1
|
Persano L, Camposeo A, Matino F, Wang R, Natarajan T, Li Q, Pan M, Su Y, Kar-Narayan S, Auricchio F, Scalet G, Bowen C, Wang X, Pisignano D. Advanced Materials for Energy Harvesting and Soft Robotics: Emerging Frontiers to Enhance Piezoelectric Performance and Functionality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405363. [PMID: 39291876 PMCID: PMC11543516 DOI: 10.1002/adma.202405363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/24/2024] [Indexed: 09/19/2024]
Abstract
Piezoelectric energy harvesting captures mechanical energy from a number of sources, such as vibrations, the movement of objects and bodies, impact events, and fluid flow to generate electric power. Such power can be employed to support wireless communication, electronic components, ocean monitoring, tissue engineering, and biomedical devices. A variety of self-powered piezoelectric sensors, transducers, and actuators have been produced for these applications, however approaches to enhance the piezoelectric properties of materials to increase device performance remain a challenging frontier of materials research. In this regard, the intrinsic polarization and properties of materials can be designed or deliberately engineered to enhance the piezo-generated power. This review provides insights into the mechanisms of piezoelectricity in advanced materials, including perovskites, active polymers, and natural biomaterials, with a focus on the chemical and physical strategies employed to enhance the piezo-response and facilitate their integration into complex electronic systems. Applications in energy harvesting and soft robotics are overviewed by highlighting the primary performance figures of merits, the actuation mechanisms, and relevant applications. Key breakthroughs and valuable strategies to further improve both materials and device performance are discussed, together with a critical assessment of the requirements of next-generation piezoelectric systems, and future scientific and technological solutions.
Collapse
Affiliation(s)
- Luana Persano
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Andrea Camposeo
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Francesca Matino
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Ruoxing Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, 53707, USA
| | - Thiyagarajan Natarajan
- Department of Materials Science, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Qinlan Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Pan
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Yewang Su
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sohini Kar-Narayan
- Department of Materials Science, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, Pavia, I-27100, Italy
| | - Giulia Scalet
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, Pavia, I-27100, Italy
| | - Chris Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, 53707, USA
| | - Dario Pisignano
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Largo B. Pontecorvo 3, Pisa, I-56127, Italy
| |
Collapse
|
2
|
Moriguchi J, Koga T, Tsunoji N, Nishihara S, Akutagawa T, Masuya-Suzuki A, Tsunashima R. Solvent-assisted mechanochemical crystallization of the metal-free perovskite solid solution (H 2dabco, H 2hmta)NH 4(BF 4) 3. Chem Commun (Camb) 2024; 60:12181-12184. [PMID: 39282968 DOI: 10.1039/d4cc04010d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
All-proportional solid solutions of the metal-free perovskite (H2dabco1-y, H2hmtay)(NH4)(BF4)3 ((d,h)-BF4) were crystallized via a mechanochemical method. Their molecular dynamics depend on the ratio y with a compositional boundary at y = 0.43, where H2dabco2+ was deduced to be at a dynamic disorder state, even below phase transition temperature to a plastic crystalline phase seen at y = 0.
Collapse
Affiliation(s)
- Jumpei Moriguchi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8512, Japan.
| | - Tomoe Koga
- Chemistry Course, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8512, Japan
| | - Nao Tsunoji
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Sadafumi Nishihara
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| | - Atsuko Masuya-Suzuki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8512, Japan.
- Chemistry Course, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8512, Japan
| | - Ryo Tsunashima
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8512, Japan.
- Chemistry Course, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8512, Japan
| |
Collapse
|
3
|
Guo W, Yang Z, Shu L, Cai H, Wei Z. The First Discovery of Spherical Carborane Molecular Ferroelectric Crystals. Angew Chem Int Ed Engl 2024; 63:e202407934. [PMID: 38877767 DOI: 10.1002/anie.202407934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Carborane compounds, known for their exceptional thermal stability and non-toxic attributes, have garnered widespread utility in medicine, supramolecular design, coordination/organometallic chemistry, and others. Although there is considerable interest among chemists, the integration of suitable carborane molecules into ferroelectric materials remains a formidable challenge. In this study, we employ the quasi-spherical design strategy to introduce functional groups at the boron vertices of the o-carborane cage, aiming to reduce molecular symmetry. This approach led to the successful synthesis of the pioneering ferroelectric crystals composed of cage-like carboranes: 9-OH-o-carborane (1) and 9-SH-o-carborane (2), which undergo above-room ferroelectric phase transitions (Tc) at approximately 367 K and 347 K. Interestingly, 1 and 2 represent uniaxial and multiaxial ferroelectrics respectively, with 2 exhibiting six polar axes and as many as twelve equivalent polarization directions. As the pioneering instance of carborane ferroelectric crystals, this study introduces a novel structural archetype for molecular ferroelectrics, thereby providing fresh insights into the exploration of molecular ferroelectric crystals with promising applications.
Collapse
Affiliation(s)
- Wenjing Guo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, P.R. China
| | - Zhao Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, P.R. China
| | - Longlong Shu
- School of Physics and Materials Science, Nanchang University, Nanchang City, 330031, P.R. China
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, P.R. China
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, P.R. China
| |
Collapse
|
4
|
Pan Q, Gu ZX, Zhou RJ, Feng ZJ, Xiong YA, Sha TT, You YM, Xiong RG. The past 10 years of molecular ferroelectrics: structures, design, and properties. Chem Soc Rev 2024; 53:5781-5861. [PMID: 38690681 DOI: 10.1039/d3cs00262d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Ferroelectricity, which has diverse important applications such as memory elements, capacitors, and sensors, was first discovered in a molecular compound, Rochelle salt, in 1920 by Valasek. Owing to their superiorities of lightweight, biocompatibility, structural tunability, mechanical flexibility, etc., the past decade has witnessed the renaissance of molecular ferroelectrics as promising complementary materials to commercial inorganic ferroelectrics. Thus, on the 100th anniversary of ferroelectricity, it is an opportune time to look into the future, specifically into how to push the boundaries of material design in molecular ferroelectric systems and finally overcome the hurdles to their commercialization. Herein, we present a comprehensive and accessible review of the appealing development of molecular ferroelectrics over the past 10 years, with an emphasis on their structural diversity, chemical design, exceptional properties, and potential applications. We believe that it will inspire intense, combined research efforts to enrich the family of high-performance molecular ferroelectrics and attract widespread interest from physicists and chemists to better understand the structure-function relationships governing improved applied functional device engineering.
Collapse
Affiliation(s)
- Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Zhu-Xiao Gu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, P. R. China.
| | - Ru-Jie Zhou
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Zi-Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Yu-An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Tai-Ting Sha
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| |
Collapse
|
5
|
Choi HS, Lin J, Wang G, Wong WPD, Park IH, Lin F, Yin J, Leng K, Lin J, Loh KP. Molecularly thin, two-dimensional all-organic perovskites. Science 2024; 384:60-66. [PMID: 38574140 DOI: 10.1126/science.adk8912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/22/2024] [Indexed: 04/06/2024]
Abstract
Recently, the emergence of all-organic perovskites with three-dimensional (3D) structures has expanded the potential applications of perovskite materials. However, the synthesis and utilization of all-organic perovskites in 2D form remain largely unexplored because the design principle has not been developed. We present the successful synthesis of a metal-free 2D layered perovskite, denoted as the Choi-Loh van der Waals phase (CL-v phase), with the chemical formula A2B2X4, where A represents a larger-sized cation compared to B and X denotes an anion. The CL-v phase exhibits a van der Waals gap enabled by interlayer hydrogen bonding and can be exfoliated or grown as molecularly thin 2D organic crystals. The dielectric constants of the CL-v phase range from 4.8 to 5.5 and we demonstrate their potential as gate dielectrics for thin-film transistors.
Collapse
Affiliation(s)
- Hwa Seob Choi
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jun Lin
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Gang Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Walter P D Wong
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Fang Lin
- College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Jun Yin
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kai Leng
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Junhao Lin
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
| | - Kian Ping Loh
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
6
|
Liu MH, Wen WY, Shen HY, Yang Y, Li J, Zhang B. [Ag 4Br 6] cluster-based 3D bromoargentate hybrid: crystal structure, optical/photoelectrical performance and theoretical study. Dalton Trans 2024. [PMID: 38259165 DOI: 10.1039/d3dt03264g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The self-assembly of cluster-based halide framework materials has been a matter of great interest but with great challenges. Herein, by exploiting hexamethylenetetramine (Hmta) with Td symmetry as a structural modifier, we successfully constructed and systematically characterized an unusual three-dimensional (3D) hybrid bromoargentate, namely K[NH4][Ag4Br6(Hmta)] (1), bearing a diamond-type [Ag4Br6(Hmta)]n2n- anionic skeleton built up from adamantane-like units of inorganic [Ag4Br6] clusters and organic Hmta ligands. UV-Vis diffuse reflectance analysis showed that the optical bandgap of the title compound was 2.68 eV, indicating a visible-light-responsive semiconductive behavior. More importantly, upon alternate light illumination, the so-designed compound exhibited remarkable photoelectric switching properties, with photocurrent densities (0.38 and 1.10 μA cm-2 for visible and full-spectrum light, respectively) that compete well with and even exceed those of some high-performance metal halide counterparts. Further theoretical calculations, including band structure, density of states, and wave functions, revealed that compound 1 has a unique valence band and conduction band distribution, rendering it with small effective masses (especially the electrons), which may be responsible for its good photoelectricity. Furthermore, in this work, Hirshfeld surface analysis, thermogravimetric analysis, and X-ray photoelectron spectroscopy (XPS) studies were performed.
