1
|
Ren WB, Li B, Cui Y, Chen X, Liu Q, Chen Y, Chen Z, Wang Y, Zang HY. Synthesis of {AlMo 14O 44}-Based Supramolecular Structures with High Proton Conductivity. Inorg Chem 2024; 63:20307-20313. [PMID: 39392342 DOI: 10.1021/acs.inorgchem.4c01535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Polyoxometalates (POMs) are esteemed for their remarkable stability and exceptionally high proton conductivity, rendering them ripe for extensive exploration owing to their research significance. Herein, we synthesized two bimolybdenum-capped {AlMoVI8MoV6O44} cluster-based coordination polymers through a solvothermal method. Single-crystal X-ray diffraction analysis elucidates that H[(H2bimb)3(AlMoVI8MoV6O44)] [bimb = 1,4-bis(imidazole-1-ylmethyl)benzene, compound 1] is the POMs-organic supramolecular structure. The introduction of zinc ions into the reaction environment facilitated the connection of initially dispersed ligands, which yielded the well-ordered structure H3[Zn2(bimb)4(AlMoVI8MoV6O44)]·4H2O (compound 2) with a layer distance of 11.8 Å. The proton conductivities (σ) of two compounds were measured under conditions of 85 °C and 98% relative humidity (RH), resulting in values of 3.89 × 10-2 and 4.76 × 10-2 S·cm-1, respectively. This study presents a novel approach to fabricating POMs as proton conductors through structural design and manufacturing adjustments.
Collapse
Affiliation(s)
- Wei-Bo Ren
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Bo Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yunzuo Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xinyu Chen
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Qianqian Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yongzhen Chen
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zhen Chen
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yuyang Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Hong-Ying Zang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
2
|
Wei Y, Du W, Wang H, Wang X, Shen K, Xiong M, Zhang D. A uranium-bridged dimeric Keggin-type polyoxometalate and its proton conductive properties. Dalton Trans 2024; 53:16826-16829. [PMID: 39397591 DOI: 10.1039/d4dt02077d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A novel dimeric structure based on trilacunary Keggin-type [SbW9O33]9- was synthesized and comprehensively characterized. Different from the conventional dimeric structures, the compound (NH4)10[(SbW9O33)2(UO2)2(H2O)2(SbOH)2]·7H2O ({U2Sb4}) features two additional Sb3+ cations. The successful synthesis of {U2Sb4} reveals the significant role of heteroatoms in structural modulation. The dimer forms a hydrogen-bonded network with water molecules and NH4+ and is therefore expected to exhibit remarkable proton conductivity. Proton conduction studies revealed that {U2Sb4} was a temperature and humidity-dependent proton conductor with conductivity reaching up to 2.50 × 10-2 S cm-1 at 85 °C and 85% RH.
Collapse
Affiliation(s)
- Yuting Wei
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Weixin Du
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Haiying Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Xiaoyue Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Keqin Shen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Minghui Xiong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Dongdi Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
3
|
Yanai D, Yonesato K, Kikkawa S, Yamazoe S, Yamaguchi K, Suzuki K. Electronic state modulation of Ag 30 nanoclusters within a ring-shaped polyoxometalate. NANOSCALE 2024; 16:18383-18388. [PMID: 39269029 DOI: 10.1039/d4nr02547d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Atomically precise Ag nanoclusters display distinctive properties that are dictated by their structures and electronic states. However, manipulating the electronic states of Ag nanoclusters is challenging owing to their inherent instability and susceptibility to undesired structural changes, decomposition, and aggregation. Recently, we reported the synthesis of a body-centered cubic {Ag30}22+ nanocluster encapsulated within a ring-shaped polyoxometalate (POM) [P8W48O184]40- by reacting 16 Ag+-containing [P8W48O184]40- with Ag+ using N,N-dimethylformamide (DMF) as a mild reducing agent. This led to a redox-induced structural transformation into a face-centered cubic {Ag30}16+ nanocluster. In this study, we demonstrated the modulation of the electronic states of Ag30 nanoclusters within the ring-shaped POM through two different approaches. A face-centered cubic {Ag30}18+ nanocluster, featuring distinct oxidation states compared to previously reported {Ag30}22+ and {Ag30}16+ nanoclusters, was synthesized using tetra-n-butylammonium borohydride, a stronger reducing agent than DMF, in the reaction of 16 Ag+-containing [P8W48O184]40- and Ag+. Additionally, by leveraging the acid-base properties of POMs, we demonstrated the reversible, stepwise modulation of the charge distribution in the Ag30 nanocluster through controlling protonation states of the ring-shaped POM ligand. These results highlight the potential of engineering POM-stabilized Ag nanoclusters with diverse structures and electronic states, thereby facilitating the exploration of novel properties and applications utilizing the unique characteristics of the POM ligands.
Collapse
Affiliation(s)
- Daiki Yanai
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
4
|
Huang J, Liu X, Li J, Wang ZJ, Li ZR, Wang YF. Quantum Chemical Approaches for Manipulation and Evaluation of Intracage Microelectric Field Strength of Molecular Containers in Y@C 64 and Y@C 64X 4 (X = Cl, F, and H, Y = NH 4Cl, H 3O-Cl, and 2H 2O). J Phys Chem A 2024; 128:8645-8658. [PMID: 39344781 DOI: 10.1021/acs.jpca.4c04407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The effect of an oriented external electric field (EEF) on materials has led to the ongoing development, which stimulates us to consider whether intracage microelectric fields (IMEFs) can be used to substitute for the EEF. Focusing on the manipulation and evaluation of the IMEF of asymmetric molecular containers, the host-guest compounds of interesting pineapple-shaped Y@C64X4 (X = vacant, Cl, F, and H; Y = NH4Cl, H3O-Cl, and 2H2O) are theoretically constructed and the strength of the IMEF was evaluated by the intrapotential energy surface analysis by using the point charge (q = +1) scanning method. Interestingly, the left and right halves of each cage are like two IMEFs connected in reverse series. Both the addition of four X atoms and the orientation of the guest can sensitively influence the IMEF's strengths and directions of both half cages and further determine the entire cage's IMEF. Subsequently, the IMEF can sensitively change the binding characteristics and properties of the guest species. Therefore, the manipulation and evaluation of the IMEF can be achievable. This work may provide support for an asymmetric molecular container with an IMEF to manipulate the novel structural and chemical bond characteristics of the guest species.
Collapse
Affiliation(s)
- Jiangen Huang
- Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, P. R. China
| | - Xuexia Liu
- School of Forensic Medicine, Wannan Medical College, Anhui, Wuhu 241002, P. R. China
| | - Jia Li
- Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, P. R. China
| | - Zhi-Jun Wang
- Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, P. R. China
| | - Zhi-Ru Li
- Laboratory of Theoretical Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Yin-Feng Wang
- Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, P. R. China
| |
Collapse
|
5
|
Kamachi M, Yonesato K, Okazaki T, Yanai D, Kikkawa S, Yamazoe S, Ishikawa R, Shibata N, Ikuhara Y, Yamaguchi K, Suzuki K. Synthesis of a Gold-Silver Alloy Nanocluster within a Ring-Shaped Polyoxometalate and Its Photocatalytic Property. Angew Chem Int Ed Engl 2024; 63:e202408358. [PMID: 38984565 DOI: 10.1002/anie.202408358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/12/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Alloying is an effective method for modulating metal nanoclusters to enrich their structural diversity and physicochemical properties. Recent investigations have demonstrated that polyoxometalates (POMs) can act as effective multidentate ligands for silver (Ag) nanoclusters to endow them with synergistic properties, reactivity, catalytic properties, and stability. However, the application of POMs as ligands has been confined predominantly to monometallic nanoclusters. Herein, we report a synthetic method for fabricating surface-exposed gold (Au)-Ag alloy nanoclusters within a ring-shaped POM ([P8W48O184]40-). Reacting an Ag nanocluster stabilized by the ring-shaped POM with Au ions (Au+) was found to substitute several Ag atoms at the core of the nanocluster with Au atoms. The resultant {Au8Ag26} alloy nanocluster demonstrated superior photocatalytic activity and stability compared to the pristine Ag nanocluster in the aerobic oxidation of α-terpinene under visible-light irradiation. These findings provide fundamental insights into the formation and catalytic properties of POM-stabilized alloy nanoclusters and advance exploration into the synthesis and applications of diverse metal nanoclusters.
