1
|
Feng Q, Ding R, Zhang M. Heterometallic [2]Catenane-Crosslinked Supramolecular Networks with Improved Antibacterial Activity. Chemistry 2025; 31:e202403595. [PMID: 39443417 DOI: 10.1002/chem.202403595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
The construction of supramolecular networks with novel crosslinks is of great significance in expanding their chemical structures and exploring their advanced functions. Herein, we prepare a type of [2]catenane-cored supramolecular networks based on the crosslinking of polyethylene glycol (PEG) using a heterometallic [2]catenane unit. By adjusting the molecular weight of PEG, the solubility of the networks can be tuned and gels are formed using low molecular weight PEG. The introduction of heterometallic [2]catenane offers the networks good antibacterial properties owing to the synergistic antimicrobial activity of Pt(II) and Cu(I) ions in the [2]catenane. This study provides a simple and efficient strategy for constructing supramolecular networks with topological crosslinks as antibacterial materials, which will promote the structural design and biological applications of supramolecular networks.
Collapse
Affiliation(s)
- Qian Feng
- Rocket Force University of Engineering, Xi'an, 710025, China
| | - Rui Ding
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
Chauhan M, Roopmani P, Rajendran J, Narayan KP, Giri J. Injectable, in-situ forming, tunable, biocompatible gelatin hydrogels for biomedical applications. Int J Biol Macromol 2024; 285:138200. [PMID: 39617237 DOI: 10.1016/j.ijbiomac.2024.138200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/08/2024]
Abstract
Gelatin hydrogels have drawn attention for their diverse biomedical applications due to their flexible physiochemical properties. However, such gelatin hydrogels are made of toxic crosslinkers and photoinitiators, restricting their non-invasive deep tissue application. The in-situ forming chemical crosslinked without such toxic crosslinker and UV light has not been explored under physiological conditions. This study establishes a simple method to fabricate an injectable click-chemistry-based in-situ forming gelatin hydrogel in a physiological environment (without toxic UV or photoinitiator) with tunable physiochemical properties to modulate cellular response. Using Divinyl Sulfone (DVS) modification, gelatin hydrogel (GelVS) is optimized with tunable degradation properties, moduli (100 Pa -1000 Pa), gelation time, swelling, degradation, and viscoelastic behaviour. The in-vitro results using fibroblast and stem cells show that the hydrogel and its precursors were cytocompatible with diverging feedback of cells as the modulus varies. The in-vivo analysis for injectability, degradation, and biocompatibility of the GelVS hydrogel displays their biocompatible nature and lasts up to 30 days at the injecting site. Overall results indicate that DVS-modified GelVS hydrogel will be a great system with tunable physicochemical properties to modulate favorable cellular response for tissue regeneration and non-invasive deep tissue application.
Collapse
Affiliation(s)
- Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Purandhi Roopmani
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Jayakumar Rajendran
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Kumar Pranav Narayan
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Telangana, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
3
|
Jadhav T, Dhokale B, Saeed ZM, Hadjichristidis N, Mohamed S. Dynamic Covalent Chemistry of Enamine-Ones: Exploring Tunable Reactivity in Vitrimeric Polymers and Covalent Organic Frameworks. CHEMSUSCHEM 2024; 17:e202400356. [PMID: 38842466 PMCID: PMC11587689 DOI: 10.1002/cssc.202400356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Dynamic covalent chemistry (DCC) has revolutionized the field of polymer science by offering new opportunities for the synthesis, processability, and recyclability of polymers as well as in the development of new materials with interesting properties such as vitrimers and covalent organic frameworks (COFs). Many DCC linkages have been explored for this purpose, but recently, enamine-ones have proven to be promising dynamic linkages because of their facile reversible transamination reactions under thermodynamic control. Their high stability, stimuli-responsive properties, and tunable kinetics make them promising dynamic cross-linkers in network polymers. Given the rapid developments in the field in recent years, this review provides a critical and up-to-date overview of recent developments in enamine-one chemistry, including factors that control their dynamics. The focus of the review will be on the utility of enamine-ones in designing a variety of processable and self-healable polymers with important applications in vitrimers and recyclable closed-loop polymers. The use of enamine-one linkages in crystalline polymers, known as COFs and their applications are also summarized. Finally, we provide an outlook for future developments in this field.
