1
|
Zhao ZH, Jiang R, Niu H, Wang M, Wang J, Du Y, Tian Y, Yuan M, Zhang G, Lu Z. Clusters induced electronic delocalization of single atom sites toward efficient electrocatalytic urea synthesis from CO 2 and N 2. J Colloid Interface Sci 2025; 682:222-231. [PMID: 39616652 DOI: 10.1016/j.jcis.2024.11.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/15/2025]
Abstract
Electrocatalytic conversion of CO2 and N2 into urea product is highly envisaged, whereas symmetrical electronic architecture of inert reactant severely prevents their adsorption and activation and further entail extremely low intrinsic activity. Herein, a novel electrocatalyst consisting of Co clusters and CoN3 single-atoms dispersed on a carbon matrix is demonstrated to achieve the highest recorded urea yield rate of 20.83 mmol h-1 g-1 and Faradaic efficiency (FE) of 23.73 % at -0.4 V vs. RHE. Detailed investigations reveal that the concerted interplay between Co atomic clusters (CoAC) and plane-asymmetric Co-N3 single atom sites in CoN3-CoAC/NC specimen readily induced the unique electron delocalization effects and further prompted the orbital spin state of Co sites evolved from 3d74s1 to 3d84s0, which optimized the adsorption configuration of the reactants, polarized the gas molecules through interaction with the bonding and antibonding orbitals of the optimized catalysts and eventually lowered the CN coupling barriers to produce the desired urea product.
Collapse
Affiliation(s)
- Zhi-Hao Zhao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ruyi Jiang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology and Department of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Queen Mary University of London Engineering School, Northwestern Polytechnical University, 710129 Xi'an, China
| | - Hexu Niu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology and Department of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Queen Mary University of London Engineering School, Northwestern Polytechnical University, 710129 Xi'an, China
| | - Meng Wang
- School of Materials Engineering, Xi'an Aeronautical University, Xi'an 710077, China
| | - Jingnan Wang
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Yu Du
- SINOPEC Research Institute of Safety Engineering Co., Ltd, State Key Laboratory of Chemical Safety, Qingdao 266104, China
| | - Yajie Tian
- School of Energy Science and Technology, Henan University, Zhengzhou, 450046, China
| | - Menglei Yuan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Guangjin Zhang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zongjing Lu
- Institute of Photochemistry and Photofunctional Materials, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
2
|
Monti NBD, Zeng J, Castellino M, Porro S, Bagheri M, Pirri CF, Chiodoni A, Bejtka K. Effects of Annealing Conditions on the Catalytic Performance of Anodized Tin Oxide for Electrochemical Carbon Dioxide Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:121. [PMID: 39852736 PMCID: PMC11767452 DOI: 10.3390/nano15020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
The electrochemical reduction of CO2 (CO2RR) to value-added products has garnered significant interest as a sustainable solution to mitigate CO2 emissions and harness renewable energy sources. Among CO2RR products, formic acid/formate (HCOOH/HCOO-) is particularly attractive due to its industrial relevance, high energy density, and potential candidate as a liquid hydrogen carrier. This study investigates the influence of the initial oxidation state of tin on CO2RR performance using nanostructured SnOx catalysts. A simple, quick, scalable, and cost-effective synthesis strategy was employed to fabricate SnOx catalysts with controlled oxidation states while maintaining consistent morphology and particle size. The catalysts were characterized using SEM, TEM, XRD, Raman, and XPS to correlate structure and surface properties with catalytic performance. Electrochemical measurements revealed that SnOx catalysts annealed in air at 525 °C exhibited the highest formate selectivity and current density, attributed to the optimized oxidation state and the presence of oxygen vacancies. Flow cell tests further demonstrated enhanced performance under practical conditions, achieving stable formate production with high faradaic efficiency over prolonged operation. These findings highlight the critical role of tin oxidation states and surface defects in tuning CO2RR performance, offering valuable insights for the design of efficient catalysts for CO2 electroreduction to formate.