Collapse
Affiliation(s)
- Ming-Hui Liu
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Wei-Yang Wen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hong-Yao Shen
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Yan Yang
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jun Li
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Bo Zhang
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
7
|
Zhang H, Guo W, Du W, Peng Z, Wei Z, Cai H. A Metal-Free Molecular Ferroelectric [4-Me-cyclohexylamine]ClO 4 Introduced by Boat and Chair Conformations of Cyclohexylamine. Chemistry 2024; 30:e202302671. [PMID: 37920946 DOI: 10.1002/chem.202302671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
Organic ferroelectrics have received a great deal of interest due to their exclusive properties. However, organic ferroelectrics have not been fully explored, which hinders their practical application. Here, we presented a novel metal-free organic molecular ferroelectric [4-MCHA][ClO4 ] (1) (4-MCHA=trans-4-methylcyclohexylamine), which exhibits an above-room-temperature of 328 K. Strikingly, the single crystal structure analysis of 1 shows that the driving force of phase transition is related to the interesting chair-boat conformation change of 4-MCHA cation, in addition to the order-disorder transition of ClO4 - anion. Using piezoelectric response force microscopy (PFM), the presence of domains and the implemented polarization switching were clearly observed, which explicitly determined the presence of room-temperature ferroelectricity of 1. As far as we know, the ferroelectric phase transition mechanism attributed to the conformational change in a trans isomeric cation is very rare. This research enriched the path of designing ferroelectric materials and smart materials.
Collapse
Affiliation(s)
- Haina Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, Jiangxi Province, P. R. China
| | - Wenjing Guo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, Jiangxi Province, P. R. China
| | - Wenqing Du
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, Jiangxi Province, P. R. China
| | - Ziqin Peng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, Jiangxi Province, P. R. China
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, Jiangxi Province, P. R. China
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, Jiangxi Province, P. R. China
| |
Collapse
|
8
|
Sambe K, Takeda T, Hoshino N, Matsuda W, Miura R, Tsujita K, Maruyama S, Yamamoto S, Seki S, Matsumoto Y, Akutagawa T. Ferroelectric Organic Semiconductor: [1]Benzothieno[3,2- b][1]benzothiophene-Bearing Hydrogen-Bonding -CONHC 14H 29 Chain. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58711-58722. [PMID: 38055344 DOI: 10.1021/acsami.3c14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
An alkylamide-substituted [1]benzothieno[3,2-b][1]benzothiophene (BTBT) derivative of BTBT-CONHC14H29 (1) and C8H17-BTBT-CONHC14H29 (2) were prepared to design the multifunctional organic materials, which can show both ferroelectric and semiconducting properties. Single-crystal X-ray structural analyses of short-chain (-CONHC3H7) derivatives revealed the coexistence of two-dimensional (2D) electronic band structures brought from a herringbone arrangement of the BTBT π core and the one-dimensional (1D) hydrogen-bonding chains of -CONHC3H7 chains. The thin films of 1 and 2 fabricated on the Si/SiO2 substrate surface have monolayer and bilayer structures, respectively, resulting in conducting layers parallel to the substrate surface, which is suitable for a channel layer of organic field-effect transistors (OFETs). The thin film of 1 indicated a hole mobility μFET = 2.4 × 10-5 cm2 V-1 s-1 and threshold voltage VTh = - 29 V, whereas that of 2 showed a μFET = 2.1 × 10-2 cm2 V-1 s-1 and threshold voltage VTh = -9.7 V. Both 1 and 2 formed the smectic E (SmE) phase above 410 and 369 K, respectively, where the existence of a hole transport pathway was confirmed in the SmE phase. The ferroelectric hysteresis behavior was observed in bulk 1 and 2 in the polarization-electric field (P-E) curves at the SmE phase. 1 showed the remanent polarization Pr = 2.3 μC cm-2 and coercive electric field Ec = 5.2 V μm-1, whereas the Pr and Ec of 2 were 3.4 μC cm-2 and 7.0 V μm-1 at the conditions of 453 K and 1 Hz. Introduction of alkylamide units into the BTBT π core has the potential to develop the external stimulus-responsive organic semiconductors brought from both ferroelectricity and semiconducting properties.
Collapse
Affiliation(s)
- Kohei Sambe
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Takashi Takeda
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department of Chemistry, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Norihisa Hoshino
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan
| | - Wakana Matsuda
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Riku Miura
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Kanae Tsujita
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Shingo Maruyama
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Shunsuke Yamamoto
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuji Matsumoto
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Tomoyuki Akutagawa
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
9
|
Cui Q, Liu X, Li N, Zeng H, Chu D, Li H, Song X, Xu Z, Liu Y, Zhu H, Zhao K, Liu SF. A New Metal-Free Molecular Perovskite-Related Single Crystal with Quantum Wire Structure for High-Performance X-Ray Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308945. [PMID: 37948432 DOI: 10.1002/smll.202308945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Indexed: 11/12/2023]
Abstract
The family of metal-free molecular perovskites, an emerging novel class of eco-friendly semiconductor, welcomes a new member with a unique 1D hexagonal perovskite structure. Lowering dimensionality at molecular level is a facile strategy for crystal structure conversion, optoelectronic property regulation, and device performance optimization. Herein, the study reports the design, synthesis, packing structure, and photophysical properties of the 1D metal-free molecular perovskite-related single crystal, rac-3APD-NH4 I3 (rac-3APD= racemic-3-Aminopiperidinium), that features a quantum wire structure formed by infinite chains of face-sharing NH4 I6 octahedra, enabling strong quantum confinement with strongly self-trapped excited (STE) states to give efficient warm orange emission with a photoluminescence quantum yield (PLQY) as high as ≈41.6%. The study accordingly unveils its photoexcited carrier dynamics: rac-3APD-NH4 I3 relaxes to STE state with a short lifetime of 10 ps but decays to ground state by emitting photons with a relatively longer lifetime of 560 ps. Additionally, strong quantum confinement effect is conducive to charge transport along the octahedral channels that enables the co-planar single-crystal X-ray detectors to achieve a sensitivity as high as 1556 µC Gyair -1 cm-2 . This work demonstrates the first case of photoluminescence mechanism and photophysical dynamics of 1D metal-free perovskite-related semiconductor, as well as the promise for high-performance X-ray detector.
Collapse
Affiliation(s)
- Qingyue Cui
- Department of Chemical Physics, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China (USTC), Hefei, 230026, P. R. China
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xinmei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Nan Li
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Hanqing Zeng
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Depeng Chu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Haojin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Xin Song
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zhuo Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yanping Liu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Haiming Zhu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Li Z, Shi S, Peng G, Wu Y, Xie H, Wang H, Li Z, Jin Z. Metal-Free Hydrazinium Halide Perovskitoid Single Crystals for X-ray Detection. NANO LETTERS 2023; 23:9972-9979. [PMID: 37862680 DOI: 10.1021/acs.nanolett.3c03062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Metal-free perovskitoids (MFPs) with N2H5+ as B-site component possess higher crystal density and hydrogen bonding networks and have been recently expanded into X-ray detection. However, research on this material is in its infancy and lacks an understanding of the function of halide components on physical properties and device performance. Here, N2H5-based MFP single crystals (SCs) with different halides are fabricated, and the influence of halides on the crystal structure, band nature, charge transport characteristics, and final device performance is actively explored. Based on theory and experiments, the tolerance factor and octahedral factor jointly determine the octahedral composition. Further, halides with different electronegativities and ionic radii also affect octahedral distortion and energy band bending, further influencing carrier transport and device performance. Finally, a sensitivity of 1284 μC Gyair-1 cm-2 and low detection limits (LoD) of 5.62 μGyair s-1 were obtained by the Br-based device due to its superior physical properties.
