1
|
Lu T, Lin W, Guo Y, Shao M, Bai Y, Tommaso DD, Wang X, Zhang X. Metal nanoparticles encapsulation within multi-shell spongy-core porous microspheres for efficient tandem catalysis. J Colloid Interface Sci 2025; 679:705-713. [PMID: 39388956 DOI: 10.1016/j.jcis.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
The "one-pot" cascade process involves multiple catalytic conversions followed by a single workup stage. This method has the capability to optimize catalytic efficiency by reducing chemical processes. The key to achieving cascade reactions lies in designing cascade catalysts with well-dispersed, stably immobilized, and accessible noble metal nanoparticles for multiple catalytic conversions. This work presents a strategy for creating long-lasting cascade catalysts by encapsulating Ru and Pd nanoparticles within multi-shell spongy-core porous microspheres (MS-SC-PMs). This cascade catalyst strategy enables the continuous hydrogenation of nitrobenzene to aniline and further to cyclohexylamine, demonstrating both high selectivity and conversion rates. Notably, this approach overcomes the typical challenges associated with noble metal nanoparticles, such as poor stability and recyclability, as it maintains its performance over ten consecutive cycles. Additionally, the MS-SC-PMs have the versatility to encapsulate various metal nanoparticles, providing catalytic versatility, scalability, and a promising avenue for designing long-lasting catalysts loaded with nanoparticles.
Collapse
Affiliation(s)
- Tao Lu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Wuyang Lin
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Yingchun Guo
- Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, Huzhou University, Huzhou 313000, China
| | - Mengliu Shao
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yuanyuan Bai
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Devis Di Tommaso
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Digital Environment Research Institute, Queen Mary University of London, Empire House, 67-75 New Road, London E1 1HH, UK.
| | - Xiaomei Wang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | - Xu Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Hebei University of Technology, China.
| |
Collapse
|
2
|
Zhao B, Zhang F, Gao D, Meng G, Li H, Liu W, Ye M. Reaction-Driven Migration Dynamics of Nano-Metal Particles Unraveled by Quantitative Electron Microscopies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405759. [PMID: 39221523 DOI: 10.1002/smll.202405759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The stability of supported nano-metal catalysts holds significant importance in both scientific and economic practice, beyond the long pursuit of enhanced activity. While previous efforts have concentrated on augmenting the interaction between nano-metals and carriers, in the thermodynamic macro-perspective, to achieve optimized repression upon particle migration coalescence and Ostwald ripening, nevertheless, the microscale kinetics of migrating catalyst particles driven by the reaction remains unknown. In this work, the migration of nano-copper particles is investigated during hydrogen oxidation reaction by utilizing high spatiotemporal resolution of environmental transmission electron microscopy. It is shown that there exists a delicate correlation between the migration dynamics of nano-copper particles and the evolution of asymmetrically distributed Cu and Cu2O phases over the particle surface. It is found that the interplay of reduction and oxidation near the surface areas filled with Cu and Cu2O phases can facilitate the pressure gradient, which drives the migration of nano-particles. A driving force model is therefore established which is capable of qualitatively explaining the influences of reaction conditions such as temperature and hydrogen-to-oxygen ratio on the reaction-driven particle migration. This work adds a potential yet critical perspective to understanding particle migration and thus the nano-metal catalyst particle sintering in heterogeneous catalysis.
Collapse
Affiliation(s)
- Bing Zhao
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Fan Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deyang Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Gang Meng
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hua Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Wei Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mao Ye
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Kim W, Kim K, Kim J, Lee Z. In situ observation of catalyst nanoparticle sintering resistance on oxide supports via gas phase transmission electron microscopy. Appl Microsc 2024; 54:7. [PMID: 39284998 PMCID: PMC11405595 DOI: 10.1186/s42649-024-00100-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Oxide-supported metal catalysts are essential components in industrial processes for catalytic conversion. However, the performance of these catalysts is often compromised in high temperature reaction environments due to sintering effects. Currently, a number of studies are underway with the objective of improving the metal support interaction (MSI) effect in order to enhance sintering resistance by surface modification of the oxide support, including the formation of inhomogeneous defects on the oxide support, the addition of a rare earth element, the use of different facets, encapsulation, and other techniques. The recent developments in in situ gas phase transmission electron microscopy (TEM) have enabled direct observation of the sintering process of NPs in real time. This capability further allows to verify the efficacy of the methods used to tailor the support surface and contributes effectively to improving sintering resistance. Here, we review a few selected studies on how in situ gas phase TEM has been used to prevent the sintering of catalyst NPs on oxide supports.
Collapse
Affiliation(s)
- Wonjun Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kangsik Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Jaejin Kim
- Shell International Exploration & Production, Inc, Shell Technology Center Houston, 3333 Hwy 6 S, Houston, TX, 77082-3101, USA
| | - Zonghoon Lee
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
4
|
Fu W, Yu Y, Yin K, Li Z, Tang M, Tian J, Wei G, Zhou S, Sun Y, Dai Y. Engineering Asymmetric Strain within C-Shaped CeO 2 Nanofibers for Stabilizing Sub-3 nm Pt Clusters against Sintering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47513-47523. [PMID: 39136725 DOI: 10.1021/acsami.4c08126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Ultrafine noble metals have emerged as advanced nanocatalysts in modern society but still suffer from unavoidable sintering at temperatures above 250 °C (e.g., Pt). In this work, closely packed CeO2 grains were confined elegantly in fibrous nanostructures and served as a porous support for stabilizing sub-3 nm Pt clusters. Through precisely manipulating the asymmetry of obtained nanofibers, uneven strain was induced within C-shaped CeO2 nanofibers with tensile strain at the outer side and compressive strain at the inner side. As a result, the enriched oxygen vacancies significantly improved adhesion of Pt to CeO2, thereby boosting the sinter-resistance of ultraclose sub-3 nm Pt clusters. Notably, no aggregation was observed even after exposure to humid air at 750 °C for 12 h, which is far beyond their Tammann temperature (sintering onset temperature, below 250 °C). In situ HAADF-STEM observation revealed a unique sintering mechanism, wherein Pt clusters initially migrate toward the grain boundaries with concentrated stain and undergo slight coalescence, followed by subsequent Ostwald ripening at higher temperatures. Moreover, the sinter-resistant Pt/C-shaped CeO2 effectively catalyzed soot combustion (over 700 °C) in a durable manner. This work provides a new insight for developing sinter-resistant catalysts from the perspective of strain engineering within nano-oxides.
Collapse
Affiliation(s)
- Wanlin Fu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Ying Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Kuibo Yin
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 211189, P. R. China
| | - Zhihui Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Mingyu Tang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jilan Tian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Guanzhao Wei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Shiming Zhou
- Hefei National Laboratory for Physics Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yueming Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
5
|
Lv Y, Li A, Ye J, Wang H, Hu P, Wang KW, Guo Y, Tang X, Dai S. Exploring the Facet-Dependent Structural Evolution of Pt/CeO 2 Catalysts Induced by Typical Pretreatments for CO Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43556-43564. [PMID: 39132739 DOI: 10.1021/acsami.4c07578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Atomic-scale insights into the interactions between metals and supports play a crucial role in optimizing catalyst design, understanding catalytic mechanisms, and enhancing chemical conversion processes. The effects of oxide support on the dynamic behavior of supported metal species during pretreatments or reactions have been attracting a lot of attention; however, very less systematic integrations are carried out experimentally using real catalysts. In this study, we here utilized facet-controlled CeO2 as examples to explore their influence on the supported Pt species (1.0 wt %) during the reducing and oxidizing pretreatments that are typically applied in heterogeneous catalysts. By employing a combination of microscopy, spectroscopy, and first-principles calculations, it is demonstrated that the exposed crystal facets of CeO2 govern the evolution behavior of supported Pt species under different environmental conditions. This leads to distinct local coordinations and charge states of the Pt species, which directly influence the catalytic reactivity and can be leveraged to control the catalytic performance for CO oxidation reactions.
Collapse
Affiliation(s)
- Yao Lv
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Aoran Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiajie Ye
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haifeng Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Peijun Hu
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast, BelfastBT9 5AG, U.K
| | - Kuan-Wen Wang
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuan Tang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
6
|
Huang J, Zhang Y, Chen J, Zhang Z, Zhang C, Huang C, Fei L. Surface topology of MXene flakes induces the selection of the sintering mechanism for supported Pt nanoparticles. Chem Sci 2024:d4sc03284e. [PMID: 39170721 PMCID: PMC11333939 DOI: 10.1039/d4sc03284e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024] Open
Abstract
Sintering of metal nanocatalysts leading to particle growth and subsequent performance deactivation is a primary issue that hinders their practical applications. While metal-support interaction (MSI) is considered as the critical factor which influences the sintering behavior, the underlying microscopic mechanism and kinetics remain incompletely understood. Here, by using in situ scanning transmission electron microscopy (STEM) and theoretical analysis, we reveal the selection rule of the sintering mechanism for Pt nanoparticles on a two-dimensional (2D) MXene (Ti3C2T x ) support, which relies on the surface topology of MXene flakes. It is demonstrated that the sintering of Pt nanoparticles proceeds via Ostwald ripening (OR) in the surface defect (such as steps and pore edges) regions of MXene flakes due to strong MSI on the Pt/MXene interface; conversely, weak MSI between Pt nanoparticles and the planar surface of MXene leads to prevalent particle migration and coalescence (PMC) for sintering. Furthermore, our quantitative analysis shows a significant divergence in sintering rates for PMC and OR processes. These microscopic observations suggest a clear "sintering mechanism-MSI" relationship for Pt/MXene nanocatalysts and may shed light on the design of novel nanocatalysts.
