorable component for the success of the macrobiont. To bridge the gap between inanimate matter and a planetary-scale biosphere, five stages of evolution within the macrobiont are hypothesized: prebiotic chemistry → molecular replicator → protocell → macrobiont cell → colonizer cell. Comparison of ponds with other macrobionts, including hydrothermal and meteorite settings, allows a conclusion that more than one possible macrobiont locale could enable an OoL.
Collapse
Affiliation(s)
- Benton C. Clark
- Space Science Institute, Boulder, CO 80301, USA
- Correspondence:
| | - Vera M. Kolb
- Department of Chemistry, University of Wisconsin—Parkside, Kenosha, WI 53141, USA;
| |
Collapse
|
48
|
From protocells to prototissues: a materials chemistry approach. Biochem Soc Trans 2020; 48:2579-2589. [DOI: 10.1042/bst20200310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022]
Abstract
Prototissues comprise free-standing 3D networks of interconnected protocell consortia that communicate and display synergistic functions. Significantly, they can be constructed from functional molecules and materials, providing unprecedented opportunities to design tissue-like architectures that can do more than simply mimic living tissues. They could function under extreme conditions and exhibit a wide range of mechanical properties and bio-inspired metabolic functions. In this perspective, I will start by describing recent advancements in the design and synthetic construction of prototissues. I will then discuss the next challenges and the future impact of this emerging research field, which is destined to find applications in the most diverse areas of science and technology, from biomedical science to environmental science, and soft robotics.
Collapse
|
49
|
Liquid Crystal Peptide/DNA Coacervates in the Context of Prebiotic Molecular Evolution. CRYSTALS 2020. [DOI: 10.3390/cryst10110964] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Liquid–liquid phase separation (LLPS) phenomena are ubiquitous in biological systems, as various cellular LLPS structures control important biological processes. Due to their ease of in vitro assembly into membraneless compartments and their presence within modern cells, LLPS systems have been postulated to be one potential form that the first cells on Earth took on. Recently, liquid crystal (LC)-coacervate droplets assembled from aqueous solutions of short double-stranded DNA (s-dsDNA) and poly-L-lysine (PLL) have been reported. Such LC-coacervates conjugate the advantages of an associative LLPS with the relevant long-range ordering and fluidity properties typical of LC, which reflect and propagate the physico-chemical properties of their molecular constituents. Here, we investigate the structure, assembly, and function of DNA LC-coacervates in the context of prebiotic molecular evolution and the emergence of functional protocells on early Earth. We observe through polarization microscopy that LC-coacervate systems can be dynamically assembled and disassembled based on prebiotically available environmental factors including temperature, salinity, and dehydration/rehydration cycles. Based on these observations, we discuss how LC-coacervates can in principle provide selective pressures effecting and sustaining chemical evolution within partially ordered compartments. Finally, we speculate about the potential for LC-coacervates to perform various biologically relevant properties, such as segregation and concentration of biomolecules, catalysis, and scaffolding, potentially providing additional structural complexity, such as linearization of nucleic acids and peptides within the LC ordered matrix, that could have promoted more efficient polymerization. While there are still a number of remaining open questions regarding coacervates, as protocell models, including how modern biologies acquired such membraneless organelles, further elucidation of the structure and function of different LLPS systems in the context of origins of life and prebiotic chemistry could provide new insights for understanding new pathways of molecular evolution possibly leading to the emergence of the first cells on Earth.
Collapse
|
50
|
Ravoni A. Impact of composition on the dynamics of autocatalytic sets. Biosystems 2020; 198:104250. [PMID: 32927011 DOI: 10.1016/j.biosystems.2020.104250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Autocatalytic sets are sets of entities that mutually catalyse each other's production through chemical reactions from a basic food source. Recently, the reflexively autocatalytic and food generated theory has introduced a formal definition of autocatalytic sets which has provided promising results in the context of the origin of life. However, the link between the structure of autocatalytic sets and the possibility of different long-term behaviours is still unclear. In this work, we study how different interactions among autocatalytic sets affect the emergent dynamics. To this aim, we develop a model in which interactions are presented through composition operations among networks, and the dynamics of the networks is reproduced via stochastic simulations. We find that the dynamical emergence of the autocatalytic sets depends on the adopted composition operations. In particular, operations involving entities that are sources for autocatalytic sets can promote the formation of different autocatalytic subsets, opening the door to various long-term behaviours.
Collapse
Affiliation(s)
- Alessandro Ravoni
- Department of Mathematics and Physics, University of Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy.
| |
Collapse
|