Collapse
Affiliation(s)
- Zhizai Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou 730000, China
| | - Shenghuan Shi
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou 730000, China
| | - Guoqiang Peng
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou 730000, China
| | - Yujiang Wu
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou 730000, China
| | - Hang Xie
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou 730000, China
| | - Haoxu Wang
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou 730000, China
| | - ZhenHua Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou 730000, China
| | - Zhiwen Jin
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
11
|
Alias N, Ali Umar A, Sadikin SN, Ridwan J, Hamzah AA, Ali Umar MI, Ehsan AA, Nurdin M, Zhan Y. Air-Processable Perovskite Solar Cells by Hexamine Molecule Phase Stabilization. ACS OMEGA 2023; 8:18874-18881. [PMID: 37273642 PMCID: PMC10233683 DOI: 10.1021/acsomega.3c01236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/11/2023] [Indexed: 06/06/2023]
Abstract
Perovskite solar cells have emerged as a potential energy alternative due to their low cost of fabrication and high power conversion efficiency. Unfortunately, their poor ambient stability has critically limited their industrialization and application in real environmental conditions. Here, we show that by introducing hexamine molecules into the perovskite lattice, we can enhance the photoactive phase stability, enabling high-performance and air-processable perovskite solar cells. The unencapsulated and freshly prepared perovskite solar cells produce a power conversion efficiency of 16.83% under a 100 mW cm-2 1.5G solar light simulator and demonstrate high stability properties when being stored for more than 1500 h in humid air with relative humidity ranging from 65 to 90%. We envisage that our findings may revolutionize perovskite solar cell research, pushing the performance and stability to the limit and bringing the perovskite solar cells toward industrialization.
Collapse
Affiliation(s)
- Nabilah Alias
- Institute
of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor, Malaysia
| | - Akrajas Ali Umar
- Institute
of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor, Malaysia
| | - Siti Naqiyah Sadikin
- Institute
of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor, Malaysia
| | - Jaenudin Ridwan
- Institute
of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor, Malaysia
| | - Azrul Azlan Hamzah
- Institute
of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor, Malaysia
| | - Marjoni Imamora Ali Umar
- Department
of Physics Education, Faculty of Tarbiyah, Universitas Islam Negeri Mahmud Yunus, Batusangkar 27213, Indonesia
| | - Abang Annuar Ehsan
- Institute
of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor, Malaysia
| | - Muhammad Nurdin
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Kendari 93132, Indonesia
| | - Yiqiang Zhan
- School
of Information Science and Technology, Fudan
University, 220 Handan Road, Shanghai 200437, P. R. China
| |
Collapse
|
12
|
Du Y, Huang CR, Xu ZK, Hu W, Li PF, Xiong RG, Wang ZX. Photochromic Single-Component Organic Fulgide Ferroelectric with Photo-Triggered Polarization Response. JACS AU 2023; 3:1464-1471. [PMID: 37234120 PMCID: PMC10207094 DOI: 10.1021/jacsau.3c00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Organic photochromic compounds have been widely investigated for optical memory storage and switches. Very recently, we pioneeringly discovered optical control of ferroelectric polarization switching in organic photochromic salicylaldehyde Schiff base and diarylethene derivatives, differently from the traditional ferroelectrics. However, the study of such intriguing photo-triggered ferroelectrics is still in its infancy and relatively scarce. In this manuscript, we synthesized a pair of new organic single-component fulgide isomers, (E and Z)-3-(1-(4-(tert-butyl)phenyl)ethylidene)-4-(propan-2-ylidene)dihydrofuran-2,5-dione (1E and 1Z). They undergo prominent photochromism from yellow to red. Interestingly, only polar 1E has been proven to be ferroelectric, while the centrosymmetric 1Z does not meet the basic requirement for ferroelectricity. Besides, experimental evidence shows that the Z-form can be converted to the E-form by light irradiation. More importantly, the ferroelectric domains of 1E can be manipulated by light in the absence of an electric field, benefiting from the remarkable photoisomerization. 1E also adopts good fatigue resistance to the photocyclization reaction. As far as we know, this is the first example of organic fulgide ferroelectric reported with photo-triggered ferroelectric polarization response. This work has developed a new system for studying photo-triggered ferroelectrics and would also provide an expected perspective on developing ferroelectrics for optical applications in trap future.
Collapse
Affiliation(s)
- Ye Du
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, People’s
Republic of China
| | - Chao-Ran Huang
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, People’s
Republic of China
| | - Zhe-Kun Xu
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s
Republic of China
| | - Wei Hu
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s
Republic of China
| | - Peng-Fei Li
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s
Republic of China
| | - Ren-Gen Xiong
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s
Republic of China
| | - Zhong-Xia Wang
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, People’s
Republic of China
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s
Republic of China
| |
Collapse
|
13
|
Song X, Cohen H, Yin J, Li H, Wang J, Yuan Y, Huang R, Cui Q, Ma C, Liu SF, Hodes G, Zhao K. Low Dimensional, Metal-Free, Hydrazinium Halide Perovskite-Related Single Crystals and Their Use as X-Ray Detectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300892. [PMID: 37035944 DOI: 10.1002/smll.202300892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Metal-free halide perovskites (MFHaPs) have garnered significant attention in recent years due to their desirable properties, such as low toxicity, light weight, chemical versatility, and potential for optoelectronics. MFHaPs with the formula A2+ B+ X-3 (where A is a large organic divalent cation, B+ is typically NH4 + , and X is a halide) have been studied extensively, but few studies have examined alternative cations at the B position. This paper reports the synthesis of three MFHaP-related single crystals, DABCO-N2 H5 -X3 (DABCO = N-N-diazabicyclo[2.2.2]octonium, X = Br and I) and (DABCO)3 -N2 H5 (NH4 )2 Cl9 , which feature hydrazinium (N2 H5 ) at the B position. The crystals have a perovskite-like, one-dimensional, edge-connected structure and exhibit optical and band structure properties. The crystals were then tested as X-ray detectors, where they showed excellent photoresponsivity, stability, and low background noise, owing to the large semi-gap that dictates long lifetimes. The detectors exhibited sensitivity as high as 1143 ± 10 µC Gyair -1 cm-2 and a low detection limit of 2.68 µGy s-1 at 10 V. The researchers suggest that the stronger hydrogen bonding in N2 H5 + compounds compared to NH4 + MFHaPs may contribute to the detectors' enhanced stability.
Collapse
Affiliation(s)
- Xin Song
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hagai Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| | - Haojin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Jiayi Wang
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Youyou Yuan
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Renwu Huang
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Qingyue Cui
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Chuang Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Gary Hodes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
14
|
Ali Umar MI, Ahdaliza AZ, El-Bahy SM, Aliza N, Sadikin SN, Ridwan J, Ehsan AA, Amin MA, El-Bahy ZM, Ali Umar A. Optoelectrical Properties of Hexamine Doped-Methylammonium Lead Iodide Perovskite under Different Grain-Shape Crystallinity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1281. [PMID: 37049374 PMCID: PMC10096868 DOI: 10.3390/nano13071281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023]
Abstract
The crystallinity properties of perovskite influence their optoelectrical performance in solar cell applications. We optimized the grain shape and crystallinity of perovskite film by annealing treatment from 130 to 170 °C under high humidity (relative humidity of 70%). We found that the grain size, grain interface, and grain morphology of the perovskite are optimized when the sample was annealed at 150 °C for 1 h in the air. At this condition, the perovskite film is composed of 250 nm crystalline shape grain and compact inter-grain structure with an invincible grain interface. Perovskite solar cells device analysis indicated that the device fabricated using the samples annealed at 150 °C produced the highest power conversion efficiency, namely 17.77%. The open circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF) of the device are as high as 1.05 V, 22.27 mA/cm2, and 0.76, respectively. Optoelectrical dynamic analysis using transient photoluminescence and electrochemical impedance spectroscopies reveals that (i) carrier lifetime in the champion device can be up to 25 ns, which is almost double the carrier lifetime of the sample annealed at 130 °C. (ii) The interfacial charge transfer resistance is low in the champion device, i.e., ~20 Ω, which has a crystalline grain morphology, enabling active photocurrent extraction. Perovskite's behavior under annealing treatment in high humidity conditions can be a guide for the industrialization of perovskite solar cells.
