1
|
Muhs C, Alshamleh I, Richter C, Serve H, Schwalbe H. Mapping Natural Sugars Metabolism in Acute Myeloid Leukaemia Using 2D Nuclear Magnetic Resonance Spectroscopy. Cancers (Basel) 2024; 16:3576. [PMID: 39518017 PMCID: PMC11545164 DOI: 10.3390/cancers16213576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolism plays a central role in cancer progression. Rewiring glucose metabolism is essential for fulfilling the high energy and biosynthetic demands as well as for the development of drug resistance. Nevertheless, the role of other diet-abundant natural sugars is not fully understood. In this study, we performed a comprehensive 2D NMR spectroscopy tracer-based assay with a panel of 13C-labelled sugars (glucose, fructose, galactose, mannose and xylose). We assigned over 100 NMR signals from metabolites derived from each sugar and mapped them to metabolic pathways, uncovering two novel findings. First, we demonstrated that mannose has a semi-identical metabolic profile to that of glucose with similar label incorporation patterns. Second, next to the known role of fructose in driving one-carbon metabolism, we explained the equally important contribution of galactose to this pathway. Interestingly, we demonstrated that cells growing with either fructose or galactose became less sensitive to certain one-carbon metabolism inhibitors such as 5-Flurouracil and SHIN1. In summary, this study presents the differential metabolism of natural sugars, demonstrating that mannose has a comparable profile to that of glucose. Conversely, galactose and fructose contribute to a greater extent to one-carbon metabolism, which makes them important modulators for inhibitors targeting this pathway. To our knowledge, this is the first NMR study to comprehensively investigate the metabolism of key natural sugars in AML and cancer.
Collapse
Affiliation(s)
- Christina Muhs
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, 60438 Frankfurt am Main, Germany; (C.M.); (I.A.); (C.R.)
| | - Islam Alshamleh
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, 60438 Frankfurt am Main, Germany; (C.M.); (I.A.); (C.R.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany;
| | - Christian Richter
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, 60438 Frankfurt am Main, Germany; (C.M.); (I.A.); (C.R.)
| | - Hubert Serve
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany;
- University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, 60438 Frankfurt am Main, Germany; (C.M.); (I.A.); (C.R.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany;
| |
Collapse
|
2
|
Peng Y, Zhang Z, He L, Li C, Liu M. NMR spectroscopy for metabolomics in the living system: recent progress and future challenges. Anal Bioanal Chem 2024; 416:2319-2334. [PMID: 38240793 PMCID: PMC10950998 DOI: 10.1007/s00216-024-05137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/08/2023] [Accepted: 01/10/2024] [Indexed: 03/21/2024]
Abstract
Metabolism is a fundamental process that underlies human health and diseases. Nuclear magnetic resonance (NMR) techniques offer a powerful approach to identify metabolic processes and track the flux of metabolites at the molecular level in living systems. An in vitro study through in-cell NMR tracks metabolites in real time and investigates protein structures and dynamics in a state close to their most natural environment. This technique characterizes metabolites and proteins involved in metabolic pathways in prokaryotic and eukaryotic cells. In vivo magnetic resonance spectroscopy (MRS) enables whole-organism metabolic monitoring by visualizing the spatial distribution of metabolites and targeted proteins. One limitation of these NMR techniques is the sensitivity, for which a possible improved approach is through isotopic enrichment or hyperpolarization methods, including dynamic nuclear polarization (DNP) and parahydrogen-induced polarization (PHIP). DNP involves the transfer of high polarization from electronic spins of radicals to surrounding nuclear spins for signal enhancements, allowing the detection of low-abundance metabolites and real-time monitoring of metabolic activities. PHIP enables the transfer of nuclear spin polarization from parahydrogen to other nuclei for signal enhancements, particularly in proton NMR, and has been applied in studies of enzymatic reactions and cell signaling. This review provides an overview of in-cell NMR, in vivo MRS, and hyperpolarization techniques, highlighting their applications in metabolic studies and discussing challenges and future perspectives.
Collapse
Affiliation(s)
- Yun Peng
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zeting Zhang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lichun He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Conggang Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Optics Valley Laboratory, Wuhan, 430074, Hubei, China.
| |
Collapse
|
3
|
Liu B, Liu C, Chai X, Fan X, Huang T, Zhan J, Zhu Q, Zeng D, Gong Z, He L, Yang Y, Zhou X, Jiang B, Zhang X, Liu M. Real-Time NMR-Based Drug Discovery to Identify Inhibitors against Fatty Acid Synthesis in Living Cancer Cells. Anal Chem 2024. [PMID: 38334355 DOI: 10.1021/acs.analchem.3c04954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Abnormal fatty acid metabolism is recognized as a key driver of tumor development and progression. Although numerous inhibitors have been developed to target this pathway, finding drugs with high specificity that do not disrupt normal cellular metabolism remains a formidable challenge. In this paper, we introduced a novel real-time NMR-based drug screening technique that operates within living cells. This technique provides a direct way to putatively identify molecular targets involved in specific metabolic processes, making it a powerful tool for cell-based drug screening. Using 2-13C acetate as a tracer, combined with 3D cell clusters and a bioreactor system, our approach enables real-time detection of inhibitors that target fatty acid metabolism within living cells. As a result, we successfully demonstrated the initial application of this method in the discovery of traditional Chinese medicines that specifically target fatty acid metabolism. Elucidating the mechanisms behind herbal medicines remains challenging due to the complex nature of their compounds and the presence of multiple targets. Remarkably, our findings demonstrate the significant inhibitory effect of P. cocos on fatty acid synthesis within cells, illustrating the potential of this approach in analyzing fatty acid metabolism events and identifying drug candidates that selectively inhibit fatty acid synthesis at the cellular level. Moreover, this systematic approach represents a valuable strategy for discovering the intricate effects of herbal medicine.