Collapse
Affiliation(s)
- Nicolò B. D. Monti
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Juqin Zeng
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Micaela Castellino
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Samuele Porro
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Mitra Bagheri
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Candido F. Pirri
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Angelica Chiodoni
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
| | - Katarzyna Bejtka
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
3
|
Patra S, Dinda S, Ghosh S, Roy T, Dey A. Synthesis of ethane from CO 2 by a methyl transferase-inspired molecular catalyst. Proc Natl Acad Sci U S A 2025; 122:e2417764122. [PMID: 39772746 PMCID: PMC11745356 DOI: 10.1073/pnas.2417764122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Molecular catalysts with a single metal center are reported to reduce CO2 to a wide range of valuable single-carbon products like CO, HCOOH, CH3OH, etc. However, these catalysts cannot reduce CO2 to two carbon products like ethane or ethylene and the ability to form C-C from CO2 remains mostly limited to heterogeneous material-based catalysts. We report a set of simple iron porphyrins with pendant thiol group can catalyze the reduction of CO2 to ethane (C2H6) with H2O as the proton source with a Faradaic yield >40% the rest being CO. The mechanism involves a CO2-derived methyl group transfer to the pendant thiol akin to the proposal forwarded for methyl transferases and a follow-up C-C bond formation of the thioether thus formed and a Fe(II)-CH3 species generated by the reduction of a second molecule of CO2. The availability of a "parking space" in the molecular framework for the first reduced C1 product from CO2 reduction allows C-C bond formation resulting in a unique case where a component of natural gas can be generated from direct electrochemical reduction of CO2.
Collapse
Affiliation(s)
- Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, WB700032, India
| | - Souvik Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, WB700032, India
| | - Soumili Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, WB700032, India
| | - Triparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, WB700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, WB700032, India
| |
Collapse
|
4
|
Zhu X, Ge M, Yuan X, Wang Y, Tang Y. Rational Linker Design for Enhanced Performance of MOF-Derived Catalysts in Electrochemical Urea Synthesis. SMALL METHODS 2025; 9:e2400604. [PMID: 39279575 DOI: 10.1002/smtd.202400604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/28/2024] [Indexed: 09/18/2024]
Abstract
2D metal-organic frameworks (2D MOFs) offer promising electrocatalytic potential for urea synthesis, yet the underlying reaction mechanisms and structure-activity relationships remain unclear. Using Cu-BDC as a model, density functional theory (DFT) calculations to elucidate these aspects are conducted. The results reveal a novel coupling mechanism involving *NO─CO and *NO─*ONCO, emphasizing the impact of linker modifications on Cu spin states and charge distribution. Notably, Cu-BDC-NH2 and Cu─BDC─OH emerge as promising catalysts. Additionally, structure-activity relationships through descriptors like d-band center, IE ratio, and L(Cu─O), providing insights for rational catalyst design is established. These findings pave the way for optimized catalysts and sustainable urea production, opening avenues for future research and technological advancements.
Collapse
Affiliation(s)
- Xiaorong Zhu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Ming Ge
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Xiaolei Yuan
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Yijin Wang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Yanfeng Tang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| |
Collapse
|
5
|
Heng JM, Zhu HL, Zhao ZH, Liao PQ, Chen XM. Fabrication of Ultrahigh-Loading Dual Copper Sites in Nitrogen-Doped Porous Carbons Boosting Electroreduction of CO 2 to C 2H 4 Under Neutral Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415101. [PMID: 39548939 DOI: 10.1002/adma.202415101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Indexed: 11/18/2024]
Abstract
Synthesis of high-loading atomic-level dispersed catalysts for highly efficient electrochemical CO2 reduction reaction (eCO2RR) to ethylene (C2H4) in neutral electrolyte remain challenging tasks. To address common aggregation issues, a host-guest strategy is employed, by using a metal-azolate framework (MAF-4) with nanocages as the host and a dinuclear Cu(I) complex as the guest, to form precursors for pyrolysis into a series of nitrogen-doped porous carbons (NPCs) with varying loadings of dual copper sites, namely NPCMAF-4-Cu2-21 (21.2 wt%), NPCMAF-4-Cu2-11 (10.6 wt%), and NPCMAF-4-Cu2-7 (6.9 wt%). Interestingly, as the loading of dual copper sites increased from 6.9 to 21.2 wt%, the partial current density for eCO2RR to yield C2H4 also gradually increased from 38.7 to 93.6 mA cm-2. In a 0.1 m KHCO3 electrolyte, at -1.4 V versus reversible hydrogen electrode (vs. RHE), NPCMAF-4-Cu2-21 exhibits the excellent performance with a Faradaic efficiency of 52% and a current density of 180 mA cm-2. Such performance can be attributed to the presence of ultrahigh-loading dual copper sites, which promotes C─C coupling and the formation of C2 products. The findings demonstrate the confinement effect of MAF-4 with nanocages is conducive to the preparation of high-loading atomic-level catalysts.