Collapse
Affiliation(s)
- Marjoni Imamora Ali Umar
- Department of Physics Education, Faculty of Tarbiyah, Universitas Islam Negeri Mahmud Yunus, Batusangkar 27213, West Sumatera, Indonesia
| | - Annisa Zahra Ahdaliza
- Department of Physics Education, Faculty of Tarbiyah, Universitas Islam Negeri Mahmud Yunus, Batusangkar 27213, West Sumatera, Indonesia
| | - Salah M. El-Bahy
- Department of Chemistry, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nur Aliza
- Department of Physics Education, Faculty of Tarbiyah, Universitas Islam Negeri Mahmud Yunus, Batusangkar 27213, West Sumatera, Indonesia
| | - Siti Naqiyah Sadikin
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Jaenudin Ridwan
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Abang Annuar Ehsan
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Zeinhom M. El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Akrajas Ali Umar
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
15
|
Li Z, Li Z, Peng G, Shi C, Wang H, Ding SY, Wang Q, Liu Z, Jin Z. PF 6 - Pseudohalides Anion Based Metal-Free Perovskite Single Crystal for Stable X-Ray Detector to Attain Record Sensitivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300480. [PMID: 36971461 DOI: 10.1002/adma.202300480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Metal-free perovskites (MFPs) possess excellent photophysical properties of perovskites while avoiding the introduction of toxic metal ions and organic solvents, and have been expanded to X-ray detection. However, iodine-based high-performance MFPs are tended to oxidation, corrosion, and uncontrolled ion migration, resulting in poor material stability and device performance. Herein, the strongly electronegative PF6 - pseudohalide is used to fabricate the large-size MDABCO-NH4 (PF6 )3 (MDBACO = methyl-N'-diazabicyclo[2.2.2]octonium) single crystals (SCs) for solving the problems of iodine ions. After the introduction of PF6 - pseudohalides, the Coulomb interaction and hydrogen bonding strength are enhanced to alleviate the ion-migration and stability problems. Moreover, combined with theoretical calculations, PF6 - pseudohalides increase the ion-migration barrier, and affect the contribution of its components to the energy band for a broadening bandgap. Meanwhile, the improved physical properties, such as large activation energy of ionic migration, high resistivity, and low current drift, further expand its application in low-dose and sensitive X-ray detection. Finally, the X-ray detector based on MDABCO-NH4 (PF6 )3 SCs achieves a sensitivity of 2078 µC Gyair -1 cm-2 (highest among metal-free SCs-based detectors) and the lowest detectable dose rate (16.3 nGyair s-1 ). This work has expanded the selection of MFPs for X-ray detectors and somewhat advanced the development of high-performance devices.
Collapse
Affiliation(s)
- Zhizai Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - ZhenHua Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Guoqiang Peng
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Chang Shi
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Haoxu Wang
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - San-Yuan Ding
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qian Wang
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Jin
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
16
|
Lin JH, Lou JR, Ye LK, Hu BL, Zhuge PC, Fu DW, Su CY, Zhang Y. Halogen Engineering To Realize Regulable Multipolar Axes, Nonlinear Optical Response, and Piezoelectricity in Plastic Ferroelectrics. Inorg Chem 2023; 62:2870-2876. [PMID: 36706461 DOI: 10.1021/acs.inorgchem.2c04295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Compared with uniaxial molecular ferroelectrics, multiaxial ferroelectrics have better application prospects because they are no longer subject to the single-crystal form and have been pursued in recent years. Halogen engineering refers to the adjustment of halogens in materials at the atomic level, which can not only explore multiaxial ferroelectrics but also help to improve piezoelectrics, recently. In this work, we successfully synthesized and characterized three multiaxial plastic ferroelectrics through the precise molecular design from I to Cl, confirming the increase of the number of polar axes of ferroelectrics from 3 to 6, the increase of second-harmonic generation density from 2.1 times to nearly 6 times of monopotassium phosphate, and the increase of piezoelectric coefficient by 140%. This systematic work has proved that halogen engineering can not only enrich the family of multiaxial plastic ferroelectrics but also promote the further development of nonlinear optical and piezoelectric materials.
Collapse
Affiliation(s)
- Jia-He Lin
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jia-Rui Lou
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Lou-Kai Ye
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Bo-Lan Hu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Peng-Cheng Zhuge
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Chang-Yuan Su
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China.,Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China.,Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
17
|
Liu J, Qi W, Xu M, Thomas T, Liu S, Yang M. Piezocatalytic Techniques in Environmental Remediation. Angew Chem Int Ed Engl 2023; 62:e202213927. [PMID: 36316280 DOI: 10.1002/anie.202213927] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022]
Abstract
As a consequence of rapid industrialization throughout the world, various environmental pollutants have begun to accumulate in water, air, and soil. This endangers the ecological environment of the earth, and environmental remediation has become an immediate priority. Among various environmental remediation techniques, piezocatalytic techniques, which uniquely take advantage of the piezoelectric effect, have attracted much attention. Piezoelectric effects allow pollutant degradation directly, while also enhancing photocatalysis by reducing the recombination of photogenerated carriers. In this Review, we provide a comprehensive summary of recent developments in piezocatalytic techniques for environmental remediation. The origin of the piezoelectric effect as well as classification of piezoelectric materials and their application in environmental remediation are systematically summarized. We also analyze the potential underlying mechanisms. Finally, urgent problems and the future development of piezocatalytic techniques are discussed.
Collapse
Affiliation(s)
- Jiahao Liu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Weiliang Qi
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Mengmeng Xu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Tiju Thomas
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Adyar, Chennai, 600036, Tamil Nadu, India
| | - Siqi Liu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
18
|
Zhang T, Xu K, Li J, He L, Fu DW, Ye Q, Xiong RG. Ferroelectric hybrid organic-inorganic perovskites and their structural and functional diversity. Natl Sci Rev 2022; 10:nwac240. [PMID: 36817836 PMCID: PMC9935996 DOI: 10.1093/nsr/nwac240] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/25/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Molecular ferroelectrics have gradually aroused great interest in both fundamental scientific research and technological applications because of their easy processing, light weight and mechanical flexibility. Hybrid organic-inorganic perovskite ferroelectrics (HOIPFs), as a class of molecule-based ferroelectrics, have diverse functionalities owing to their unique structure and have become a hot spot in molecular ferroelectrics research. Therefore, they are extremely attractive in the field of ferroelectrics. However, there seems to be a lack of systematic review of their design, performance and potential applications. Herein, we review the recent development of HOIPFs from lead-based, lead-free and metal-free perovskites, and outline the versatility of these ferroelectrics, including piezoelectricity for mechanical energy-harvesting and optoelectronic properties for photovoltaics and light detection. Furthermore, a perspective view of the challenges and future directions of HOIPFs is also highlighted.
Collapse
Affiliation(s)
| | | | - Jie Li
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing211189, China
| | - Lei He
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing211189, China
| | | | | | | |
Collapse
|
19
|
Ai Y, Sun R, Liao W, Song X, Tang Y, Wang B, Wang Z, Gao S, Xiong R. Unprecedented Ferroelectricity and Ferromagnetism in a Cr
2+
‐Based Two‐Dimensional Hybrid Perovskite. Angew Chem Int Ed Engl 2022; 61:e202206034. [DOI: 10.1002/anie.202206034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yong Ai
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Rong Sun
- Beijing National Laboratory for Molecular Sciences Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Wei‐Qiang Liao
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Xian‐Jiang Song
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Yuan‐Yuan Tang
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Bing‐Wu Wang
- Beijing National Laboratory for Molecular Sciences Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Zhe‐Ming Wang
- Beijing National Laboratory for Molecular Sciences Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Ren‐Gen Xiong
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| |
Collapse
|
20
|
Mao Y, Chen X, Gu Z, Zhang Z, Song X, Gu N, Xiong R. Homochiral Multiferroic Cyanido‐Bridged Dimetallic Complexes Assembled by C−F⋅⋅⋅K Interactions. Angew Chem Int Ed Engl 2022; 61:e202204135. [DOI: 10.1002/anie.202204135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Mao
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices Southeast University Nanjing 210096 P. R. China
| | - Xiao‐Gang Chen
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Zhu‐Xiao Gu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics Southeast University Nanjing 211189 P. R. China
| | - Zhi‐Xu Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics Southeast University Nanjing 211189 P. R. China
| | - Xian‐Jiang Song
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Ning Gu
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices Southeast University Nanjing 210096 P. R. China
| | - Ren‐Gen Xiong
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| |
Collapse
|
21
|
Li Z, Peng G, Chen H, Shi C, Li Z, Jin Z. Metal‐Free PAZE‐NH4X3·H2O Perovskite for Flexible Transparent X‐ray Detection and Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhizai Li
- Lanzhou University Structure Design, MoE & National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China Lanzhou Tianshui South Road No. 222, Lanzhou, Ganshu Province, China, 730000 730000 Lanzhou CHINA
| | - Guoqiang Peng
- Lanzhou University Structure Design, MoE & National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China Lanzhou Tianshui South Road No. 222, Lanzhou, Ganshu Province, China, 730000 730000 Lanzhou CHINA
| | - Huanyu Chen
- Lanzhou University Structure Design, MoE & National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China Lanzhou Tianshui South Road No. 222, Lanzhou, Ganshu Province, China, 730000 730000 Lanzhou CHINA
| | - Chang Shi
- Lanzhou University Structure Design, MoE & National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China Lanzhou Tianshui South Road No. 222, Lanzhou, Ganshu Province, China, 730000 730000 Lanzhou CHINA
| | - Zhenhua Li
- Lanzhou University Structure Design, MoE & National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China Lanzhou Tianshui South Road No. 222, Lanzhou, Ganshu Province, China, 730000 730000 Lanzhou CHINA
| | - Zhiwen Jin
- Lanzhou University School of Physical Science and Technology Lanzhou University, Lanzhou 730000, P. R. China. Lanzhou CHINA
| |
Collapse
|
22
|
Li Z, Peng G, Chen H, Shi C, Li Z, Jin Z. Metal-Free PAZE-NH 4 X 3 ⋅H 2 O Perovskite for Flexible Transparent X-ray Detection and Imaging. Angew Chem Int Ed Engl 2022; 61:e202207198. [PMID: 35726524 DOI: 10.1002/anie.202207198] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/11/2022]
Abstract
Metal-free perovskites are of interest for their chemical diversity and eco-friendly properties, and recently have been used for X-ray detection with superior carrier behavior. However, the size and shape complexity of the organic components results in difficulties in evaluating their stability in high-energy radiation. Herein, we introduce multiple hydrogen-bond metal-free PAZE-NH4 X3 ⋅H2 O perovskite, where H2 O leads to more hydrogen bonds appearing between organic molecules and the perovskite host. As suggested by the theoretical calculations, multiple hydrogen bonds promote stiffness of the lattice, and increase the diffusion barrier to inhibit ionic migration. Then, low trap density, high μτ products and structural flexibility of PAZE-NH4 Br3 ⋅H2 O give a flexible X-ray detector with the highest sensitivity of 3708 μC Gyair -1 cm-2 , ultra-low detection limit of 0.19 μGyair -1 s-1 and superior spatial resolution of 5.0 lp mm-1 .