Collapse
Affiliation(s)
- Biao Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Caixiang Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Chai
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xinyu Fan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jianhua Zhan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qinjun Zhu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Danyun Zeng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhou Gong
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lichun He
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhuang Yang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Jiang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Xu Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Maili Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Wuhan 430074, China
| |
Collapse
|
4
|
Ferdaoussi M. Metabolic and Molecular Amplification of Insulin Secretion. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 239:117-139. [PMID: 39283484 DOI: 10.1007/978-3-031-62232-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
The pancreatic β cells are at the hub of myriad signals to regulate the secretion of an adequate amount of insulin needed to re-establish postprandial euglycemia. The β cell possesses sophisticated metabolic enzymes and a variety of extracellular receptors and channels that amplify insulin secretion in response to autocrine, paracrine, and neurohormonal signals. Considerable research has been undertaken to decipher the mechanisms regulating insulin secretion. While the triggering pathway induced by glucose is needed to initiate the exocytosis process, multiple other stimuli modulate the insulin secretion response. This chapter will discuss the recent advances in understanding the role of the diverse glucose- and fatty acid-metabolic coupling factors in amplifying insulin secretion. It will also highlight the intracellular events linking the extracellular receptors and channels to insulin secretion amplification. Understanding these mechanisms provides new insights into learning more about the etiology of β-cell failure and paves the way for developing new therapeutic strategies for type 2 diabetes.
Collapse
Affiliation(s)
- Mourad Ferdaoussi
- Faculty Saint-Jean and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Alshamleh I, Kurrle N, Makowka P, Bhayadia R, Kumar R, Süsser S, Seibert M, Ludig D, Wolf S, Koschade SE, Stoschek K, Kreitz J, Fuhrmann DC, Toenges R, Notaro M, Comoglio F, Schuringa JJ, Berg T, Brüne B, Krause DS, Klusmann JH, Oellerich T, Schnütgen F, Schwalbe H, Serve H. PDP1 is a key metabolic gatekeeper and modulator of drug resistance in FLT3-ITD-positive acute myeloid leukemia. Leukemia 2023; 37:2367-2382. [PMID: 37935978 PMCID: PMC10681906 DOI: 10.1038/s41375-023-02041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 11/09/2023]
Abstract
High metabolic flexibility is pivotal for the persistence and therapy resistance of acute myeloid leukemia (AML). In 20-30% of AML patients, activating mutations of FLT3, specifically FLT3-ITD, are key therapeutic targets. Here, we investigated the influence of FLT3-ITD on AML metabolism. Nuclear Magnetic Resonance (NMR) profiling showed enhanced reshuffling of pyruvate towards the tricarboxylic acid (TCA) cycle, suggesting an increased activity of the pyruvate dehydrogenase complex (PDC). Consistently, FLT3-ITD-positive cells expressed high levels of PDP1, an activator of the PDC. Combining endogenous tagging of PDP1 with genome-wide CRISPR screens revealed that FLT3-ITD induces PDP1 expression through the RAS signaling axis. PDP1 knockdown resulted in reduced cellular respiration thereby impairing the proliferation of only FLT3-ITD cells. These cells continued to depend on PDP1, even in hypoxic conditions, and unlike FLT3-ITD-negative cells, they exhibited a rapid, PDP1-dependent revival of their respiratory capacity during reoxygenation. Moreover, we show that PDP1 modifies the response to FLT3 inhibition. Upon incubation with the FLT3 tyrosine kinase inhibitor quizartinib (AC220), PDP1 persisted or was upregulated, resulting in a further shift of glucose/pyruvate metabolism towards the TCA cycle. Overexpression of PDP1 enhanced, while PDP1 depletion diminished AC220 resistance in cell lines and peripheral blasts from an AC220-resistant AML patient in vivo. In conclusion, FLT3-ITD assures the expression of PDP1, a pivotal metabolic regulator that enhances oxidative glucose metabolism and drug resistance. Hence, PDP1 emerges as a potentially targetable vulnerability in the management of AML.
Collapse
Affiliation(s)
- Islam Alshamleh
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
| | - Nina Kurrle
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
| | - Philipp Makowka
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Raj Bhayadia
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
- Department of Pediatrics, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Sebastian Süsser
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Marcel Seibert
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
| | - Damian Ludig
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Sebastian Wolf
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
| | - Sebastian E Koschade
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Karoline Stoschek
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Johanna Kreitz
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Rosa Toenges
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | | | | | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tobias Berg
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
- Centre for Discovery in Cancer Research and Department of Oncology, McMaster University, Hamilton, ON, Canada
| | - Bernhard Brüne
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596, Frankfurt am Main, Germany
| | - Daniela S Krause
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
- Georg-Speyer-Haus; German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan-Henning Klusmann
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
- Department of Pediatrics, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Thomas Oellerich
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany
| | - Frank Schnütgen
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany.
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany.
| | - Hubert Serve
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590, Frankfurt, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596, Frankfurt, Germany.
| |
Collapse
|
6
|
Launay H, Avilan L, Gérard C, Parsiegla G, Receveur-Brechot V, Gontero B, Carriere F. Location of the photosynthetic carbon metabolism in microcompartments and separated phases in microalgal cells. FEBS Lett 2023; 597:2853-2878. [PMID: 37827572 DOI: 10.1002/1873-3468.14754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Carbon acquisition, assimilation and storage in eukaryotic microalgae and cyanobacteria occur in multiple compartments that have been characterised by the location of the enzymes involved in these functions. These compartments can be delimited by bilayer membranes, such as the chloroplast, the lumen, the peroxisome, the mitochondria or monolayer membranes, such as lipid droplets or plastoglobules. They can also originate from liquid-liquid phase separation such as the pyrenoid. Multiple exchanges exist between the intracellular microcompartments, and these are reviewed for the CO2 concentration mechanism, the Calvin-Benson-Bassham cycle, the lipid metabolism and the cellular energetic balance. Progress in microscopy and spectroscopic methods opens new perspectives to characterise the molecular consequences of the location of the proteins involved, including intrinsically disordered proteins.