Collapse
Affiliation(s)
- Thaksen Jadhav
- Department of ChemistryGreen Chemistry & Materials Modelling LaboratoryKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
- Center for Catalysis and SeparationsKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
| | - Bhausaheb Dhokale
- Department of ChemistryGreen Chemistry & Materials Modelling LaboratoryKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
- Department of ChemistryUniversity of WyomingLaramieWyoming 82071United States of America
| | - Zeinab M. Saeed
- Department of ChemistryGreen Chemistry & Materials Modelling LaboratoryKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
- Center for Catalysis and SeparationsKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
| | - Nikos Hadjichristidis
- Chemistry ProgramKAUST Catalysis CenterPhysical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955Saudi Arabia
| | - Sharmarke Mohamed
- Department of ChemistryGreen Chemistry & Materials Modelling LaboratoryKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
- Center for Catalysis and SeparationsKhalifa University of Science and TechnologyPO BoxAbu Dhabi127788United Arab Emirates
| |
Collapse
|
4
|
Degirmenci A, Sanyal R, Sanyal A. Metal-Free Click-Chemistry: A Powerful Tool for Fabricating Hydrogels for Biomedical Applications. Bioconjug Chem 2024; 35:433-452. [PMID: 38516745 PMCID: PMC11036366 DOI: 10.1021/acs.bioconjchem.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/23/2024]
Abstract
Increasing interest in the utilization of hydrogels in various areas of biomedical sciences ranging from biosensing and drug delivery to tissue engineering has necessitated the synthesis of these materials using efficient and benign chemical transformations. In this regard, the advent of "click" chemistry revolutionized the design of hydrogels and a range of efficient reactions was utilized to obtain hydrogels with increased control over their physicochemical properties. The ability to apply the "click" chemistry paradigm to both synthetic and natural polymers as hydrogel precursors further expanded the utility of this chemistry in network formation. In particular, the ability to integrate clickable handles at predetermined locations in polymeric components enables the formation of well-defined networks. Although, in the early years of "click" chemistry, the copper-catalyzed azide-alkyne cycloaddition was widely employed, recent years have focused on the use of metal-free "click" transformations, since residual metal impurities may interfere with or compromise the biological function of such materials. Furthermore, many of the non-metal-catalyzed "click" transformations enable the fabrication of injectable hydrogels, as well as the fabrication of microstructured gels using spatial and temporal control. This review article summarizes the recent advances in the fabrication of hydrogels using various metal-free "click" reactions and highlights the applications of thus obtained materials. One could envision that the use of these versatile metal-free "click" reactions would continue to revolutionize the design of functional hydrogels geared to address unmet needs in biomedical sciences.
Collapse
Affiliation(s)
- Aysun Degirmenci
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
| | - Rana Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Bebek, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Bebek, Istanbul 34342, Türkiye
| |
Collapse
|
5
|
Paula CTB, Leandro A, Pereira P, Coelho JFJ, Fonseca AC, Serra AC. Fast-Gelling Polyethylene Glycol/Polyethyleneimine Hydrogels Degradable by Visible-Light. Macromol Biosci 2024; 24:e2300289. [PMID: 37717210 DOI: 10.1002/mabi.202300289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/12/2023] [Indexed: 09/18/2023]
Abstract
The treatment of burn wounds remains a clinical challenge due to the need for repeated dressings changes. Therefore, the development of a dressing system that can be atraumatically removed from the wound bed can be considered a breakthrough and improve treatment times. In this work, the development of an injectable, fast-gelling hydrogel is proposed that can change its mechanical properties when exposed to visible light. The hydrogels are prepared by a "click" amino-yne reaction between poly(ethylene glycol) (PEG) functionalized with propiolic acid and the amino groups of poly(ethyleneimine) (PEI). The hydrogels exhibit a fast gelation time, which can be adjusted by changing the weight percentage and molecular weight of the precursors. They also exhibit good swelling ability and adhesion to living tissues. More importantly, their mechanical properties changed upon irradiation with green light. This loss of properties is achieved by a 1 O2 -mediated mechanism, as confirmed by the degradation of the β-aminoacrylate linker. Moreover, the in vitro cell compatibility results of the hydrogels and their degradation products show good cytocompatibility. Therefore, it is believed that these hydrogels can be considered as materials with great potential for an innovative strategy for the treatment of burn wounds.