Collapse
Affiliation(s)
- Minori Kamachi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Okazaki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Daiki Yanai
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Ryo Ishikawa
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Naoya Shibata
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuichi Ikuhara
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
6
|
Wang Z, Yang L, Chen Q, Liu P, Yang Z, Li H, Huang X, Huang W. Anisotropic Superprotonic Conduction in a Layered Single-Component Hydrogen-Bonded Organic Framework with Multiple In-Plane Open Channels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409202. [PMID: 39180256 DOI: 10.1002/adma.202409202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Indexed: 08/26/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are promising proton conductive materials because of their inherent and abundant hydrogen-bonding sites. However, most superprotonic-conductive HOFs are constructed from multiple components to enable favorable framework architectures and structural integrity. In this contribution, layered HOF-TPB-A3 with a single component is synthesized and exfoliated. The exfoliated nanoplates exhibited anisotropic superprotonic conduction, with in-plane proton conductivities reaching 1.34 × 10-2 S cm-1 at 296 K and 98% relative humidity (RH). This outperforms the previously reported single-component HOFs and is comparable with the state-of-the-art multiple-component HOFs. The high and anisotropic proton conductive properties can be attributed to the efficient proton transport along multiple open channels parallel to their basal planes. Moreover, an all-solid-state (ASS) proton rectifier device is demonstrated by combining HOF-TPB-A3 and a hydroxide ion-conducting layered double hydroxide (LDH). This work suggests that single-component HOFs with multiple open channels offer more opportunities as versatile platforms for proton conductors, making them promising candidates for conducting media in protonic devices.
Collapse
Affiliation(s)
- Zhiwei Wang
- School of Materials Science and Chemical Engineering, Chuzhou University, 1 West Huifeng Road, Chuzhou, 23900, China
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Lijuan Yang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Qian Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Peiyuan Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Zhiwei Yang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Hai Li
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
7
|
Koizumi Y, Yonesato K, Kikkawa S, Yamazoe S, Yamaguchi K, Suzuki K. Small Copper Nanoclusters Synthesized through Solid-State Reduction inside a Ring-Shaped Polyoxometalate Nanoreactor. J Am Chem Soc 2024; 146:14610-14619. [PMID: 38682247 DOI: 10.1021/jacs.4c01661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Cu nanoclusters exhibit distinctive physicochemical properties and hold significant potential for multifaceted applications. Although Cu nanoclusters are synthesized by reacting Cu ions and reducing agents by covering their surfaces using organic protecting ligands or supporting them inside porous materials, the synthesis of surface-exposed Cu nanoclusters with a controlled number of Cu atoms remains challenging. This study presents a solid-state reduction method for the synthesis of Cu nanoclusters employing a ring-shaped polyoxometalate (POM) as a structurally defined and rigid molecular nanoreactor. Through the reduction of Cu2+ incorporated within the cavity of a ring-shaped POM using H2 at 140 °C, spectroscopic studies and single-crystal X-ray diffraction analysis revealed the formation of surface-exposed Cu nanoclusters with a defined number of Cu atoms within the cavities of POMs. Furthermore, the Cu nanoclusters underwent a reversible redox transformation within the cavity upon alternating the gas atmosphere (i.e., H2 or O2). These Cu nanoclusters produced active hydrogen species that can efficiently hydrogenate various functional groups such as alkenes, alkynes, carbonyls, and nitro groups using H2 as a reductant. We expect that this synthesis approach will facilitate the development of a wide variety of metal nanoclusters with high reactivity and unexplored properties.
Collapse
Affiliation(s)
- Yoshihiro Koizumi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
8
|
Ma T, Yan R, Wu X, Wang M, Yin B, Li S, Cheng C, Thomas A. Polyoxometalate-Structured Materials: Molecular Fundamentals and Electrocatalytic Roles in Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310283. [PMID: 38193756 DOI: 10.1002/adma.202310283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Polyoxometalates (POMs), a kind of molecular metal oxide cluster with unique physical-chemical properties, have made essential contributions to creating efficient and robust electrocatalysts in renewable energy systems. Due to the fundamental advantages of POMs, such as the diversity of molecular structures and large numbers of redox active sites, numerous efforts have been devoted to extending their application areas. Up to now, various strategies of assembling POM molecules into superstructures, supporting POMs on heterogeneous substrates, and POMs-derived metal compounds have been developed for synthesizing electrocatalysts. From a multidisciplinary perspective, the latest advances in creating POM-structured materials with a unique focus on their molecular fundamentals, electrocatalytic roles, and the recent breakthroughs of POMs and POM-derived electrocatalysts, are systematically summarized. Notably, this paper focuses on exposing the current states, essences, and mechanisms of how POM-structured materials influence their electrocatalytic activities and discloses the critical requirements for future developments. The future challenges, objectives, comparisons, and perspectives for creating POM-structured materials are also systematically discussed. It is anticipated that this review will offer a substantial impact on stimulating interdisciplinary efforts for the prosperities and widespread utilizations of POM-structured materials in electrocatalysis.
Collapse
Affiliation(s)
- Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Bo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Arne Thomas
- Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| |
Collapse
|
9
|
Kapurwan S, Sahu PK, Konar S. Single-Molecule Magnet Behavior of Confined Dy(III) in a Mixed Heteroatom-Substituted Polyoxotungstate. Inorg Chem 2024; 63:4492-4501. [PMID: 38416533 DOI: 10.1021/acs.inorgchem.3c03095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Two heteroatom-templated Dy(III)-confined polyoxotungstates [H2N(CH3)2]7Na7[Dy2(H2O)7(W4O9)(HPSeW15O54)(α-SeW9O33)2]·31H2O (1) and [H2N(CH3)2]14K2Na18{[Dy2(H2O)13W14O40]2[α-SeW9O33]4[HPSeW15O54]2}·44H2O (2) were synthesized by a one-pot aqueous reaction and structurally characterized. The most distinctive structural feature of complexes 1 & 2 is the simultaneous presence of both trivacant Keggin [α-SeW9O33]8- and Dawson [HPSeW15O54]10- building blocks containing P(III)-Se(IV) heteroatoms. The trimeric polyanion of 1 can be represented as a fusion of two trivacant Keggin [α-SeW9O33]8- and Dawson [HPSeW15O54]10- building units encapsulating the [Dy2(H2O)7(W4O9)]12+ cluster. On the other hand, hexameric polyoxoanions of 2 are described as four trivacant Keggin [α-SeW9O33]8- and two Dawson [HPSeW15O54]10-, building units anchoring a [Dy4(H2O)26W28O80]20+ cluster. The magnetic investigation revealed the presence of significant magnetic anisotropy and slow relaxation of magnetization behavior for complex 1 with a phenomenological energy barrier, Ueff = 13.58 K in the absence of an external magnetic field, and Ueff = 24.57 K in the presence of a 500 Oe external dc magnetic field. On the other hand, complex 2 favors the QTM relaxation process in the absence of an external magnetic field and shows field-induced slow relaxation of magnetization with Ueff = 11.11 K at 1500 Oe applied dc field. The in-depth analysis of magnetic relaxation dynamics shows that the relaxation process follows the Orbach as well as Raman relaxation pathways. Further, the ab initio calculation of the studied complexes confirms that the highly axial ground and first excited energy states (containing pure highest mJ states) are responsible for the observed single-molecule magnet (SMM) behavior. Remarkably, this is the first example of a mixed heteroatom-based Dy(III)-substituted polyoxotungstate with both trimeric Keggin [α-SeW9O33]8- and Dawson [HPSeW15O54]10- building units showing SMM behavior.
Collapse
Affiliation(s)
- Sandhya Kapurwan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Pradip Kumar Sahu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
10
|
Seddon AA, Hill NS, El-Zubir O, Houlton A, Errington RJ, Docampo P, Gibson EA. Post transition metal substituted Keggin-type POMs as thin film chemiresistive sensors for H 2O and CO 2 detection. Chem Commun (Camb) 2024. [PMID: 38273815 DOI: 10.1039/d3cc05660k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Chemiresitive sensing allows the affordable and facile detection of small molecules such as H2O and CO2. Herein, we report a novel class of Earth-abundant post transition metal substituted Keggin polyoxometalates (POMs) for chemiresistive sensing applications, with conductivities up to 0.01 S cm-1 under 100% CO2 and 65% Relative Humidity (RH).
