1
|
Liu D, Zhao Y, Zhang J, Wei Z, Liu Y, Wang Y. Bis(benzoselenadiazol)ethane: A π-Extended Acceptor-Dimeric Unit for Ambipolar Polymer Transistors with Hole and Electron Mobilities Exceeding 10 cm 2 V -1 s -1. Angew Chem Int Ed Engl 2024; 63:e202400061. [PMID: 38440917 DOI: 10.1002/anie.202400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/06/2024]
Abstract
The lack of ambipolar polymers with balanced hole (μh) and electron mobilities (μe) >10 cm2 V-1 s-1 is the main bottleneck for developing organic integrated circuits. Herein, we show the design and synthesis of a π-extended selenium-containing acceptor-dimeric unit, namely benzo[c][1,2,5]selenadiazol-4-yl)ethane (BBSeE), to address this dilemma. In comparison to its sulfur-counterpart, BBSeE demonstrates enlarged co-planarity, selective noncovalent interactions, polarized Se-N bond, and higher electron affinity. The successful stannylation of BBSeE offers a great opportunity to access acceptor-acceptor copolymer pN-BBSeE, which shows a narrower band gap, lower-lying lowest unoccupied molecular orbital level (-4.05 eV), and a higher degree of backbone planarity. Consequently, the pN-BBSeE-based organic transistors display an ideally balanced ambipolar transporting property with μh and μe of 10.65 and 10.72 cm2 V-1 s-1, respectively. To the best of our knowledge, the simultaneous μh/μe values >10.0 cm2 V-1 s-1 are the best performances ever reported for ambipolar polymers. In addition, pN-BBSeE shows an excellent shelf-storage stability, retaining over 85 % of the initial mobility values after two months storage. Our study demonstrates the π-extended acceptor-dimeric BBSeE is a promising acceptor building block for constructing high-performance ambipolar polymers applied in next-generation organic integrated circuit.
Collapse
Affiliation(s)
- Di Liu
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
- Laboratory of Advanced Materials, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yinghan Zhao
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| | - Jianqi Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Yang Wang
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| |
Collapse
|
2
|
Yao ZF, Wu HT, Zhuang FD, Zhang PF, Li QY, Wang JY, Pei J. Achieving Ideal and Environmentally Stable n-Type Charge Transport in Polymer Field-Effect Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306010. [PMID: 37884476 DOI: 10.1002/smll.202306010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/15/2023] [Indexed: 10/28/2023]
Abstract
Realizing ideal charge transport in field-effect transistors (FETs) of conjugated polymers is crucial for evaluating device performance, such as carrier mobility and practical applications of conjugated polymers. However, the current FETs using conjugated polymers as the active layers generally show certain non-ideal transport characteristics and poor stability. Here, ideal charge transport of n-type polymer FETs is achieved on flexible polyimide substrates by using an organic-inorganic hybrid double-layer dielectric. Deposited conjugated polymer films show highly ordered structures and low disorder, which are supported by grazing-incidence wide-angle X-ray scattering, near-edge X-ray absorption fine structure, and molecular dynamics simulations. Furthermore, the organic-inorganic hybrid double-layer dielectric provides low interfacial defects, leading to excellent charge transport in FETs with high electron mobility (1.49 ± 0.46 cm2 V-1 s-1) and ideal reliability factors (102 ± 7%). Fabricated polymer FETs show a self-encapsulation effect, resulting in high stability of the FET charge transport. The polymer FETs still work with high mobility above 1 cm2 V-1 s-1 after storage in air for more than 300 days. Compared with state-of-the-art conjugated polymer FETs, this work simultaneously achieves ideal charge transport and environmental stability in n-type polymer FETs, facilitating rapid device optimization of high-performance polymer electronics.
Collapse
Affiliation(s)
- Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hao-Tian Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Fang-Dong Zhuang
- Ningbo Boya Poly Advanced Materials Co. Ltd., Ningbo, 315042, China
| | - Peng-Fei Zhang
- Ningbo Boya Poly Advanced Materials Co. Ltd., Ningbo, 315042, China
| | - Qi-Yi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
3
|
Tu L, Wang J, Wu Z, Li J, Yang W, Liu B, Wu S, Xia X, Wang Y, Woo HY, Shi Y. Cyano-Functionalized Pyrazine: A Structurally Simple and Easily Accessible Electron-Deficient Building Block for n-Type Organic Thermoelectric Polymers. Angew Chem Int Ed Engl 2024; 63:e202319658. [PMID: 38265195 DOI: 10.1002/anie.202319658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/25/2024]
Abstract
Developing low-cost and high-performance n-type polymer semiconductors is essential to accelerate the application of organic thermoelectrics (OTEs). To achieve this objective, it is critical to design strong electron-deficient building blocks with simple structure and easy synthesis, which are essential for the development of n-type polymer semiconductors. Herein, we synthesized two cyano-functionalized highly electron-deficient building blocks, namely 3,6-dibromopyrazine-2-carbonitrile (CNPz) and 3,6-Dibromopyrazine-2,5-dicarbonitrile (DCNPz), which feature simple structures and facile synthesis. CNPz and DCNPz can be obtained via only one-step reaction and three-step reactions from cheap raw materials, respectively. Based on CNPz and DCNPz, two acceptor-acceptor (A-A) polymers, P(DPP-CNPz) and P(DPP-DCNPz) are successfully developed, featuring deep-positioned lowest unoccupied molecular orbital (LUMO) energy levels, which are beneficial to n-type organic thin-film transistors (OTFTs) and OTEs performance. An optimal unipolar electron mobility of 0.85 and 1.85 cm2 V-1 s-1 is obtained for P(DPP-CNPz) and P(DPP-DCNPz), respectively. When doped with N-DMBI, P(DPP-CNPz) and P(DPP-DCNPz) show high n-type electrical conductivities/power factors of 25.3 S cm-1 /41.4 μW m-1 K-2 , and 33.9 S cm-1 /30.4 μW m-1 K-2 , respectively. Hence, the cyano-functionalized pyrazine CNPz and DCNPz represent a new class of structurally simple, low-cost and readily accessible electron-deficient building block for constructing n-type polymer semiconductors.
Collapse
Affiliation(s)
- Lijun Tu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui, 241002, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Korea
| | - Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Wanli Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Siqi Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui, 241002, China
| | - Xiaomin Xia
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui, 241002, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Korea
| | - Yongqiang Shi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui, 241002, China
| |
Collapse
|
4
|
Tan X, Jian J, Zheng X, Zhao J, Huang J. Improving Photovoltaic Performance of All-Polymer Solar Cells by Adding an Amorphous B←N Embedded Polymer as the Third Component. Macromol Rapid Commun 2023; 44:e2300375. [PMID: 37579197 DOI: 10.1002/marc.202300375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/23/2023] [Indexed: 08/16/2023]
Abstract
Currently, most of the disclosed ternary strategies to improve photovoltaic performance of all-polymer solar cells (all-PSCs) commonly focus on the guest polymers having similar structures with the host polymer donors or acceptors. Herein, this work develops a distinctive ternary method that adding an amorphous B←N embedded polymer named BN-Cl-2fT to a crystallized host polymer blend of PM6 (a commercialized polymer donor) and PY-TT (a copolymer of Y6 and thieno[3,2-b]thiophene). Although the structures between BN-Cl-2fT and PM6 and PY-TT are completely different, excellent miscibility is found between BN-Cl-2fT and both of the host PM6 and PY-TT, which can be interpreted by the crowded phenyl groups anchoring along the backbone of BN-Cl-2fT, leading to weak self-aggregation. Glazing incidence wide-angle X-ray diffraction (GIWAXS) measurements explicitly confirm the crystallization of PM6 and PY-TT and amorphous feature of BN-Cl-2fT. Furthermore, adding 10 wt% BN-Cl-2fT to PM6:PY-TT can significantly enhance the crystallization of the host polymers. Thus the ternary devices based on PM6:PY-TT:BN-Cl-2fT afford promote short-circuit current density (JSC , 23.29 vs. 21.80 mA cm-2 ), fill factor (FF, 62.4% vs. 60.0%), and power conversion efficiency (PCE, 13.70% vs. 12.23%) in contrast to these parameters of binary devices based on PM6:PY-TT. This work provides a unique and enlightening avenue to design high performance all-PSCs by adding amorphous B←N embedded polymers as guest component to enhance host-crystallization.