Collapse
Affiliation(s)
- Carlos T B Paula
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, 3030-199, Portugal
| | - Ana Leandro
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
| | - Patrícia Pereira
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, 3030-199, Portugal
| | - Jorge F J Coelho
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, 3030-199, Portugal
| | - Ana C Fonseca
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
| | - Arménio C Serra
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, 3030-790, Portugal
| |
Collapse
|
6
|
Li Q, Hu Z, Ji X. Hydrogel-Based Macroscopic Click Chemistry. Angew Chem Int Ed Engl 2023; 62:e202315086. [PMID: 37947160 DOI: 10.1002/anie.202315086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
The click reaction has found good utility across various fields due to the characteristics of high efficiency, atom economy, simple and mild reaction conditions. Click chemistry is usually utilized for connecting components of microscopic level, while it is still unable for joining macroscopic building blocks. Materials consisting of macroscopic building blocks realize the flexible fabrication of three-dimensional structures at macroscopic level, exerting significance on parallel manufactures. In this work, we reported macroscopic click chemistry utilizing hydrogel as macroscopic building blocks. Hydrogels G1 and G2 were prepared by incorporating M1 (N,N'-dimethyl-1,2-ethanediamine) and P1 (alkyne functionalized polyethylene glycol) respectively, where polymer chains formed through diffusion-induced amino-yne click reaction entangled different hydrogel networks together. Additionally, chain-like aggregates and complicated 3D structures such as tetrahedron and quadrangular pyramid were constructed based on the adhesion of the hydrogel blocks. The approach enables us to find more possibilities in the delicate designation of 3D aggregations as well as large-scale manufacturing.
Collapse
Affiliation(s)
- Qingyun Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Ziqing Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Xiaofan Ji
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| |
Collapse
|
7
|
Müller FJ, Isa L, Vermant J. Toughening colloidal gels using rough building blocks. Nat Commun 2023; 14:5309. [PMID: 37652918 PMCID: PMC10471594 DOI: 10.1038/s41467-023-41098-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Colloidal gels, commonly used as mesoporous intermediates or functional materials, suffer from brittleness, often showing small yield strains on the order of 1% or less for gelled colloidal suspensions. The short-range adhesive forces in most such gels are central forces-combined with the smooth morphology of particles, the resistance to yielding and shear-induced restructuring is limited. In this study, we propose an innovative approach to improve colloidal gels by introducing surface roughness to the particles to change the yield strain, giving rise to non-central interactions. To elucidate the effects of particle roughness on gel properties, we prepared thermoreversible gels made from rough or smooth silica particles using a reliable click-like-chemistry-based surface grafting technique. Rheological and optical characterization revealed that rough particle gels exhibit enhanced toughness and self-healing properties. These remarkable properties can be utilized in various applications, such as xerogel fabrication and high-fidelity extrusion 3D-printing, as we demonstrate in this study.
Collapse
Affiliation(s)
| | - Lucio Isa
- Department of Materials, ETH Zurich, Switzerland
| | - Jan Vermant
- Department of Materials, ETH Zurich, Switzerland.
| |
Collapse
|
8
|
Wang Y, Wu Y, Zhang B, Zheng C, Hu C, Guo C, Kong Q, Wang Y. Repair of degenerative nucleus pulposus by polyphenol nanosphere-encapsulated hydrogel gene delivery system. Biomaterials 2023; 298:122132. [PMID: 37156085 DOI: 10.1016/j.biomaterials.2023.122132] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/17/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Intervertebral disc degeneration (IDD) progresses due to local inflammatory response, gradually unbalanced anabolic/catabolic activity, and progressive functional impairment within the nucleus pulposus. Antagomir-21, a cholesterol-modified miRNA-21 inhibitor, has potential extracellular matrix (ECM) regenerative ability, but its application for IDD is limited by inadequate local delivery systems. An injectable hydrogel gene delivery system encapsulating a modified tannic acid nanoparticles (TA NPs) vector was engineered for on-demand and sustained delivery of antagomir-21 into the nucleus pulposus. After nucleus pulposus cell uptake, antagomir-21 was released from TA NPs and regulated the ECM metabolic balance by inhibiting the MAPK/ERK signaling pathway. TA NPs scavenged intracellular ROS and reduced inflammation by downregulating TNF-α expression. In vivo, synergistic anti-inflammatory effects and ECM regeneration effectively promoted therapeutic efficacy against IDD. This hydrogel gene delivery system represents a creative, promising strategy for IDD repair.