Collapse
Affiliation(s)
- Abigail A Seddon
- Energy Materials Laboratory, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Nathan S Hill
- School of Mathematics, Statistics, and Physics, Newcastle University, Newcastle upon Tyne, UK
| | - Osama El-Zubir
- Chemical Nanoscience Labs, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Andrew Houlton
- Chemical Nanoscience Labs, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - R John Errington
- Energy Materials Laboratory, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Pablo Docampo
- School of Chemistry, University of Glasgow, Glasgow, UK
| | - Elizabeth A Gibson
- Energy Materials Laboratory, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
11
|
Yin JF, Amidani L, Chen J, Li M, Xue B, Lai Y, Kvashnina K, Nyman M, Yin P. Spatiotemporal Studies of Soluble Inorganic Nanostructures with X-rays and Neutrons. Angew Chem Int Ed Engl 2024; 63:e202310953. [PMID: 37749062 DOI: 10.1002/anie.202310953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
This Review addresses the use of X-ray and neutron scattering as well as X-ray absorption to describe how inorganic nanostructured materials assemble, evolve, and function in solution. We first provide an overview of techniques and instrumentation (both large user facilities and benchtop). We review recent studies of soluble inorganic nanostructure assembly, covering the disciplines of materials synthesis, processes in nature, nuclear materials, and the widely applicable fundamental processes of hydrophobic interactions and ion pairing. Reviewed studies cover size regimes and length scales ranging from sub-Ångström (coordination chemistry and ion pairing) to several nanometers (molecular clusters, i.e. polyoxometalates, polyoxocations, and metal-organic polyhedra), to the mesoscale (supramolecular assembly processes). Reviewed studies predominantly exploit 1) SAXS/WAXS/SANS (small- and wide-angle X-ray or neutron scattering), 2) PDF (pair-distribution function analysis of X-ray total scattering), and 3) XANES and EXAFS (X-ray absorption near-edge structure and extended X-ray absorption fine structure, respectively). While the scattering techniques provide structural information, X-ray absorption yields the oxidation state in addition to the local coordination. Our goal for this Review is to provide information and inspiration for the inorganic/materials science communities that may benefit from elucidating the role of solution speciation in natural and synthetic processes.
Collapse
Affiliation(s)
- Jia-Fu Yin
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Lucia Amidani
- The Rossendorf Beamline at ESRF, The European Synchrotron, CS40220, 38043, Grenoble Cedex 9, France
- Institute of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf (HZDR) P.O. Box 510119, 01314, Dresden, Germany
| | - Jiadong Chen
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Mu Li
- Institute of Advanced Science Facilities, Shenzhen, 518107, China
| | - Binghui Xue
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Yuyan Lai
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Kristina Kvashnina
- The Rossendorf Beamline at ESRF, The European Synchrotron, CS40220, 38043, Grenoble Cedex 9, France
- Institute of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf (HZDR) P.O. Box 510119, 01314, Dresden, Germany
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, OR, 97330, USA
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
12
|
Sun Y, Li H, Zou Y, Ma P, Niu J, Wang J. A Hexameric Ruthenium(III)-Containing Tungstoantimonate with Good Proton Conductivity Performance. Inorg Chem 2023; 62:14142-14146. [PMID: 37603397 DOI: 10.1021/acs.inorgchem.3c01342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
A novel Ru(III)-containing tungstoantimonate Na16H22[(B-β-SbW9O33)6(W3RuO7)2(W4O11)]·118H2O (1) hexamer was successfully synthesized using the hydrothermal synthesis method. Analysis by single-crystal X-ray diffraction revealed that the polyanion comprises six trivacant Keggin-type [B-β-SbW9O33]9- units interconnected by six {WO6} and six Ru/W disorder octahedra, resulting in an intriguing cyclohexane boat-like conformation. Compound 1 exhibits favorable proton conductivity, with a measured conductivity (σ) of 5.41 × 10-3 S cm-1 at 333 K and 55% relative humidity (RH). The activation energy (Ea) of compound 1 was determined to be 0.40 eV, providing evidence that its proton conductivity conforms to the Grotthus mechanism.
Collapse
Affiliation(s)
- Yahao Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Huafeng Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Yan Zou
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| |
Collapse
|
13
|
Chen H, Zhang M, Li Y, Ma P, Wang J, Niu J. Hexameric polyoxotantalate with proton conduction properties. Chem Commun (Camb) 2023; 59:10664-10667. [PMID: 37581318 DOI: 10.1039/d3cc03645f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The first Fe-implanted polyoxotantalate (POTa), K12Na14H7.4[Fe10.7Ta1.3O8(OH)8(H2O)2(Ta6O19)6]·114.5H2O (1), has been obtained by self-assembly in alkaline solution. The polyanion consists of six Lindqvist-type {Ta6} units linked together by {Fe10.7Ta1.3}. The compound not only possesses the highest nuclearity transition metal-oxygen cluster, but also has the highest degree of polymerization in the POTa field to date. And 1 possesses remarkable proton conduction.
Collapse
Affiliation(s)
- Hanhan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Mingyang Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Yuyan Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.
| |
Collapse
|
14
|
Li XX, Li CH, Hou MJ, Zhu B, Chen WC, Sun CY, Yuan Y, Guan W, Qin C, Shao KZ, Wang XL, Su ZM. Ce-mediated molecular tailoring on gigantic polyoxometalate {Mo 132} into half-closed {Ce 11Mo 96} for high proton conduction. Nat Commun 2023; 14:5025. [PMID: 37596263 PMCID: PMC10439156 DOI: 10.1038/s41467-023-40685-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023] Open
Abstract
Precise synthesis of polyoxometalates (POMs) is important for the fundamental understanding of the relationship between the structure and function of each building motif. However, it is a great challenge to realize the atomic-level tailoring of specific sites in POMs without altering the major framework. Herein, we report the case of Ce-mediated molecular tailoring on gigantic {Mo132}, which has a closed structural motif involving a never seen {Mo110} decamer. Such capped wheel {Mo132} undergoes a quasi-isomerism with known {Mo132} ball displaying different optical behaviors. Experiencing an 'Inner-On-Outer' binding process with the substituent of {Mo2} reactive sites in {Mo132}, the site-specific Ce ions drive the dissociation of {Mo2*} clipping sites and finally give rise to a predictable half-closed product {Ce11Mo96}. By virtue of the tailor-made open cavity, the {Ce11Mo96} achieves high proton conduction, nearly two orders of magnitude than that of {Mo132}. This work offers a significant step toward the controllable assembly of POM clusters through a Ce-mediated molecular tailoring process for desirable properties.
Collapse
Affiliation(s)
- Xue-Xin Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Cai-Hong Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Ming-Jun Hou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Bo Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Wei-Chao Chen
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China.
| | - Chun-Yi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Ye Yuan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Wei Guan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Chao Qin
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Kui-Zhan Shao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Xin-Long Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China.
| | - Zhong-Min Su
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130021, P.R. China
| |
Collapse
|
15
|
Yonesato K, Yanai D, Yamazoe S, Yokogawa D, Kikuchi T, Yamaguchi K, Suzuki K. Surface-exposed silver nanoclusters inside molecular metal oxide cavities. Nat Chem 2023; 15:940-947. [PMID: 37291453 DOI: 10.1038/s41557-023-01234-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/09/2023] [Indexed: 06/10/2023]
Abstract
The surfaces of metal nanoclusters, including their interface with metal oxides, exhibit a high reactivity that is attractive for practical purposes. This high reactivity, however, has also hindered the synthesis of structurally well-defined hybrids of metal nanoclusters and metal oxides with exposed surfaces and/or interfaces. Here we report the sequential synthesis of structurally well-defined {Ag30} nanoclusters in the cavity of ring-shaped molecular metal oxides known as polyoxometalates. The {Ag30} nanoclusters possess exposed silver surfaces yet are stabilized both in solution and the solid state by the surrounding ring-shaped polyoxometalate species. The clusters underwent a redox-induced structural transformation without undesirable agglomeration or decomposition. Furthermore, {Ag30} nanoclusters showed high catalytic activity for the selective reduction of several organic functional groups using H2 under mild reaction conditions. We believe that these findings will serve for the discrete synthesis of surface-exposed metal nanoclusters stabilized by molecular metal oxides, which may in turn find applications in, for example, the fields of catalysis and energy conversion.
Collapse
Affiliation(s)
- Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Daiki Yanai
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Science, The University of Tokyo, Tokyo, Japan
| | | | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan.
| |
Collapse
|
16
|
Chen H, Zheng K, Wang J, Niu B, Ma P, Wang J, Niu J. Discovery and Isolation of Two Arsenotungastate Species: [As 4W 48O 168] 36- and [As 2W 21O 77(H 2O) 3] 22. Inorg Chem 2023; 62:3338-3342. [PMID: 36790222 DOI: 10.1021/acs.inorgchem.2c04280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Two novel arsenotungstate species, [As4W48O168]36- (1a) and [As2W21O77(H2O)3]22- (2a), have been successfully isolated under a one-pot synthetic method. 1a is the second largest arsenotungstate cluster and is constructed from four {AsW12} clusters combined together. 2a can be described as lacunary sites of {As2W19} filled by {W2O8} units. Compounds 1 and 2 exhibit proton conductivity properties, and the conductivity value of 1 is 5.0 × 10-3 S cm-1 at 98% relative humidity and 75 °C. This work proves that the lattice water molecules and polyoxoanions can participate in the formation of a hydrogen bond, acting as effective pathway for intermolecular proton conduction.