Collapse
Affiliation(s)
- Jiawei Huang
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| | - Yucheng Zhang
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| | - Jiaqi Chen
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| | - Zhouyang Zhang
- School of Materials and New Energy, Ningxia University Yinchuan 750021 China
| | - Chunfang Zhang
- College of Chemistry and Materials Science, Hebei University Baoding 071002 China
| | - Changshui Huang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Linfeng Fei
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| |
Collapse
|
7
|
Naya SI, Morita Y, Sugime H, Soejima T, Fujishima M, Tada H. Efficient plasmonic water splitting by heteroepitaxial junction-induced faceting of gold nanoparticles on an anatase titanium(IV) oxide nanoplate array electrode. NANOSCALE 2024; 16:13435-13444. [PMID: 38919999 DOI: 10.1039/d4nr01013b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Plasmonic photocatalysts represented by gold nanoparticle (NP)-loaded titanium(IV) oxide (Au/TiO2) can be promising solar-to-fuel converters by virtue of their response to visible-to-near infrared light. Hitherto, Au/rutile (R)-TiO2 has been recognized as exhibiting photocatalytic activity higher than that of Au/anatase (A)-TiO2. Herein, we demonstrate that the high potential of A-TiO2 as the Au NP support can be brought out through atomic level interface control. Faceting of Au NPs is induced by a heteroepitaxial junction on an A-TiO2(001) nanoplate array (Au/A-TiO2 NPLA). Photoexcitation towards the Au/A-TiO2 NPLA electrode generates current for the water oxidation reaction at λ < 900 nm with a maximum efficiency of 0.39% at λ = 600 nm, which is much larger than the values reported so far for the usual electrodes. The striking activity of the Au/A-TiO2 NPLA electrode was rationalized using a potential-dependent Fowler model. This study presented a novel approach for developing solar-driven electrodes for green and sustainable fuel production.
Collapse
Affiliation(s)
- Shin-Ichi Naya
- Environmental Research Laboratory, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Yoko Morita
- Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Hisashi Sugime
- Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Tetsuro Soejima
- Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Musashi Fujishima
- Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Hiroaki Tada
- Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
| |
Collapse
|
8
|
Hu Y, Han X, Hu S, Yu G, Chao T, Wu G, Qu Y, Chen C, Liu P, Zheng X, Yang Q, Hong X. Surface-Diffusion-Induced Amorphization of Pt Nanoparticles over Ru Oxide Boost Acidic Oxygen Evolution. NANO LETTERS 2024; 24:5324-5331. [PMID: 38624236 DOI: 10.1021/acs.nanolett.4c01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Phase transformation offers an alternative strategy for the synthesis of nanomaterials with unconventional phases, allowing us to further explore their unique properties and promising applications. Herein, we first observed the amorphization of Pt nanoparticles on the RuO2 surface by in situ scanning transmission electron microscopy. Density functional theory calculations demonstrate the low energy barrier and thermodynamic driving force for Pt atoms transferring from the Pt cluster to the RuO2 surface to form amorphous Pt. Remarkably, the as-synthesized amorphous Pt/RuO2 exhibits 14.2 times enhanced mass activity compared to commercial RuO2 catalysts for the oxygen evolution reaction (OER). Water electrolyzer with amorphous Pt/RuO2 achieves 1.0 A cm-2 at 1.70 V and remains stable at 200 mA cm-2 for over 80 h. The amorphous Pt layer not only optimized the *O binding but also enhanced the antioxidation ability of amorphous Pt/RuO2, thereby boosting the activity and stability for the OER.
Collapse
Affiliation(s)
- Yanmin Hu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Xiao Han
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Shaojin Hu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Ge Yu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Tingting Chao
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Geng Wu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Yunteng Qu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Cai Chen
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Peigen Liu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Xiao Zheng
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Qing Yang
- Department of Chemistry, Laboratory of Nanomaterials for Energy Conversion (LNEC), University of Science and Technology of China, Hefei 230026, P.R. China
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| |
Collapse
|
9
|
Yang L, Zhang C, Xiao J, Tu P, Wang Y, Wang Y, Tang S, Tang W. In Situ Reconstruction of Active Heterointerface for Hydrocarbon Combustion through Thermal Aging over Strontium-Modified Co 3O 4 Nanocatalyst with Good Sintering Resistance. Inorg Chem 2024; 63:6854-6870. [PMID: 38564370 DOI: 10.1021/acs.inorgchem.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The issue of catalyst deactivation due to sintering has gained significant attention alongside the rapid advancement of thermal catalysts. In this work, a simple Sr modification strategy was applied to achieve highly active Co3O4-based nanocatalyst for catalytic combustion of hydrocarbons with excellent antisintering feature. With the Co1Sr0.3 catalyst achieving a 90% propane conversion temperature (T90) of only 289 °C at a w8 hly space velocity of 60,000 mL·g-1·h-1, 24 °C lower than that of pure Co3O4. Moreover, the sintering resistance of Co3O4 catalysts was greatly improved by SrCO3 modification, and the T90 over Co1Sr0.3 just increased from 289 to 337 °C after thermal aging at 750 °C for 100 h, while that over pure Co3O4 catalysts increased from 313 to 412 °C. Through strontium modification, a certain amount of SrCO3 was introduced on the Co3O4 catalyst, which can serve as a physical barrier during the thermal aging process and further formation of Sr-Co perovskite nanocrystals, thus preventing the aggregation growth of Co3O4 nanocrystals and generating new active SrCoO2.52-Co3O4 heterointerface. In addition, propane durability tests of the Co1Sr0.3 catalysts showed strong water vapor resistance and stability, as well as excellent low-temperature activity and resistance to sintering in the oxidation reactions of other typical hydrocarbons such as toluene and propylene. This study provides a general strategy for achieving thermal catalysts by perfectly combining both highly low-temperature activity and sintering resistance, which will have great significance in practical applications for replacing precious materials with comparative features.
Collapse
Affiliation(s)
- Lei Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chi Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jinyan Xiao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Pengfei Tu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yulong Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ye Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shengwei Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenxiang Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Zhang L, Niu Y, Pu Y, Wang Y, Dong S, Liu Y, Zhang B, Liu ZW. In Situ Visualization and Mechanistic Understandings on Facet-Dependent Atomic Redispersion of Platinum on CeO 2. NANO LETTERS 2023; 23:11999-12005. [PMID: 38100577 DOI: 10.1021/acs.nanolett.3c04008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Redispersion is an effective method for regeneration of sintered metal-supported catalysts. However, the ambiguous mechanistic understanding hinders the delicate controlling of active metals at the atomic level. Herein, the redispersion mechanism of atomically dispersed Pt on CeO2 is revealed and manipulated by in situ techniques combining well-designed model catalysts. Pt nanoparticles (NPs) sintered on CeO2 nano-octahedra under reduction and oxidation conditions, while redispersed on CeO2 nanocubes above ∼500 °C in an oxidizing atmosphere. The dynamic shrinkage and disappearance of Pt NPs on CeO2 (100) facets was directly visualized by in situ TEM. The generated atomically dispersed Pt with the square-planar [PtO4]2+ structure on CeO2 (100) facets was also confirmed by combining Cs-corrected STEM and spectroscopy techniques. The redispersion and atomic control were ascribed to the high mobility of PtO2 at high temperatures and its strong binding with square-planar O4 sites over CeO2 (100). These understandings are important for the regulation of atomically dispersed platinum catalysts.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yinghui Pu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yongzhao Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Shaoming Dong
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
11
|
Peng W, Lu YR, Lin H, Peng M, Chan TS, Pan A, Tan Y. Sulfur-Stabilizing Ultrafine High-Entropy Alloy Nanoparticles on MXene for Highly Efficient Ethanol Electrooxidation. ACS NANO 2023; 17:22691-22700. [PMID: 37926947 DOI: 10.1021/acsnano.3c07110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
High-entropy alloys (HEAs) are significantly promising candidates for heterogeneous catalysis, yet the controllable synthesis of ultrafine HEA nanoparticles (NPs) remains a formidable challenge due to severe thermal sintering during the high-temperature fabrication process. Herein, we report a sulfur-stabilizing strategy to construct ultrafine HEA NPs with an average diameter of 4.02 nm supported on sulfur-modified Ti3C2Tx (S-Ti3C2Tx) MXene, on which the strong interfacial metal-sulfur interactions between HEA NPs and the S-Ti3C2Tx supports significantly increase the interfacial adhesion strength, thus greatly suppressing nanoparticle sintering by retarding both particle migration and metal atom diffusion. The representative quinary PtPdCuNiCo HEA-S-Ti3C2Tx exhibits excellent catalytic performance toward alkaline ethanol oxidation reaction (EOR) with an ultrahigh mass activity of 7.03 A mgPt+Pd-1, which is 4.34 and 5.17 times higher than those of the commercial Pt/C and Pd/C catalysts, respectively. In situ attenuated total reflection-infrared spectroscopy studies reveal that the high intrinsic catalytic activity for the EOR can be ascribed to the synergy of different catalytically active sites of HEA NPs and the well-designed interfacial metal-sulfur interactions.