Collapse
Affiliation(s)
- Xueyan Tan
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Junyang Jian
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xueqiong Zheng
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Jinying Zhao
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Jianhua Huang
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
5
|
Yang S, Zhang J, Zhang Z, Zhang R, Ou X, Xu W, Kang M, Li X, Yan D, Kwok RTK, Sun J, Lam JWY, Wang D, Tang BZ. More Is Better: Dual-Acceptor Engineering for Constructing Second Near-Infrared Aggregation-Induced Emission Luminogens to Boost Multimodal Phototheranostics. J Am Chem Soc 2023; 145:22776-22787. [PMID: 37812516 DOI: 10.1021/jacs.3c08627] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The manipulation of electron donor/acceptor (D/A) shows an endless impetus for innovating optical materials. Currently, there is booming development in electron donor design, while research on electron acceptor engineering has received limited attention. Inspired by the philosophical idea of "more is different", two systems with D'-D-A-D-D' (1A system) and D'-D-A-A-D-D' (2A system) structures based on acceptor engineering were designed and studied. It was demonstrated that the 1A system presented a weak aggregation-induced emission (AIE) to aggregation-caused quenching (ACQ) phenomenon, along with the increased acceptor electrophilicity and planarity. In sharp contrast, the 2A system with one more acceptor exhibited an opposite ACQ-to-AIE transformation. Interestingly, the fluorophore with a more electron-deficient A-A moiety in the 2A system displayed superior AIE activity. More importantly, all compounds in the 2A system showed significantly higher molar absorptivity (ε) in comparison to their counterparts in the 1A system. Thanks to the highest ε, near-infrared-II (NIR-II, 1000-1700 nm) emission, desirable AIE property, favorable reactive oxygen species (ROS) generation, and high photothermal conversion efficiency, a representative member of the 2A system handily performed in fluorescence-photoacoustic-photothermal multimodal imaging-guided photodynamic-photothermal collaborative therapy for efficient tumor elimination. Meanwhile, the NIR-II fluorescence imaging of blood vessels and lymph nodes in living mice was also accomplished. This study provides the first evidence that the dual-connected acceptor tactic could be a new molecular design direction for the AIE effect, resulting in high ε, aggregation-intensified NIR-II fluorescence emission, and improved ROS and heat generation capacities of phototheranostic agents.
Collapse
Affiliation(s)
- Shiping Yang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rongyuan Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Xinwen Ou
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Weilin Xu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Miaomiao Kang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xue Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dingyuan Yan
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Ma S, Li B, Gong S, Wang J, Liu B, Young Jeong S, Chen X, Young Woo H, Feng K, Guo X. Biselenophene Imide: Enabling Polymer Acceptor with High Electron Mobility for High-Performance All-Polymer Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202308306. [PMID: 37461155 DOI: 10.1002/anie.202308306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
The shortage of narrow band gap polymer acceptors with high electron mobility is the major bottleneck for developing efficient all-polymer solar cells (all-PSCs). Herein, we synthesize a distannylated electron-deficient biselenophene imide monomer (BSeI-Tin) with high purity/reactivity, affording an excellent chance to access acceptor-acceptor (A-A) type polymer acceptors. Copolymerizing BSeI-Tin with dibrominated monomer Y5-Br, the resulting A-A polymer PY5-BSeI shows a higher molecular weight, narrower band gap, deeper-lying frontier molecular orbital levels and larger electron mobility than the donor-acceptor type counterpart PY5-BSe. Consequently, the PY5-BSeI-based all-PSCs deliver a remarkable efficiency of 17.77 % with a high short-circuit current of 24.93 mA cm-2 and fill factor of 75.83 %. This efficiency is much higher than that (10.70 %) of the PY5-BSe-based devices. Our study demonstrates that BSeI is a promising building block for constructing high-performance polymer acceptors and stannylation of electron-deficient building blocks offers an excellent approach to developing A-A type polymers for all-PSCs and even beyond.
Collapse
Affiliation(s)
- Suxiang Ma
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Bangbang Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Shaokuan Gong
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Seoul, 136-713, South Korea
| | - Xihan Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, South Korea
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
7
|
Chen J, Zhang W, Wang L, Yu G. Recent Research Progress of Organic Small-Molecule Semiconductors with High Electron Mobilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210772. [PMID: 36519670 DOI: 10.1002/adma.202210772] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Organic electronics has made great progress in the past decades, which is inseparable from the innovative development of organic electronic devices and the diversity of organic semiconductor materials. It is worth mentioning that both of these great advances are inextricably linked to the development of organic high-performance semiconductor materials, especially the representative n-type organic small-molecule semiconductor materials with high electron mobilities. The n-type organic small molecules have the advantages of simple synthesis process, strong intermolecular stacking, tunable molecular structure, and easy to functionalize structures. Furthermore, the n-type semiconductor is a remarkable and important component for constructing complementary logic circuits and p-n heterojunction structures. Therefore, n-type organic semiconductors play an extremely important role in the field of organic electronic materials and are the basis for the industrialization of organic electronic functional devices. This review focuses on the modification strategies of organic small molecules with high electron mobility at molecular level, and discusses in detail the applications of n-type small-molecule semiconductor materials with high mobility in organic field-effect transistors, organic light-emitting transistors, organic photodetectors, and gas sensors.
Collapse
Affiliation(s)
- Jiadi Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Qu D, Li L, Qin Y, Liu Y, Li G, Qi T, Liu Y. Synthesis and Derivatization of an Isomerized Bithiophene Imide (iBTI) Acceptor with a Controllably Twisted Backbone. Org Lett 2023; 25:938-943. [PMID: 36739543 DOI: 10.1021/acs.orglett.2c04262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A heptagonal isomerized bithiophene imide (iBTI) acceptor has been effectively synthesized on a gram scale. Its series of β-, α',β-, α,α'-, α,α',β-, and α,α',β,β'-substituted derivatives can be obtained by controlling brominated sites. Single-crystal analyses indicate that the torsion angle of the imide backbone depends on the number and rigidity of β-substituted groups. Furthermore, the helical chirality of tetrasubstituted and [7]helicene-like derivatives based on iBTI shows great promise for the construction of chiral semiconductor materials.