Collapse
Affiliation(s)
- Hanhan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Kangting Zheng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jingru Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Bingxue Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
17
|
Niu Y, Ding Y, Sheng H, Sun S, Chen C, Du J, Zang HY, Yang P. Space-Confined Nucleation of Semimetal-Oxo Clusters within a [H 7P 8W 48O 184] 33- Macrocycle: Synthesis, Structure, and Enhanced Proton Conductivity. Inorg Chem 2022; 61:21024-21034. [PMID: 36520449 DOI: 10.1021/acs.inorgchem.2c03543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Spatially confined assembly of semimetallic oxyanions (AsO33- and SbO33-) within a [H7P8W48O184]33- (P8W48) macrocycle has afforded three nanoscale polyanions, [{AsIII5O4(OH)3}2(P8W48O184)]32- (As10), [(SbIIIOH)4(P8W48O184)]32- (Sb4), and [(SbIIIOH)8(P8W48O184)]24- (Sb8), which were crystallized as the hydrated mixed-cation salts (Me2NH2)13K7Na2Li10[{AsIII5O4(OH)3}2(P8W48O184)]·32H2O (DMA-KNaLi-As10), K20Li12[(SbIIIOH)4(P8W48O184)]·52H2O (KLi-Sb4), and (Me2NH2)8K6Na5Li5[(SbIIIOH)8(P8W48O184)]·65H2O (DMA-KNaLi-Sb8), respectively. A multitude of solid- and solution-state physicochemical techniques were employed to systematically characterize the structure and composition of the as-made compounds. The polyanion of As10 represents the first example of a semimetal-oxo cluster-substituted P8W48 and accommodates the largest AsIII-oxo cluster in polyoxometalates (POMs) reported to date. The number of incorporated SbO33- groups in Sb4 and Sb8 could be customized by a simple variation of SbIII-containing precursors. Encapsulation of semimetallic oxyanions inside P8W48 sets out a valid strategy not only for the development of host-guest assemblies in POM chemistry but also for their function expansion in emerging applications such as proton-conducting materials, for which DMA-KNaLi-As10 showcases an outstanding conductivity of 1.2 × 10-2 S cm-1 at 85 °C and 70% RH.
Collapse
Affiliation(s)
- Yilin Niu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, 410082 Changsha, P. R. China
| | - Yue Ding
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, 410082 Changsha, P. R. China
| | - Hongxin Sheng
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, 410082 Changsha, P. R. China
| | - Sai Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, 130024 Changchun, P. R. China
| | - Chaoqin Chen
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, 410082 Changsha, P. R. China
| | - Jing Du
- Testing and Analysis Center, Hebei Normal University, 050024 Shijiazhuang, P. R. China
| | - Hong-Ying Zang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, 130024 Changchun, P. R. China
| | - Peng Yang
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, 410082 Changsha, P. R. China
| |
Collapse
|
18
|
Xie WL, Li XM, Lin JM, Dong LZ, Chen Y, Li N, Shi JW, Liu JJ, Liu J, Li SL, Lan YQ. Keeping Superprotonic Conductivity over a Wide Temperature Region via Sulfate Hopping Sites-Decorated Zirconium-Oxo Clusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205444. [PMID: 36284496 DOI: 10.1002/smll.202205444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Metal-oxo clusters have emerged as advanced proton conductors with well-defined and tunable structures. Nevertheless, the exploitation of metal-oxo clusters with high and stable proton conductivity over a relatively wide temperature range still remains a great challenge. Herein, three sulfate groups decorated zirconium-oxo clusters (Zr6 , Zr18 , and Zr70 ) as proton conductors are reported, which exhibit ultrahigh bulk proton conductivities of 1.71 × 10-1 , 2.01 × 10-2 , and 3.73 × 10-2 S cm-1 under 70 °C and 98% relative humidity (RH), respectively. Remarkably, Zr6 and Zr70 with multiple sulfate groups as proton hopping sites show ultralow activation energies of 0.22 and 0.18 eV, respectively, and stable bulk conductivities of >10-2 S cm-1 between 30 and 70 °C at 98% RH. Moreover, a time-dependent proton conductivity test reveals that the best performing Zr6 can maintain high proton conductivity up to 15 h with negligible loss at 70 °C and 98% RH, representing one of the best crystalline cluster-based proton conducting materials.
Collapse
Affiliation(s)
- Wei-Lian Xie
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xiao-Min Li
- School of Materials Science and Engineering, Institute of Functional Porous Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Jiao-Min Lin
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Long-Zhang Dong
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yu Chen
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ning Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jing-Wen Shi
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jing-Jing Liu
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
19
|
Yang P, Mahmoud ME, Xiang Y, Lin Z, Ma X, Christian JH, Bindra JK, Kinyon JS, Zhao Y, Chen C, Nisar T, Wagner V, Dalal NS, Kortz U. Host–Guest Chemistry in Discrete Polyoxo-12-Palladate(II) Cubes [MO 8Pd 12L 8] n− (M = Sc III, Co II, Cu II, L = AsO 43 –; M = Cd II, Hg II, L = PhAsO 32–): Structure, Magnetism, and Catalytic Hydrogenation. Inorg Chem 2022; 61:18524-18535. [DOI: 10.1021/acs.inorgchem.2c02751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peng Yang
- School of Science, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, 410082 Changsha, P. R. China
| | | | - Yixian Xiang
- School of Science, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Zhengguo Lin
- School of Science, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
- College of Chemistry and Materials Science, Hebei Normal University, 050024 Shijiazhuang, P. R. China
| | - Xiang Ma
- School of Science, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Jonathan H. Christian
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Jasleen K. Bindra
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Jared S. Kinyon
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Yue Zhao
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, 410082 Changsha, P. R. China
| | - Chaoqin Chen
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, 410082 Changsha, P. R. China
| | - Talha Nisar
- School of Science, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Veit Wagner
- School of Science, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Naresh S. Dalal
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Ulrich Kortz
- School of Science, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
20
|
Wang Y, Ma X, Li G, Li H, Wang Q, Chen W, Ma P, Li S, Niu J, Wang J. A High‐Nuclear Isopolymolybdate Cluster Assembled with an Anionic [{Mo
24
O
48
(OMe)
32
}]
8−
and Two Charge‐Neutral [{Mo
24
O
52
(OMe)
28
}] Cages. Chemistry 2022; 28:e202200637. [DOI: 10.1002/chem.202200637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yingyue Wang
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University Kaifeng Henan 475004 P. R. China
| | - Xinyi Ma
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University Kaifeng Henan 475004 P. R. China
| | - Guoao Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing P. R. China
| | - Huafeng Li
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University Kaifeng Henan 475004 P. R. China
| | - Quanzhong Wang
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University Kaifeng Henan 475004 P. R. China
| | - Wenjing Chen
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University Kaifeng Henan 475004 P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University Kaifeng Henan 475004 P. R. China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University Kaifeng Henan 475004 P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University Kaifeng Henan 475004 P. R. China
| |
Collapse
|
21
|
Tang Z, Wang M, Jia X, Xie S, Chen P, Wang D, Chen L, Zhao J. Organophosphonic Acid-Regulating Assembly of P V-Sb III Polyoxotungstate and Its Potential in Building a Dual-Signal Readout Electrochemical Aptasensor for Carcinogen Detection. Inorg Chem 2022; 61:14648-14661. [PMID: 36073797 DOI: 10.1021/acs.inorgchem.2c02003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Template-directed assembly of giant cluster-based nanomaterials is an everlasting theme in cluster science. In this work, ethylenediamine tetramethylphosphonic acid [H8EDTPA = (POCH2(OH)2)4C2H4N2] and [B-α-SbW9O33]9- were, respectively, used as an organic template and an inorganic template to prepare an organophosphonic acid-regulating PV-SbIII-heteroatom-inserted polyoxotungstate aggregate [H2N(CH3)2]5Na11H9[CeW4O10(HEDTPA)SbW15O50][B-α-SbW9O33]2·36H2O (1). Noteworthily, organophosphonic acid ligand not only works as an organic template leading to the assembly of a [HEDTPASbW15O50]14- building block but also further bridges the sandwich-type [CeW4O10(B-α-SbW9O33)2]11- entity. To extend its potential application in electrochemical sensing properties, we prepared a three-dimensional 1@EGO composite (EGO = reduced graphene oxide functionalized by ethylenediamine) with porous architecture and a prominent conducting ability. Furthermore, the 1@EGO composite was explored as a modification material for glassy carbon electrodes to build a dual-signal readout electrochemical aptasensor for carcinogens, which shows much better detection performance for aflatoxin B1 compared with traditional single-signal biosensors.