Collapse
Affiliation(s)
- Wei Peng
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Ming Peng
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Anlian Pan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yongwen Tan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
12
|
He B, Tao X, Li L, Liu X, Chen L. Environmental TEM Study of the Dispersion of Au/α-MoC: From Nanoparticles to Two-Dimensional Clusters. NANO LETTERS 2023; 23:10367-10373. [PMID: 37939002 DOI: 10.1021/acs.nanolett.3c02960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The synthesis of highly dispersed Au nanoclusters that are stable under elevated temperatures in heterogeneous catalysis is challenging. Here, we directly observe a strong metal-support interaction (SMSI)-induced dispersion of Au nanoparticles (NPs) on α-MoC using an environmentally atomically resolved secondary imaging technique. Under a realistic environment, Au NPs flatten and spread out on the α-MoC to form two-dimensional atomic layered clusters. The formed highly dispersed Au/α-MoC catalyst shows excellent stability at 600 °C for 160 h in the reverse water-gas shift reaction. The X-ray photoelectron spectrum and extended X-ray absorption fine structure results show that Au NPs gradually become low-coordination-number cluster species and lose electrons to become Auδ+; these form chemical bonds with the α-MoC support and are responsible for the dispersion behavior. This work provides an insightful understanding of dispersion behavior and promotes the rational design and synthesis of reverse sintering catalysts.
Collapse
Affiliation(s)
- Bowen He
- School of Chemistry and Chemical Engineering, in situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center (SEED) and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xin Tao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai 201204, People's Republic of China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai 201204, People's Republic of China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, in situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center (SEED) and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Liwei Chen
- School of Chemistry and Chemical Engineering, in situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center (SEED) and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
13
|
Nie X, Wang Y, Mu J, Han J, Li H, Luo N, Huang Z, Guo Q, Li N, Zhang J, Li N, Wang F. Tuning Redistribution of CuO x Nanoparticles on TiO 2 Support. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48168-48178. [PMID: 37787471 DOI: 10.1021/acsami.3c10035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Nanoparticles exhibit unique catalytic performance, depending on their nanoscale size. However, controlling the particle size of the supported catalysts is still challenging. Here, we present a method for tunable redistribution of CuOx nanoparticles on rutile TiO2 support by physically adding pristine TiO2. The redistribution is driven by the work function difference (WFD) between the TiO2 support and the TiO2 additive, both of which exhibit distinct values, as determined through Kelvin probe force microscopy and electron binding energy analysis. Addition of TiO2 with lower work function (rutile) promotes electron transfer toward the CuOx/TiO2 composite, resulting in nanoparticle aggregation, while addition of TiO2 with higher work function (anatase) results in smaller CuOx on TiO2. The increase in particle size and electron density of CuOx, driven by the addition of rutile TiO2, promoted the complete conversion of nitrobenzene (100%) within 5 h. This is 2.7 times that of dispersed and degraded CuOx driven by mixing with anatase TiO2 (36.9%).
Collapse
Affiliation(s)
- Xuezhong Nie
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Junju Mu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Jianyu Han
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huixiang Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Nengchao Luo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Zhipeng Huang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Guo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Ning Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Jian Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Ning Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| |
Collapse
|
14
|
Chen Y, Soler L, Cazorla C, Oliveras J, Bastús NG, Puntes VF, Llorca J. Facet-engineered TiO 2 drives photocatalytic activity and stability of supported noble metal clusters during H 2 evolution. Nat Commun 2023; 14:6165. [PMID: 37789037 PMCID: PMC10547715 DOI: 10.1038/s41467-023-41976-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/25/2023] [Indexed: 10/05/2023] Open
Abstract
Metal clusters supported on TiO2 are widely used in many photocatalytic applications, including pollution control and production of solar fuels. Besides high photoactivity, stability during the photoreaction is another essential quality of high-performance photocatalysts, however systematic studies on this attribute are absent for metal clusters supported on TiO2. Here we have studied, both experimentally and with first-principles simulation methods, the stability of Pt, Pd and Au clusters prepared by ball milling on nanoshaped anatase nanoparticles preferentially exposing {001} (plates) and {101} (bipyramids) facets during the photogeneration of hydrogen. It is found that Pt/TiO2 exhibits superior stability than Pd/TiO2 and Au/TiO2, and that {001} facet-based photocatalysts always are more stable than their {101} analogous regardless of the considered metal species. The loss of stability associated with cluster sintering, which is facilitated by the transfer of photoexcited carriers from the metal species to the neighbouring Ti and O atoms, most significantly and detrimentally affects the H2-evolution photoactivity.
Collapse
Affiliation(s)
- Yufen Chen
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain
- Institute of Energy Technologies and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain
| | - Lluís Soler
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain.
- Institute of Energy Technologies and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain.
| | - Claudio Cazorla
- Department of Physics, Universitat Politècnica de Catalunya, Campus Nord, B4-B5, Barcelona, E-08034, Spain
| | - Jana Oliveras
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193, Barcelona, Spain
| | - Neus G Bastús
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193, Barcelona, Spain
| | - Víctor F Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), 08010, Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 129, Barcelona, 08035, Spain
| | - Jordi Llorca
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain.
- Institute of Energy Technologies and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain.
| |
Collapse
|
15
|
Xiao G, Xie Q, He Y, Huang X, Richardson JJ, Dai M, Hua J, Li X, Guo J, Liao X, Shi B. Synergistic Adsorption and In Situ Catalytic Conversion of SO 2 by Transformed Bimetal-Phenolic Functionalized Biomass. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12911-12921. [PMID: 37459229 DOI: 10.1021/acs.est.3c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
SO2 removal is critical to flue gas purification. However, based on performance and cost, materials under development are hardly adequate substitutes for active carbon-based materials. Here, we engineered biomass-derived nanostructured carbon nanofibers integrated with highly dispersed bimetallic Ti/CoOx nanoparticles through the thermal transition of metal-phenolic functionalized industrial leather wastes for synergistic SO2 adsorption and in situ catalytic conversion. The generation of surface-SO32- and peroxide species (O22-) by Ti/CoOx achieved catalytic conversion of adsorbed SO2 into value-added liquid H2SO4, which can be discharged from porous nanofibers. This approach can also avoid the accumulation of the adsorbed SO2, thereby achieving high desulfurization activity and a long operating life over 6000 min, preceding current state-of-the-art active carbon-based desulfurization materials. Combined with the techno-economic and carbon footprint analysis from 36 areas in China, we demonstrated an economically viable and scalable solution for real-world SO2 removal on the industrial scale.
Collapse
Affiliation(s)
- Gao Xiao
- Department of Environmental Science and Engineering, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Technology Research Center for Flue Gas Desulfurization, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qiuping Xie
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xin Huang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Joseph J Richardson
- Department of Chemical and Environmental Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Manna Dai
- Computing and Intelligence Department, Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 138632 Singapore, Republic of Singapore
| | - Jian Hua
- National Engineering Technology Research Center for Flue Gas Desulfurization, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xin Li
- China National Chemical Engineering Group (CNCEC), Chongqing 408000, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Xuepin Liao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
16
|
You R, Ou Y, Qi R, Yu J, Wang F, Jiang Y, Zou S, Han ZK, Yuan W, Yang H, Zhang Z, Wang Y. Revealing Temperature-Dependent Oxidation Dynamics of Ni Nanoparticles via Ambient Pressure Transmission Electron Microscopy. NANO LETTERS 2023; 23:7260-7266. [PMID: 37534944 DOI: 10.1021/acs.nanolett.3c00923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Understanding the oxidation mechanism of metal nanoparticles under ambient pressure is extremely important to make the best use of them in a variety of applications. Through ambient pressure transmission electron microscopy, we in situ investigated the dynamic oxidation processes of Ni nanoparticles at different temperatures under atmospheric pressure, and a temperature-dependent oxidation behavior was revealed. At a relatively low temperature (e.g., 600 °C), the oxidation of Ni nanoparticles underwent a classic Kirkendall process, accompanied by the formation of oxide shells. In contrast, at a higher temperature (e.g., 800 °C), the oxidation began with a single crystal nucleus at the metal surface and then proceeded along the metal/oxide interface without voids formed during the whole process. Through our experiments and density functional theory calculations, a temperature-dependent oxidation mechanism based on Ni nanoparticles was proposed, which was derived from the discrepancy of gas adsorption and diffusion rates under different temperatures.