Collapse
Affiliation(s)
- Zhizai Li
- School of Physical Science and Technology & College of Chemistry and Chemical Engineering & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Guoqiang Peng
- School of Physical Science and Technology & College of Chemistry and Chemical Engineering & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Huanyu Chen
- School of Physical Science and Technology & College of Chemistry and Chemical Engineering & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Chang Shi
- School of Physical Science and Technology & College of Chemistry and Chemical Engineering & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - ZhenHua Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Jin
- School of Physical Science and Technology & College of Chemistry and Chemical Engineering & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
23
|
Ai Y, Sun R, Liao W, Song X, Tang Y, Wang B, Wang Z, Gao S, Xiong R. Unprecedented Ferroelectricity and Ferromagnetism in a Cr
2+
‐Based Two‐Dimensional Hybrid Perovskite. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yong Ai
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Rong Sun
- Beijing National Laboratory for Molecular Sciences Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Wei‐Qiang Liao
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Xian‐Jiang Song
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Yuan‐Yuan Tang
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Bing‐Wu Wang
- Beijing National Laboratory for Molecular Sciences Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Zhe‐Ming Wang
- Beijing National Laboratory for Molecular Sciences Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences Beijing Key Laboratory for Magnetoelectric Materials and Devices College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Ren‐Gen Xiong
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| |
Collapse
|
24
|
Mao Y, Chen XG, Gu ZX, Zhang ZX, Song XJ, Gu N, Xiong RG. Homochiral Multiferroic Cyanido‐Bridged Dimetallic Complexes Assembled by C–F···K Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yu Mao
- Southeast University State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices 210096 Nanjing CHINA
| | - Xiao-Gang Chen
- Nanchang University Ordered Matter Science Research Center 330031 Nanchang CHINA
| | - Zhu-Xiao Gu
- Southeast University Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics 211189 Nanjing CHINA
| | - Zhi-Xu Zhang
- Southeast University Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics 211189 Nanjing CHINA
| | - Xian-Jiang Song
- Nanchang University Ordered Matter Science Research Center 330031 Nanchang CHINA
| | - Ning Gu
- Southeast University State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices 210096 Nanjing CHINA
| | - Ren-Gen Xiong
- Nanchang University Ordered Matter Science Research Center No. 999 Xuefu Avenue, Honggutan New District 330031 Nanchang CHINA
| |
Collapse
|
25
|
Cui Q, Liu SF, Zhao K. Structural and Functional Insights into Metal-Free Perovskites. J Phys Chem Lett 2022; 13:5168-5178. [PMID: 35658509 DOI: 10.1021/acs.jpclett.2c01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the past three years, metal-free perovskites have garnered significant interest as promising candidates for utilization in next-generation wearable electronics. A variety of different molecular structures for these perovskites have been designed for different applications. However, there is still no systematic understanding that can elucidate the relationship between the structural details and properties of perovskites. This would provide a helpful guide for designing a metal-free perovskite with the desired packing structure and properties. Herein, we summarize recently reported structural and functional insights into metal-free perovskites. The underlying design of the molecular structure and its role in the packing structure and resulting properties are explained. In addition, important factors and challenges in the design of a molecular structure that will be useful for future applications are discussed. This information will help enrich the library of potential structures and future applications of metal-free perovskites, which is believed to be much larger than is currently known.
Collapse
Affiliation(s)
- Qingyue Cui
- Department of Chemical Physics; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China (USTC), Hefei 230026, P.R. China
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
- Dalian National Laboratory for Clean Energy; iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
- Dalian National Laboratory for Clean Energy; iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| |
Collapse
|
26
|
Zarroug R, Artetxe B, Ayed B, López X, Ribeiro N, Correia I, Pessoa JC. New phosphotetradecavanadate hybrids: crystal structure, DFT analysis, stability and binding interactions with bio-macromolecules. Dalton Trans 2022; 51:8303-8317. [PMID: 35583072 DOI: 10.1039/d2dt00690a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two novel bicapped Keggin polyoxidovanadates with organic cations, (C6H8N)5[H4PV14O42]·5H2O (1) and (C6H14N4)2(NH4)[H4PV14O42]·11H2O (2), (PV14O426- = PV14, C6H7N = 3-picoline and C6H12N4 = methenamine) were synthesized. These compounds were isolated and characterized in the solid state and in solution by elemental analysis, powder X-ray diffraction, FTIR, UV-vis, 51V, 31P, 13C and 1H NMR, and fluorescence spectroscopy. Further confirmation of the PV14 structures was obtained by single-crystal X-ray diffraction studies of 1 and 2. The Hirshfeld surface analysis was performed to confirm that within the intermolecular interactions occurring in the two crystals, the O⋯H/H⋯O, O⋯O and H⋯H interactions dominate. The protonation and one-electron reduction of the PV14 moiety were also analysed by means of DFT calculations; besides confirming the protonation sites and correctly predicting the pKa values, the DFT results also indicate that molecular reduction is energetically more favourable in protonated PV14 anions. Upon the addition of PV14 anions to bovine serum albumin (BSA) up to a ratio of 1 : 1, the fluorescence decreased by 45% for both 1 and 2, indicating that the interaction of vanadium-containing species with this protein takes place; log(KSV) values of ca. 5.5 were obtained in both systems. Upon the addition of 1 or 2 to solutions of calf-thymus DNA (ctDNA), changes were observed in the UV-vis absorption and circular dichroism spectra. The significance of the changes observed is discussed considering the several V-containing species that form in the solution.
Collapse
Affiliation(s)
- Rim Zarroug
- University of Monastir, Laboratory of Physico-Chemistry of Materials LR01ES19, Faculty of Sciences of Monastir, Tunisia.,Department of Chemistry, Faculty of Sciences, University of Gabes, Tunisia
| | - Beñat Artetxe
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
| | - Brahim Ayed
- University of Monastir, Laboratory of Physico-Chemistry of Materials LR01ES19, Faculty of Sciences of Monastir, Tunisia
| | - Xavier López
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Nádia Ribeiro
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Isabel Correia
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - João Costa Pessoa
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
27
|
Zhou W, Feng Z, Xiong Y, Du G, Lin X, Su Q, Lou Y, An S, You Y. Visualization of Ferroelectric Domains in Thin Films of Molecular Materials Using Confocal Micro-Raman Spectroscopy. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Wu H, Murti BT, Singh J, Yang P, Tsai M. Prospects of Metal-Free Perovskites for Piezoelectric Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104703. [PMID: 35199947 PMCID: PMC9036044 DOI: 10.1002/advs.202104703] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Metal-halide perovskites have emerged as versatile materials for various electronic and optoelectronic devices such as diodes, solar cells, photodetectors, and sensors due to their interesting properties of high absorption coefficient in the visible regime, tunable bandgap, and high power conversion efficiency. Recently, metal-free organic perovskites have also emerged as a particular class of perovskites materials for piezoelectric applications. This broadens the chemical variety of perovskite structures with good mechanical adaptability, light-weight, and low-cost processability. Despite these achievements, the fundamental understanding of the underlying phenomenon of piezoelectricity in metal-free perovskites is still lacking. Therefore, this perspective emphasizes the overview of piezoelectric properties of metal-halide, metal-free perovskites, and their recent progress which may encourage material designs to enhance their applicability towards practical applications. Finally, challenges and outlooks of piezoelectric metal-free perovskites are highlighted for their future developments.