Collapse
Affiliation(s)
- Zhigang Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Menglu Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Xiaodan Jia
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Saisai Xie
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Pei Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Dan Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| |
Collapse
|
22
|
Ren W, Li B, Li S, Li Y, Gao Z, Chen X, Zang H. Synthesis and Proton Conductivity of Two Molybdate Polymers Based on [Mo
8
O
26
]
4−
Anions. ChemistrySelect 2022. [DOI: 10.1002/slct.202201337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei‐Bo Ren
- Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province Faculty of Chemistry Changchun Jilin 130024 China
| | - Bo Li
- Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province Faculty of Chemistry Changchun Jilin 130024 China
| | - Siqi Li
- Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province Faculty of Chemistry Changchun Jilin 130024 China
| | - Ying Li
- Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province Faculty of Chemistry Changchun Jilin 130024 China
| | - Zhixin Gao
- Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province Faculty of Chemistry Changchun Jilin 130024 China
| | - Xinyu Chen
- Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province Faculty of Chemistry Changchun Jilin 130024 China
| | - Hong‐Ying Zang
- Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province Faculty of Chemistry Changchun Jilin 130024 China
| |
Collapse
|
23
|
Ogiwara N, Iwano T, Ito T, Uchida S. Proton conduction in ionic crystals based on polyoxometalates. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Koizumi Y, Yonesato K, Yamaguchi K, Suzuki K. Ligand-Protecting Strategy for the Controlled Construction of Multinuclear Copper Cores within a Ring-Shaped Polyoxometalate. Inorg Chem 2022; 61:9841-9848. [PMID: 35737939 DOI: 10.1021/acs.inorgchem.2c01029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ring-shaped polyoxometalate (POM) [P8W48O184]40- contains a large cavity and is an attractive inorganic multidentate ligand for accumulating metal cations. Until now, several multinuclear metal cores are constructed within the {P8W48} framework in aqueous solvents. However, it is still challenging to control the number and arrangement of introduced metal cations because of the numerous coordination sites inside the {P8W48} framework. In this study, we developed a novel approach for the selective synthesis of several multinuclear copper-containing ring-shaped POMs in organic solvents using methoxy groups as organic protecting ligands for the reactive coordination sites. Reacting a tetra-n-butylammonium (TBA) salt of [P8W48O184]40- (P8W48) with 4 and 8 equiv of copper(II) acetate in the presence of methanol (MeOH), tetra- and octacopper cores were incorporated into the cavity to form TBA11H13[Cu4(H2O)4P8W48O176(OCH3)8]·28H2O·3CH3NO2 (Cu4) and TBA14H2[Cu8(H2O)12P8W48O176(OCH3)8]·24H2O·CH3CN (Cu8), respectively. For both structures, methoxy groups served as protecting ligands and temporarily inactivated vacant coordination sites. Without MeOH, dodeca- and hexadecacopper cores were constructed inside the cavity to form TBA14H2[Cu12(H2O)16P8W48O184]·4H2O (Cu12) and TBA16H8[Cu16(OH)16(H2O)4P8W48O184]·12H2O·C3H6O (Cu16), respectively. The arrangement of copper ions on the same {P2W12} units could be controlled by the input number of copper ions. Moreover, all four POMs could be synthesized from P8W48 by the stepwise addition of 4 equiv of copper(II) acetate, clarifying the introduction process.
Collapse
Affiliation(s)
- Yoshihiro Koizumi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
25
|
Yu H, Lin YD, Liu ZY, Sun YQ, Zheng ST. A Three-Dimensional (3D) Indium-Containing Polyoxoniobate Framework Based on {In 5Nb 71} n Helical Pillars. Inorg Chem 2022; 61:8112-8116. [PMID: 35588277 DOI: 10.1021/acs.inorgchem.2c00705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A rare 3D Indium-containing polyoxoniobate framework {H9[Cu(en)2(H2O)2][Cu(en)2]12[In(en)]5[Nb23-O65(OH)3(H2O)2]{Nb24O67(OH)2(H2O)3]2}·68H2O(1), based on the In-containing polyoxoniobate cluster, {[In(en)]5[Nb23O65(OH)3(H2O)2][Nb24O67(OH)2(H2O)3]2}35- ({In5Nb71}) and [Cu(en)2]2+ linkers has been successfully synthesized. The nest-like cluster {In5Nb71} is constructed from one brand-new V-shaped {Nb23O70}, two triangle-shaped {Nb24O72} and five [In(en)]3+. The [In(en)] fragments link {Nb24O72} and {Nb23O70} units into unique {In5Nb71}n helical pillars. The copper-amine complexes connect the {In5Nb71}n helical pillars into a three-dimensional (3D) inorganic-organic hybrid In-Cu-containing framework. This material also exhibits good ionic conductivity and vapor adsorption capacity properties.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yu-Diao Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zheng-Yi Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yan-Qiong Sun
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
26
|
Zhu M, Iwano T, Tan M, Akutsu D, Uchida S, Chen G, Fang X. Macrocyclic Polyoxometalates: Selective Polyanion Binding and Ultrahigh Proton Conduction. Angew Chem Int Ed Engl 2022; 61:e202200666. [PMID: 35129876 DOI: 10.1002/anie.202200666] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 11/10/2022]
Abstract
The rational development of an anion templation strategy for the construction of macrocycles has been historically limited to small anions, but large polyoxoanions can offer unmatched structural diversity and ample binding sites. Here we report the formation of a {Mo22 Fe8 } macrocycle by using the Preyssler anion, [NaP5 W30 O110 ]14- ({P5 W30 }), as a supramolecular template. The {Mo22 Fe8 } macrocycle displays selective anion binding behavior in solution. In the solid state, the 1 : 2 host-guest complex, {P5 W30 }2 ⊂{Mo22 Fe8 }, transports protons more effectively, through an extended hydrogen-bonding network, than a related 1 : 1 complex where the guest is completely encapsulated. The results highlight the great potential this anion templation approach has in producing macrocyclic systems for selective anion recognition and proton conduction purposes.
Collapse
Affiliation(s)
- Minghui Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Tsukasa Iwano
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Mengjin Tan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Daiki Akutsu
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Sayaka Uchida
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xikui Fang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
27
|
Zhu M, Iwano T, Tan M, Akutsu D, Uchida S, Chen G, Fang X. Macrocyclic Polyoxometalates: Selective Polyanion Binding and Ultrahigh Proton Conduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Minghui Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Tsukasa Iwano
- Department of Basic Science School of Arts and Sciences The University of Tokyo Tokyo 153-8902 Japan
| | - Mengjin Tan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Daiki Akutsu
- Department of Basic Science School of Arts and Sciences The University of Tokyo Tokyo 153-8902 Japan
| | - Sayaka Uchida
- Department of Basic Science School of Arts and Sciences The University of Tokyo Tokyo 153-8902 Japan
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xikui Fang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
28
|
Liu X, Xu N, Liu X, Guo Y, Wang X. Self-assembly of a novel multicomponent polyoxometalate-based tetrahedral supercluster with high catalytic activity for thioether oxidation. Chem Commun (Camb) 2022; 58:12236-12239. [DOI: 10.1039/d2cc02748h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel tetrahedral supercluster [(P2Co2MoV4O8)2(P2MoV2O8)4(Pb⊂P6Co2MoV2MoVI14O73)4]12− with multiple components has been successfully synthesized, which exhibits high catalytic activity for the oxidation of thioether.
Collapse
Affiliation(s)
- Xiaodong Liu
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou, 121013, P. R. China
| | - Na Xu
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou, 121013, P. R. China
| | - Xiaohui Liu
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou, 121013, P. R. China
| | - Yanyan Guo
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou, 121013, P. R. China
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou, 121013, P. R. China
| |
Collapse
|
29
|
Xie X, Liu X, Ma Z, Zhao H, Li W. Cationic peptides template the assembly of polyoxometalates into ultrathin nanosheet with in-plane ordered arrangement. Dalton Trans 2022; 51:3839-3844. [DOI: 10.1039/d1dt04292k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrathin polyoxometalates nanosheets with in-plane alignment have been constructed in aqueous solution with the assistance of cationic peptides. Different POMs varying in topology, size, and charges could be templated into...
Collapse
|
30
|
Sato K, Yonesato K, Yatabe T, Yamaguchi K, Suzuki K. Nanostructured Manganese Oxides within a Ring-Shaped Polyoxometalate Exhibiting Unusual Oxidation Catalysis. Chemistry 2021; 28:e202104051. [PMID: 34870869 DOI: 10.1002/chem.202104051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 11/07/2022]
Abstract
Nanosized manganese oxides have recently received considerable attention for their synthesis, structures, and potential applications. Although various synthetic methods have been developed, precise synthesis of novel nanostructured manganese oxides are still challenging. In this study, using a structurally defined nanosized cavity inside a ring-shaped polyoxometalate, we succeeded in synthesizing two types of discrete 18 and 20 nuclear nanostructured manganese oxides, Mn18 and Mn20, respectively. In particular, Mn18 showed much higher catalytic activity than other manganese oxides for the oxygenation of alkylarenes including electron-deficient ones, and the reaction proceeded through a unique reaction mechanism due to its unusual manganese oxide structure.