Collapse
Affiliation(s)
- Ruiyang You
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Ou
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rui Qi
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jian Yu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fei Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ying Jiang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shihui Zou
- Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhong-Kang Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wentao Yuan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| | - Hangsheng Yang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| | - Ze Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
17
|
Chao HY, Venkatraman K, Moniri S, Jiang Y, Tang X, Dai S, Gao W, Miao J, Chi M. In Situ and Emerging Transmission Electron Microscopy for Catalysis Research. Chem Rev 2023. [PMID: 37327473 DOI: 10.1021/acs.chemrev.2c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Catalysts are the primary facilitator in many dynamic processes. Therefore, a thorough understanding of these processes has vast implications for a myriad of energy systems. The scanning/transmission electron microscope (S/TEM) is a powerful tool not only for atomic-scale characterization but also in situ catalytic experimentation. Techniques such as liquid and gas phase electron microscopy allow the observation of catalysts in an environment conducive to catalytic reactions. Correlated algorithms can greatly improve microscopy data processing and expand multidimensional data handling. Furthermore, new techniques including 4D-STEM, atomic electron tomography, cryogenic electron microscopy, and monochromated electron energy loss spectroscopy (EELS) push the boundaries of our comprehension of catalyst behavior. In this review, we discuss the existing and emergent techniques for observing catalysts using S/TEM. Challenges and opportunities highlighted aim to inspire and accelerate the use of electron microscopy to further investigate the complex interplay of catalytic systems.
Collapse
Affiliation(s)
- Hsin-Yun Chao
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| | - Kartik Venkatraman
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| | - Saman Moniri
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yongjun Jiang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xuan Tang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Wenpei Gao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| |
Collapse
|
18
|
Horwath JP, Lehman-Chong C, Vojvodic A, Stach EA. Surface Rearrangement and Sublimation Kinetics of Supported Gold Nanoparticle Catalysts. ACS NANO 2023; 17:8098-8107. [PMID: 37084280 DOI: 10.1021/acsnano.2c10523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Heterogeneous catalysts consisting of supported metallic nanoparticles typically derive exceptional catalytic activity from their large proportion of undercoordinated surface sites which promote adsorption of reactant molecules. Simultaneously, these high energy surface configurations are unstable, leading to nanoparticle growth or degradation and eventually a loss of catalytic activity. Surface morphology of catalytic nanoparticles is paramount to catalytic activity, selectivity, and degradation rates, however it is well-known that harsh reaction conditions can cause the surface structure to change. Still, limited research has focused on understanding the link between nanoparticle surface facets and degradation rates or mechanisms. Here, we study a model Au supported catalyst system over a range of temperatures using a combination of in situ transmission electron microscopy, kinetic Monte Carlo simulations, and density functional theory calculations to establish an atomistic picture of how variations in surface structures and atomic coordination environments lead to shifting evolution mechanisms as a function of temperature. By combining experimental results, which yield direct observation of dynamic shape changes and particle sublimation rates, with computational techniques, which enable understanding the fundamental thermodynamics and kinetics of nanoparticle evolution, we illustrate a two-step evolution mechanism in which mobile adatoms form through desorption from low-coordination facets and subsequently sublimate off the particle surface. By understanding the role of temperature in the competition between surface diffusion and sublimation, we are able to show how individual atomic movements lead to particle scale morphological changes and rationalize why sublimation rates vary between particles in a system of nearly identical nanoparticles.
Collapse
Affiliation(s)
- James P Horwath
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Colin Lehman-Chong
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aleksandra Vojvodic
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
19
|
Cui Z, Liu Q, Zhu J, Wang H, Gao M, Wang W, Yuen MF, Hu J, Chen H, Zou R. Pseudopyrolysis of Metal-Organic Frameworks: A Synchronous Nucleation Mechanism to Synthesize Ultrafine Metal Compound Nanoparticles. NANO LETTERS 2023; 23:1600-1607. [PMID: 36626315 DOI: 10.1021/acs.nanolett.2c04244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-Organic frameworks (MOFs) are increasingly being investigated for the synthesis of carbon-supported metal-based ultrafine nanoparticles (UNPs). However, the collapse of the carbon framework and aggregation of metal particles in the pyrolysis process have severely hindered their stability and applications. Here, we report the synchronous nucleation pseudopyrolysis of MOFs to confine Fe/FeOx UNPs in intact porous carbon nanorods (IPCNs), revealed by in situ transmission electron microscopy experiments and ex situ structure analysis. The pseudopyrolysis mechanism enables strong physical and chemical confinement effects between UNPs and carbon by moderate thermal kinetics and abundant oxygen defects. Further, this strong confinement is greatly beneficial for subsequent chemical transformations to obtain different Fe-based UNPs and excellent electrochemical performance. As a proof of concept, the as-prepared FeSe UNPs in IPCNs show superior lithium storage performance with an ultrahigh and stable capacity of 815.1 mAh g-1 at 0.1 A g -1 and 379.7 mAh g-1 at 5 A g-1 for 1000 cycles.
Collapse
Affiliation(s)
- Zhe Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Qian Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
- College of Science, Donghua University, Shanghai 201620, P. R. China
| | - Jinqi Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Hao Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Mengluan Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Wenqing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Muk Fung Yuen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong 518118 P. R. China
| | - Huifang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Rujia Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
20
|
Sakamoto K, Masuda S, Takano S, Tsukuda T. Partially Thiolated Au 25 Cluster Anchored on Carbon Support via Noncovalent Ligand–Support Interactions: Active and Robust Catalyst for Aerobic Oxidation of Alcohols. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Kosuke Sakamoto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
21
|
Wang HL, Yang L, Zhai D, Sun L, Deng W. Global optimization of gold nanocrystals based on an iterative QM/MM method. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2022.140264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Yue S, Yuan W, Deng Z, Xi W, Shen Y. In Situ TEM Observation of the Atomic Transport Process during the Coalescence of Au Nanoparticles. NANO LETTERS 2022; 22:8115-8121. [PMID: 36197114 DOI: 10.1021/acs.nanolett.2c02491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In practical applications, the coalescence of metal nanoparticles (NPs) is a major factor affecting their physical chemistry properties. Currently, due to a lack of understanding of the atomic-level mechanisms during the nucleation and growth stages of coalescence, the correlation between the different dynamic factors in the different stages of NP coalescence is unclear. In this study, we used advanced in situ characterization techniques to observe the formation of atomic material transport channels (Au chains) during the initiation of coalescence nucleation. We focused on the movement and migration states of Au atoms and discovered an atomic ordered arrangement growth mechanism that occurs after the completion of nucleation. Simultaneously, we used density functional theory to reveal the formation principle of Au chains. These findings improve our understanding of the atomic-scale coalescence process, which can provide a new perspective for further research on coalescence atomic dynamics.
Collapse
Affiliation(s)
- Shengnan Yue
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wenjuan Yuan
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ziliang Deng
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wei Xi
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yongli Shen
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
23
|
Zhao H, Zhu Y, Ye H, He Y, Li H, Sun Y, Yang F, Wang R. Atomic-Scale Structure Dynamics of Nanocrystals Revealed By In Situ and Environmental Transmission Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206911. [PMID: 36153832 DOI: 10.1002/adma.202206911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Nanocrystals are of great importance in material sciences and industry. Engineering nanocrystals with desired structures and properties is no doubt one of the most important challenges in the field, which requires deep insight into atomic-scale dynamics of nanocrystals during the process. The rapid developments of in situ transmission electron microscopy (TEM), especially environmental TEM, reveal insights into nanocrystals to digest. According to the considerable progress based on in situ electron microscopy, a comprehensive review on nanocrystal dynamics from three aspects: nucleation and growth, structure evolution, and dynamics in reaction conditions are given. In the nucleation and growth part, existing nucleation theories and growth pathways are organized based on liquid and gas-solid phases. In the structure evolution part, the focus is on in-depth mechanistic understanding of the evolution, including defects, phase, and disorder/order transitions. In the part of dynamics in reaction conditions, solid-solid and gas-solid interfaces of nanocrystals in atmosphere are discussed and the structure-property relationship is correlated. Even though impressive progress is made, additional efforts are required to develop the integrated and operando TEM methodologies for unveiling nanocrystal dynamics with high spatial, energy, and temporal resolutions.