Collapse
Affiliation(s)
- Dunshuai Qu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Linkuo Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yuanyuan Qin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yanwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Guoping Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Qi
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Wang D, Li J, Yang K, Wang Y, Jeong SY, Chen Z, Liao Q, Li B, Woo HY, Deng X, Guo X. Terminal Cyano-Functionalized Fused Bithiophene Imide Dimer-Based n-Type Small Molecular Semiconductors: Synthesis, Structure-Property Correlations, and Thermoelectric Performances. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9714-9725. [PMID: 36753061 DOI: 10.1021/acsami.2c20489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
n-Doped small molecular organic thermoelectric materials (OTMs) hold advantages of high Seebeck coefficient and better performance reproducibility over their polymeric analogues; however, high-performance n-type small molecular OTMs are severely lacking. We report here a class of small molecular OTMs based on terminal cyanation of a bithiophene imide-based ladder-type heteroarene BTI2. It was found that the cyanation could effectively lower the lowest unoccupied molecular orbital (LUMO) level from -2.90 eV (BTI2) to -4.14 eV (BTI2-4CN) and thus lead to significantly improved n-doping efficiency. Additionally, terminal cyano-functionalization can maintain the close packing and efficient intermolecular charge transfer between these cyanated molecules, thus yielding high electron mobilities of up to 0.40 cm2 V-1 s-1. Benefiting from its low LUMO-enabled efficient n-doping and high electron mobility, an encouraging n-type electrical conductivity of 0.43 S cm-1 and power factor (PF) of 6.34 μW m-1 K-2 were achieved for tetracyanated BTI2-4CN, significantly outperforming those of its noncynated BTI2 (<10-7 S cm-1, PF undetectable) and dicyanated BTI2-2CN (0.24 S cm-1, 1.78 μW m-1 K-2). These results suggest the great potential of the terminal cyanation strategy of ladder-type heteroarenes for developing high-performance small molecular OTMs.
Collapse
Affiliation(s)
- Dong Wang
- Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, China
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen 518055, Guangdong, China
| | - Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen 518055, Guangdong, China
| | - Kun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen 518055, Guangdong, China
| | - Sang Young Jeong
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Zhicai Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen 518055, Guangdong, China
| | - Qiaogan Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen 518055, Guangdong, China
| | - Bangbang Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen 518055, Guangdong, China
| | - Han Young Woo
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Xianyu Deng
- Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen 518055, Guangdong, China
| |
Collapse
|
10
|
The marriage of dual-acceptor strategy and C-H activation polymerization: naphthalene diimide-based n-type polymers with adjustable molar mass and decent performance. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Shi Y, Li J, Sun H, Li Y, Wang Y, Wu Z, Jeong SY, Woo HY, Fabiano S, Guo X. Thiazole Imide-Based All-Acceptor Homopolymer with Branched Ethylene Glycol Side Chains for Organic Thermoelectrics. Angew Chem Int Ed Engl 2022; 61:e202214192. [PMID: 36282628 DOI: 10.1002/anie.202214192] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/22/2022]
Abstract
n-Type semiconducting polymers with high thermoelectric performance remain challenging due to the scarcity of molecular design strategy, limiting their applications in organic thermoelectric (OTE) devices. Herein, we provide a new approach to enhance the OTE performance of n-doped polymers by introducing acceptor-acceptor (A-A) type backbone bearing branched ethylene glycol (EG) side chains. When doped with 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine (N-DMBI), the A-A homopolymer PDTzTI-TEG exhibits n-type electrical conductivity (σ) up to 34 S cm-1 and power factor value of 15.7 μW m-1 K-2 . The OTE performance of PDTzTI-TEG is far greater than that of homopolymer PBTI-TEG (σ=0.27 S cm-1 ), indicating that introducing electron-deficient thiazole units in the backbone further improves the n-doping efficiency. These results demonstrate that developing A-A type polymers with EG side chains is an effective strategy to enhance n-type OTE performance.
Collapse
Affiliation(s)
- Yongqiang Shi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Hengda Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.,Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Yongchun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Sang Young Jeong
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| |
Collapse
|
12
|
Chen Y, Wu J, Lu S, Facchetti A, Marks TJ. Semiconducting Copolymers with Naphthalene Imide/Amide π‐Conjugated Units: Synthesis, Crystallography, and Systematic Structure‐Property‐Mobility Correlations. Angew Chem Int Ed Engl 2022; 61:e202208201. [DOI: 10.1002/anie.202208201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yao Chen
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 P. R. China
- Department of Chemistry and the Materials Research Center Northwestern University Evanston IL 60208 USA
| | - Jianglin Wu
- Department of Chemistry and the Materials Research Center Northwestern University Evanston IL 60208 USA
| | - Shirong Lu
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 P. R. China
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center Northwestern University Evanston IL 60208 USA
- Flexterra Corporation Skokie IL 60077 USA
| | - Tobin J. Marks
- Department of Chemistry and the Materials Research Center Northwestern University Evanston IL 60208 USA
| |
Collapse
|
13
|
Efficient All-Polymer Solar Cells Enabled by Interface Engineering. Polymers (Basel) 2022; 14:polym14183835. [PMID: 36145979 PMCID: PMC9505650 DOI: 10.3390/polym14183835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/20/2022] Open
Abstract
All-polymer solar cells (all-PSCs) are organic solar cells in which both the electron donor and the acceptor are polymers and are considered more promising in large-scale production. Thanks to the polymerizing small molecule acceptor strategy, the power conversion efficiency of all-PSCs has ushered in a leap in recent years. However, due to the electrical properties of polymerized small-molecule acceptors (PSMAs), the FF of the devices is generally not high. The typical electron transport material widely used in these devices is PNDIT-F3N, and it is a common strategy to improve the device fill factor (FF) through interface engineering. This work improves the efficiency of all-polymer solar cells through interfacial layer engineering. Using PDINN as the electron transport layer, we boost the FF of the devices from 69.21% to 72.05% and the power conversion efficiency (PCE) from 15.47% to 16.41%. This is the highest efficiency for a PY-IT-based binary all-polymer solar cell. This improvement is demonstrated in different all-polymer material systems.