Collapse
Affiliation(s)
- Kai Sato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
31
|
Xiao HP, Zhang RT, Li Z, Xie YF, Wang M, Ye YD, Sun C, Sun YQ, Li XX, Zheng ST. Organoamine-Directed Assembly of 5p-4f Heterometallic Cluster Substituted Polyoxometalates: Luminescence and Proton Conduction Properties. Inorg Chem 2021; 60:13718-13726. [PMID: 34436870 DOI: 10.1021/acs.inorgchem.1c02099] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The assembly of heterometallic cluster substituted polyoxometalates (POMs) remains a great challenge for inorganic synthetic chemistry up to now. Herein, a series of 5p-4f heterometallic cluster substituted POMs were successfully isolated by a facile one-step hydrothermal reaction method, namely H17(H2en)3[SbIII9SbVLn3O14(H2O)3][(SbW9O33)3(PW9O34)]·28H2O(1-Ln, Ln = Ce, Sm, Eu, Gd, Tb, Dy) (en = ethylenediamine). Interestingly, by replacing en with imidazole, another series of 5p-4f heterometallic cluster substituted POMs H13(HIm)4K2Na4(H2O)9[SbIII9SbVLn3O14(H2O)3][(SbW9O33)3(PW9O34)]·26H2O (2-Ln, Ln = Sm, Eu, Gd, Tb, Dy, Im = imidazole) were obtained. Structural analyses indicate that both 1-Ln and 2-Ln are made up of an unprecedented 5p-4f heterometallic {Sb10Ln3O14(H2O)3} cluster stabilized simultaneously by mixed trilacunary heteropolyanions including {A-α-PW9O34} and {B-α-SbW9O33}. Impedance measurements indicate that both compounds exhibit different proton conduction properties, and the conductivity of 2 can reach up to 1.64 × 10-2 S cm-1 at 85 °C under 98% relative humidity. Moreover, the fluorescence emission behaviors of both compounds have been studied.
Collapse
Affiliation(s)
- Hui-Ping Xiao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Rong-Tao Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhong Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yu-Feng Xie
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Min Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yi-Da Ye
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Cai Sun
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yan-Qiong Sun
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xin-Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
32
|
|
33
|
Zou XN, Zhang D, Xie Y, Luan TX, Li W, Li L, Li PZ. High Enhancement in Proton Conductivity by Incorporating Sulfonic Acids into a Zirconium-Based Metal-Organic Framework via "Click" Reaction. Inorg Chem 2021; 60:10089-10094. [PMID: 34180672 DOI: 10.1021/acs.inorgchem.1c01191] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Taking a robust zirconium-based metal-organic framework, UiO-66, as a prototype, functional postmodification via the versatile Cu(I)-catalyzed azide-alkyne "click" reaction was carried out, and sulfonic acid groups were successfully grafted into its skeleton. Characterizations revealed that the MOF network was still well maintained after being treated by "clicked" modification. Investigations by electrochemical impedance spectroscopy measurements revealed that its proton conductivity increases exponentially up to 8.8 × 10-3 S cm-1 at 80 °C and 98% RH, while those of the UiO-66 and UiO-66-NH2 are only 6.3 × 10-6 and 3.5 × 10-6 S cm-1, respectively, at the same condition. Additionally, the continuous test shows it possesses long-life reusability. Such a remarkable enhancement on the proton conductivities and high performance in long-life reusability of the resultant MOF demonstrated that the "click" reaction is a facile reaction in postmodification of robust porous materials toward targeted applications, with which highly promising candidates of proton-conductive electrolytes for applying in proton-exchange-membrane (PEM) fuel cell can be achieved.
Collapse
Affiliation(s)
- Xin-Nan Zou
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China
| | - Deshan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China
| | - Yulong Xie
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China
| | - Wanchao Li
- No. 1 Institute of Geology and Mineral Resources of Shandong Province, No. 521 Jingde Road, Ji'nan 250100, Shandong Province, People's Republic of China
| | - Lei Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.,Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong Province, People's Republic of China
| |
Collapse
|
34
|
Iftikhar T, Izarova NV, van Leusen J, Kögerler P. Polyoxotungstate Archetype {P 4 W 27 } and its 3d Derivatives. Chemistry 2021; 27:8500-8508. [PMID: 33826185 PMCID: PMC8252624 DOI: 10.1002/chem.202004894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 11/08/2022]
Abstract
The propensity of the new, phenylphosphonate-stabilized polyoxotungstate [(C6 H5 PV O)2 P4 W24 O92 ]16- to act as a precursor for new 3d metal-functionalized polyanions has been investigated. Reactions with MnII and CuII induce the formation of the previously unknown polyoxotungstate archetype {P4 W27 }, isolated as salts of the polyanions [Na⊂{MnII (H2 O)}{WO(H2 O)}P4 W26 O98 ]13- (1) and [K⊂{CuII (H2 O)}{W(OH)(H2 O)}P4 W27 O99 ]14- (2), which were characterized in the solid state (single-crystal X-ray diffraction, elemental and TG analyses, IR spectroscopy, SQUID magnetometry) and in aqueous solution (UV/Vis spectroscopy, cyclic voltammetry).
Collapse
Affiliation(s)
- Tuba Iftikhar
- Institute of Inorganic ChemistryRWTH Aachen University52074AachenGermany
- Jülich-Aachen Research Alliance (JARA-FIT) and Peter Grünberg Institute 6Forschungszentrum Jülich52425JülichGermany
| | - Natalya V. Izarova
- Institute of Inorganic ChemistryRWTH Aachen University52074AachenGermany
- Jülich-Aachen Research Alliance (JARA-FIT) and Peter Grünberg Institute 6Forschungszentrum Jülich52425JülichGermany
| | - Jan van Leusen
- Institute of Inorganic ChemistryRWTH Aachen University52074AachenGermany
| | - Paul Kögerler
- Institute of Inorganic ChemistryRWTH Aachen University52074AachenGermany
- Jülich-Aachen Research Alliance (JARA-FIT) and Peter Grünberg Institute 6Forschungszentrum Jülich52425JülichGermany
| |
Collapse
|
35
|
Jin P, Wei H, Zhou L, Wei D, Wen Y, Zhao B, Wang X, Li B. Anderson-type polyoxometalate as excellent catalyst for green synthesis of adipic acid with hydrogen peroxide. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Ogiwara N, Tomoda M, Miyazaki S, Weng Z, Takatsu H, Kageyama H, Misawa T, Ito T, Uchida S. Integrating molecular design and crystal engineering approaches in non-humidified intermediate-temperature proton conductors based on a Dawson-type polyoxometalate and poly(ethylene glycol) derivatives. NANOSCALE 2021; 13:8049-8057. [PMID: 33956921 DOI: 10.1039/d1nr01220g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anionic metal-oxygen clusters known as polyoxometalates (POMs) have been widely researched as components of proton conductors. While proton conduction under non-humidified intermediate-temperature (100-250 °C) conditions is advantageous from the viewpoint of kinetics, few solid-state materials, not to mention POM-based crystals, show truly effective proton conduction without the aid of water vapor. In this context, non-volatile proton-conductive polymers have been confined into POM-based frameworks, while fast proton conduction was infeasible. Herein, we demonstrate a new strategy to synthesize POM-polymer composites exhibiting fast proton conduction under non-humidified intermediate-temperature conditions. Specifically, a molecular design approach utilizing poly(ethylene glycol)s (PEGs) of different terminal groups or chain lengths controls the proton carrier density, and a crystal engineering approach using a large Dawson-type POM ([α-P2W18O62]6-) with an anisotropic molecular shape and alkali metal ions as counter cations fine-tunes the mobility of the confined PEGs as proton carriers. By integrating these approaches, proton conductivity over 10-4 S cm-1 at 150 °C, comparable to the well-known highly proton-conductive solid-state materials, is achieved. The proton conduction mechanism is discussed with alternative current impedance spectroscopy jointly with specific heat capacity measurements and solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Naoki Ogiwara
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Iwano T, Shitamatsu K, Ogiwara N, Okuno M, Kikukawa Y, Ikemoto S, Shirai S, Muratsugu S, Waddell PG, Errington RJ, Sadakane M, Uchida S. Ultrahigh Proton Conduction via Extended Hydrogen-Bonding Network in a Preyssler-Type Polyoxometalate-Based Framework Functionalized with a Lanthanide Ion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19138-19147. [PMID: 33870694 DOI: 10.1021/acsami.1c01752] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The exploration of composition-structure-function relationship in proton-conducting solids remains a challenge in materials chemistry. Polyoxometalate-based compounds have been long considered as candidates for proton conductors; however, their low structural stability and a large decrease in conductivity under reduced relative humidity (RH) have limited their applications. To overcome such limitations, the hybridization of polyoxometalates with proton-conducting polymers has emerged as a promising method. Besides, 4f lanthanide ions possess a high coordination number, which can be utilized to attract water molecules and to build robust frameworks. Herein, a Preyssler-type polyoxometalate functionalized with a 9-coordinate Eu3+ (Eu[P5W30O110K]11-) is newly synthesized and combined with poly(allylamine) with amine moieties as protonation sites. The resulting robust crystalline composite exhibits an ultrahigh proton conductivity >10-2 S cm-1 at 368 K and 90% RH, which is still >10-3 S cm-1 at 50% RH, due to the strengthened and extended hydrogen-bonding network.