Collapse
Affiliation(s)
- Jin-Meng Heng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhen-Hua Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| |
Collapse
|
6
|
Kim JY, Hong WT, Phu TKC, Cho SC, Kim B, Baeck U, Oh H, Koh JH, Yu X, Choi CH, Park J, Lee SU, Chung C, Kim JK. Proton-Coupled Electron Transfer on Cu 2O/Ti 3C 2T x MXene for Propane (C 3H 8) Synthesis from Electrochemical CO 2 Reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405154. [PMID: 39159072 PMCID: PMC11497005 DOI: 10.1002/advs.202405154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) to produce value-added multi-carbon chemicals has been an appealing approach to achieving environmentally friendly carbon neutrality in recent years. Despite extensive research focusing on the use of CO2 to produce high-value chemicals like high-energy-density hydrocarbons, there have been few reports on the production of propane (C3H8), which requires carbon chain elongation and protonation. A rationally designed 0D/2D hybrid Cu2O anchored-Ti3C2Tx MXene catalyst (Cu2O/MXene) is demonstrated with efficient CO2RR activity in an aqueous electrolyte to produce C3H8. As a result, a significantly high Faradaic efficiency (FE) of 3.3% is achieved for the synthesis of C3H8 via the CO2RR with Cu2O/MXene, which is ≈26 times higher than that of Cu/MXene prepared by the same hydrothermal process without NH4OH solution. Based on in-situ attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and density functional theory (DFT) calculations, it is proposed that the significant electrocatalytic conversion originated from the synergistic behavior of the Cu2O nanoparticles, which bound the *C2 intermediates, and the MXene that bound the *CO coupling to the C3 intermediate. The results disclose that the rationally designed MXene-based hybrid catalyst facilitates multi-carbon coupling as well as protonation, thereby manipulating the CO2RR pathway.
Collapse
Affiliation(s)
- Jun Young Kim
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Won Tae Hong
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Thi Kim Cuong Phu
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Seong Chan Cho
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Byeongkyu Kim
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Unbeom Baeck
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Hyung‐Suk Oh
- Clean Energy Research CenterKorea Institute of Science and Technology (KIST)Hwarang‐ro 14‐gil 5, Seongbuk‐guSeoul02792Republic of Korea
| | - Jai Hyun Koh
- Clean Energy Research CenterKorea Institute of Science and Technology (KIST)Hwarang‐ro 14‐gil 5, Seongbuk‐guSeoul02792Republic of Korea
| | - Xu Yu
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002P. R. China
| | - Chang Hyuck Choi
- Department of ChemistryPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- Institute of Convergence Research and Education in Advanced Technology (I‐CREATE)Yonsei UniversitySeoul03722Republic of Korea
| | - Jongwook Park
- Integrated EngineeringDepartment of Chemical EngineeringKyung Hee UniversityGyeonggi17104South Korea
| | - Sang Uck Lee
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Chan‐Hwa Chung
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Jung Kyu Kim
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT)Sungkyunkwan University2066 Seobu‐roSuwon16419Republic of Korea
| |
Collapse
|
7
|
Chen H, Mo P, Zhu J, Xu X, Cheng Z, Yang F, Xu Z, Liu J, Wang L. Anionic Coordination Control in Building Cu-Based Electrocatalytic Materials for CO 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400661. [PMID: 38597688 DOI: 10.1002/smll.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Renewable energy-driven conversion of CO2 to value-added fuels and chemicals via electrochemical CO2 reduction reaction (CO2RR) technology is regarded as a promising strategy with substantial environmental and economic benefits to achieve carbon neutrality. Because of its sluggish kinetics and complex reaction paths, developing robust catalytic materials with exceptional selectivity to the targeted products is one of the core issues, especially for extensively concerned Cu-based materials. Manipulating Cu species by anionic coordination is identified as an effective way to improve electrocatalytic performance, in terms of modulating active sites and regulating structural reconstruction. This review elaborates on recent discoveries and progress of Cu-based CO2RR catalytic materials enhanced by anionic coordination control, regarding reaction paths, functional mechanisms, and roles of different non-metallic anions in catalysis. Finally, the review concludes with some personal insights and provides challenges and perspectives on the utilization of this strategy to build desirable electrocatalysts.