Collapse
|
14
|
Yao H, Hou J. Recent Advances in Single‐Junction Organic Solar Cells. Angew Chem Int Ed Engl 2022; 61:e202209021. [DOI: 10.1002/anie.202209021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Huifeng Yao
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
15
|
Wang X, Wang Z, Li M, Tu L, Wang K, Xiao D, Guo Q, Zhou M, Wei X, Shi Y, Zhou E. A New Dibenzoquinoxalineimide-Based Wide-Bandgap Polymer Donor for Polymer Solar Cells. Polymers (Basel) 2022; 14:3590. [PMID: 36080665 PMCID: PMC9460915 DOI: 10.3390/polym14173590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
The molecular design of a wide-bandgap polymer donor is critical to achieve high-performance organic photovoltaic devices. Herein, a new dibenzo-fused quinoxalineimide (BPQI) is successfully synthesized as an electron-deficient building block to construct donor-acceptor (D-A)-type polymers, namely P(BPQI-BDT) and P(BPQI-BDTT), using benzodithiophene and its derivative, which bears different side chains, as the copolymerization units. These two polymers are used as a donor, and the narrow bandgap (2,20-((2Z,20Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo [3,4-e]thieno[2,″30':4',50]thieno[20,30:4,5]pyrrolo[3,2g]thieno[20,30:4,5]thieno[3,2-b]indole-2,10 diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) Y6 is used as an acceptor to fabricate bulk heterojunction polymer solar cell devices. Y6, as a non-fullerene receptor (NFA), has excellent electrochemical and optical properties, as well as a high efficiency of over 18%. The device, based on P(BPQI-BDTT):Y6, showed power conversion efficiencies (PCEs) of 6.31% with a JSC of 17.09 mA cm-2, an open-circuit voltage (VOC) of 0.82 V, and an FF of 44.78%. This study demonstrates that dibenzo-fused quinoxalineimide is a promising building block for developing wide-bandgap polymer donors.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zongtao Wang
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Mingwei Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijun Tu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Ke Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Dengping Xiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qiang Guo
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Ming Zhou
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Xianwen Wei
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yongqiang Shi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Erjun Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
16
|
Chen Y, Wu J, Lu S, Facchetti A, Marks TJ. Semiconducting Copolymers with Naphthalene Imide/Amide π‐Conjugated Units: Synthesis, Crystallography, and Systematic Structure−Property−Mobility Correlations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yao Chen
- Chinese Academy of Sciences Chongqing Institute of Green and Intelligent Technology CHINA
| | - Jianglin Wu
- Northwestern University Department of Chemistry and the Materials Research Center UNITED STATES
| | - Shirong Lu
- Chinese Academy of Sciences Chongqing Institute of Green and Intelligent Technology CHINA
| | - Antonio Facchetti
- Northwestern University Department of Chemistry and the Materials Research Center UNITED STATES
| | - Tobin Jay Marks
- Northwestern University Department of Chemistry 2145 Sheridan Rd. 60208-3113 Evanston UNITED STATES
| |
Collapse
|
17
|
Yao H, Hou J. Recent Advances in Single‐Junction Organic Solar Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huifeng Yao
- Institute of Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry 100190 CHINA
| | - Jianhui Hou
- Institute of Chemistry Chinese Academy of Sciences Institute of chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing CHINA
| |
Collapse
|
18
|
Chen J, Yang J, Guo Y, Liu Y. Acceptor Modulation Strategies for Improving the Electron Transport in High-Performance Organic Field-Effect Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104325. [PMID: 34605074 DOI: 10.1002/adma.202104325] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/04/2021] [Indexed: 06/13/2023]
Abstract
High-performance ambipolar and electronic type semiconducting polymers are essential for fabricating various organic optoelectronic devices and complementary circuits. This review summarizes the strategies of improving the electron transport of semiconducting polymers via acceptor modulation strategies, which include the use of single, dual, triple, multiple, and all acceptors as well as the fusion of multiple identical acceptors to obtain new heterocyclic acceptors. To further improve the electron transport of semiconducting polymers, the introduction of strong electron-withdrawing groups can enhance the electron-withdrawing ability of donors and acceptors, thereby facilitating electron injection and suppressing hole accumulation. In addition, the relationships between the molecular structure, frontier molecular orbital energy levels, thin film morphology, microstructure, processing conditions, and device performances are also comprehensively discussed. Finally, the challenges encountered in this research area are proposed and the future outlook is presented.
Collapse
Affiliation(s)
- Jinyang Chen
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Yang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
19
|
Ma S, Zhang H, Feng K, Guo X. Polymer Acceptors for High-Performance All-Polymer Solar Cells. Chemistry 2022; 28:e202200222. [PMID: 35266214 DOI: 10.1002/chem.202200222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 11/11/2022]
Abstract
All-polymer solar cells (all-PSCs) have attracted considerable attention owing to their pronounced advantages of excellent mechanical flexibility/stretchability and greatly enhanced device stability as compared to other types of organic solar cells (OSCs). Thanks to the extensive research efforts dedicated to the development of polymer acceptors, all-PSCs have achieved remarkable improvement of photovoltaic performance, recently. This review summarizes the recent progress of polymer acceptors based on the key electron-deficient building blocks, which include bithiophene imide (BTI) derivatives, boron-nitrogen coordination bond (B←N)-incorporated (hetero)arenes, cyano-functionalized (hetero)arenes, and fused-ring electron acceptors (FREAs). In addition, single-component-based all-PSCs are also briefly discussed. The structure-property correlations of polymer acceptors are elaborated in detail. Finally, we offer our insights into the development of new electron-deficient building blocks with further optimized properties and the polymers built from them for efficient all-PSCs.
Collapse
Affiliation(s)
- Suxiang Ma
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Hao Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China.,Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
20
|
Li Y, Huang W, Zhao D, Wang L, Jiao Z, Huang Q, Wang P, Sun M, Yuan G. Recent Progress in Organic Solar Cells: A Review on Materials from Acceptor to Donor. Molecules 2022; 27:1800. [PMID: 35335164 PMCID: PMC8955087 DOI: 10.3390/molecules27061800] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
In the last few decades, organic solar cells (OSCs) have drawn broad interest owing to their advantages such as being low cost, flexible, semitransparent, non-toxic, and ideal for roll-to-roll large-scale processing. Significant advances have been made in the field of OSCs containing high-performance active layer materials, electrodes, and interlayers, as well as novel device structures. Particularly, the innovation of active layer materials, including novel acceptors and donors, has contributed significantly to the power conversion efficiency (PCE) improvement in OSCs. In this review, high-performance acceptors, containing fullerene derivatives, small molecular, and polymeric non-fullerene acceptors (NFAs), are discussed in detail. Meanwhile, highly efficient donor materials designed for fullerene- and NFA-based OSCs are also presented. Additionally, motivated by the incessant developments of donor and acceptor materials, recent advances in the field of ternary and tandem OSCs are reviewed as well.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guangcai Yuan
- BOE Technology Group Co., Ltd., Beijing 100176, China; (Y.L.); (W.H.); (D.Z.); (L.W.); (Z.J.); (Q.H.); (P.W.); (M.S.)
| |
Collapse
|
21
|
Shi Y, Ma R, Wang X, Liu T, Li Y, Fu S, Yang K, Wang Y, Yu C, Jiao L, Wei X, Fang J, Xue D, Yan H. Influence of Fluorine Substitution on the Photovoltaic Performance of Wide Band Gap Polymer Donors for Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5740-5749. [PMID: 35040622 DOI: 10.1021/acsami.1c23196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The design and development of wide band gap (WBG) polymer donors are critical for achieving high power conversion efficiencies (PCEs) in polymer solar cells. In this work, four WBG polymer donors, Q4, Q5, Q6, and Q7, with different numbers and positions of fluorine substitution (n = 0, 2, 2, and 4, respectively) were prepared, and the effect of fluorination on their photovoltaic performance was systematically investigated. When blended with a small-molecule electron acceptor MeIC, the devices based on Q4, Q5, Q6, and Q7 showed PCEs of 10.34, 11.06, 5.26, and 0.48%, respectively. When coupled with a low band gap polymer acceptor PYIT to fabricate all-polymer solar cells (all-PSCs), while the other three polymers (Q5-Q7) exhibited much lower PCEs in the range of 0.12-6.71%, the Q4 polymer-based all-PSCs showed the highest PCE of 15.06%, comparable to that of the devices fabricated with the star polymer donor PM6 (PCE = 15.00%). Detailed physicochemical and morphological studies revealed that an over-substitution of F in Q7 results in undesired low-lying HOMO levels and phase separation with the acceptors, thus resulting in its inferior PCEs. Moreover, the less F-substitution and controlling of the positions of F-substitution position in Q4 and Q5 can improve the HOMO energy level matching as well as morphologies between these two polymers with the acceptors, which in turn gives rise to higher performances. Clearly, our results indicate that Q4 is a promising donor candidate for high-performance all-PSCs, and the fine-tuning of both the number and positions of F-substitution in the polymer backbone is essential in developing high-performance WBG polymer donors.