Collapse
Affiliation(s)
- Tsukasa Iwano
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kota Shitamatsu
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Naoki Ogiwara
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Masanari Okuno
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yuji Kikukawa
- Department of Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Satoru Ikemoto
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Sora Shirai
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Satoshi Muratsugu
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Paul G Waddell
- Department of Chemistry, School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - R John Errington
- Department of Chemistry, School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Masahiro Sadakane
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Sayaka Uchida
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
38
|
Li SR, Wang HY, Su HF, Chen HJ, Du MH, Long LS, Kong XJ, Zheng LS. A Giant 3d-4f Polyoxometalate Super-Tetrahedron with High Proton Conductivity. SMALL METHODS 2021; 5:e2000777. [PMID: 34927816 DOI: 10.1002/smtd.202000777] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/05/2020] [Indexed: 06/14/2023]
Abstract
The assembly of gigantic heterometallic metal clusters remains a great challenge for synthetic chemistry. Herein, based on the slow release strategy of lanthanide ions and in situ formation of lacunary polyoxometalates, two giant 3d-4f polyoxometalate inorganic clusters [LaNi12 W35 Sb3 P3 O139 (OH)6 ]23- (LaNi12 ) and [La10 Ni48 W140 Sb16 P12 O568 (OH)24 (H2 O)20 ]86- (La10 Ni48 ) are obtained. The nanoscopic inorganic cluster La10 Ni48 possesses a super tetrahedron structure, which can be viewed as assembly from four LaNi12 molecules encapsulating a central [La6 (SbO3 )4 (H2 O)20 ]6+ octahedron core. This giant aesthetic La10 Ni48 tetrahedron containing 214 metal ions is the largest 3d-4f cluster reported thus far in polyoxometalate system. More interestingly, the LaNi12 and La10 Ni48 display high stability in solution and La10 Ni48 displays excellent proton conductivity.
Collapse
Affiliation(s)
- Shu-Rong Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hai-Ying Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hai-Feng Su
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hui-Jun Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Ming-Hao Du
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
39
|
Bhattacharya S, Basu U, Haouas M, Su P, Espenship MF, Wang F, Solé‐Daura A, Taffa DH, Wark M, Poblet JM, Laskin J, Cadot E, Kortz U. Discovery and Supramolecular Interactions of Neutral Palladium-Oxo Clusters Pd 16 and Pd 24. Angew Chem Int Ed Engl 2021; 60:3632-3639. [PMID: 33104280 PMCID: PMC7898824 DOI: 10.1002/anie.202010690] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/23/2020] [Indexed: 01/27/2023]
Abstract
We report on the synthesis, structure, and physicochemical characterization of the first three examples of neutral palladium-oxo clusters (POCs). The 16-palladium(II)-oxo cluster [Pd16 O24 (OH)8 ((CH3 )2 As)8 ] (Pd16 ) comprises a cyclic palladium-oxo unit capped by eight dimethylarsinate groups. The chloro-derivative [Pd16 Na2 O26 (OH)3 Cl3 ((CH3 )2 As)8 ] (Pd16 Cl) was also prepared, which forms a highly stable 3D supramolecular lattice via strong intermolecular interactions. The 24-palladium(II)-oxo cluster [Pd24 O44 (OH)8 ((CH3 )2 As)16 ] (Pd24 ) can be considered as a bicapped derivative of Pd16 with a tetra-palladium-oxo unit grafted on either side. The three compounds were fully characterized 1) in the solid state by single-crystal and powder XRD, IR, TGA, and solid-state 1 H and 13 C NMR spectroscopy, 2) in solution by 1 H, 13 C NMR and 1 H DOSY spectroscopic methods, and 3) in the gas phase by electrospray ionization mass spectrometry (ESI-MS).
Collapse
Affiliation(s)
- Saurav Bhattacharya
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Uttara Basu
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Mohamed Haouas
- Institut Lavoisier de VersaillesCNRS, UVSQUniversité Paris-SaclayVersaillesFrance
| | - Pei Su
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN47907USA
| | | | - Fei Wang
- Departament de Química Física i InorgànicaUniversitat Rovira i Virgili, Marcel lí Domingo 143007TarragonaSpain
| | - Albert Solé‐Daura
- Departament de Química Física i InorgànicaUniversitat Rovira i Virgili, Marcel lí Domingo 143007TarragonaSpain
| | - Dereje H. Taffa
- Institute of ChemistryCarl von Ossietzky University Oldenburg26129OldenburgGermany
| | - Michael Wark
- Institute of ChemistryCarl von Ossietzky University Oldenburg26129OldenburgGermany
| | - Josep M. Poblet
- Departament de Química Física i InorgànicaUniversitat Rovira i Virgili, Marcel lí Domingo 143007TarragonaSpain
| | - Julia Laskin
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN47907USA
| | - Emmanuel Cadot
- Institut Lavoisier de VersaillesCNRS, UVSQUniversité Paris-SaclayVersaillesFrance
| | - Ulrich Kortz
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| |
Collapse
|
40
|
Tandekar K, Singh C, Supriya S. Proton Conductivity in {Mo
72
Fe
30
}‐Type Keplerate. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202000889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kesar Tandekar
- School of Physical Sciences Jawaharlal Nehru University 110067 New Delhi India
| | - Chandani Singh
- School of Chemistry University of Hyderabad 500046 Hyderabad India
| | - Sabbani Supriya
- School of Physical Sciences Jawaharlal Nehru University 110067 New Delhi India
| |
Collapse
|
41
|
Wen W, Meng YS, Jiao CQ, Liu Q, Zhu HL, Li YM, Oshio H, Liu T. Ferromagnetic Archimedean polyhedra {Fe 24M 18} (M = Fe, Ni, and Mn) with tunable electron configurations. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00593f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three symmetric nanocages {Fe24M18} that mimic the Archimedean polyhedra, namely pseudo-rhombicuboctahedron, were synthesized. Their electron configurations depend highly on the changes of metal ions and the deprotonation of auxiliary ligands.
Collapse
Affiliation(s)
- Wen Wen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Dalian, 116024, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Dalian, 116024, China
| | - Cheng-Qi Jiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Dalian, 116024, China
| | - Qiang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Dalian, 116024, China
| | - Hai-Lang Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Dalian, 116024, China
| | - Ya-Ming Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Dalian, 116024, China
| | - Hiroki Oshio
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Dalian, 116024, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Dalian, 116024, China
| |
Collapse
|
42
|
Chen Y, Guo ZW, Chen YP, Zhuang ZY, Wang GQ, Li XX, Zheng ST, Yang GY. Two novel nickel cluster substituted polyoxometalates: syntheses, structures and their photocatalytic activities, magnetic behaviors, and proton conduction properties. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01410a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A Ni12-substituted POM and a Ni6-substituted POM have been synthesized and characterized. The compounds show a moderate catalytic activity in visible-light-driven CO2 reduction reactions, and can serve as potential proton conduction materials.
Collapse
Affiliation(s)
- Yi Chen
- College of Chemistry
- Fuzhou University
- Fuzhou
- People's Republic of China
| | - Zheng-Wei Guo
- College of Chemistry
- Fuzhou University
- Fuzhou
- People's Republic of China
| | - Ya-Peng Chen
- Key Laboratory of Advanced Materials Technologies
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou
- People's Republic of China
| | - Zan-Yong Zhuang
- Key Laboratory of Advanced Materials Technologies
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou
- People's Republic of China
| | - Guo-Qiang Wang
- Key Laboratory of Advanced Materials Technologies
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou
- People's Republic of China
| | - Xin-Xiong Li
- College of Chemistry
- Fuzhou University
- Fuzhou
- People's Republic of China
| | - Shou-Tian Zheng
- College of Chemistry
- Fuzhou University
- Fuzhou
- People's Republic of China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- China
| |
Collapse
|
43
|
Sun X, Liu S, Wu Q, Zhang S, Tian H, Bai X, Li Z, Lu Y, Liu S. ‘Proton escalator’ PEI and phosphotungstic acid containing nanofiber membrane with remarkable proton conductivity. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00026h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polyethyleneimine (PEI) and phosphotungstic acid (HPW) build an efficient proton transmission path. The segmental movement of flexible PEI speeds up the migration of protons, which acts as a ‘proton-escalator’.