Collapse
Affiliation(s)
- Haofei Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuchen Zhu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huanyu Ye
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang He
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hao Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yifei Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
24
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
25
|
Shi Y, Zhou Y, Lou Y, Chen Z, Xiong H, Zhu Y. Homogeneity of Supported Single-Atom Active Sites Boosting the Selective Catalytic Transformations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201520. [PMID: 35808964 PMCID: PMC9404403 DOI: 10.1002/advs.202201520] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Indexed: 05/09/2023]
Abstract
Selective conversion of specific functional groups to desired products is highly important but still challenging in industrial catalytic processes. The adsorption state of surface species is the key factor in modulating the conversion of functional groups, which is correspondingly determined by the uniformity of active sites. However, the non-identical number of metal atoms, geometric shape, and morphology of conventional nanometer-sized metal particles/clusters normally lead to the non-uniform active sites with diverse geometric configurations and local coordination environments, which causes the distinct adsorption states of surface species. Hence, it is highly desired to modulate the homogeneity of the active sites so that the catalytic transformations can be better confined to the desired direction. In this review, the construction strategies and characterization techniques of the uniform active sites that are atomically dispersed on various supports are examined. In particular, their unique behavior in boosting the catalytic performance in various chemical transformations is discussed, including selective hydrogenation, selective oxidation, Suzuki coupling, and other catalytic reactions. In addition, the dynamic evolution of the active sites under reaction conditions and the industrial utilization of the single-atom catalysts are highlighted. Finally, the current challenges and frontiers are identified, and the perspectives on this flourishing field is provided.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yuwei Zhou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yang Lou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Zupeng Chen
- College of Chemical EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Haifeng Xiong
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Yongfa Zhu
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
26
|
Focassio B, Fiuza TER, Bettini J, Schleder GR, Rodrigues MHM, Souza Junior JB, Leite ER, Fazzio A, Capaz RB. Stability and Rupture of an Ultrathin Ionic Wire. PHYSICAL REVIEW LETTERS 2022; 129:046101. [PMID: 35939018 DOI: 10.1103/physrevlett.129.046101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Using a combination of in situ high-resolution transmission electron microscopy and density functional theory, we report the formation and rupture of ZrO_{2} atomic ionic wires. Near rupture, under tensile stress, the system favors the spontaneous formation of oxygen vacancies, a critical step in the formation of the monatomic bridge. In this length scale, vacancies provide ductilelike behavior, an unexpected mechanical behavior for ionic systems. Our results add an ionic compound to the very selective list of materials that can form monatomic wires and they contribute to the fundamental understanding of the mechanical properties of ceramic materials at the nanoscale.
Collapse
Affiliation(s)
- Bruno Focassio
- Federal University of ABC (UFABC), 09210-580 Santo André, São Paulo, Brazil
- Ilum School of Science, CNPEM, 13083-970 Campinas, São Paulo, Brazil
| | - Tanna E R Fiuza
- Brazilian Nanotechnology National Laboratory (LNNano), CNPEM, 13083-970 Campinas, São Paulo, Brazil
| | - Jefferson Bettini
- Brazilian Nanotechnology National Laboratory (LNNano), CNPEM, 13083-970 Campinas, São Paulo, Brazil
| | - Gabriel R Schleder
- Federal University of ABC (UFABC), 09210-580 Santo André, São Paulo, Brazil
- Brazilian Nanotechnology National Laboratory (LNNano), CNPEM, 13083-970 Campinas, São Paulo, Brazil
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Murillo H M Rodrigues
- Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, São Paulo, Brazil
| | - João B Souza Junior
- Brazilian Nanotechnology National Laboratory (LNNano), CNPEM, 13083-970 Campinas, São Paulo, Brazil
| | - Edson R Leite
- Brazilian Nanotechnology National Laboratory (LNNano), CNPEM, 13083-970 Campinas, São Paulo, Brazil
- Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, São Paulo, Brazil
| | - Adalberto Fazzio
- Federal University of ABC (UFABC), 09210-580 Santo André, São Paulo, Brazil
- Ilum School of Science, CNPEM, 13083-970 Campinas, São Paulo, Brazil
| | - Rodrigo B Capaz
- Brazilian Nanotechnology National Laboratory (LNNano), CNPEM, 13083-970 Campinas, São Paulo, Brazil
- Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
You R, Wu Z, Yu J, Wang F, Chen S, Han ZK, Yuan W, Yang H, Wang Y. Revealing Surface Restraint-Induced Hexagonal Pd Nanocrystals via In Situ Transmission Electron Microscopy. NANO LETTERS 2022; 22:4333-4339. [PMID: 35584407 DOI: 10.1021/acs.nanolett.2c00411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Achieving metal nanocrystals with metastable phase draws much attention due to their anticipated fascinating properties, wheras it is still challenging because their polymorphism nature and phase transition mechanism remain elusive. Here, phase stability of face-centered cubic (fcc) Pd nanocrystals was studied via in situ spherical aberration (Cs)-corrected transmission electron microscopy (TEM). By constructing a well-defined Pd/C composite structure, Pd nanocrystals encapsulated by graphite, the dispersion process of fcc Pd was observed through a nucleation and growth process. Interestingly, Cs-corrected scanning TEM analysis demonstrated that the newly formed Pd nanocrystals could adopt a metastable hexagonal phase, which was considered challenging to obtain. Accordingly, formation mechanism of the hexagonal Pd nanocrystals was proposed, which involved the combined effect of two factors: (1) templating of graphite and (2) size effect. This work is expected to offer new insight into the polymorphism of Pd nanocrystals and pave the way for the future design of metastable metal nanomaterials.
Collapse
Affiliation(s)
- Ruiyang You
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhemin Wu
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian Yu
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fei Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shiyuan Chen
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhong-Kang Han
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangsheng Yang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
28
|
Ye H, Yang F, Sun Y, Wang R. Atom-Resolved Investigation on Dynamic Nucleation and Growth of Platinum Nanocrystals. SMALL METHODS 2022; 6:e2200171. [PMID: 35324080 DOI: 10.1002/smtd.202200171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Understanding the mechanism of nucleation and growth of nanocrystals is crucial for designing and regulating the structure and properties of nanocrystals. However, the process from molecules to nanocrystals remains unclear because of the rapid and complicated dynamics of evolution under reaction conditions. Here, the complete evolution process of solid-phase chloroplatinic acid during the electron beam irradiation triggered reduction and nucleation of platinum nanocrystals is recorded. Aberration-corrected environmental transmission electron microscopy is used for direct visualization of the dynamic evolution from H2 PtCl6 to Pt nanocrystals at the atomic scale, including the formation and growth of amorphous clusters, crystallization, and growth of clusters, and the ripening of Pt nanocrystals. At the first two stages, there exists a critical size of ≈2.0 nm, which represents the start of crystallization. Crystallization from the center and density fluctuation are observed in the second stage of the crystallization of a few clusters with a size obviously larger than the critical size. The work provides valuable information to understand the kinetics of the early stage of nanocrystal nucleation and crystallization at atomic scale.
Collapse
Affiliation(s)
- Huanyu Ye
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Feng Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yinghui Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
29
|
Zhang F, Zhang X, Jia Z, Liu W. Precise Drift Tracking for In Situ Transmission Electron Microscopy via a Thon-Ring Based Sample Position Measurement. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-7. [PMID: 35599605 DOI: 10.1017/s1431927622000691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Visualizing how a catalyst behaves during chemical reactions using in situ transmission electron microscopy (TEM) is crucial for understanding the activity origin and guiding performance optimization. However, the sample drifts as temperature changes during in situ reaction, which weakens the resolution and stability of TEM imaging, blocks insights into the dynamic details of catalytic reaction. Herein, a Thon-ring based sample position measurement (TSPM) was developed to track the sample height variation during in situ TEM observation. Drifting characteristics for three commercially available nanochips were studied, showing large biases in aspects of shifting modes, expansion heights, as well as the thermal conduction hysteresis during rapid heating. Particularly, utilizing the TSPM method, for the first time, the gas layer thickness inside a gas-cell nanoreactor was precisely determined, which varies with reaction temperature and gas pressure in a linear manner with coefficients of ~8 nm/°C and ~50 nm/mbar, respectively. Following drift prediction of TSPM, fast oxidation kinetics of a Ni particle was tracked in real time for 12 s at 500°C. This TSPM method is expected to facilitate the functionality of automatic target tracing for in situ microscopy applications when feedback to hardware control of the microscope.
Collapse
Affiliation(s)
- Fan Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaoben Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhenghao Jia
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wei Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
30
|
Data Synchronization in Operando Gas and Heating TEM. Ultramicroscopy 2022; 238:113549. [DOI: 10.1016/j.ultramic.2022.113549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022]
|
31
|
The Effect of a Hydrogen Reduction Procedure on the Microbial Synthesis of a Nano-Pd Electrocatalyst for an Oxygen-Reduction Reaction. MINERALS 2022. [DOI: 10.3390/min12050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Noble-metal electrocatalysts supported by biological-organism-derived carbons have attracted attention from the public due to the growing demands for green synthesis and environmental protection. Carbonization at high temperatures and hydrogen reduction are critical steps in this technical route. Herein, Shewanella oneidensis MR-1 were used as precursors, and the effects of the hydrogen-reduction procedure on catalysts were explored. The results showed that the performances of FHTG (carbonization followed by hydrogen reduction) displayed the best performance. Its ECSA (electrochemical surface area), MA (mass activity), and SA (specific activity) reached 35.01 m2 g−1, 58.39 A·g−1, and 1.66 A cm−2, respectively, which were 1.17, 1.75, and 1.50 times that of PHTG (prepared through hydrogen reduction followed by carbonization) and 1.56, 2.26, and 1.44 times that of DHTG (double hydrogen reduction). The high performance could be attributed to its fine particle size and rich N content, and the specific regulation mechanism was also proposed in this paper. This study opens a practical guide for effectively avoiding particle agglomeration during the fabrication process for catalysts.