Collapse
Affiliation(s)
- Hélène Launay
- Aix Marseille Univ, CNRS, BIP, UMR7281, Marseille, France
| | - Luisana Avilan
- Aix Marseille Univ, CNRS, BIP, UMR7281, Marseille, France
| | - Cassy Gérard
- Aix Marseille Univ, CNRS, BIP, UMR7281, Marseille, France
| | | | | | | | | |
Collapse
|
7
|
Schäfer JA, Sutandy FXR, Münch C. Omics-based approaches for the systematic profiling of mitochondrial biology. Mol Cell 2023; 83:911-926. [PMID: 36931258 DOI: 10.1016/j.molcel.2023.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/18/2023]
Abstract
Mitochondria are essential for cellular functions such as metabolism and apoptosis. They dynamically adapt to the changing environmental demands by adjusting their protein, nucleic acid, metabolite, and lipid contents. In addition, the mitochondrial components are modulated on different levels in response to changes, including abundance, activity, and interaction. A wide range of omics-based approaches has been developed to be able to explore mitochondrial adaptation and how mitochondrial function is compromised in disease contexts. Here, we provide an overview of the omics methods that allow us to systematically investigate the different aspects of mitochondrial biology. In addition, we show examples of how these methods have provided new biological insights. The emerging use of these toolboxes provides a more comprehensive understanding of the processes underlying mitochondrial function.
Collapse
Affiliation(s)
- Jasmin Adriana Schäfer
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590 Frankfurt am Main, Germany
| | - F X Reymond Sutandy
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590 Frankfurt am Main, Germany
| | - Christian Münch
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Abstract
Metabolomics has long been used in a biomedical context. The most typical samples are body fluids in which small molecules can be detected and quantified using technologies such as Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS). Many studies, in particular in the wider field of cancer research, are based on cellular models. Different cancer cells can have vastly different ways of regulating metabolism and responses to drug treatments depend on specific metabolic mechanisms which are often cell type specific. This has led to a series of publications using metabolomics to study metabolic mechanisms. Cell-based metabolomics has specific requirements and allows for interesting approaches where metabolism is followed in real-time. Here applications of metabolomics in cell biology have been reviewed, providing insight into specific technologies used and showing exemplary case studies with an emphasis towards applications which help to understand drug mechanisms.
Collapse
Affiliation(s)
- Zuhal Eraslan
- Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Ulrich L Günther
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
9
|
Sciolino N, Reverdatto S, Premo A, Breindel L, Yu J, Theophall G, Burz DS, Liu A, Sulchek T, Schmidt AM, Ramasamy R, Shekhtman A. Messenger RNA in lipid nanoparticles rescues HEK 293 cells from lipid-induced mitochondrial dysfunction as studied by real time pulse chase NMR, RTPC-NMR, spectroscopy. Sci Rep 2022; 12:22293. [PMID: 36566335 PMCID: PMC9789524 DOI: 10.1038/s41598-022-26444-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Analytical tools to study cell physiology are critical for optimizing drug-host interactions. Real time pulse chase NMR spectroscopy, RTPC-NMR, was introduced to monitor the kinetics of metabolite production in HEK 293T cells treated with COVID-19 vaccine-like lipid nanoparticles, LNPs, with and without mRNA. Kinetic flux parameters were resolved for the incorporation of isotopic label into metabolites and clearance of labeled metabolites from the cells. Changes in the characteristic times for alanine production implicated mitochondrial dysfunction as a consequence of treating the cells with lipid nanoparticles, LNPs. Mitochondrial dysfunction was largely abated by inclusion of mRNA in the LNPs, the presence of which increased the size and uniformity of the LNPs. The methodology is applicable to all cultured cells.
Collapse
Affiliation(s)
- Nicholas Sciolino
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA
| | - Sergey Reverdatto
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA
| | - Aaron Premo
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA
| | - Leonard Breindel
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA
| | - Jianchao Yu
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA
| | - Gregory Theophall
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA
| | - David S Burz
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA
| | - Anna Liu
- Georgia Tech, School of Mechanical Engineering, Atlanta, GA, 30332, USA
| | - Todd Sulchek
- Georgia Tech, School of Mechanical Engineering, Atlanta, GA, 30332, USA
| | - Ann Marie Schmidt
- New York University, Grossman School of Medicine, New York, NY, 10016, USA
| | | | - Alexander Shekhtman
- Department of Chemistry, State University of New York, Albany, NY, 12222, USA.
| |
Collapse
|
10
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Wu ST, Chen PC, Tseng YH, Chen TH, Wang YJ, Tsai ZL, Lin EC. Assessment of cellular responses in three-dimensional cell cultures through chemical exchange saturation transfer and 1 H MRS. NMR IN BIOMEDICINE 2022; 35:e4757. [PMID: 35510307 DOI: 10.1002/nbm.4757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Metabolic responses to physiological changes have been detected using chemical exchange saturation transfer (CEST) imaging in clinical settings. Similarly to other MRI techniques, the CEST technique was based originally on phantoms from buffer solutions and was then further developed through animal experiments. However, CEST imaging can capture certain dynamics of metabolism that solution phantoms cannot model. Cell culture phantoms can fill the gap between buffer phantoms and animal models. In this study, we used 1 H NMR and CEST in a B0 field of 9.4 T to investigate HEK293T cells from two-dimensional (2D) cultures, three-dimensional (3D) cultures, and 3D cultures seeded with cell spheroids. Two CEST dips were observed: the magnitude of the amine dip at 2.8 ppm increased during the incubation period, whereas the hydroxyl dip at 1.2 ppm remained approximately the same or modestly increased. We also observed a CEST dip at 2.8 ppm from the 2D culture responding dramatically to doxorubicin treatment. By cross-validating with pH values and the concentrations of amine and hydroxyl protons extracted through 1 H NMR, we observed that they did not correspond to an increase in the amine pool. We believe that the denaturation or degradation of proteins from the fetal bovine serum increased the size of the amine pool. Although 3D culture conditions can be further improved, our study suggests that 3D cultures have the potential to bridge studies of solution phantoms and those on animals.