Collapse
Affiliation(s)
- Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ye Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Zheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Chuan Guo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Deng M, Wu Y, Ren Y, Song H, Zheng L, Lin G, Wen X, Tao Y, Kong Q, Wang Y. Clickable and smart drug delivery vehicles accelerate the healing of infected diabetic wounds. J Control Release 2022; 350:613-629. [PMID: 36058354 DOI: 10.1016/j.jconrel.2022.08.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022]
Abstract
In this study, an adipic acid dihydrazide (ADH)/ tannic acid (TA)-grafted hyaluronic acid (HA)-based multifunctional hydrogel was synthesized through a spontaneous amino-yne click reaction and used to promote the improved healing of infected diabetic wounds. This hydrogel exhibited a range of beneficial properties such as tunable gelation time, adjustable mechanical properties, pH-sensitive response characteristics, excellent injectability, the ability to readily adhere to tissue, and ultra-intimate contact capabilities. Following the encapsulation of ultrasmall Ag nanoclusters (AgNCs) and deferoxamine loaded polydopamine/ hollow mesoporous manganese dioxide (PHMD, PDA/H-mMnO2@DFO) nanoparticles, the prepared hydrogel presented with robust antibacterial, anti-inflammatory, and pro-angiogenic properties and a desirable smart drug release profile. In this fabricated platform, PHMD was able to effectively alleviate localized oxidative stress and prolonged oxygen deprivation via the decomposition of endogenous H2O2 to produce O2. Further in vivo assays revealed that this hydrogel was capable of facilitating the healing of infected wounds through the sequential engagement of antibacterial, anti-inflammatory, and pro-angiogenic activities. Together, this synthesized clickable environmentally-responsive hydrogel offers great promise as a tool that can be applied to aid in the healing of chronically infected diabetic wounds and other inflammatory conditions.
Collapse
Affiliation(s)
- Mingyan Deng
- WestChina-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ye Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Ren
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haoyang Song
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zheng
- WestChina-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangzhi Lin
- WestChina-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Wen
- WestChina-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiran Tao
- WestChina-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingquan Kong
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Ye C, Qin A, Tang BZ. Alkali-Promoted Tandem Polymerization of Nucleophilic Acetylide Monomers and Aldehydes toward Luminescent Polymeric Materials. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Canbin Ye
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City 518172, Guangdong, China
- Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| |
Collapse
|
11
|
Wang D, Zhang N, Yang T, Zhang Y, Jing X, Zhou Y, Long J, Meng L. Amino acids and doxorubicin as building blocks for metal ions-driven self-assembly of biodegradable polyprodrugs for tumor theranostics. Acta Biomater 2022; 147:245-257. [PMID: 35487428 DOI: 10.1016/j.actbio.2022.04.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022]
Abstract
On-demand designed theranostics nanoagents show promising applications for next-generation precision-and-personalized oncotherapy. Researchers have since aimed to develop nanoplatforms that can efficiently deliver drugs and contrast medium to tumor and release active ingredients in response to tumor microenvironment (TME) conditions. Herein, we propose a modular strategy, and develop a series of nanoplatforms based on metal-coordinated-polyprodrugs for cancer theranostics. The polyprodrugs were synthesized through a click-reaction between amino acid and doxorubicin (DOX) with dipropiolate. The backbones of the polyprodrugs had intrinsic sensitivities to pH and/or GSH, and provided abundant -COOH, -NH2, or -S-S- to chelate with functional metal ions and further self-assembled to form different morphologies. Dicysteine, which contains disulfide bond (-S-S-), was chosen to copolymerize with DOX and triethylene glycol dipropiolate (TEP) to prepare the pH/GSH dual-responsive polyprodrug poly(dicysteine-co-TEP-co-DOX) (pDTD), then separately coordinated with Gd3+, Fe3+, and Mn2+ to construct nanoplatforms pDTD@M (M representing the metal ions). In vitro and in vivo investigations suggest the metal-coordinated-polyprodrug nanoplatforms have good magnetic resonance imaging (MRI) ability and efficient tumor-growth inhibition with high safety. The design strategy of nanoplatforms based on metal-coordinated-polyprodrugs provides a new idea for on-demand construction of promising theranostics agents. STATEMENT OF SIGNIFICANCE: Compared to small molecule antitumor drugs, polymeric drugs have high drug loading ratio and are easily enriched at the tumor site to achieve improved therapy efficacy. This work utilizes click reactions to link amino acids with anticancer drugs to produce polymeric drugs that are degraded in response to tumor microenvironment and released small molecule antitumor drugs mainly in tumor sites, and subtly utilizes the coordination of amino acid to chelate MRI functional metal ion to realize enhanced MRI imaging mediated tumor therapy. This strategy provides a new idea for the convenient construction of polymeric drugs for tumor theranostics.