Collapse
|
32
|
Wang X, Li M, Xu P, Chen Y, Yu H, Li X. In Situ TEM Technique Revealing the Deactivation Mechanism of Bimetallic Pd-Ag Nanoparticles in Hydrogen Sensors. NANO LETTERS 2022; 22:3157-3164. [PMID: 35191710 DOI: 10.1021/acs.nanolett.1c05018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bimetallic Pd-Ag alloy nanoparticles exhibit satisfactory H2-sensing improvements and show application potential for H2 sensor construction. However, the long-term stability of the H2 sensor with Pd-Ag nanoparticles as the catalyst is found to dramatically decrease during operation. Herein, gas-cell in situ transmission electron microscopy (TEM) is used to investigate the failure mechanisms of Pd-Ag nanoparticles under operation conditions. Based on the in situ TEM results, the Pd-Ag nanoparticles have two failure mechanisms: particles coalescence at 300 °C and phase segregation at 500 °C. Guided by the failure mechanisms, the H2 sensor is comprehensively optimized based on the working temperature and the amount of Pd-Ag alloy nanoparticles. The optimized sensor exhibits satisfactory H2-sensing properties, and the response decline of the sensor after 1 month is negligible. The revealing of the failure mechanisms with in situ TEM technology provides a valuable route for developing gas sensors with high long-term stability.
Collapse
Affiliation(s)
- Xueqing Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Pengcheng Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Chen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Haitao Yu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xinxin Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Hu B, Sun K, Zhuang Z, Chen Z, Liu S, Cheong WC, Chen C, Hu M, Cao X, Ma J, Tu R, Zheng X, Xiao H, Chen X, Cui Y, Peng Q, Chen C, Li Y. Distinct Crystal-Facet-Dependent Behaviors for Single-Atom Palladium-On-Ceria Catalysts: Enhanced Stabilization and Catalytic Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107721. [PMID: 35142396 DOI: 10.1002/adma.202107721] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/07/2022] [Indexed: 06/14/2023]
Abstract
High-performance, fully atomically dispersed single-atom catalysts (SACs) are promising candidates for next-generation industrial catalysts. However, it remains a great challenge to avoid the aggregation of isolated atoms into nanoparticles during the preparation and application of SACs. Here, the evolution of Pd species is investigated on different crystal facets of CeO2 , and vastly different behaviors on the single-atomic dispersion of surface Pd atoms are surprisingly discovered. In situ X-ray photoelectron spectroscopy (XPS), in situ near-ambient-pressure-XPS (NAP-XPS), in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and X-ray absorption spectroscopy (XAS) reveal that, in a reducing atmosphere, more oxygen vacancies are generated on the (100) facet of CeO2 , and Pd atoms can be trapped and thus feature atomic dispersion; by contrast, on the CeO2 (111) facet, Pd atoms will readily aggregate into clusters (Pdn ). Furthermore, Pd1 /CeO2 (100) gives a high selectivity of 90.3% for the catalytic N-alkylation reaction, which is 2.8 times higher than that for Pdn /CeO2 (111). This direct evidence demonstrates the crucial role of crystal-facet effects in the preparation of metal-atom-on-metal-oxide SACs. This work thus opens an avenue for the rational design and targeted synthesis of ultrastable and sinter-resistant SACs.
Collapse
Affiliation(s)
- Botao Hu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing, 100094, P. R. China
| | - Kaian Sun
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zewen Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zheng Chen
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Shoujie Liu
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Weng-Chon Cheong
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macau, 999078, P. R. China
| | - Cheng Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
| | - Mingzhen Hu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xing Cao
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Junguo Ma
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Renyong Tu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yi Cui
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Qing Peng
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Chen Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
34
|
Molecular Dynamics Simulation of Sintering Densification of Multi-Scale Silver Layer. MATERIALS 2022; 15:ma15062232. [PMID: 35329683 PMCID: PMC8955946 DOI: 10.3390/ma15062232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023]
Abstract
Based on molecular dynamics (MD), in this study, a model was established to simulate the initial coating morphology of silver paste by using a random algorithm, and the effects of different sizes of particles on sintering porosity were also analyzed. The MD result reveals that compared with the sintering process using large-scale silver particles, the sintering process using multi-scale silver particles would enhance the densification under the same sintering conditions, which authenticates the feasibility of adding small silver particles to large-scale silver particles in theory. In addition, to further verify the feasibility of the multi-scale sintering, a semi in-situ observation was prepared for a sintering experiment using micro-nano multi-scale silver paste. The feasibility of multi-scale silver sintering is proved by theoretical and experimental means, which can provide a meaningful reference for optimizing the sintering process and the preparation of silver paste for die-attach in powering electronics industry. In addition, it is hoped that better progress can be made on this basis in the future.
Collapse
|
35
|
Zhang X, Li Z, Pei W, Li G, Liu W, Du P, Wang Z, Qin Z, Qi H, Liu X, Zhou S, Zhao J, Yang B, Shen W. Crystal-Phase-Mediated Restructuring of Pt on TiO 2 with Tunable Reactivity: Redispersion versus Reshaping. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xiaoben Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhimin Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Pei
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Pengfei Du
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Zhaoxian Qin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Qi
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Si Zhou
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Bing Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
36
|
Wu F, Du Y, Lv S, Zhao C, Yang X. DFT Modeling of CO 2 Adsorption and HCOO • Group Conversion in Anatase Au-TiO 2-Based Photocatalysis. ACS OMEGA 2022; 7:7179-7189. [PMID: 35252708 PMCID: PMC8892660 DOI: 10.1021/acsomega.1c06861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/08/2022] [Indexed: 05/19/2023]
Abstract
Due to the merits of carbon circulation and hydrocarbon production, solar-assisted photocatalysis has been regarded as an ideal option for securing a sustainable future of energy and environment. In the photocatalytic carbon cycle process, surface reactions including the adsorption of CO2 and the conversion of CO2 into CH4, CH3OH, etc. are crucial to be examined ascribed to their significant influence on the performance of the photocatalysis. Because the conversion reaction starts from the formation of HCOO•, the density functional theory (DFT) model was established in this study to investigate the micromechanism of CO2 adsorption and the conversion of CO2 to HCOO• group in the anatase Au-TiO2 photocatalytic system. The CO2 adsorption bonding in six configurations was simulated, on which basis the effects of the proportion of water molecules and the lattice temperature increase due to the local surface plasmon resonance (LSPR) on the photocatalytic CO2 adsorption and conversion were specifically analyzed. The results show that the experimental conditions that water molecules are released before CO2 are favorable for the formation of the adsorption configuration in which HCOO• tends to be produced without the need of reaction activation energy. This is reasonable since the intermediate C atoms do not participate in bonding under these conditions. Moreover, Au clusters have an insignificant influence on the adsorption behaviors of CO2 including the adsorption sites and configurations on TiO2 surfaces. As a result, the reaction rate is reduced due to the temperature increase caused by the LSPR effect. Nevertheless, the reaction maintains a very high rate. Interestingly, configurations that require activation energy are also possible to be resulted, which exerts a positive influence of temperature on the conversion rate of CO2. It is found that the rate of the reaction can be improved by approximately 1-10 times with a temperature rise of 50 K above the ambient.
Collapse
Affiliation(s)
- Feitong Wu
- China-UK
Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Yanping Du
- China-UK
Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Sijia Lv
- China-UK
Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Changying Zhao
- China-UK
Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
- Institute
of Engineering Thermophysics, Shanghai Jiao
Tong University, Shanghai 200240, China
| | - Xiang Yang
- China-UK
Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| |
Collapse
|
37
|
Song Y, Zhang T, Bai R, Zhou Y, Li L, Zou Y, Yu J. Catalytically active Rh species stabilized by zirconium and hafnium on zeolites. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00280a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supported subnanometric metal species and metal nanoparticles, prepared through the impregnation method, are widely used in industrial catalysis, but suffering from the poor stability of the metal species to sintering...