Collapse
Affiliation(s)
- Ssu-Ting Wu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan
| | - Pin-Chen Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan
| | - Yu-Hsien Tseng
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan
| | - Ting-Hao Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan
| | - Yi-Jiun Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan
| | - Zong-Lin Tsai
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan
| | - Eugene C Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan
- Center for Nano Bio-detection, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
12
|
Luchinat E, Cremonini M, Banci L. Radio Signals from Live Cells: The Coming of Age of In-Cell Solution NMR. Chem Rev 2022; 122:9267-9306. [PMID: 35061391 PMCID: PMC9136931 DOI: 10.1021/acs.chemrev.1c00790] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 12/12/2022]
Abstract
A detailed knowledge of the complex processes that make cells and organisms alive is fundamental in order to understand diseases and to develop novel drugs and therapeutic treatments. To this aim, biological macromolecules should ideally be characterized at atomic resolution directly within the cellular environment. Among the existing structural techniques, solution NMR stands out as the only one able to investigate at high resolution the structure and dynamic behavior of macromolecules directly in living cells. With the advent of more sensitive NMR hardware and new biotechnological tools, modern in-cell NMR approaches have been established since the early 2000s. At the coming of age of in-cell NMR, we provide a detailed overview of its developments and applications in the 20 years that followed its inception. We review the existing approaches for cell sample preparation and isotopic labeling, the application of in-cell NMR to important biological questions, and the development of NMR bioreactor devices, which greatly increase the lifetime of the cells allowing real-time monitoring of intracellular metabolites and proteins. Finally, we share our thoughts on the future perspectives of the in-cell NMR methodology.
Collapse
Affiliation(s)
- Enrico Luchinat
- Dipartimento
di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum−Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Cremonini
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Dipartimento
di Chimica, Università degli Studi
di Firenze, Via della
Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
13
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
14
|
Nami F, Ferraz MJ, Bakkum T, Aerts JMFG, Pandit A. Real-Time NMR Recording of Fermentation and Lipid Metabolism Processes in Live Microalgae Cells. Angew Chem Int Ed Engl 2022; 61:e202117521. [PMID: 35103372 PMCID: PMC9305762 DOI: 10.1002/anie.202117521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/10/2022]
Abstract
Non-invasive and real-time recording of processes in living cells has been limited to detection of small cellular components such as soluble proteins and metabolites. Here we report a multiphase NMR approach using magic-angle spinning NMR to synchronously follow microbial processes of fermentation, lipid metabolism and structural dynamic changes in live microalgae cells. Chlamydomonas reinhardtii green algae were highly concentrated, introducing dark fermentation and anoxia conditions. Single-pulse NMR experiments were applied to obtain temperature-dependent kinetic profiles of the formed fermentation products. Through dynamics-based spectral editing NMR, simultaneous conversion of galactolipids into TAG and free fatty acids was observed and rapid loss of rigid lipid structures. This suggests that lipolysis under dark and anoxia conditions finally results in the breakdown of cell and organelle membranes, which could be beneficial for recovery of intracellular microbial useful products.
Collapse
Affiliation(s)
- Faezeh Nami
- Dept. of Solid-State NMRLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Maria Joao Ferraz
- Dept. of Medicinal BiochemistryLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Thomas Bakkum
- Dept. of Bio Organic SynthesisLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Johannes M. F. G. Aerts
- Dept. of Medicinal BiochemistryLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Anjali Pandit
- Dept. of Solid-State NMRLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
15
|
Zhao M, Liu X, Hou Y, Yang T, Xu J, Su R. Combination of Electrochemistry and Mass Spectrometry to Study Nitric Oxide Metabolism and Its Modulation by Compound K in Breast Cancer Cells. Anal Chem 2022; 94:5122-5131. [PMID: 35306816 DOI: 10.1021/acs.analchem.1c05492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The levels of l-arginine and asymmetric dimethylarginine (ADMA) and the amount of the nitric oxide (NO) production have recently been linked to breast cancer and pharmaceutical effect evaluation. Herein, a method combining electrochemistry and high-resolution mass spectrometry (HRMS) was established and used to study NO metabolism and its modulation by ginsenoside compound K (CK) in breast cancer cells. Platinum nanoparticles-decorated fluorine tin oxide was employed as an electrochemical sensor for in situ detection of NO release, while HRMS was used for the analysis of the NO-related metabolites. Through the combination of the electrochemical and HRMS results, decreases in arginine and NO and increases in ADMA and ornithine were observed after modulation by CK, and two highly correlated metabolic pathways including arginine and proline metabolism and vascular smooth muscle contraction were found. This method offers a new strategy for fast evaluation of pharmaceutical efficacy based on NO metabolism.