Collapse
Affiliation(s)
- Daquan Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China.
| | - Ning Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China
| | - Tingting Yang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China
| | - Yun Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China
| | - Xunan Jing
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yu Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China; Instrumental analysis center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiangang Long
- School of Life Science and Technology; Ministry of Education Key Laboratory of Biomedical Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lingjie Meng
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China; Instrumental analysis center, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
12
|
Zhang Z, Cao Y, Yuan Q, Liu C, Duan X, Tang Y. Multifunctional fluorescent probe for effective visualization, inhibition, and detoxification of β-amyloid aggregation via covalent binding. Chem Commun (Camb) 2022; 58:3957-3960. [PMID: 35244642 DOI: 10.1039/d2cc00318j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multifunctional reactive fluorescent probe DTB was constructed for biosensing, aggregation inhibition, and toxicity alleviation of β-amyloid. The synergistic effect of hydrophobic interaction and covalent interaction makes DTB have more stable binding and better selectivity to Aβ. The detoxification effect of DTB on Aβ aggregates was also verified in live nerve cells and microglia cells. Furthermore, DTB exhibits an excellent staining of Aβ plaques.
Collapse
Affiliation(s)
- Ziqi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Yue Cao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Qiong Yuan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Chenghui Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Xinrui Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
13
|
|
14
|
Paula CTB, Pereira P, Coelho JFJ, Fonseca AC, Serra AC. Development of light-degradable poly(urethane-urea) hydrogel films. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112520. [PMID: 34857299 DOI: 10.1016/j.msec.2021.112520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022]
Abstract
Biocompatible hydrogels are exciting platforms that have stood out in recent years for their outstanding potential for biomedical applications. For these applications, the ability of the material to respond to an external stimulus can be a relevant addition. This responsiveness allows the material to modify its physical properties in such a way that it can deliver molecules that support the healing process or allow easy removal of the films from the tissue. Among the polymers used to produce these systems, polyurethane (PU) and polyurethane-urea (PUU) are some of the most cited examples. In this work, a new hydrogel-sensitive PUU film is proposed. These films are prepared from polyethylene glycol (PEG) and contain a ROS-responsive telechelic β-aminoacrylate bond. The hydrogel films showed interesting mechanical and thermal properties, good water uptake and low cytotoxicity, which makes them suitable for biomedical applications. More importantly, the hydrogel films exhibited a light-degradable profile through an innovative ROS-mediated cleavage process, as indicated by the loss of mechanical properties.
Collapse
Affiliation(s)
- Carlos T B Paula
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| | - Patrícia Pereira
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal; IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Jorge F J Coelho
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| | - Ana C Fonseca
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| | - Arménio C Serra
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal.
| |
Collapse
|
15
|
He M, He G, Wang P, Jiang S, Jiao Z, Xi D, Miao P, Leng X, Wei Z, Li Y, Yang Y, Wang R, Du J, Fan J, Sun W, Peng X. A Sequential Dual-Model Strategy Based on Photoactivatable Metallopolymer for On-Demand Release of Photosensitizers and Anticancer Drugs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2103334. [PMID: 34664422 PMCID: PMC8655221 DOI: 10.1002/advs.202103334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/04/2021] [Indexed: 05/13/2023]
Abstract
The synergistic combination of chemotherapy and photodynamic therapy has attracted considerable attention for its enhanced antitumoral effects; however, it remains challenging to successfully delivery photosensitizers and anticancer drugs while minimizing drug leakage at off-target sites. A red-light-activatable metallopolymer, Poly(Ru/PTX), is synthesized for combined chemo-photodynamic therapy. The polymer has a biodegradable backbone that contains a photosensitizer Ru complex and the anticancer drug paclitaxel (PTX) via a singlet oxygen (1 O2 ) cleavable linker. The polymer self-assembles into nanoparticles, which can efficiently accumulate at the tumor sites during blood circulation. The distribution of the therapeutic agents is synchronized because the Ru complex and PTX are covalently conjugate to the polymer, and off-target toxicity during circulation is also mostly avoided. Red light irradiation at the tumor directly cleaves the Ru complex and produces 1 O2 for photodynamic therapy. Sequentially, the generated 1 O2 triggers the breakage of the linker to release the PTX for chemotherapy. Therefore, this novel sequential dual-model release strategy creates a synergistic chemo-photodynamic therapy while minimizing drug leakage. This study offers a new platform to develop smart delivery systems for the on-demand release of therapeutic agents in vivo.