Collapse
|
38
|
Li X, He Y, Cheng S, Li B, Zeng Y, Xie Z, Meng Q, Ma L, Kisslinger K, Tong X, Hwang S, Yao S, Li C, Qiao Z, Shan C, Zhu Y, Xie J, Wang G, Wu G, Su D. Atomic Structure Evolution of Pt-Co Binary Catalysts: Single Metal Sites versus Intermetallic Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2106371. [PMID: 34605065 DOI: 10.1002/adma.202106371] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Due to their exceptional catalytic properties for the oxygen reduction reaction (ORR) and other crucial electrochemical reactions, PtCo intermetallic nanoparticle (NP) and single atomic (SA) Pt metal site catalysts have received considerable attention. However, their formation mechanisms at the atomic level during high-temperature annealing processes remain elusive. Here, the thermally driven structure evolution of Pt-Co binary catalyst systems is investigated using advanced in situ electron microscopy, including PtCo intermetallic alloys and single Pt/Co metal sites. The pre-doping of CoN4 sites in carbon supports and the initial Pt NP sizes play essential roles in forming either Pt3 Co intermetallics or single Pt/Co metal sites. Importantly, the initial Pt NP loadings against the carbon support are critical to whether alloying to L12 -ordered Pt3 Co NPs or atomizing to SA Pt sites at high temperatures. High Pt NP loadings (e.g., 20%) tend to lead to the formation of highly ordered Pt3 Co intermetallic NPs with excellent activity and enhanced stability toward the ORR. In contrast, at a relatively low Pt loading (<6 wt%), the formation of single Pt sites in the form of PtC3 N is thermodynamically favorable, in which a synergy between the PtC3 N and the CoN4 sites could enhance the catalytic activity for the ORR, but showing insufficient stability.
Collapse
Affiliation(s)
- Xing Li
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yanghua He
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Shaobo Cheng
- Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Boyang Li
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yachao Zeng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Zhenhua Xie
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Qingping Meng
- Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Siyu Yao
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Chenzhao Li
- Department of Mechanical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Zhi Qiao
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yimei Zhu
- Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jian Xie
- Department of Mechanical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Dong Su
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
39
|
Yue S, Shen Y, Deng Z, Yuan W, Xi W. Coalescence and shape oscillation of Au nanoparticles in CO 2 hydrogenation to methanol. NANOSCALE 2021; 13:18218-18225. [PMID: 34709260 DOI: 10.1039/d1nr01272j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, there has been renewed interest in Au nanoparticle (Au NP) catalysts owing to their high selectivity for CO2 hydrogenation to methanol. However, there is still limited knowledge on the main factors of the catalytic activity and product selectivity of Au NPs. To address this issue, we utilized in situ transmission electron microscopy to observe the evolution of Au NP catalysts during CO2 hydrogenation to methanol at 260 °C under ambient pressure. During the reaction, Au NPs sized ≤5 nm coalesced rapidly, forming stable Au NPs sized 5-10 nm with oscillating shapes. The first-principles calculations demonstrated that the adsorption of the reactant gas CO2 is the main factor in inducing the coalescence of Au NPs, and CO and/or H2O adsorption generated by the reaction caused the oscillation of the Au NP shape. Furthermore, the adsorption of various gas molecules resulted in continuous changes in the structure of the catalyst active center. In this study, the in situ observation of the dynamic evolution of the Au NP morphology is important in understanding the structural transformation of Au NP catalysts at the nanometer scale and determining the active site motifs under the reaction conditions. Moreover, this would allow us to further understand the size effect and the dynamic evolution behavior of the active center of Au NP catalysts, thereby providing a new idea for the development and application of new catalysts and strong theoretical support for heterogeneous catalytic reaction mechanisms.
Collapse
Affiliation(s)
- Shengnan Yue
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Yongli Shen
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Ziliang Deng
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Wenjuan Yuan
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Wei Xi
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
40
|
Yang F, Zhao H, Wang W, Wang L, Zhang L, Liu T, Sheng J, Zhu S, He D, Lin L, He J, Wang R, Li Y. Atomic origins of the strong metal-support interaction in silica supported catalysts. Chem Sci 2021; 12:12651-12660. [PMID: 34703550 PMCID: PMC8494123 DOI: 10.1039/d1sc03480d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Silica supported metal catalysts are most widely used in the modern chemical industry because of the high stability and tunable reactivity. The strong metal–support interaction (SMSI), which has been widely observed in metal oxide supported catalysts and significantly affects the catalytic behavior, has been speculated to rarely happen in silica supported catalysts since silica is hard to reduce. Here we revealed at the atomic scale the interfacial reaction induced SMSI in silica supported Co and Pt catalysts under reductive conditions at high temperature using aberration-corrected environmental transmission electron microscopy coupled with in situ electron energy loss spectroscopy. In a Co/SiO2 system, the amorphous SiO2 migrated onto the Co surface to form a crystallized quartz-SiO2 overlayer, and simultaneously an interlayer of Si was generated in-between. The metastable crystalline SiO2 overlayer subsequently underwent an order-to-disorder transition due to the continuous dissociation of SiO2 and the interfacial alloying of Si with the underlying Co. The SMSI in the Pt–SiO2 system was found to remarkably boost the catalytic hydrogenation. These findings demonstrate the universality of the SMSI in oxide supported catalysts, which is of general importance for designing catalysts and understanding catalytic mechanisms. This work tracked at the atomic scale the interfacial reaction induced strong metal–support interaction between SiO2 and metal catalysts and evolution under reactive conditions by aberration-corrected environmental transmission electron microscopy.![]()
Collapse
Affiliation(s)
- Feng Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China .,Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Haofei Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 China
| | - Wu Wang
- Department of Physics, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Lei Wang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Lei Zhang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Tianhui Liu
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jian Sheng
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Sheng Zhu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Dongsheng He
- Core Research Facilities, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Lili Lin
- State Key Laboratory of Green Chemistry Synthesis Technology, Zhejiang University of Technology Hangzhou 310032 China
| | - Jiaqing He
- Department of Physics, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 China
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
41
|
Tang M, Li S, Chen S, Ou Y, Hiroaki M, Yuan W, Zhu B, Yang H, Gao Y, Zhang Z, Wang Y. Facet‐Dependent Oxidative Strong Metal‐Support Interactions of Palladium–TiO
2
Determined by In Situ Transmission Electron Microscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Min Tang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
- Materials Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University 3584 CG Utrecht The Netherlands
| | - Songda Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Shiyuan Chen
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yang Ou
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | | | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Beien Zhu
- Interdisciplinary Research Center, Zhangjiang Laboratory Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201210 China
| | - Hangsheng Yang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yi Gao
- Interdisciplinary Research Center, Zhangjiang Laboratory Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201210 China
| | - Ze Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
42
|
Tang M, Li S, Chen S, Ou Y, Hiroaki M, Yuan W, Zhu B, Yang H, Gao Y, Zhang Z, Wang Y. Facet-Dependent Oxidative Strong Metal-Support Interactions of Palladium-TiO 2 Determined by In Situ Transmission Electron Microscopy. Angew Chem Int Ed Engl 2021; 60:22339-22344. [PMID: 34352928 DOI: 10.1002/anie.202106805] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 11/06/2022]
Abstract
The strong metal-support interaction (SMSI) is widely used in supported metal catalysts and extensive studies have been performed to understand it. Although considerable progress has been achieved, the surface structure of the support, as an important influencing factor, is usually ignored. We report a facet-dependent SMSI of Pd-TiO2 in oxygen by using in situ atmospheric pressure TEM. Pd NPs supported on TiO2 (101) and (100) surfaces showed encapsulation. In contrast, no such cover layer was observed in Pd-TiO2 (001) catalyst under the same conditions. This facet-dependent SMSI, which originates from the variable surface structure of the support, was demonstrated in a probe reaction of methane combustion catalyzed by Pd-TiO2 . Our discovery of the oxidative facet-dependent SMSI gives direct evidence of the important role of the support surface structure in SMSI and provides a new way to tune the interaction between metal NPs and the support as well as catalytic activity.
Collapse
Affiliation(s)
- Min Tang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Songda Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shiyuan Chen
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Ou
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | | | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Beien Zhu
- Interdisciplinary Research Center, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese, Academy of Sciences, Shanghai, 201210, China
| | - Hangsheng Yang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yi Gao
- Interdisciplinary Research Center, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese, Academy of Sciences, Shanghai, 201210, China
| | - Ze Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
43
|
Wang Y, Wang C, Wang L, Wang L, Xiao FS. Zeolite Fixed Metal Nanoparticles: New Perspective in Catalysis. Acc Chem Res 2021; 54:2579-2590. [PMID: 33999615 DOI: 10.1021/acs.accounts.1c00074] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ConspectusLoading metal nanoparticles on the surface of solid supports has emerged as an efficient route for the preparation of heterogeneous catalysts. Notably, most of these supported metal nanoparticles still have shortcomings such as dissatisfactory activity and low product selectivity in catalysis. In addition, these metal nanoparticles also suffer from deactivation because of nanoparticle sintering, leaching, and coke formation under harsh conditions. The fixation of metal nanoparticles within zeolite crystals should have advantages of high activities for metal nanoparticles and excellent shape selectivity for zeolite micropores as well as extraordinary stability of metal nanoparticles immobilized with a stable zeolite framework, which is a good solution for the shortcomings of supported metal nanoparticles.Materials with metal nanostructures within the zeolite crystals are normally denoted as metal@zeolite, where the metal nanoparticles with diameters similar to those of industrial catalysts are usually larger than the micropore size. These metal nanoparticles are enveloped with the zeolite rigid framework to prevent migration under harsh reaction conditions, which is described as a fixed structure. The zeolite micropores allow the diffusion of reactants to the metal nanoparticles. As a result, metal@zeolite catalysts combine the features of both metal nanoparticles (high activity) and zeolites (shape selectivity and thermal stability), compared with the supported metal nanoparticles.In this Account, we describe how the zeolite micropore and metal nanoparticle synergistically work to improve the catalytic performance by the preparation of a variety of metal@zeolite catalysts. Multiple functions of zeolites with respect to the metal nanoparticles are highlighted, including control of the reactant/product diffusion in the micropores, the adjustment of reactant adsorption on the metal nanoparticles, and sieving the reactants and products with zeolite micropores. Furthermore, by optimizing the wettability of the zeolite external surface, the zeolite crystals could form a nanoreactor to efficiently enrich the crucial intermediates, thus boosting the performance in low-temperature methane oxidation. Also, the microporous confinement weakens the adsorption of C1 intermediates on the metal sites, accelerating the C-C coupling to improve C2 oxygenate productivity in syngas conversion. In particular, the zeolite framework efficiently stabilizes the metal nanoparticles against sintering and leaching to give durable catalysts. Clearly, this strategy not only guides the rational design of efficient heterogeneous catalysts for potential applications in a variety of industrial chemical reactions but also accelerates the fundamental understanding of the catalytic mechanisms by providing new model catalysts.