Collapse
Affiliation(s)
- Mingyue Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Xin Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Yuzhu Hou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Tongtong Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Jiaquan Xu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Rui Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
16
|
Nami F, Ferraz MJ, Bakkum T, Aerts JMFG, Pandit A. Real‐Time NMR Recording of Fermentation and Lipid Metabolism Processes in Live Microalgae Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Faezeh Nami
- Dept. of Solid-State NMR Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Maria Joao Ferraz
- Dept. of Medicinal Biochemistry Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Thomas Bakkum
- Dept. of Bio Organic Synthesis Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Johannes M. F. G. Aerts
- Dept. of Medicinal Biochemistry Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Anjali Pandit
- Dept. of Solid-State NMR Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
17
|
Vilca-Melendez S, Uthaug MV, Griffin JL. 1H Nuclear Magnetic Resonance: A Future Approach to the Metabolic Profiling of Psychedelics in Human Biofluids? Front Psychiatry 2021; 12:742856. [PMID: 34966300 PMCID: PMC8710695 DOI: 10.3389/fpsyt.2021.742856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
While psychedelics may have therapeutic potential for treating mental health disorders such as depression, further research is needed to better understand their biological effects and mechanisms of action when considering the development of future novel therapy approaches. Psychedelic research could potentially benefit from the integration of metabonomics by proton nuclear magnetic resonance (1H NMR) spectroscopy which is an analytical chemistry-based approach that can measure the breakdown of drugs into their metabolites and their metabolic consequences from various biofluids. We have performed a systematic review with the primary aim of exploring published literature where 1H NMR analysed psychedelic substances including psilocin, lysergic acid diethylamide (LSD), LSD derivatives, N,N-dimethyltryptamine (DMT), 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and bufotenin. The second aim was to assess the benefits and limitations of 1H NMR spectroscopy-based metabolomics as a tool in psychedelic research and the final aim was to explore potential future directions. We found that the most current use of 1H NMR in psychedelic research has been for the structural elucidation and analytical characterisation of psychedelic molecules and that no papers used 1H NMR in the metabolic profiling of biofluids, thus exposing a current research gap and the underuse of 1H NMR. The efficacy of 1H NMR spectroscopy was also compared to mass spectrometry, where both metabonomics techniques have previously shown to be appropriate for biofluid analysis in other applications. Additionally, potential future directions for psychedelic research were identified as real-time NMR, in vivo 1H nuclear magnetic resonance spectroscopy (MRS) and 1H NMR studies of the gut microbiome. Further psychedelic studies need to be conducted that incorporate the use of 1H NMR spectroscopy in the analysis of metabolites both in the peripheral biofluids and in vivo to determine whether it will be an effective future approach for clinical and naturalistic research.
Collapse
Affiliation(s)
- Sylvana Vilca-Melendez
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Malin V. Uthaug
- The Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Julian L. Griffin
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Baker F, Polat IH, Abou-El-Ardat K, Alshamleh I, Thoelken M, Hymon D, Gubas A, Koschade SE, Vischedyk JB, Kaulich M, Schwalbe H, Shaid S, Brandts CH. Metabolic Rewiring Is Essential for AML Cell Survival to Overcome Autophagy Inhibition by Loss of ATG3. Cancers (Basel) 2021; 13:6142. [PMID: 34885250 PMCID: PMC8657081 DOI: 10.3390/cancers13236142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 01/05/2023] Open
Abstract
Autophagy is an important survival mechanism that allows recycling of nutrients and removal of damaged organelles and has been shown to contribute to the proliferation of acute myeloid leukemia (AML) cells. However, little is known about the mechanism by which autophagy- dependent AML cells can overcome dysfunctional autophagy. In our study we identified autophagy related protein 3 (ATG3) as a crucial autophagy gene for AML cell proliferation by conducting a CRISPR/Cas9 dropout screen with a library targeting around 200 autophagy-related genes. shRNA-mediated loss of ATG3 impaired autophagy function in AML cells and increased their mitochondrial activity and energy metabolism, as shown by elevated mitochondrial ROS generation and mitochondrial respiration. Using tracer-based NMR metabolomics analysis we further demonstrate that the loss of ATG3 resulted in an upregulation of glycolysis, lactate production, and oxidative phosphorylation. Additionally, loss of ATG3 strongly sensitized AML cells to the inhibition of mitochondrial metabolism. These findings highlight the metabolic vulnerabilities that AML cells acquire from autophagy inhibition and support further exploration of combination therapies targeting autophagy and mitochondrial metabolism in AML.
Collapse
Affiliation(s)
- Fatima Baker
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
| | - Ibrahim H. Polat
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
| | - Khalil Abou-El-Ardat
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany;
| | - Islam Alshamleh
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Marlyn Thoelken
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
| | - Daniel Hymon
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Andrea Gubas
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, 60590 Frankfurt am Main, Germany;
| | - Sebastian E. Koschade
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany;
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, 60590 Frankfurt am Main, Germany;
| | - Jonas B. Vischedyk
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany;
| | - Manuel Kaulich
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany;
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, 60590 Frankfurt am Main, Germany;
- Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany
| | - Harald Schwalbe
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Shabnam Shaid
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- University Cancer Center Frankfurt (UCT), University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
| | - Christian H. Brandts
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany;
- University Cancer Center Frankfurt (UCT), University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
| |
Collapse
|
19
|
Höfurthner T, Mateos B, Konrat R. On-Cell NMR Contributions to Membrane Receptor Binding Characterization. Chempluschem 2021; 86:938-945. [PMID: 34160899 DOI: 10.1002/cplu.202100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/28/2021] [Indexed: 12/21/2022]
Abstract
NMR spectroscopy has matured into a powerful tool to characterize interactions between biological molecules at atomic resolution, most importantly even under near to native (physiological) conditions. The field of in-cell NMR aims to study proteins and nucleic acids inside living cells. However, cells interrogate their environment and are continuously modulated by external stimuli. Cell signaling processes are often initialized by membrane receptors on the cell surface; therefore, characterizing their interactions at atomic resolution by NMR, hereafter referred as on-cell NMR, can provide valuable mechanistic information. This review aims to summarize recent on-cell NMR tools that give information about the binding site and the affinity of membrane receptors to their ligands together with potential applications to in vivo drug screening systems.
Collapse
Affiliation(s)
- Theresa Höfurthner
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Borja Mateos
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Robert Konrat
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| |
Collapse
|
20
|
Pintér G, Hohmann K, Grün J, Wirmer-Bartoschek J, Glaubitz C, Fürtig B, Schwalbe H. Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:291-320. [PMID: 37904763 PMCID: PMC10539803 DOI: 10.5194/mr-2-291-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/07/2021] [Indexed: 11/01/2023]
Abstract
The review describes the application of nuclear magnetic resonance (NMR) spectroscopy to study kinetics of folding, refolding and aggregation of proteins, RNA and DNA. Time-resolved NMR experiments can be conducted in a reversible or an irreversible manner. In particular, irreversible folding experiments pose large requirements for (i) signal-to-noise due to the time limitations and (ii) synchronising of the refolding steps. Thus, this contribution discusses the application of methods for signal-to-noise increases, including dynamic nuclear polarisation, hyperpolarisation and photo-CIDNP for the study of time-resolved NMR studies. Further, methods are reviewed ranging from pressure and temperature jump, light induction to rapid mixing to induce rapidly non-equilibrium conditions required to initiate folding.