Collapse
Affiliation(s)
- Yongqiang Shi
- School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui 241002, China
| | - Ruijie Ma
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Xin Wang
- School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui 241002, China
| | - Tao Liu
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Yongchun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Sheng Fu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Kun Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Yang Wang
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
| | - Changjiang Yu
- School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui 241002, China
| | - Lijuan Jiao
- School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui 241002, China
| | - Xianwen Wei
- School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui 241002, China
| | - Junfeng Fang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Physics and Materials Science, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Dongfeng Xue
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - He Yan
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| |
Collapse
|
22
|
Shanwu L, Chenyujie Z, Yinhao L, Yaru Z, Hanming T, Zongrui W, Yonggang Z. Research Progress in n-type Organic Semiconducting Materials Based on Amides or Imides. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22080380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Transition metal-catalysed molecular n-doping of organic semiconductors. Nature 2021; 599:67-73. [PMID: 34732866 DOI: 10.1038/s41586-021-03942-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/24/2021] [Indexed: 11/08/2022]
Abstract
Chemical doping is a key process for investigating charge transport in organic semiconductors and improving certain (opto)electronic devices1-9. N(electron)-doping is fundamentally more challenging than p(hole)-doping and typically achieves a very low doping efficiency (η) of less than 10%1,10. An efficient molecular n-dopant should simultaneously exhibit a high reducing power and air stability for broad applicability1,5,6,9,11, which is very challenging. Here we show a general concept of catalysed n-doping of organic semiconductors using air-stable precursor-type molecular dopants. Incorporation of a transition metal (for example, Pt, Au, Pd) as vapour-deposited nanoparticles or solution-processable organometallic complexes (for example, Pd2(dba)3) catalyses the reaction, as assessed by experimental and theoretical evidence, enabling greatly increased η in a much shorter doping time and high electrical conductivities (above 100 S cm-1; ref. 12). This methodology has technological implications for realizing improved semiconductor devices and offers a broad exploration space of ternary systems comprising catalysts, molecular dopants and semiconductors, thus opening new opportunities in n-doping research and applications12, 13.
Collapse
|
24
|
Feng K, Guo H, Sun H, Guo X. n-Type Organic and Polymeric Semiconductors Based on Bithiophene Imide Derivatives. Acc Chem Res 2021; 54:3804-3817. [PMID: 34617720 DOI: 10.1021/acs.accounts.1c00381] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ConspectusIn the last three decades, p-type (hole-transporting) organic and polymeric semiconductors have achieved great success in terms of materials diversity and device performance, while the development of n-type (electron-transporting) analogues greatly lags behind, which is limited by the scarcity of highly electron-deficient building blocks with compact geometry and good solubility. However, such n-type semiconductors are essential due to the existence of the p-n junction and a complementary metal oxide semiconductor (CMOS)-like circuit in organic electronic devices. Among various electron-deficient building blocks, imide-functionalized arenes, such as naphthalene diimide (NDI) and perylene diimide (PDI), have been proven to be the most promising ones for developing n-type organic and polymeric semiconductors. Nevertheless, phenyl-based NDI and PDI lead to sizable steric hindrance with neighboring (hetero)arenes and a high degree of backbone distortion in the resultant semiconductors, which greatly limits their microstructural ordering and charge transport. To attenuate the steric hindrance associated with NDI and PDI, a novel imide-functionalized heteroarene, bithiophene imide (BTI), was designed; however, the BTI-based semiconductors suffer from high-lying frontier molecular orbital (FMO) energy levels as a result of their electron-rich thiophene framework and monoimide group, which is detrimental to n-type performance.In this Account, we review a series of BTI derivatives developed via various strategies, including ring fusion, thiazole substitution, fluorination, cyanation, and chalcogen substitution, and elaborate the synthesis routes designed to overcome the synthesis challenges due to their high electron deficiency. After structural optimization, these BTI derivatives can not only retain the advantages of good solubility, a planar backbone, and small steric hindrance inherited from BTI but also have greatly suppressed FMO levels. These novel building blocks enable the construction of a great number of n-type organic and polymeric semiconductors, particularly acceptor-acceptor (or all-acceptor)-type polymers, with remarkable performance in various devices, including electron mobility (μe) of 3.71 cm2 V-1 s-1 in organic thin-film transistors (OTFTs), a power conversion efficiency (PCE) of 15.2% in all-polymer solar cells (all-PSCs), a PCE of 20.8% in inverted perovskite solar cells (PVSCs), electrical conductivity (σ) of 0.34 S cm-1 and a power factor (PF) of 1.52 μW m-1 K-2 in self-doped diradicals, and σ of 23.3 S cm-1 and a PF of ∼10 μW m-1 K-2 in molecularly n-doped polymers, all of which are among the best values in each type of device. The structure-property-device performance correlations of these n-type semiconductors are elucidated. The design strategy and synthesis of these novel BTI derivatives provide important information for developing highly electron-deficient building blocks with optimized physicochemical properties. Finally, we offer our insights into the further development of BTI derivatives and semiconductors built from them.
Collapse
Affiliation(s)
- Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Han Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Huiliang Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| |
Collapse
|
25
|
You H, Lee S, Kim D, Kang H, Lim C, Kim FS, Kim BJ. Effects of the Selective Alkoxy Side Chain Position in Quinoxaline-Based Polymer Acceptors on the Performance of All-Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47817-47825. [PMID: 34590813 DOI: 10.1021/acsami.1c12288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The effects of the position of alkoxy side chains in quinoxaline (Qx)-based polymer acceptors (PAs) on the characteristics of materials and the device parameters of all-polymer solar cells (all-PSCs) are investigated. The alkoxy side chains are selectively located at the meta, para, and both positions in pendant benzenes of Qx units, constructing PAs denoted as P(QxCN-T2)-m, P(QxCN-T2)-p, and P(QxCN-T2), respectively. Among them, P(QxCN-T2)-m exhibits the deepest energy levels owing to the enhanced electron-withdrawing effect of meta-positioned alkoxy chains, which is in contrast to P(QxCN-T2)-p where para-positioned alkoxy chains have an electron-donating property. In addition, the meta-positioned alkoxy chains induce good electron-conducting pathways, while the para-positioned ones significantly interrupt crystallization and intermolecular interactions between the conjugated backbones. Thus, when the PAs are applied to all-PSCs, a power conversion efficiency (PCE) of 5.07% is attained in the device using P(QxCN-T2)-m with efficient exciton dissociation and good electron-transporting ability. On the contrary, the P(QxCN-T2)-p-based counterpart has a PCE of only 1.62%. These results demonstrate that introducing alkoxy side chains at a proper location in the Qx-based PAs is crucial for their application to all-PSCs.
Collapse
Affiliation(s)
- Hoseon You
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seungjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Donguk Kim
- School of Chemical Engineering and Materials Science, Chung-Ang University (CAU), Seoul 06974, Republic of Korea
| | - Hyunbum Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Chulhee Lim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Felix Sunjoo Kim
- School of Chemical Engineering and Materials Science, Chung-Ang University (CAU), Seoul 06974, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
26
|
Pan L, Zhan T, Oh J, Zhang Y, Tang H, Yang M, Li M, Yang C, Liu X, Cai P, Duan C, Huang F, Cao Y. N-Type Quinoidal Polymers Based on Dipyrrolopyrazinedione for Application in All-Polymer Solar Cells. Chemistry 2021; 27:13527-13533. [PMID: 34406681 DOI: 10.1002/chem.202102084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 01/06/2023]
Abstract
Conjugated molecules and polymers with intrinsic quinoidal structure are promising n-type organic semiconductors, which have been reported for application in field-effect transistors and thermoelectric devices. In principle, the molecular and electronic characteristics of quinoidal polymers can also enable their application in organic solar cells. Herein, two quinoidal polymers, named PzDP-T and PzDP-ffT, based on dipyrrolopyrazinedione were synthesized and used as electron acceptors in all-polymer solar cells (all-PSCs). Both PzDP-T and PzDP-ffT showed suitable energy levels and wide light absorption range that extended to the near-infrared region. When combined with the polymer donor PBDB-T, the resulting all-PSCs based on PzDP-T and PzDP-ffT exhibited a power conversion efficiency (PCE) of 1.33 and 2.37 %, respectively. This is the first report on the application of intrinsic quinoidal conjugated polymers in all-PSCs. The photovoltaic performance of the all-PSCs was revealed to be mainly limited by the relatively poor and imbalanced charge transport, considerable charge recombination. Detailed investigations on the structure-performance relationship suggested that synergistic optimization of light absorption, energy levels, and charge transport properties is needed to achieve more successful application of intrinsic quinoidal conjugated polymers in all-PSCs.