Collapse
Affiliation(s)
- Yeqing Wang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Chengtao Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Lingxiang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Liang Wang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Feng-Shou Xiao
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
44
|
Chen S, Li S, You R, Guo Z, Wang F, Li G, Yuan W, Zhu B, Gao Y, Zhang Z, Yang H, Wang Y. Elucidation of Active Sites for CH 4 Catalytic Oxidation over Pd/CeO 2 Via Tailoring Metal–Support Interactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00839] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shiyuan Chen
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Songda Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ruiyang You
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ziyi Guo
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Fei Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guanxing Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Beien Zhu
- Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai Advanced Research Institute, Shanghai 201210, China
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai 201800, China
| | - Yi Gao
- Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai Advanced Research Institute, Shanghai 201210, China
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai 201800, China
| | - Ze Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangsheng Yang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
45
|
Ek M, Arnarson L, Georg Moses P, Rasmussen SB, Skoglundh M, Olsson E, Helveg S. Probing surface-sensitive redox properties of VO x/TiO 2 catalyst nanoparticles. NANOSCALE 2021; 13:7266-7272. [PMID: 33889890 DOI: 10.1039/d0nr08943e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Redox processes of oxide materials are fundamental in catalysis. These processes depend on the surface structure and stoichiometry of the oxide and are therefore expected to vary between surface facets. However, there is a lack of direct measurements of redox properties on the nanoscale for analysing the importance of such faceting effects in technical materials. Here, we address the facet-dependent redox properties of vanadium-oxide-covered anatase nanoparticles of relevance to, e.g., selective catalytic reduction of nitrogen oxides. The vanadium oxidation states at individual nanoscale facets are resolved in situ under catalytically relevant conditions by combining transmission electron microscopy imaging and electron energy loss spectroscopy. The measurements reveal that vanadium on {001} facets consistently retain higher oxidation states than on {10l} facets. Insight into such structure-sensitivity of surface redox processes opens prospects of tailoring oxide nanoparticles with enhanced catalytic functionalities.
Collapse
Affiliation(s)
- Martin Ek
- Haldor Topsoe A/S, Haldor Topsøes Allé 1, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
46
|
Yuan W, Zhu B, Fang K, Li XY, Hansen TW, Ou Y, Yang H, Wagner JB, Gao Y, Wang Y, Zhang Z. In situ manipulation of the active Au-TiO
2
interface with atomic precision during CO oxidation. Science 2021; 371:517-521. [DOI: 10.1126/science.abe3558] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/04/2021] [Indexed: 01/13/2023]
Affiliation(s)
- Wentao Yuan
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Beien Zhu
- Interdisciplinary Research Center, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Ke Fang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Xiao-Yan Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Thomas W. Hansen
- DTU Nanolab, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Yang Ou
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Hangsheng Yang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Jakob B. Wagner
- DTU Nanolab, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Yi Gao
- Interdisciplinary Research Center, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Yong Wang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Ze Zhang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| |
Collapse
|
47
|
Goodman ED, Carlson EZ, Dietze EM, Tahsini N, Johnson A, Aitbekova A, Nguyen Taylor T, Plessow PN, Cargnello M. Size-controlled nanocrystals reveal spatial dependence and severity of nanoparticle coalescence and Ostwald ripening in sintering phenomena. NANOSCALE 2021; 13:930-938. [PMID: 33367382 DOI: 10.1039/d0nr07960j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A major aim in the synthesis of nanomaterials is the development of stable materials for high-temperature applications. Although the thermal coarsening of small and active nanocrystals into less active aggregates is universal in material deactivation, the atomic mechanisms governing nanocrystal growth remain elusive. By utilizing colloidally synthesized Pd/SiO2 powder nanocomposites with controlled nanocrystal sizes and spatial arrangements, we unravel the competing contributions of particle coalescence and atomic ripening processes in nanocrystal growth. Through the study of size-controlled nanocrystals, we can uniquely identify the presence of either nanocrystal dimers or smaller nanoclusters, which indicate the relative contributions of these two processes. By controlling and tracking the nanocrystal density, we demonstrate the spatial dependence of nanocrystal coalescence and the spatial independence of Ostwald (atomic) ripening. Overall, we prove that the most significant loss of the nanocrystal surface area is due to high-temperature atomic ripening. This observation is in quantitative agreement with changes in the nanocrystal density produced by simulations of atomic exchange. Using well-defined colloidal materials, we extend our analysis to explain the unusual high-temperature stability of Au/SiO2 materials up to 800 °C.
Collapse
Affiliation(s)
- Emmett D Goodman
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, CA 94305, USA.
| | - Evan Z Carlson
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, CA 94305, USA.
| | - Elisabeth M Dietze
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Nadia Tahsini
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, CA 94305, USA.
| | - Arun Johnson
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, CA 94305, USA.
| | - Aisulu Aitbekova
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, CA 94305, USA.
| | - Temy Nguyen Taylor
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, CA 94305, USA.
| | - Philipp N Plessow
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Matteo Cargnello
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
48
|
van der Wal LI, Turner SJ, Zečević J. Developments and advances in in situ transmission electron microscopy for catalysis research. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00258a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent developments and advances in in situ TEM have raised the possibility to study every step during the catalysts' lifecycle. This review discusses the current state, opportunities and challenges of in situ TEM in the realm of catalysis.
Collapse
Affiliation(s)
- Lars I. van der Wal
- Materials Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- Utrecht
- The Netherlands
| | - Savannah J. Turner
- Materials Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- Utrecht
- The Netherlands
| | - Jovana Zečević
- Materials Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- Utrecht
- The Netherlands
| |
Collapse
|
49
|
Tang M, Yuan W, Ou Y, Li G, You R, Li S, Yang H, Zhang Z, Wang Y. Recent Progresses on Structural Reconstruction of Nanosized Metal Catalysts via Controlled-Atmosphere Transmission Electron Microscopy: A Review. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03335] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Min Tang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Ou
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guanxing Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ruiyang You
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Songda Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangsheng Yang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ze Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
50
|
Wang H, Wang L, Xiao FS. Metal@Zeolite Hybrid Materials for Catalysis. ACS CENTRAL SCIENCE 2020; 6:1685-1697. [PMID: 33145408 PMCID: PMC7596864 DOI: 10.1021/acscentsci.0c01130] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Indexed: 05/04/2023]
Abstract
The fixation of metal nanoparticles into zeolite crystals has emerged as a new series of heterogeneous catalysts, giving performances that steadily outperform the generally supported catalysts in many important reactions. In this outlook, we define different noble metal-in-zeolite structures (metal@zeolite) according to the size of the nanoparticles and their relative location to the micropores. The metal species within the micropores and those larger than the micropores are denoted as encapsulated and fixed structures, respectively. The development in the strategies for the construction of metal@zeolite hybrid materials is briefly summarized in this work, where the rational preparation and improved thermal stability of the metal nanostructures are particularly mentioned. More importantly, these metal@zeolite hybrid materials as catalysts exhibit excellent shape selectivity. Finally, we review the current challenges and future perspectives for these metal@zeolite catalysts.
Collapse
Affiliation(s)
- Hai Wang
- Key
Lab of Biomass Chemical Engineering of Ministry of Education, College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liang Wang
- Key
Lab of Biomass Chemical Engineering of Ministry of Education, College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- (L.W.)
| | - Feng-Shou Xiao
- Key
Lab of Biomass Chemical Engineering of Ministry of Education, College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Key
Laboratory of Applied Chemistry of Zhejiang Province, Department of
Chemistry, Zhejiang University, Hangzhou 310028, China
- (F.S.X.)
| |
Collapse
|