Collapse
Affiliation(s)
- György Pintér
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Katharina F. Hohmann
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - J. Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| |
Collapse
|
21
|
Wapler MC, Testud F, Hucker P, Leupold J, von Elverfeldt D, Zaitsev M, Wallrabe U. MR-compatible optical microscope for in-situ dual-mode MR-optical microscopy. PLoS One 2021; 16:e0250903. [PMID: 33970948 PMCID: PMC8109821 DOI: 10.1371/journal.pone.0250903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
We present the development of a dual-mode imaging platform that combines optical microscopy with magnetic resonance microscopy. Our microscope is designed to operate inside a 9.4T small animal scanner with the option to use a 72mm bore animal RF coil or different integrated linear micro coils. With a design that minimizes the magnetic distortions near the sample, we achieved a field inhomogeneity of 19 ppb RMS. We further integrated a waveguide in the optical layout for the electromagnetic shielding of the camera, which minimizes the noise increase in the MR and optical images below practical relevance. The optical layout uses an adaptive lens for focusing, 2 × 2 modular combinations of objectives with 0.6mm to 2.3mm field of view and 4 configurable RGBW illumination channels and achieves a plano-apochromatic optical aberration correction with 0.6μm to 2.3μm resolution. We present the design, implementation and characterization of the prototype including the general optical and MR-compatible design strategies, a knife-edge optical characterization and different concurrent imaging demonstrations.
Collapse
Affiliation(s)
- Matthias C. Wapler
- Department of Microsystemes Engineering (IMTEK), Laborarory for Microactuators, University of Freiburg, Freiburg, Germany
| | - Frederik Testud
- Center for Diagnostic and Therapeutic Radiology, Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Hucker
- Center for Diagnostic and Therapeutic Radiology, Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jochen Leupold
- Center for Diagnostic and Therapeutic Radiology, Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik von Elverfeldt
- Center for Diagnostic and Therapeutic Radiology, Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maxim Zaitsev
- Center for Diagnostic and Therapeutic Radiology, Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for High-Field Magnetic Resonance, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ulrike Wallrabe
- Department of Microsystemes Engineering (IMTEK), Laborarory for Microactuators, University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Luchinat E, Barbieri L, Cremonini M, Banci L. Protein in-cell NMR spectroscopy at 1.2 GHz. JOURNAL OF BIOMOLECULAR NMR 2021; 75:97-107. [PMID: 33580357 PMCID: PMC8018933 DOI: 10.1007/s10858-021-00358-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/25/2021] [Indexed: 05/02/2023]
Abstract
In-cell NMR spectroscopy provides precious structural and functional information on biological macromolecules in their native cellular environment at atomic resolution. However, the intrinsic low sensitivity of NMR imposes a big limitation in the applicability of the methodology. In this respect, the recently developed commercial 1.2 GHz NMR spectrometer is expected to introduce significant benefits. However, cell samples may suffer from detrimental effects at ultrahigh fields, that must be carefully evaluated. Here we show the first in-cell NMR spectra recorded at 1.2 GHz on human cells, and we compare resolution and sensitivity against those obtained at 900 and 950 MHz. To evaluate the effects of different spin relaxation rates, SOFAST-HMQC and BEST-TROSY spectra were recorded on intracellular α-synuclein and carbonic anhydrase. Major improvements are observed at 1.2 GHz when analyzing unfolded proteins, such as α-synuclein, while the TROSY scheme improves the resolution for both globular and unfolded proteins.
Collapse
Affiliation(s)
- Enrico Luchinat
- Università degli Studi di Firenze, Via Luigi sacconi 6, 50019, Sesto Fiorentino, Italy.
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase - CSGI, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| | - Letizia Barbieri
- Università degli Studi di Firenze, Via Luigi sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Matteo Cremonini
- Università degli Studi di Firenze, Via Luigi sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Lucia Banci
- Università degli Studi di Firenze, Via Luigi sacconi 6, 50019, Sesto Fiorentino, Italy.
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
23
|
Jeeves M, Roberts J, Ludwig C. Optimised collection of non-uniformly sampled 2D-HSQC NMR spectra for use in metabolic flux analysis. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:287-299. [PMID: 32830359 DOI: 10.1002/mrc.5089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is integral to metabolic studies; yet, it can suffer from the long acquisition times required to collect data of sufficient signal strength and resolution. The use of non-uniform sampling (NUS) allows faster collection of NMR spectra without loss of spectral integrity. When planning experimental methodologies to perform metabolic flux analysis (MFA) of cell metabolism, a variety of options are available for the acquisition of NUS NMR data. Before beginning data collection, decisions have to be made regarding selection of pulse sequence, number of transients and NUS specific parameters such as the sampling level and sampling schedule. Poor choices will impact data quality, which may have a negative effect on the subsequent analysis and biological interpretation. Herein, we describe factors that should be considered when setting up non-uniformly sampled 2D-1 H,13 C HSQC NMR experiments for MFA and provide a standard protocol for users to follow.