Collapse
Affiliation(s)
- Langheng Pan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Tao Zhan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.,School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Jiyeon Oh
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Yue Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Haoran Tang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Mingqun Yang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Mengmeng Li
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Science, Beijing, 100029, P. R. China
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Xi Liu
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, P. R. China
| | - Ping Cai
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Chunhui Duan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
27
|
You H, Kang H, Kim D, Park JS, Lee JW, Lee S, Kim FS, Kim BJ. Cyano-Functionalized Quinoxaline-Based Polymer Acceptors for All-Polymer Solar Cells and Organic Transistors. CHEMSUSCHEM 2021; 14:3520-3527. [PMID: 33655716 DOI: 10.1002/cssc.202100080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Quinoxaline (Qx) derivatives are promising building units for efficient photovoltaic polymers owing to their strong light absorption and high charge-transport abilities, but they have been used exclusively in the construction of polymer donors. Herein, for the first time, Qx-based polymer acceptors (PA s) were developed by introducing electron-withdrawing cyano (CN) groups into the Qx moiety (QxCN). A series of QxCN-based PA s, P(QxCN-T2), P(QxCN-TVT), and P(QxCN-T3), were synthesized by copolymerizing the QxCN unit with bithiophene, (E)-1,2-di(thiophene-2-yl)ethene, and terthiophene, respectively. All of the PA s exhibited unipolar n-type characteristics with organic field-effect transistor (OFET) mobilities of around 10-2 cm2 V-1 s-1 . In space-charge-limited current devices, P(QxCN-T2) and P(QxCN-TVT) exhibited electron mobilities greater than 1.0×10-4 cm2 V-1 s-1 , due to the well-ordered structure with tight π-π stacking. When the PA s were applied in all-polymer solar cells (all-PSCs), the highest performance of 5.32 % was achieved in the P(QxCN-T2)-based device. These results demonstrate the significant potential of Qx-based PA s for high-performance all-PSCs and OFETs.
Collapse
Affiliation(s)
- Hoseon You
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyunbum Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Donguk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jin Su Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seungjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Felix Sunjoo Kim
- School of Chemical Engineering and Materials Science, Chung-Ang University (CAU), Seoul, 06974, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
28
|
Sun H, Liu B, Ma Y, Lee JW, Yang J, Wang J, Li Y, Li B, Feng K, Shi Y, Zhang B, Han D, Meng H, Niu L, Kim BJ, Zheng Q, Guo X. Regioregular Narrow-Bandgap n-Type Polymers with High Electron Mobility Enabling Highly Efficient All-Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102635. [PMID: 34338383 DOI: 10.1002/adma.202102635] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/02/2021] [Indexed: 06/13/2023]
Abstract
Narrow-bandgap n-type polymers with high electron mobility are urgently demanded for the development of all-polymer solar cells (all-PSCs). Here, two regioregular narrow-bandgap polymer acceptors, L15 and MBTI, with two electron-deficient segments are synthesized by copolymerizing two dibrominated fused-ring electron acceptors (FREA) with distannylated aromatic imide, respectively. Taking full advantage of the FREA and the imide, both polymer acceptors show narrow bandgap and high electron mobility. Benefiting from the more extended absorption, better backbone ordering, and higher electron mobility than those of its regiorandom analog, the L15-based all-PSC yields a high power conversion efficiency (PCE) of 15.2% when blended with the polymer donor PM6. More importantly, MBTI incorporating a benzothiophene-core FREA segment shows relatively higher frontier molecular orbital levels than L15, forming a cascade-like energy level alignment with L15 and PM6. Based on this, ternary all-PSCs are designed where MBTI is introduced as a guest into the PM6:L15 host system. Thanks to further optimal blend morphology and more balanced charge transport, the PCE is improved up to 16.2%, which is among the highest values for all-PSCs. The results demonstrate that combining an FREA and an aromatic imide to construct regioregular narrow-bandgap polymer acceptors provides an effective approach to fabricate highly efficient all-PSCs.
Collapse
Affiliation(s)
- Huiliang Sun
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
- School of Advanced Materials, Peking University Shenzhen Graduate School Peking University, Shenzhen, 518055, China
| | - Yunlong Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, China
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jie Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Yongchun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Bangbang Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Yongqiang Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Baohua Zhang
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Dongxue Han
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School Peking University, Shenzhen, 518055, China
| | - Li Niu
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Qingdong Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
29
|
Yang C, An Q, Bai H, Zhi H, Ryu HS, Mahmood A, Zhao X, Zhang S, Woo HY, Wang J. A Synergistic Strategy of Manipulating the Number of Selenophene Units and Dissymmetric Central Core of Small Molecular Acceptors Enables Polymer Solar Cells with 17.5 % Efficiency. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104766] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Can Yang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Qiaoshi An
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Hai‐Rui Bai
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Hong‐Fu Zhi
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Hwa Sook Ryu
- Department of Chemistry Korea University Seoul 136-713 Republic of Korea
| | - Asif Mahmood
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Xin Zhao
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Shaowen Zhang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Han Young Woo
- Department of Chemistry Korea University Seoul 136-713 Republic of Korea
| | - Jin‐Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| |
Collapse
|
30
|
Yang C, An Q, Bai HR, Zhi HF, Ryu HS, Mahmood A, Zhao X, Zhang S, Woo HY, Wang JL. A Synergistic Strategy of Manipulating the Number of Selenophene Units and Dissymmetric Central Core of Small Molecular Acceptors Enables Polymer Solar Cells with 17.5 % Efficiency. Angew Chem Int Ed Engl 2021; 60:19241-19252. [PMID: 34051037 DOI: 10.1002/anie.202104766] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/13/2021] [Indexed: 01/08/2023]
Abstract
A dissymmetric backbone and selenophene substitution on the central core was used for the synthesis of symmetric or dissymmetric A-DA'D-A type non-fullerene small molecular acceptors (NF-SMAs) with different numbers of selenophene. From S-YSS-Cl to A-WSSe-Cl and to S-WSeSe-Cl, a gradually red-shifted absorption and a gradually larger electron mobility and crystallinity in neat thin film was observed. A-WSSe-Cl and S-WSeSe-Cl exhibit stronger and tighter intermolecular π-π stacking interactions, extra S⋅⋅⋅N non-covalent intermolecular interactions from central benzothiadiazole, better ordered 3D interpenetrating charge-transfer networks in comparison with thiophene-based S-YSS-Cl. The dissymmetric A-WSSe-Cl-based device has a PCE of 17.51 %, which is the highest value for selenophene-based NF-SMAs in binary polymer solar cells. The combination of dissymmetric core and precise replacement of selenophene on the central core is effective to improve Jsc and FF without sacrificing Voc .