Collapse
Affiliation(s)
- Han‐Song Wu
- Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipei City10607Taiwan
| | - Bayu Tri Murti
- Graduate Institute of Biomedical Materials and Tissue EngineeringTaipei Medical UniversityTaipei City11031Taiwan
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan City32001Taiwan
| | - Jitendra Singh
- Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipei City10607Taiwan
| | - Po‐Kang Yang
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan City32001Taiwan
- Graduate Institute of Nanomedicine and Medical EngineeringTaipei Medical UniversityTaipei City11031Taiwan
| | - Meng‐Lin Tsai
- Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipei City10607Taiwan
| |
Collapse
|
29
|
Ji C, Sun Y, Ma S, Zhao J, Liu F. Dielectric and Magnetic Relaxations Exhibited in a 2D Parallel Interpenetrating Frustrated Star Net. Chemistry 2022; 28:e202104503. [DOI: 10.1002/chem.202104503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Cui‐Xian Ji
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging Tianjin University of Technology Tianjin 300384 P. R. China
| | - Ying‐Xi Sun
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging Tianjin University of Technology Tianjin 300384 P. R. China
| | - Shuai Ma
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging Tianjin University of Technology Tianjin 300384 P. R. China
| | - Jiong‐Peng Zhao
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging Tianjin University of Technology Tianjin 300384 P. R. China
| | - Fu‐Chen Liu
- School of Chemistry and Chemical Engineering, TKL of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging Tianjin University of Technology Tianjin 300384 P. R. China
| |
Collapse
|
30
|
Shao T, Ren RY, Huang PZ, Ni HF, Su CY, Fu DW, Xie LY, Lu HF. Metal ion modulation triggers dielectric double switching and green fluorescence in A 2MX 4-type compounds. Dalton Trans 2022; 51:2005-2011. [PMID: 35029614 DOI: 10.1039/d1dt03948b] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multifunctional switching materials show great potential for applications in sensors, smart switches, and other fields due to their ability to integrate different physical channels in one single device. However, multifunctional responsive materials with multiple switching and luminescence properties have rarely been reported. Here, we report three organic-inorganic hybrids: [TMAA]2[CoCl4] (compound 1), [TMAA]2[CdBr4] (compound 2) and [TMAA]2[MnCl4] (compound 3). Compound 1 and compound 2 undergo two reversible phase transitions at high temperature (328.95/359.25 K and 350.45/393.15 K, respectively). Since the inorganic skeleton has a strong influence on the luminescence properties of such structured substances, Cd and Co were replaced with Mn, after which compound 3 was obtained as expected. The above strategy triggered bright green luminescence with a quantum yield of 35.19%, and significantly increased the phase transition temperature of compound 3 to above 400 K. The above results show that the regulation of the inorganic skeleton provides a new strategy for researchers to develop dual phase change/luminous materials.
Collapse
Affiliation(s)
- Ting Shao
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Rui-Ying Ren
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Pei-Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Chang-Yuan Su
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Li-Yan Xie
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| |
Collapse
|
31
|
Tsunashima R. Molecular solid solutions for advanced materials – homeomorphic or heteromorphic. CrystEngComm 2022. [DOI: 10.1039/d1ce01632f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Crystalline molecular solid solutions are discussed on the basis of homeomorphism and heteromorphism of blended molecules.
Collapse
Affiliation(s)
- Ryo Tsunashima
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8512, Japan
| |
Collapse
|
32
|
Li PF, Ai Y, Zeng YL, Liu JC, Xu ZK, Wang ZX. Highest-Tc single-component homochiral organic ferroelectrics. Chem Sci 2022; 13:657-664. [PMID: 35173929 PMCID: PMC8768840 DOI: 10.1039/d1sc04322f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/15/2021] [Indexed: 01/10/2023] Open
Abstract
Organic single-component ferroelectrics with low molecular mass have drawn great attention for application in organic electronics. However, the discovery of high-Tc single-component organic ferroelectrics has been very scarce. Herein, we report a pair of homochiral single-component organic ferroelectrics (R)-10-camphorsulfonylimine and (S)-10-camphorsulfonylimine under the guidance of ferroelectric chiral chemistry. They crystallize in the chiral–polar space group P21, and their mirror image relations have been identified using vibrational circular dichroism spectra. They both exhibit 422F2 multiaxial ferroelectricity with Tc as high as 429 K. Besides, they possess superior acoustic impedance characteristics with a value of 2.45 × 106 kg s−1 m−2, lower than that of PVDF. To our knowledge, enantiomeric (R and S)-10-camphorsulfonylimine show the highest Tc among the known organic single-component ferroelectrics and low acoustic impedance well matching with that of bodily tissues. This work promotes the development of high-performance organic single-component ferroelectrics and is of great inspiration to explore their application in next-generation flexible smart devices. A pair of enantiomeric organic ferroelectrics (R and S)-10-camphorsulfonylimine show the highest Tc among the known single-component organic ferroelectrics.![]()
Collapse
Affiliation(s)
- Peng-Fei Li
- Ordered Matter Science Research Center, Nanchang University, 330031, P. R. China
| | - Yong Ai
- Ordered Matter Science Research Center, Nanchang University, 330031, P. R. China
| | - Yu-Ling Zeng
- Ordered Matter Science Research Center, Nanchang University, 330031, P. R. China
| | - Jun-Chao Liu
- Ordered Matter Science Research Center, Nanchang University, 330031, P. R. China
| | - Zhe-Kun Xu
- Ordered Matter Science Research Center, Nanchang University, 330031, P. R. China
| | - Zhong-Xia Wang
- Ordered Matter Science Research Center, Nanchang University, 330031, P. R. China
| |
Collapse
|
33
|
Wang ZX, Huang CR, Liu JC, Zeng YL, Xiong RG. Salicylideneaniline is a Photoswitchable Ferroelectric Crystal. Chemistry 2021; 27:14831-14835. [PMID: 34453371 DOI: 10.1002/chem.202102142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 11/07/2022]
Abstract
Since the discovery of the first ferroelectric Rochelle salt, most ferroelectrics have been investigated showing thermally triggered symmetry-breaking phase transition. Although photochromism arising from geometrical isomerization was reported as early as 1867, such photoswitchable ferroelectric crystals have scarcely been developed to date. Herein, we report that salicylideneaniline is a photochromic ferroelectric crystal. Upon photoirradiation, the dielectric constant shows obvious switching between high and low dielectric states, and more importantly, the ferroelectric polarization demonstrates quick and reversible switching. This work opens the gate to developing photoswitchable ferroelectrics, which holds great potential for applications in optically controlled smart devices.
Collapse
Affiliation(s)
- Zhong-Xia Wang
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Chao-Ran Huang
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Jun-Chao Liu
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Yu-Ling Zeng
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
34
|
Cheng SN, Ding K, Zhang T, Zhang ZX, Su CY, Ge JZ, Zhang Y, Fu DW. In Situ Observation of Ferroelastic Domain and Phase Transition in a Three-Dimensional Molecular Crystal. Chemistry 2021; 27:17655-17659. [PMID: 34661945 DOI: 10.1002/chem.202103229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 11/08/2022]
Abstract
Massive efforts have been devoted to designing molecular ferroic materials by molecular modification. For molecular ferroelastic, previous work is focused on the temperature-dependent ferroelastic domains, however, few are related to controlling the ferroelastic domain by the stress. Inspired by the "quasi-spherical theory" and fluorination effect, we designed a more flexible (MedabcoF)2+ (MedabcoF=1-fluoro-4-methyl-1,4-diazoniabicyclo[2.2.2]octane) cation by introducing a methyl group and a fluorine atom at the two symmetrical ends of the Dabco (1,4-diazoniabicyclo[2.2.2]octane) and synthesized a hybrid 3D perovskite (MedabcoF)Rb(BF4 )3 (1) which displays three reversible phase transitions accompanying dual ferroelastic behavior. Besides, it not only exhibits ferroelastic domains switching by the thermal stimulation, and the sensitive reaction of in situ domains under the stress of it is also realized. This work not only achieves a force-controlled ferroelastic domain but develops a more profound comprehension of the relationship between the thermal motion behavior of guest cations and the intriguing properties of materials.