Collapse
Affiliation(s)
- Mark Jeeves
- Henry Wellcome Building for Biomolecular NMR Spectroscopy, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jennie Roberts
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
24
|
Mostazo MGC, Kurrle N, Casado M, Fuhrmann D, Alshamleh I, Häupl B, Martín-Sanz P, Brüne B, Serve H, Schwalbe H, Schnütgen F, Marin S, Cascante M. Metabolic Plasticity Is an Essential Requirement of Acquired Tyrosine Kinase Inhibitor Resistance in Chronic Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12113443. [PMID: 33228196 PMCID: PMC7699488 DOI: 10.3390/cancers12113443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Tyrosine kinase inhibitors (TKIs), such as imatinib, have become the standard initial treatment of choice for chronic myeloid leukemia (CML) patients. However, one obstacle to face is that a significant proportion of patients presents poor response to TKIs, or acquires resistance resulting in disease relapses. Mutations in BCR-ABL1 protein are a well described mechanism of resistance but other not well established mechanisms outside BCR-ABL1 mutations are emerging as important in the acquisition of resistance. Abnormal metabolism of CML cells that acquire resistance to imatinib has been pointed out as a putative downstream key event, but deep studies aimed to unveil metabolic adaptations associated with acquired resistance are still lacking. Here, we perform an exhaustive study on metabolic reprogramming associated with acquired imatinib resistance and we identify metabolic vulnerabilities of CML imatinib resistant cells that could pave the way for new therapies targeting TKI failure. Abstract Tyrosine kinase inhibitors (TKIs) are currently the standard chemotherapeutic agents for the treatment of chronic myeloid leukemia (CML). However, due to TKI resistance acquisition in CML patients, identification of new vulnerabilities is urgently required for a sustained response to therapy. In this study, we have investigated metabolic reprogramming induced by TKIs independent of BCR-ABL1 alterations. Proteomics and metabolomics profiling of imatinib-resistant CML cells (ImaR) was performed. KU812 ImaR cells enhanced pentose phosphate pathway, glycogen synthesis, serine-glycine-one-carbon metabolism, proline synthesis and mitochondrial respiration compared with their respective syngeneic parental counterparts. Moreover, the fact that only 36% of the main carbon sources were utilized for mitochondrial respiration pointed to glycerol-phosphate shuttle as mainly contributors to mitochondrial respiration. In conclusion, CML cells that acquire TKIs resistance present a severe metabolic reprogramming associated with an increase in metabolic plasticity needed to overcome TKI-induced cell death. Moreover, this study unveils that KU812 Parental and ImaR cells viability can be targeted with metabolic inhibitors paving the way to propose novel and promising therapeutic opportunities to overcome TKI resistance in CML.
Collapse
Affiliation(s)
- Miriam G. Contreras Mostazo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedicine of University of Barcelona, 08028 Barcelona, Spain
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (N.K.); (B.H.); (H.S.); (F.S.)
| | - Nina Kurrle
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (N.K.); (B.H.); (H.S.); (F.S.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (H.S.)
- Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany;
| | - Marta Casado
- Biomedicine Institute of Valencia, IBV-CSIC, 46010 Valencia, Spain;
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
| | - Dominik Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Islam Alshamleh
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (H.S.)
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Björn Häupl
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (N.K.); (B.H.); (H.S.); (F.S.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (H.S.)
- Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany;
| | - Paloma Martín-Sanz
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
- “Alberto Sols” Biomedical Research Institute, CSIC-UAM, 28029 Madrid, Spain
| | - Bernhard Brüne
- Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany;
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany;
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt am Main, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (N.K.); (B.H.); (H.S.); (F.S.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (H.S.)
- Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany;
| | - Harald Schwalbe
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (H.S.)
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (N.K.); (B.H.); (H.S.); (F.S.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (H.S.)
- Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany;
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedicine of University of Barcelona, 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
- Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES- ELIXIR), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (S.M.); (M.C.); Tel.: +34-934021217 (S.M.); +34-934021593 (M.C.)
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedicine of University of Barcelona, 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
- Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES- ELIXIR), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (S.M.); (M.C.); Tel.: +34-934021217 (S.M.); +34-934021593 (M.C.)
| |
Collapse
|
25
|
A Nuclear Magnetic Resonance (NMR) Platform for Real-Time Metabolic Monitoring of Bioprocesses. Molecules 2020; 25:molecules25204675. [PMID: 33066296 PMCID: PMC7587382 DOI: 10.3390/molecules25204675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 01/05/2023] Open
Abstract
We present a Nuclear Magnetic Resonance (NMR) compatible platform for the automated real-time monitoring of biochemical reactions using a flow shuttling configuration. This platform requires a working sample volume of ∼11 mL and it can circulate samples with a flow rate of 28 mL/min, which makes it suitable to be used for real-time monitoring of biochemical reactions. Another advantage of the proposed low-cost platform is the high spectral resolution. As a proof of concept, we acquire 1H NMR spectra of waste orange peel, bioprocessed using Trichoderma reesei fungus, and demonstrate the real-time measurement capability of the platform. The measurement is performed over more than 60 h, with a spectrum acquired every 7 min, such that over 510 data points are collected without user intervention. The designed system offers high resolution, automation, low user intervention, and, therefore, time-efficient measurement per sample.
Collapse
|
26
|
Luchinat E, Barbieri L, Campbell TF, Banci L. Real-Time Quantitative In-Cell NMR: Ligand Binding and Protein Oxidation Monitored in Human Cells Using Multivariate Curve Resolution. Anal Chem 2020; 92:9997-10006. [PMID: 32551584 PMCID: PMC7735651 DOI: 10.1021/acs.analchem.0c01677] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
In-cell NMR can investigate
protein conformational changes at atomic
resolution, such as those changes induced by drug binding or chemical
modifications, directly in living human cells, and therefore has great
potential in the context of drug development as it can provide an
early assessment of drug potency. NMR bioreactors can greatly improve
the cell sample stability over time and, more importantly, allow for
recording in-cell NMR data in real time to monitor the evolution of
intracellular processes, thus providing unique insights into the kinetics
of drug-target interactions. However, current implementations are
limited by low cell viability at >24 h times, the reduced sensitivity
compared to “static” experiments and the lack of protocols
for automated and quantitative analysis of large amounts of data.