Collapse
Affiliation(s)
- Hanxia Chen
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Pengpeng Mo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Junpeng Zhu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Xiaoxue Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhixiang Cheng
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Feng Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhongfei Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Juzhe Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| |
Collapse
|
8
|
Jiang M, Wang H, Zhu M, Luo X, He Y, Wang M, Wu C, Zhang L, Li X, Liao X, Jiang Z, Jin Z. Review on strategies for improving the added value and expanding the scope of CO 2 electroreduction products. Chem Soc Rev 2024; 53:5149-5189. [PMID: 38566609 DOI: 10.1039/d3cs00857f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The electrochemical reduction of CO2 into value-added chemicals has been explored as a promising solution to realize carbon neutrality and inhibit global warming. This involves utilizing the electrochemical CO2 reduction reaction (CO2RR) to produce a variety of single-carbon (C1) and multi-carbon (C2+) products. Additionally, the electrolyte solution in the CO2RR system can be enriched with nitrogen sources (such as NO3-, NO2-, N2, or NO) to enable the synthesis of organonitrogen compounds via C-N coupling reactions. However, the electrochemical conversion of CO2 into valuable chemicals still faces challenges in terms of low product yield, poor faradaic efficiency (FE), and unclear understanding of the reaction mechanism. This review summarizes the promising strategies aimed at achieving selective production of diverse carbon-containing products, including CO, formate, hydrocarbons, alcohols, and organonitrogen compounds. These approaches involve the rational design of electrocatalysts and the construction of coupled electrocatalytic reaction systems. Moreover, this review presents the underlying reaction mechanisms, identifies the existing challenges, and highlights the prospects of the electrosynthesis processes. The aim is to offer valuable insights and guidance for future research on the electrocatalytic conversion of CO2 into carbon-containing products of enhanced value-added potential.
Collapse
Affiliation(s)
- Minghang Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Huaizhu Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Mengfei Zhu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Xiaojun Luo
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Yi He
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Mengjun Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Caijun Wu
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Liyun Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Xiao Li
- College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi, 537000, China.
| | - Xuemei Liao
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhenju Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
9
|
Wang Y, Liu Y, Cao P, Chen S, Su Y, Quan X. Promoting CO 2 Electroreduction to Ethane by Iodide-Derived Copper with the Hydrophobic Surface. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38604119 DOI: 10.1021/acsami.4c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Electrochemical reduction of CO2 to value-added products provides a feasible pathway for mitigating net carbon emissions and storing renewable energy. However, the low dimerization efficiency of the absorbed CO intermediate (*CO) and the competitive hydrogen evolution reaction hinder the selective electroreduction of CO2 to ethane (C2H6) with a high energy density. Here, we designed hydrophobic iodide-derived copper electrodes (I-Cu/Nafion) for reducing CO2 to C2H6. The Faradaic efficiency of C2H6 reached 23.37% at -0.7 V vs RHE over the I-Cu/Nafion electrode in an H-type cell, which was about 1.7 times higher than that of the I-Cu electrode. The hydrophobic properties of the I-Cu/Nafion electrodes led to an increase in the local CO2 concentration and stabilized the Cu+ species. In situ Raman characterizations and density functional theory calculations indicate that the enhanced performances could be ascribed to the strong *CO adsorption and decreased the formation energy of *COOH and *COCOH intermediates. This study highlights the effect of the hydrophobic surface on Cu-based catalysts in the electroreduction of CO2 and provides a promising way to adjust the selectivity of C2 products.