Collapse
Affiliation(s)
- Can Yang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiaoshi An
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hai-Rui Bai
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong-Fu Zhi
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hwa Sook Ryu
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Asif Mahmood
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xin Zhao
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shaowen Zhang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
31
|
Dong C, Deng S, Meng B, Liu J, Wang L. A Distannylated Monomer of a Strong Electron-Accepting Organoboron Building Block: Enabling Acceptor-Acceptor-Type Conjugated Polymers for n-Type Thermoelectric Applications. Angew Chem Int Ed Engl 2021; 60:16184-16190. [PMID: 33956396 DOI: 10.1002/anie.202105127] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Indexed: 01/20/2023]
Abstract
Acceptor-acceptor (A-A) copolymerization is an effective strategy to develop high-performance n-type conjugated polymers. However, the development of A-A type conjugated polymers is challenging due to the synthetic difficulty. Herein, a distannylated monomer of strong electron-deficient double B←N bridged bipyridine (BNBP) unit is readily synthesized and used to develop A-A type conjugated polymers by Stille polycondensation. The resulting polymers show ultralow LUMO energy levels of -4.4 eV, which is among the lowest value reported for organoboron polymers. After n-doping, the resulting polymers exhibit electric conductivity of 7.8 S cm-1 and power factor of 24.8 μW m-1 K-2 . This performance is among the best for n-type polymer thermoelectric materials. These results demonstrate the great potential of A-A type organoboron polymers for high-performance n-type thermoelectrics.
Collapse
Affiliation(s)
- Changshuai Dong
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Sihui Deng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
32
|
Dong C, Deng S, Meng B, Liu J, Wang L. A Distannylated Monomer of a Strong Electron‐Accepting Organoboron Building Block: Enabling Acceptor–Acceptor‐Type Conjugated Polymers for n‐Type Thermoelectric Applications. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Changshuai Dong
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Sihui Deng
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
33
|
Yang M, Du T, Zhao X, Huang X, Pan L, Pang S, Tang H, Peng Z, Ye L, Deng Y, Sun M, Duan C, Huang F, Cao Y. Low-bandgap conjugated polymers based on benzodipyrrolidone with reliable unipolar electron mobility exceeding 1 cm2 V−1 s−1. Sci China Chem 2021. [DOI: 10.1007/s11426-021-9991-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Zhou Y, Zhang W, Yu G. Recent structural evolution of lactam- and imide-functionalized polymers applied in organic field-effect transistors and organic solar cells. Chem Sci 2021; 12:6844-6878. [PMID: 34123315 PMCID: PMC8153080 DOI: 10.1039/d1sc01711j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/21/2021] [Indexed: 11/21/2022] Open
Abstract
Organic semiconductor materials, especially donor-acceptor (D-A) polymers, have been increasingly applied in organic optoelectronic devices, such as organic field-effect transistors (OFETs) and organic solar cells (OSCs). Plenty of high-performance OFETs and OSCs have been achieved based on varieties of structurally modified D-A polymers. As the basic building block of D-A polymers, acceptor moieties have drawn much attention. Among the numerous types, lactam- and imide-functionalized electron-deficient building blocks have been widely investigated. In this review, the structural evolution of lactam- or imide-containing acceptors (for instance, diketopyrrolopyrrole, isoindigo, naphthalene diimide, and perylene diimide) is covered and their representative polymers applied in OFETs and OSCs are also discussed, with a focus on the effect of varied structurally modified acceptor moieties on the physicochemical and photoelectrical properties of polymers. Additionally, this review discusses the current issues that need to be settled down and the further development of new types of acceptors. It is hoped that this review could help design new electron-deficient building blocks, find a more valid method to modify already reported acceptor units, and achieve high-performance semiconductor materials eventually.
Collapse
Affiliation(s)
- Yankai Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
35
|
Kafourou P, Park B, Luke J, Tan L, Panidi J, Glöcklhofer F, Kim J, Anthopoulos TD, Kim J, Lee K, Kwon S, Heeney M. One‐Step Sixfold Cyanation of Benzothiadiazole Acceptor Units for Air‐Stable High‐Performance n‐Type Organic Field‐Effect Transistors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Panagiota Kafourou
- Department of Chemistry and Centre for Processable Electronics Imperial College London London W12 0BZ UK
| | - Byoungwook Park
- Heeger Center for Advanced Materials and Research Institute for Solar and Sustainable Energies Gwangju Institute of Science and Technology Gwangju Republic of Korea
| | - Joel Luke
- Department of Physics and Centre for Processable Electronics Imperial College London London SW7 2AZ UK
| | - Luxi Tan
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 401331 China
| | - Julianna Panidi
- Department of Physics and Centre for Processable Electronics Imperial College London London SW7 2AZ UK
| | - Florian Glöcklhofer
- Department of Chemistry and Centre for Processable Electronics Imperial College London London W12 0BZ UK
| | - Jehan Kim
- Pohang Accelerator Laboratory Pohang University of Science and Technology Pohang Republic of Korea
| | - Thomas D. Anthopoulos
- Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) KAUST Solar Centre Thuwal 23955-6900 Saudi Arabia
| | - Ji‐Seon Kim
- Department of Physics and Centre for Processable Electronics Imperial College London London SW7 2AZ UK
| | - Kwanghee Lee
- Heeger Center for Advanced Materials and Research Institute for Solar and Sustainable Energies Gwangju Institute of Science and Technology Gwangju Republic of Korea
| | - Sooncheol Kwon
- Heeger Center for Advanced Materials and Research Institute for Solar and Sustainable Energies Gwangju Institute of Science and Technology Gwangju Republic of Korea
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics Imperial College London London W12 0BZ UK
| |
Collapse
|
36
|
Kafourou P, Park B, Luke J, Tan L, Panidi J, Glöcklhofer F, Kim J, Anthopoulos TD, Kim JS, Lee K, Kwon S, Heeney M. One-Step Sixfold Cyanation of Benzothiadiazole Acceptor Units for Air-Stable High-Performance n-Type Organic Field-Effect Transistors. Angew Chem Int Ed Engl 2021; 60:5970-5977. [PMID: 33315288 PMCID: PMC7986693 DOI: 10.1002/anie.202013625] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/11/2020] [Indexed: 11/22/2022]
Abstract
Reported here is a new high electron affinity acceptor end group for organic semiconductors, 2,1,3‐benzothiadiazole‐4,5,6‐tricarbonitrile (TCNBT). An n‐type organic semiconductor with an indacenodithiophene (IDT) core and TCNBT end groups was synthesized by a sixfold nucleophilic substitution with cyanide on a fluorinated precursor, itself prepared by a direct arylation approach. This one‐step chemical modification significantly impacted the molecular properties: the fluorinated precursor, TFBT IDT, a poor ambipolar semiconductor, was converted into TCNBT IDT, a good n‐type semiconductor. The electron‐deficient end group TCNBT dramatically decreased the energy of the highest occupied and lowest unoccupied molecular orbitals (HOMO/LUMO) compared to the fluorinated analogue and improved the molecular orientation when utilized in n‐type organic field‐effect transistors (OFETs). Solution‐processed OFETs based on TCNBT IDT exhibited a charge‐carrier mobility of up to μe≈0.15 cm2 V−1 s−1 with excellent ambient stability for 100 hours, highlighting the benefits of the cyanated end group and the synthetic approach.