Collapse
Affiliation(s)
- Sai-Nan Cheng
- Ordered Matter Science Research Center Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Kun Ding
- Ordered Matter Science Research Center Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Tie Zhang
- Ordered Matter Science Research Center Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Zhi-Xu Zhang
- Ordered Matter Science Research Center Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Chang-Yuan Su
- Ordered Matter Science Research Center Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Jia-Zhen Ge
- Ordered Matter Science Research Center Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Yi Zhang
- Ordered Matter Science Research Center Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Da-Wei Fu
- Ordered Matter Science Research Center Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
35
|
Chen M, Su C, Zhang W, Wang W, Huang P, Zhang Y, Fu D. Organic‐Inorganic Hybrid Crystal [1‐methylpiperidinium]
2
[ZnCl
4
] with High
T
c
Phase Transition and Dielectric Switches. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ming Chen
- Ordered Matter Science Research Center Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics Southeast University 211189 Nanjing P. R. China
| | - Chang‐Yuan Su
- Ordered Matter Science Research Center Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics Southeast University 211189 Nanjing P. R. China
| | - Wan‐Ying Zhang
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University 321004 Jinhua P. R. China
- School of Sciences Bengbu University 233030 Bengbu P. R. China
| | - Wei‐Yi Wang
- Ordered Matter Science Research Center Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics Southeast University 211189 Nanjing P. R. China
| | - Pei‐Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University 321004 Jinhua P. R. China
| | - Yi Zhang
- Ordered Matter Science Research Center Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics Southeast University 211189 Nanjing P. R. China
| | - Da‐Wei Fu
- Ordered Matter Science Research Center Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics Southeast University 211189 Nanjing P. R. China
| |
Collapse
|
36
|
Intermolecular Forces Driving Hexamethylenetetramine Co-Crystal Formation, a DFT and XRD Analysis. Molecules 2021; 26:molecules26195746. [PMID: 34641290 PMCID: PMC8510214 DOI: 10.3390/molecules26195746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Interest in co-crystals formation has been constantly growing since their discovery, almost a century ago. Such success is due to the ability to tune the physical-chemical properties of the components in solid state by avoiding a change in their molecular structure. The properties influenced by the co-crystals formation range from an improvement of mechanical features and chemical stability to different solubility. In the scientific research area, the pharmacological field is undoubtedly one of those in which an expansion of the co-crystal knowledge can offer wide benefits. In this work, we described the crystalline structure of hexamethylenetetramine co-crystallized with the isophthalic acid, and we compared it with another co-crystal, showing the same components but different stoichiometry. To give a wider overview on the nature of the interactions behind the observed crystal packing and to rationalize the reasons of its formation, a computational analysis on such structures was carried out.
Collapse
|
37
|
Tang YY, Liu JC, Zeng YL, Peng H, Huang XQ, Yang MJ, Xiong RG. Optical Control of Polarization Switching in a Single-Component Organic Ferroelectric Crystal. J Am Chem Soc 2021; 143:13816-13823. [PMID: 34425050 DOI: 10.1021/jacs.1c06108] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The optical control of polarization switching is attracting tremendous interest because photoirradiation stands out as a nondestructive, noncontact, and remote-control means beyond an electric or strain field. The current research mainly uses various photoexcited electronic effects to achieve the photocontrol polarization, such as a light-driven flexoelectric effect and a photovoltaic effect. However, since photochromism was discovered in 1867, the structural phase transition caused by photoisomerization has never been associated with ferroelectricity. Here, we successfully synthesized an organic photochromic ferroelectric with polar space group Pna21, 3,4,5-trifluoro-N-(3,5-di-tert-butylsalicylidene)aniline, whose color can change between yellow and orange via laser illumination. Its dielectric permittivity and spontaneous polarization can be switched reversibly with a photoinduced phase transition triggered by structural photoisomerization between the enol form and the trans-keto form. To our knowledge, this is the first photoswitchable ferroelectric crystal to achieve polarization switching through a structural phase transition triggered by photoisomerization. This finding paves the way toward photocontrol of smart materials and biomechanical applications in the future.
Collapse
Affiliation(s)
- Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Jun-Chao Liu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yu-Ling Zeng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Hang Peng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Xue-Qin Huang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Meng-Juan Yang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
38
|
Yokokura S, Tomimatsu A, Ishiguro J, Harada J, Takahashi H, Takahashi Y, Nakamura Y, Kishida H, Suizu R, Matsushita MM, Awaga K. Stabilization of Interfacial Polarization and Induction of Polarization Hysteresis in Organic MISIM Devices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31928-31933. [PMID: 34192877 DOI: 10.1021/acsami.1c08417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecule-based ferroelectrics has attracted much attention because of its advantages, such as flexibility, light weight, and low environmental load. In the present work, we examined an organic metal|insulator|semiconductor|insulator|metal (MISIM) device structure to stabilize the interfacial polarization in the S layer and to induce polarization hysteresis even without bulk ferroelectrics. The MISIM devices with I = parylene C and S = TMB (=3,3',5,5'-tetramethylbenzidine)-TCNQ (=tetracyanoquinodimethane) exhibited hysteresis loops in the polarization-voltage (P-V) curves not only at room temperature but also over a wide temperature range down to 80 K. The presence of polarization hysteresis for MISIM devices was theoretically confirmed by an electrostatic model, which also explained the observed thickness dependence of the I layers on the P-V curves. Polarization hysteresis curves were also obtained in MISIM devices using typical organic semiconductors (ZnPc, C60, and TCNQ) as the S layer, demonstrating the versatility of the interfacial polarization mechanism.
Collapse
Affiliation(s)
- Seiya Yokokura
- Department of Chemistry and IRCCS, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Akihiro Tomimatsu
- Department of Chemistry and IRCCS, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Jun Ishiguro
- Department of Chemistry and IRCCS, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | - Yuto Nakamura
- Department of Applied Physics, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Hideo Kishida
- Department of Applied Physics, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Rie Suizu
- Department of Chemistry and IRCCS, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Michio M Matsushita
- Department of Chemistry and IRCCS, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kunio Awaga
- Department of Chemistry and IRCCS, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
39
|
Bie J, Yang DB, Ju MG, Pan Q, You YM, Fa W, Zeng XC, Chen S. Molecular Design of Three-Dimensional Metal-Free A(NH 4)X 3 Perovskites for Photovoltaic Applications. JACS AU 2021; 1:475-483. [PMID: 34467310 PMCID: PMC8395623 DOI: 10.1021/jacsau.1c00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Indexed: 05/19/2023]
Abstract
The intense research activities on the hybrid organic-inorganic perovskites (HOIPs) have led to the greatly improved light absorbers for solar cells with high power conversion efficiency (PCE). However, it is still challenging to find an alternative lead-free perovskite to replace the organohalide lead perovskites to achieve high PCE. This is because both previous experimental and theoretical investigations have shown that the Pb2+ cations play a dominating role in contributing the desirable frontier electronic bands of the HOIPs for light absorbing. Recent advances in the chemical synthesis of three-dimensional (3D) metal-free perovskites, by replacing Pb2+ with NH4 +, have markedly enriched the family of multifunctionalized perovskites (Ye et al., Science2018, 361, 151-155). These metal-free perovskites possess the chemical formula of A(NH4)X3, where A is divalent organic cations and X denotes halogen atoms. Without involving transition-metal cations, the metal-free A(NH4)X3 perovskites can entail notably different frontier electronic band features from those of the organohalide lead perovskites. Indeed, the valence and conduction bands of A(NH4)X3 perovskites are mainly attributed by the halogen atoms and the divalent A2+ organic cations, respectively. Importantly, a linear relationship between the bandgaps of A(NH4)X3 perovskites and the lowest unoccupied molecular orbital energies of the A2+ cations is identified, suggesting that bandgaps can be tailored via molecular design, especially through a chemical modification of the A2+ cations. Our comprehensive computational study and molecular design predict a metal-free perovskite, namely, 6-ammonio-1-methyl-5-nitropyrimidin-1-ium-(NH4)I3, with a desirable bandgap of ∼1.74 eV and good optical absorption property, both being important requirements for photovoltaic applications. Moreover, the application of strain can further fine-tune the bandgap of this metal-free perovskite. Our proposed design principle not only offers chemical insights into the structure-property relationship of the multifunctional metal-free perovskites but also can facilitate the discovery of highly efficient alternative, lead-free perovskites for potential photovoltaic or optoelectronic applications.