Here, we report an improved bioreactor design which maintains human
cells alive and metabolically active for up to 72 h, and a semiautomated
workflow for quantitative analysis of real-time in-cell NMR data relying
on Multivariate Curve Resolution. We apply this setup to monitor protein–ligand
interactions and protein oxidation in real time. High-quality concentration
profiles can be obtained from noisy 1D and 2D NMR data with high temporal
resolution, allowing further analysis by fitting with kinetic models.
This unique approach can therefore be applied to investigate complex
kinetic behaviors of macromolecules in a cellular setting, and could
be extended in principle to any real-time NMR application in live
cells.
Collapse
Affiliation(s)
- Enrico Luchinat
- Magnetic Resonance Center - CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy.,Center for Colloids and Surface Science - CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence Italy
| | - Letizia Barbieri
- Magnetic Resonance Center - CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy.,Interuniversity Consortium for Magnetic Resonance of Metalloproteins - CIRMMP, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Timothy F Campbell
- Magnetic Resonance Center - CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Lucia Banci
- Magnetic Resonance Center - CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| |
Collapse
|
27
|
Narasimhan S, Folkers GE, Baldus M. When Small becomes Too Big: Expanding the Use of In‐Cell Solid‐State NMR Spectroscopy. Chempluschem 2020; 85:760-768. [DOI: 10.1002/cplu.202000167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/31/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Siddarth Narasimhan
- NMR Spectroscopy Research Group Bijvoet Center for Biomolecular ResearchUtrecht University Padualaan 8 3584 CH Utrecht (The Netherlands
| | - Gert E. Folkers
- NMR Spectroscopy Research Group Bijvoet Center for Biomolecular ResearchUtrecht University Padualaan 8 3584 CH Utrecht (The Netherlands
| | - Marc Baldus
- NMR Spectroscopy Research Group Bijvoet Center for Biomolecular ResearchUtrecht University Padualaan 8 3584 CH Utrecht (The Netherlands
| |
Collapse
|
28
|
Mateos B, Sealey‐Cardona M, Balazs K, Konrat J, Staffler G, Konrat R. NMR Characterization of Surface Receptor Protein Interactions in Live Cells Using Methylcellulose Hydrogels. Angew Chem Int Ed Engl 2020; 59:3886-3890. [PMID: 31721390 PMCID: PMC7065066 DOI: 10.1002/anie.201913585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/11/2019] [Indexed: 01/29/2023]
Abstract
Interactions of transmembrane receptors with their extracellular ligands are essential for cellular communication and signaling and are therefore a major focus in drug discovery programs. The transition from in vitro to live cell interaction studies, however, is typically a bottleneck in many drug discovery projects due to the challenge of obtaining atomic-resolution information under near-physiological conditions. Although NMR spectroscopy is ideally suited to overcome this limitation, several experimental impairments are still present. Herein, we propose the use of methylcellulose hydrogels to study extracellular proteins and their interactions with plasma membrane receptors. This approach reduces cell sedimentation, prevents the internalization of membrane receptors, and increases cell survival, while retaining the free tumbling of extracellular proteins.
Collapse
Affiliation(s)
- Borja Mateos
- Department of Structural and Computational BiologyMax Perutz LabsVienna Biocenter Campus 51030ViennaAustria
| | - Marco Sealey‐Cardona
- Department of Structural and Computational BiologyMax Perutz LabsVienna Biocenter Campus 51030ViennaAustria
- Present address: Calyxha Biotechnologies GmbHKarl-Farkas-Gasse 221030ViennaAustria
| | | | - Judith Konrat
- Department of Structural and Computational BiologyMax Perutz LabsVienna Biocenter Campus 51030ViennaAustria
| | | | - Robert Konrat
- Department of Structural and Computational BiologyMax Perutz LabsVienna Biocenter Campus 51030ViennaAustria
| |
Collapse
|
29
|
Alshamleh I, Krause N, Richter C, Kurrle N, Serve H, Günther UL, Schwalbe H. Real-Time NMR Spectroscopy for Studying Metabolism. Angew Chem Int Ed Engl 2020; 59:2304-2308. [PMID: 31730253 PMCID: PMC7004128 DOI: 10.1002/anie.201912919] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Current metabolomics approaches utilize cellular metabolite extracts, are destructive, and require high cell numbers. We introduce here an approach that enables the monitoring of cellular metabolism at lower cell numbers by observing the consumption/production of different metabolites over several kinetic data points of up to 48 hours. Our approach does not influence cellular viability, as we optimized the cellular matrix in comparison to other materials used in a variety of in-cell NMR spectroscopy experiments. We are able to monitor real-time metabolism of primary patient cells, which are extremely sensitive to external stress. Measurements are set up in an interleaved manner with short acquisition times (approximately 7 minutes per sample), which allows the monitoring of up to 15 patient samples simultaneously. Further, we implemented our approach for performing tracer-based assays. Our approach will be important not only in the metabolomics fields, but also in individualized diagnostics.
Collapse
Affiliation(s)
- Islam Alshamleh
- Institute of Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Str. 760438FrankfurtGermany
| | - Nina Krause
- Institute of Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Str. 760438FrankfurtGermany
| | - Christian Richter
- Institute of Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Str. 760438FrankfurtGermany
| | - Nina Kurrle
- German Cancer Consortium (DKTK) and DKFZ69120HeidelbergGermany
- Department of Medicine 2, Hematology/OncologyGoethe University60590Frankfurt am MainGermany
- Frankfurt Cancer Institute (FCI)60590Frankfurt am MainGermany
| | - Hubert Serve
- German Cancer Consortium (DKTK) and DKFZ69120HeidelbergGermany
- Department of Medicine 2, Hematology/OncologyGoethe University60590Frankfurt am MainGermany
- Frankfurt Cancer Institute (FCI)60590Frankfurt am MainGermany
| | - Ulrich L. Günther
- Institute of Chemistry and MetabolomicsUniversity of LuebeckRatzeburger Allee 16023562LuebeckGermany
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Str. 760438FrankfurtGermany
| |
Collapse
|