Collapse
Affiliation(s)
- Panagiota Kafourou
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Byoungwook Park
- Heeger Center for Advanced Materials and Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Joel Luke
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Julianna Panidi
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Florian Glöcklhofer
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Jehan Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Thomas D Anthopoulos
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre, Thuwal, 23955-6900, Saudi Arabia
| | - Ji-Seon Kim
- Department of Physics and Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Kwanghee Lee
- Heeger Center for Advanced Materials and Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sooncheol Kwon
- Heeger Center for Advanced Materials and Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| |
Collapse
|
37
|
Feng K, Guo H, Wang J, Shi Y, Wu Z, Su M, Zhang X, Son JH, Woo HY, Guo X. Cyano-Functionalized Bithiophene Imide-Based n-Type Polymer Semiconductors: Synthesis, Structure-Property Correlations, and Thermoelectric Performance. J Am Chem Soc 2021; 143:1539-1552. [PMID: 33445867 DOI: 10.1021/jacs.0c11608] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
n-Type polymers with deep-positioned lowest unoccupied molecular orbital (LUMO) energy levels are essential for enabling n-type organic thin-film transistors (OTFTs) with high stability and n-type organic thermoelectrics (OTEs) with high doping efficiency and promising thermoelectric performance. Bithiophene imide (BTI) and its derivatives have been demonstrated as promising acceptor units for constructing high-performance n-type polymers. However, the electron-rich thiophene moiety in BTI leads to elevated LUMOs for the resultant polymers and hence limits their n-type performance and intrinsic stability. Herein, we addressed this issue by introducing strong electron-withdrawing cyano functionality on BTI and its derivatives. We have successfully overcome the synthetic challenges and developed a series of novel acceptor building blocks, CNI, CNTI, and CNDTI, which show substantially higher electron deficiencies than does BTI. On the basis of these novel building blocks, acceptor-acceptor type homopolymers and copolymers were successfully synthesized and featured greatly suppressed LUMOs (-3.64 to -4.11 eV) versus that (-3.48 eV) of the control polymer PBTI. Their deep-positioned LUMOs resulted in improved stability in OTFTs and more efficient n-doping in OTEs for the corresponding polymers with a highest electrical conductivity of 23.3 S cm-1 and a power factor of ∼10 μW m-1 K-2. The conductivity and power factor are among the highest values reported for solution-processed molecularly n-doped polymers. The new CNI, CNTI, and CNDTI offer a remarkable platform for constructing n-type polymers, and this study demonstrates that cyano-functionalization of BTI is a very effective strategy for developing polymers with deep-lying LUMOs for high-performance n-type organic electronic devices.
Collapse
Affiliation(s)
- Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Han Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Yongqiang Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Ziang Wu
- Department of Chemistry, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, South Korea
| | - Mengyao Su
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Xianhe Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Jae Hoon Son
- Department of Chemistry, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, South Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, South Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| |
Collapse
|
38
|
Luo Z, Liu T, Ma R, Xiao Y, Zhan L, Zhang G, Sun H, Ni F, Chai G, Wang J, Zhong C, Zou Y, Guo X, Lu X, Chen H, Yan H, Yang C. Precisely Controlling the Position of Bromine on the End Group Enables Well-Regular Polymer Acceptors for All-Polymer Solar Cells with Efficiencies over 15. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2005942. [PMID: 33118246 DOI: 10.1002/adma.202005942] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Recent advances in the development of polymerized A-D-A-type small-molecule acceptors (SMAs) have promoted the power conversion efficiency (PCE) of all-polymer solar cells (all-PSCs) over 13%. However, the monomer of an SMA typically consists of a mixture of three isomers due to the regio-isomeric brominated end groups (IC-Br(in) and IC-Br(out)). In this work, the two isomeric end groups are successfully separated, the regioisomeric issue is solved, and three polymer acceptors, named PY-IT, PY-OT, and PY-IOT, are developed, where PY-IOT is a random terpolymer with the same ratio of the two acceptors. Interestingly, from PY-OT, PY-IOT to PY-IT, the absorption edge gradually redshifts and electron mobility progressively increases. Theory calculation indicates that the LUMOs are distributed on the entire molecular backbone of PY-IT, contributing to the enhanced electron transport. Consequently, the PM6:PY-IT system achieves an excellent PCE of 15.05%, significantly higher than those for PY-OT (10.04%) and PY-IOT (12.12%). Morphological and device characterization reveals that the highest PCE for the PY-IT-based device is the fruit of enhanced absorption, more balanced charge transport, and favorable morphology. This work demonstrates that the site of polymerization on SMAs strongly affects device performance, offering insights into the development of efficient polymer acceptors for all-PSCs.
Collapse
Affiliation(s)
- Zhenghui Luo
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Tao Liu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Ruijie Ma
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Yiqun Xiao
- Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong, 999077, P. R. China
| | - Lingling Zhan
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular, Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Guangye Zhang
- eFlexPV Limited (China), Plant B701, Guofu Cultural Creative Industry Plant Area, No. 16, Lanjing Middle Road, Zhukeng Community, Longtian Street, Pingshan District, Shenzhen, 518057, P. R. China
- eFlexPV Limited, Flat/RM B, 12/F, Hang Seng Causeway Bay BLDG, 28 Yee Wo Street, Causeway Bay, Hong Kong, 999077, P. R. China
| | - Huiliang Sun
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, P. R. China
| | - Fan Ni
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaoda Chai
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Junwei Wang
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, P. R. China
| | - Cheng Zhong
- Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Yang Zou
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xugang Guo
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, P. R. China
| | - Xinhui Lu
- Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong, 999077, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular, Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
39
|
Liao M, Duan J, Peng P, Zhang J, Zhou M. Progress in the synthesis of imide-based N-type polymer semiconductor materials. RSC Adv 2020; 10:41764-41779. [PMID: 35516572 PMCID: PMC9057848 DOI: 10.1039/d0ra04972g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/17/2020] [Indexed: 11/26/2022] Open
Abstract
Based on the development situation and challenge of organic photovoltaics (OPVs) and organic field-effect transistors (OFETs), it is necessary to develop N-type polymer building blocks with specific structures and performance. After decades of development, some excellent polymer receptor building blocks have been developed to construct N-type organic semiconductors, which have been applied in OFETs and OPVs. In this paper, four kinds of imide (bisthiophene imide BTI, bisthiazolimide BTz, naphthalimide NDI, and perylene imide PDI)-based N-type polymer semiconductor materials are introduced, and their applications in OFETs and OPVs are analyzed, too. The molecular structure design and the performance of corresponding materials are summarized to provide further guidance and reference for the design and development of high performance N-type polymer semiconductors.
Collapse
Affiliation(s)
- Mao Liao
- School of New Energy and Material, Southwest Petroleum University No. 8 Xindu Avenue, Xindu District Chengdu Sichuan 610500 People's Republic of China +8613880947076
| | - Jieming Duan
- School of New Energy and Material, Southwest Petroleum University No. 8 Xindu Avenue, Xindu District Chengdu Sichuan 610500 People's Republic of China +8613880947076
- CNBM (Chengdu) Optoelectronic Materials Co., Ltd. No. 558, 2nd Airport Road, Shuangliu District Chengdu Sichuan 610207 People's Republic of China
| | - Peng'ao Peng
- School of New Energy and Material, Southwest Petroleum University No. 8 Xindu Avenue, Xindu District Chengdu Sichuan 610500 People's Republic of China +8613880947076
| | - Jingfeng Zhang
- School of New Energy and Material, Southwest Petroleum University No. 8 Xindu Avenue, Xindu District Chengdu Sichuan 610500 People's Republic of China +8613880947076
| | - Ming Zhou
- School of New Energy and Material, Southwest Petroleum University No. 8 Xindu Avenue, Xindu District Chengdu Sichuan 610500 People's Republic of China +8613880947076
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University No. 8 Xindu Avenue, Xindu District Chengdu Sichuan 610500 People's Republic of China
| |
Collapse
|
40
|
Reducing energy loss via tuning energy levels of polymer acceptors for efficient all-polymer solar cells. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9826-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|