Collapse
Affiliation(s)
- Maomao He
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Guangli He
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Peiyuan Wang
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
| | - Suhua Jiang
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
| | - Ziyue Jiao
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Dongmei Xi
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Pengcheng Miao
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Xuefei Leng
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Zhiyong Wei
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Yang Li
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Yanjun Yang
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Ran Wang
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Jianjun Du
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
- Ningbo Institute of Dalian University of TechnologyNingbo315016China
| | - Jiangli Fan
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
- Ningbo Institute of Dalian University of TechnologyNingbo315016China
| | - Wen Sun
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
- Ningbo Institute of Dalian University of TechnologyNingbo315016China
| | - Xiaojun Peng
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
- Ningbo Institute of Dalian University of TechnologyNingbo315016China
| |
Collapse
|
16
|
Ziegler CE, Graf M, Nagaoka M, Lehr H, Goepferich AM. In Situ Forming iEDDA Hydrogels with Tunable Gelation Time Release High-Molecular Weight Proteins in a Controlled Manner over an Extended Time. Biomacromolecules 2021; 22:3223-3236. [PMID: 34270216 DOI: 10.1021/acs.biomac.1c00299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Off-target interactions between reactive hydrogel moieties and drug cargo as well as slow reaction kinetics and the absence of controlled protein release over an extended period of time are major drawbacks of chemically cross-linked hydrogels for biomedical applications. In this study, the inverse electron demand Diels-Alder (iEDDA) reaction between norbornene- and tetrazine-functionalized eight-armed poly(ethylene glycol) (PEG) macromonomers was used to overcome these obstacles. Oscillatory shear experiments revealed that the gel point of a 15% (w/v) eight-armed PEG hydrogel with a molecular weight of 10 kDa was less than 15 s, suggesting the potential for fast in situ gelation. However, the high-speed reaction kinetics result in a risk of premature gel formation that complicates the injection process. Therefore, we investigated the effect of polymer concentration, temperature, and chemical structure on the gelation time. The cross-linking reaction was further characterized regarding bioorthogonality. Only 11% of the model protein lysozyme was found to be PEGylated by the iEDDA reaction, whereas 51% interacted with the classical Diels-Alder reaction. After determination of the mesh size, fluorescein isothiocyanate-dextran was used to examine the release behavior of the hydrogels. When glucose oxidase was embedded into 15% (w/v) hydrogels, a controlled release over more than 250 days was achieved. Overall, the PEG-based hydrogels cross-linked via the fast iEDDA reaction represent a promising material for the long-term administration of biologics.
Collapse
Affiliation(s)
- Christian E Ziegler
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Moritz Graf
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Makoto Nagaoka
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Heike Lehr
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Achim M Goepferich
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
17
|
Worch JC, Stubbs CJ, Price MJ, Dove AP. Click Nucleophilic Conjugate Additions to Activated Alkynes: Exploring Thiol-yne, Amino-yne, and Hydroxyl-yne Reactions from (Bio)Organic to Polymer Chemistry. Chem Rev 2021; 121:6744-6776. [PMID: 33764739 PMCID: PMC8227514 DOI: 10.1021/acs.chemrev.0c01076] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 12/22/2022]
Abstract
The 1,4-conjugate addition reaction between activated alkynes or acetylenic Michael acceptors and nucleophiles (i.e., the nucleophilic Michael reaction) is a historically useful organic transformation. Despite its general utility, the efficiency and outcomes can vary widely and are often closely dependent upon specific reaction conditions. Nevertheless, with improvements in reaction design, including catalyst development and an expansion of the substrate scope to feature more electrophilic alkynes, many examples now present with features that are congruent with Click chemistry. Although several nucleophilic species can participate in these conjugate additions, ubiquitous nucleophiles such as thiols, amines, and alcohols are commonly employed and, consequently, among the most well developed. For many years, these conjugate additions were largely relegated to organic chemistry, but in the last few decades their use has expanded into other spheres such as bioorganic chemistry and polymer chemistry. Within these fields, they have been particularly useful for bioconjugation reactions and step-growth polymerizations, respectively, due to their excellent efficiency, orthogonality, and ambient reactivity. The reaction is expected to feature in increasingly divergent application settings as it continues to emerge as a Click reaction.