Collapse
Affiliation(s)
- Jie Bie
- Kuang
Yaming Honors School, Nanjing University, Nanjing 210023, Jiangsu, China
- National
Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Dai-Bei Yang
- Kuang
Yaming Honors School, Nanjing University, Nanjing 210023, Jiangsu, China
- School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, Jiangsu, China
| | - Ming-Gang Ju
- School
of Physics, Southeast University, Nanjing 211189, China
| | - Qiang Pan
- Jiangsu
Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, China
| | - Yu-Meng You
- Jiangsu
Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, China
| | - Wei Fa
- National
Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Xiao Cheng Zeng
- Department
of Chemistry, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| | - Shuang Chen
- Kuang
Yaming Honors School, Nanjing University, Nanjing 210023, Jiangsu, China
- Institute
for Brain Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
40
|
Allen DJW, Bristowe NC, Goodwin AL, Yeung HHM. Mechanisms for collective inversion-symmetry breaking in dabconium perovskite ferroelectrics. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:2706-2711. [PMID: 35359799 PMCID: PMC8905487 DOI: 10.1039/d1tc00619c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 05/27/2023]
Abstract
Dabconium hybrid perovskites include a number of recently-discovered ferroelectric phases with large spontaneous polarisations. The origin of ferroelectric response has been rationalised in general terms in the context of hydrogen bonding, covalency, and strain coupling. Here we use a combination of simple theory, Monte Carlo simulations, and density functional theory calculations to assess the ability of these microscopic ingredients-together with the always-present through-space dipolar coupling-to account for the emergence of polarisation in these particular systems whilst not in other hybrid perovskites. Our key result is that the combination of A-site polarity, preferred orientation along 〈111〉 directions, and ferroelastic strain coupling drives precisely the ferroelectric transition observed experimentally. We rationalise the absence of polarisation in many hybrid perovskites, and arrive at a set of design rules for generating FE examples beyond the dabconium family alone.
Collapse
Affiliation(s)
- Dominic J W Allen
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK +44 (0)1865 272137
| | - Nicholas C Bristowe
- Centre for Materials Physics, Durham University South Road Durham DH1 3LE UK
| | - Andrew L Goodwin
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK +44 (0)1865 272137
| | - Hamish H-M Yeung
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK +44 (0)1865 272137
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
41
|
Zhang HY, Zhang ZX, Song XJ, Chen XG, Xiong RG. Two-Dimensional Hybrid Perovskite Ferroelectric Induced by Perfluorinated Substitution. J Am Chem Soc 2020; 142:20208-20215. [PMID: 33179913 DOI: 10.1021/jacs.0c10686] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs), which possess the merits of good material stability, structural diversity, and ease of fabrication, are highly desirable for widespread applications of ferroelectrics, solar cells, and electroluminescent devices. Although some molecular design strategies toward ferroelectrics have been proposed, however, it is still a great challenge to precisely induce and optimize the ferroelectricity in 2D HOIPs. Here, for the first time through perfluorinated substitution strategy, we successfully design a high-performance 2D HOIP ferroelectric, (perfluorobenzylammonium)2PbBr4, exhibiting more obvious second harmonic generation intensity, larger piezoelectric response, more polar axes, larger spontaneous polarization of 4.2 μC cm-2, and higher Curie temperature of 440 K than those of parent (benzylammonium)2PbBr4. Compared to the selective effect of monofluorinated substitution on different positions of the benzene ring, where (3-fluorobenzylammonium)2PbBr4 and (4-fluorobenzylammonium)2PbBr4 are not ferroelectrics, the pioneering perfluorinated substitution is more universal and effective for targeted design of aromatic ferroelectrics. This work offers an efficient strategy for precisely designing high-performance 2D HOIP ferroelectrics.
Collapse
Affiliation(s)
- Han-Yue Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Zhi-Xu Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xian-Jiang Song
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xiao-Gang Chen
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
42
|
Song X, Cui Q, Liu Y, Xu Z, Cohen H, Ma C, Fan Y, Zhang Y, Ye H, Peng Z, Li R, Chen Y, Wang J, Sun H, Yang Z, Liu Z, Yang Z, Huang W, Hodes G, Liu SF, Zhao K. Metal-Free Halide Perovskite Single Crystals with Very Long Charge Lifetimes for Efficient X-ray Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003353. [PMID: 32930461 DOI: 10.1002/adma.202003353] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Metal-free halide perovskites, as a specific category of the perovskite family, have recently emerged as novel semiconductors for organic ferroelectrics and promise the wide chemical diversity of the ABX3 perovskite structure with mechanical flexibility, light weight, and eco-friendly processing. However, after the initial discovery 17 years ago, there has been no experimental information about their charge transport properties and only one brief mention of their optoelectronic properties. Here, growth of large single crystals of metal-free halide perovskite DABCO-NH4 Br3 (DABCO = N-N'-diazabicyclo[2.2.2]octonium) is reported together with characterization of their instrinsic optical and electronic properties and demonstration, of metal-free halide perovskite optoelectronics. The results reveal that the crystals have an unusually large semigap of ≈16 eV and a specific band nature with the valence band maximum and the conduction band minimum mainly dominated by the halide and DABCO2+ , respectively. The unusually large semigap rationalizes extremely long lifetimes approaching the millisecond regime, leading to very high charge diffusion lengths (tens of μm). The crystals also exhibit high X-ray attenuation as well as being lightweight. All these properties translate to high-performance X-ray imaging with sensitivity up to 173 μC Gyair -1 cm-2 . This makes metal-free perovskites novel candidates for the next generation of optoelectronics.
Collapse
Affiliation(s)
- Xin Song
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Qingyue Cui
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Department of Chemical Physics, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China
| | - Yucheng Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhuo Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hagai Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Chuang Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuanyuan Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yunxia Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haochen Ye
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhanhui Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ruipeng Li
- NSLS II, Brookhaven National Lab, Upton, NY, 11973, USA
| | - Yonghua Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu, 211800, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu, 211800, China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhou Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhike Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zupei Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, China
| | - Gary Hodes
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
43
|
Wu J, Takeda T, Hoshino N, Akutagawa T. Mixed Columnar Assembly of Ferroelectric and Antiferroelectric Benzene Derivatives Bearing Multiple -CONHC 14H 29 Chains. J Phys Chem B 2020; 124:7067-7074. [PMID: 32667201 DOI: 10.1021/acs.jpcb.0c03365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The discotic hexagonal columnar (Colh) liquid crystalline phases of simple benzene derivatives bearing -CONHC14H29 chains at the 1-, 3-, and 5-positions (3BC) and 1-, 2-, 4-, and 5-positions (4BC) display ferroelectricity and antiferroelectricity, respectively. The phase transition behavior, molecular assembly structures, dielectric response, and ferroelectric properties of their mixed crystals [(3BC)1-x(4BC)x] were evaluated to clarify the nanoscaling effect on the collective inversion of the one-dimensional (1D) N-H···O═ hydrogen bonding interaction observed in the (3BC)∞ chain. A small quantity of 4BC doped into 3BC (x ≤ 0.03) maintained the ferroelectric polarization-electric field response (P-E) in the (3BC)1-x(4BC)x chains, where the antiferroelectric 4BC molecules in the ferroelectric 3BC column act as a pinning potential site for dipole inversion. On the contrary, a relatively large amount of 4BC doping (x ≥ 0.1) forms a domain separation state between the hydrogen-bonded (3BC)∞ and (4BC)∞ columns, in which the ferroelectric P-E hysteresis completely disappeared. The correlation length for the appearance of ferroelectricity in the 1D column was estimated to be ∼40 nm in the Colh liquid crystalline phase of 3BC.
Collapse
Affiliation(s)
- Jianyun Wu
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Takashi Takeda
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.,Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Norihisa Hoshino
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.,Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Tomoyuki Akutagawa
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.,Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
44
|
Wei ZH, Jiang ZT, Zhang XX, Li ML, Tang YY, Chen XG, Cai H, Xiong RG. Rational Design of Ceramic-Like Molecular Ferroelectric by Quasi-Spherical Theory. J Am Chem Soc 2020; 142:1995-2000. [DOI: 10.1021/jacs.9b11665] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhen-Hong Wei
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Zhen-Tao Jiang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Xiu-Xiu Zhang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Ming-Li Li
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Xiao-Gang Chen
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Hu Cai
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People’s Republic of China
| |
Collapse
|
45
|
Morita H, Tsunashima R, Nishihara S, Akutagawa T. Doping of metal-free molecular perovskite with hexamethylenetetramine to create non-centrosymmetric defects. CrystEngComm 2020. [DOI: 10.1039/d0ce00173b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The metal-free perovskite (dabcoH22+)(NH4)Br (d-Br) (dabco: 1,4-diazabicyclo[2.2.2]octane) was doped with non-centrosymmetric hexamethylenetetramine.
Collapse
Affiliation(s)
- Hagino Morita
- Graduate School of Sciences and Technology for Innovation
- Yamaguchi University
- Yamaguchi
- Japan
| | - Ryo Tsunashima
- Graduate School of Sciences and Technology for Innovation
- Yamaguchi University
- Yamaguchi
- Japan
- Chemistry Course
| | - Sadafumi Nishihara
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima 739-8526
- Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University
- Sendai
- Japan
| |
Collapse
|