Collapse
Affiliation(s)
- Yaqi Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Peike Cao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
10
|
Guo L, Zhou J, Liu F, Meng X, Ma Y, Hao F, Xiong Y, Fan Z. Electronic Structure Design of Transition Metal-Based Catalysts for Electrochemical Carbon Dioxide Reduction. ACS NANO 2024; 18:9823-9851. [PMID: 38546130 DOI: 10.1021/acsnano.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
With the increasingly serious greenhouse effect, the electrochemical carbon dioxide reduction reaction (CO2RR) has garnered widespread attention as it is capable of leveraging renewable energy to convert CO2 into value-added chemicals and fuels. However, the performance of CO2RR can hardly meet expectations because of the diverse intermediates and complicated reaction processes, necessitating the exploitation of highly efficient catalysts. In recent years, with advanced characterization technologies and theoretical simulations, the exploration of catalytic mechanisms has gradually deepened into the electronic structure of catalysts and their interactions with intermediates, which serve as a bridge to facilitate the deeper comprehension of structure-performance relationships. Transition metal-based catalysts (TMCs), extensively applied in electrochemical CO2RR, demonstrate substantial potential for further electronic structure modulation, given their abundance of d electrons. Herein, we discuss the representative feasible strategies to modulate the electronic structure of catalysts, including doping, vacancy, alloying, heterostructure, strain, and phase engineering. These approaches profoundly alter the inherent properties of TMCs and their interaction with intermediates, thereby greatly affecting the reaction rate and pathway of CO2RR. It is believed that the rational electronic structure design and modulation can fundamentally provide viable directions and strategies for the development of advanced catalysts toward efficient electrochemical conversion of CO2 and many other small molecules.
Collapse
Affiliation(s)
- Liang Guo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
11
|
Wang N, Shao C, Zhang R, Zhang Y, Min Z, Chang B, Fan M, Wang J. Metal-Organic Framework Derived Bi-O-Sn/C Nanostructure: Tailoring the Adsorption Site of Dominant Intermediate for Highly Efficient CO 2 Electroreduction to Formate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306129. [PMID: 37880905 DOI: 10.1002/smll.202306129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/29/2023] [Indexed: 10/27/2023]
Abstract
Electrochemical CO2 reduction into high-value-added formic acid/formate is an attractive strategy to mitigate global warming and achieve energy sustainability. However, the adsorption energy of most catalysts for the key intermediate *OCHO is usually weak, and how to rationally optimize the adsorption of *OCHO is challenging. Here, an effective Bi-Sn bimetallic electrocatalyst (Bi1 -O-Sn1 @C) where a Bi-O-Sn bridge-type nanostructure is constructed with O as an electron bridge is reported. The electronic structure of Sn is precisely tuned by electron transfer from Bi to Sn through O bridge, resulting in the optimal adsorption energy of intermediate *OCHO on the surface of Sn and the enhanced activity for formate production. Thus, the Bi1 -O-Sn1 @C exhibits an excellent Faradaic efficiency (FE) of 97.7% at -1.1 V (vs RHE) for CO2 reduction to formate (HCOO- ) and a high current density of 310 mA cm-2 at -1.5 V, which is one of the best results catalyzed by Bi- and Sn-based catalysts reported previously. Impressively, the FE exceeds 93% at a wide potential range from -0.9 to -1.4 V. In-situ ATR-FTIR, in-situ Raman, and DFT calculations confirm the unique role of the bridge-type structure of Bi-O-Sn in highly efficient electrocatalytic reduction of CO2 into formate.
Collapse
Affiliation(s)
- Nan Wang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Chunfeng Shao
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Riguang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China
| | - Zhaojun Min
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Bing Chang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Maohong Fan
- College of Engineering and Physical Sciences, and School of Energy Resources, University of Wyoming, Laramie, WY, 82071, USA
| | - Jianji Wang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
12
|
Wang M, Cao W, Yu J, Yang D, Qi K, Zhao Y, Hua Z, Li H, Lu S. Electrocatalytic activity of CO 2 reduction to CO on cadmium sulfide enhanced by chloride anion doping. Chemistry 2024:e202303422. [PMID: 38240191 DOI: 10.1002/chem.202303422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 01/31/2024]
Abstract