Collapse
Affiliation(s)
- Xiuwei Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education
- College of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Shumei Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education
- College of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Qingyin Wu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- PR China
| | - Shan Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education
- College of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Hongrui Tian
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education
- College of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Xue Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education
- College of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Zhuo Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education
- College of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Ying Lu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education
- College of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Shuxia Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education
- College of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| |
Collapse
|
44
|
Si C, Ma P, Han Q, Jiao J, Du W, Wu J, Li M, Niu J. A Polyoxometalate-Based Inorganic Porous Material with both Proton and Electron Conductivity by Light Actuation: Photocatalysis for Baeyer–Villiger Oxidation and Cr(VI) Reduction. Inorg Chem 2020; 60:682-691. [DOI: 10.1021/acs.inorgchem.0c02658] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Chen Si
- Henan Key Laboratory of Polyoxometalate Chemisty, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemisty, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Qiuxia Han
- Henan Key Laboratory of Polyoxometalate Chemisty, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Jiachen Jiao
- Henan Key Laboratory of Polyoxometalate Chemisty, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Wei Du
- Henan Key Laboratory of Polyoxometalate Chemisty, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Jingpin Wu
- Henan Key Laboratory of Polyoxometalate Chemisty, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Mingxue Li
- Henan Key Laboratory of Polyoxometalate Chemisty, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemisty, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| |
Collapse
|
45
|
Bhattacharya S, Basu U, Haouas M, Su P, Espenship MF, Wang F, Solé‐Daura A, Taffa DH, Wark M, Poblet JM, Laskin J, Cadot E, Kortz U. Discovery and Supramolecular Interactions of Neutral Palladium‐Oxo Clusters Pd
16
and Pd
24. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Saurav Bhattacharya
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Uttara Basu
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Mohamed Haouas
- Institut Lavoisier de Versailles CNRS, UVSQ Université Paris-Saclay Versailles France
| | - Pei Su
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | | | - Fei Wang
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili, Marcel lí Domingo 1 43007 Tarragona Spain
| | - Albert Solé‐Daura
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili, Marcel lí Domingo 1 43007 Tarragona Spain
| | - Dereje H. Taffa
- Institute of Chemistry Carl von Ossietzky University Oldenburg 26129 Oldenburg Germany
| | - Michael Wark
- Institute of Chemistry Carl von Ossietzky University Oldenburg 26129 Oldenburg Germany
| | - Josep M. Poblet
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili, Marcel lí Domingo 1 43007 Tarragona Spain
| | - Julia Laskin
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles CNRS, UVSQ Université Paris-Saclay Versailles France
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| |
Collapse
|
46
|
Alsiary RA, Alghrably M, Saoudi A, Al-Ghamdi S, Jaremko L, Jaremko M, Emwas AH. Using NMR spectroscopy to investigate the role played by copper in prion diseases. Neurol Sci 2020; 41:2389-2406. [PMID: 32328835 PMCID: PMC7419355 DOI: 10.1007/s10072-020-04321-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/29/2020] [Indexed: 12/31/2022]
Abstract
Prion diseases are a group of rare neurodegenerative disorders that develop as a result of the conformational conversion of normal prion protein (PrPC) to the disease-associated isoform (PrPSc). The mechanism that actually causes disease remains unclear. However, the mechanism underlying the conformational transformation of prion protein is partially understood-in particular, there is strong evidence that copper ions play a significant functional role in prion proteins and in their conformational conversion. Various models of the interaction of copper ions with prion proteins have been proposed for the Cu (II)-binding, cell-surface glycoprotein known as prion protein (PrP). Changes in the concentration of copper ions in the brain have been associated with prion diseases and there is strong evidence that copper plays a significant functional role in the conformational conversion of PrP. Nevertheless, because copper ions have been shown to have both a positive and negative effect on prion disease onset, the role played by Cu (II) ions in these diseases remains a topic of debate. Because of the unique properties of paramagnetic Cu (II) ions in the magnetic field, their interactions with PrP can be tracked even at single atom resolution using nuclear magnetic resonance (NMR) spectroscopy. Various NMR approaches have been utilized to study the kinetic, thermodynamic, and structural properties of Cu (II)-PrP interactions. Here, we highlight the different models of copper interactions with PrP with particular focus on studies that use NMR spectroscopy to investigate the role played by copper ions in prion diseases.
Collapse
Affiliation(s)
- Rawiah A. Alsiary
- King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Mawadda Alghrably
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdelhamid Saoudi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Suliman Al-Ghamdi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Lukasz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdul-Hamid Emwas
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
47
|
Lin J, Li N, Yang S, Jia M, Liu J, Li XM, An L, Tian Q, Dong LZ, Lan YQ. Self-Assembly of Giant Mo240 Hollow Opening Dodecahedra. J Am Chem Soc 2020; 142:13982-13988. [DOI: 10.1021/jacs.0c06582] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jiaomin Lin
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Ning Li
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Mingjie Jia
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Jiang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiao-Min Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Lu An
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Qiwei Tian
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Long-Zhang Dong
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
48
|
Zhang J, Lai R, Wu Y, Zhu Z, Sun Y, Zeng Q, Li X, Zheng S. High‐dimensional Polyoxoniobates Constructed from Lanthanide‐incorporated High‐nuclear {[Ln(H
2
O)
4
]
3
[Nb
24
O
69
(H
2
O)
3
]
2
} Secondary Building Units. Chem Asian J 2020; 15:1574-1579. [DOI: 10.1002/asia.202000294] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350108 P. R. China
| | - Rong‐Da Lai
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350108 P. R. China
| | - Yan‐Lan Wu
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350108 P. R. China
| | - Zeng‐Kui Zhu
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350108 P. R. China
| | - Yan‐Qiong Sun
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350108 P. R. China
| | - Qing‐Xin Zeng
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350108 P. R. China
| | - Xin‐Xiong Li
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350108 P. R. China
- State Key Laboratory of Structural chemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Shou‐Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
49
|
Ma W, Hu B, Jing K, Li Z, Jin J, Zheng S, Huang X. Proton-conducting layered structures based on transition metal oxo-clusters supported by Sb(iii) tartrate scaffolds. Dalton Trans 2020; 49:3849-3855. [PMID: 31848553 DOI: 10.1039/c9dt04333k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Two transition metal-antimony oxo-cluster based compounds, H5{MCd(H2O)6[M(H2O)3Co3SbVSb(μ3-O)8(l-tta)6]}·7H2O (1) (M = Cd0.5 + Co0.5) and H3K5(H2O)11{Cd(H2O)4[Cd(H2O)Fe4Cd2Sb6(μ4-O)5(μ3-O)3(l-tta)6][Cd(H2O)2Fe4Cd2Sb6(μ4-O)4(μ3-O)4(l-tta)6][Cd(H2O)2Fe4Cd2Sb6(μ4-O)4(μ3-O)4(l-tta)6Cd(H2O)5]}·17H2O (2) (L-H4tta = l-tartaric acid) were hydrothermally synthesized and characterized. Compound 1 features a [MCo3SbVSb(μ3-O)8(l-tta)6(H2O)3]9- cluster, while compound 2 contains three types of clusters, namely, [Cd(H2O)Fe4Cd2Sb6(μ4-O)5(μ3-O)3(l-tta)6]4-, [Cd(H2O)2Fe4Cd2Sb6(μ4-O)4(μ3-O)4(l-tta)6]4- and [Cd(H2O)2Fe4Cd2Sb6(μ4-O)4(μ3-O)4(l-tta)6Cd(H2O)5]2-. All the clusters are of sandwich-type with {Sb3(μ3-O)(l-tta)} scaffolds on the top and bottom. The Cd (and M in 1) ions interconnect the clusters into layered structures in both compounds. To the best of our knowledge, this is the first report of transition metal-antimony oxo-clusters that simultaneously contain the first-row and second-raw transition metal ions, and compound 1 represents the first example of such type of clusters that contain Sb(v). The two compounds exhibit proton conductivity with the values of 2.43 × 10-3 and 2.95 × 10-3 S cm-1 at 85 °C under 98% relative humidity, respectively.
Collapse
Affiliation(s)
- Wen Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | | | | | | | | | | | | |
Collapse
|
50
|
3D lanthanide-organic supramolecular-graphene oxide composites: A simple and effective method significantly improve the proton conductivity of proton exchange membrane. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|