Collapse
Affiliation(s)
- Joshua C. Worch
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Connor J. Stubbs
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Matthew J. Price
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Andrew P. Dove
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
18
|
Tan M, Chrostowski R, Sanematsu H, Takeuchi M, Takai A. Catalyst‐Free π‐Extended Conjugate Addition of Amines to Various Electron‐Deficient π‐Systems. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Minghan Tan
- Molecular Design and Function Group National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
- Department of Materials Science and Engineering Faculty of Pure and Applied Sciences University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Robert Chrostowski
- Molecular Design and Function Group National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Haruki Sanematsu
- Molecular Design and Function Group National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
- Department of Materials Science and Engineering Faculty of Pure and Applied Sciences University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Masayuki Takeuchi
- Molecular Design and Function Group National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
- Department of Materials Science and Engineering Faculty of Pure and Applied Sciences University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Atsuro Takai
- Molecular Design and Function Group National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| |
Collapse
|
19
|
Zhang J, Zhang Z, Wang J, Zang Q, Sun JZ, Tang BZ. Recent progress in the applications of amino–yne click chemistry. Polym Chem 2021. [DOI: 10.1039/d1py00113b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This mini-review summarizes the recent research studies on the application of the amino–yne click reaction in surface immobilization, construction of drug delivery systems, preparation of hydrogel materials and synthesis of functional polymers.
Collapse
Affiliation(s)
- Jie Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhiming Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- Centre for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou
| | - Qiguang Zang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
20
|
Polymersomes with singlet oxygen-labile poly(β-aminoacrylate) membrane for NIR light-controlled combined chemo-phototherapy. J Control Release 2020; 327:627-640. [DOI: 10.1016/j.jconrel.2020.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/12/2022]
|
21
|
Liu X, Han T, Lam JWY, Tang BZ. Functional Heterochain Polymers Constructed by Alkyne Multicomponent Polymerizations. Macromol Rapid Commun 2020; 42:e2000386. [DOI: 10.1002/marc.202000386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/04/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaolin Liu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Centre for AIE Research College of Material Science and Engineering and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518061 P. R. China
| | - Ting Han
- HKUST‐Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi‐tech Park Nanshan Shenzhen 518057 P. R. China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Centre for AIE Research College of Material Science and Engineering and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518061 P. R. China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Centre for AIE Research College of Material Science and Engineering and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518061 P. R. China
- Center for Aggregation‐Induced Emission SCUT‐HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
- AIE Institute Guangzhou Development District, Huangpu Guangzhou 510530 China
| |
Collapse
|
22
|
Oktay B, Demir S, Kayaman-Apohan N. Immobilization of pectinase on polyethyleneimine based support via spontaneous amino-yne click reaction. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
He B, Zhang J, Wang J, Wu Y, Qin A, Tang BZ. Preparation of Multifunctional Hyperbranched Poly(β-aminoacrylate)s by Spontaneous Amino-yne Click Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00813] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Benzhao He
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077 China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Jing Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077 China
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Yongwei Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077 China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|
24
|
Jiao C, Gao L, Zhang H, Yu B, Cong H, Shen Y. Dynamic Covalent C═C Bond, Cross-Linked, Injectable, and Self-Healable Hydrogels via Knoevenagel Condensation. Biomacromolecules 2020; 21:1234-1242. [DOI: 10.1021/acs.biomac.9b01689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Caicai Jiao
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Lilong Gao
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hui Zhang
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
25
|
Dreyfus Prize and Camille Dreyfus Teacher‐Scholar Awards 2019. Angew Chem Int Ed Engl 2019; 58:9321-9322. [DOI: 10.1002/anie.201906299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Dreyfus‐Preis und Camille‐Dreyfus‐Teacher‐Scholar‐Preise 2019. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Chen X, Hu R, Qi C, Fu X, Wang J, He B, Huang D, Qin A, Tang BZ. Ethynylsulfone-Based Spontaneous Amino-yne Click Polymerization: A Facile Tool toward Regio- and Stereoregular Dynamic Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00670] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xuemei Chen
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Chunxuan Qi
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Xinyao Fu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Benzhao He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Die Huang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|