The electrocatalytic CO2 reduction (ECR) to produce valuable fuel is a promising process for addressing atmospheric CO2 emissions and energy shortages. In this study, Cl-anion doped cadmium sulfide structures were directly fabricated on a nickel foam surface (Cl/CdS-NF) using an in situ hydrothermal method. The Cl-anion doping could significantly improve ECR activity for CO production in ionic liquid and acetonitrile mixed solution, compared to pristine CdS. The highest Faradaic efficiency of CO is 98.1 % on a Cl/CdS-NF-2 cathode with an excellent current density of 137.0 mA cm-2 at -2.25 V versus ferrocene/ferrocenium (Fc/Fc+ , all potentials are versus Fc/Fc+ in this study). In particular, CO Faradaic efficiencies remained above 80 % in a wide potential range of -2.05 V to -2.45 V and a maximum partial current density (192.6 mA cm-2 ) was achieved at -2.35 V. The Cl/CdS-NF-2, with appropriate Cl anions, displayed abundant active sites and a suitable electronic structure, resulting in outstanding ECR activity. Density functional theory calculations further demonstrated that Cl/CdS is beneficial for increasing the adsorption capacities of *COOH and *H, which can enhance the activity of the ECR toward CO and suppress the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Mingyan Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Weiqi Cao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jingkun Yu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Dexin Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kongsheng Qi
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yuhua Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhixin Hua
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hongping Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
13
|
Jiang H, Zhao P, Shen H, Yang S, Gao R, Guo Y, Cao Y, Zhang Q, Zhang H. New Insight into the Electronic Effect for Cu Porphyrin Catalysts in Electrocatalytic of CO 2 into CH 4. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304998. [PMID: 37670222 DOI: 10.1002/smll.202304998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/03/2023] [Indexed: 09/07/2023]
Abstract
Perturbation of the copper (Cu) active site by electron manipulation is a crucial factor in determining the activity and selectivity of electrochemical carbon dioxide (CO2 ) reduction reaction (e-CO2 RR) in Cu-based molecular catalysts. However, much ambiguity is present concerning their electronic structure-function relationships. Here, three molecular Cu-based porphyrin catalysts with different electron densities at the Cu active site, Cu tetrakis(4-methoxyphenyl)porphyrin (Cu─T(OMe)PP), Cu tetraphenylporphyrin (Cu─THPP), and Cu tetrakis(4-bromophenyl)porphyrin (Cu─TBrPP), are prepared. Although all three catalysts exhibit e-CO2 RR activity and the same reaction pathway, their performance is significantly affected by the electronic structure of the Cu site. Theoretical and experimental investigations verify that the conjugated effect of ─OCH3 and ─Br groups lowers the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbitals (LUMO) gap of Cu─T(OMe)PP and Cu─TBrPP, promoting faster electron transfer between Cu and CO2 , thereby improving their e-CO2 RR activity. Moreover, the high inductive effect of ─Br group reduces the electron density of Cu active site of Cu─TBrPP, facilitating the hydrolysis of the bound H2 O and thus creating a preferable local microenvironment, further enhancing the catalytic performance. This work provides new insights into the relationships between the substituent group characteristics with e-CO2 RR performance and is highly instructive for the design of efficient Cu-based e-CO2 RR electrocatalysts.
Collapse
Affiliation(s)
- Hao Jiang
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Peng Zhao
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Haidong Shen
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Shaowei Yang
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Runze Gao
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Ying Guo
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, P. R. China
| | - Yueling Cao
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Qiuyu Zhang
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Hepeng Zhang
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, P. R. China
| |
Collapse
|
14
|
Gong Y, He T. Gaining Deep Understanding of Electrochemical CO 2 RR with In Situ/Operando Techniques. SMALL METHODS 2023; 7:e2300702. [PMID: 37608449 DOI: 10.1002/smtd.202300702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Electrocatalysis for CO2 conversion has been extensively studied to mitigate the energy shortage and environmental issues, which are gaining ever-increasing attention. However, the complicated CO2 reduction process and the dynamic evolution occurring on electrocatalyst surface make it hard to understand the catalytic mechanism. The development of advanced in situ/operando techniques intelligently coupled with electrochemical cells sheds light on the related study via capturing surface atomic rearrangement, tracing chemical state change of catalysts, monitoring the behavior of intermediates and products, and depicting microenvironment near the electrode surface. In this review, fundamentals of the state-of-the-art in situ/operando techniques are clarified first. Case studies on the in situ/operando techniques performed to probe the CO2 reduction reaction processes are then discussed in detail. Finally, conclusions and outlook on this field are presented.
Collapse
Affiliation(s)
- Yue Gong
- CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao He
- CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
15
|
Hu Y, Zhu J, Chen N, Zheng X, Zhang X, Chen Z, Wu Z. Sr 2+-Doped CuO Nanoribbons with the Hydrophobic Surface Enabling CO 2 Electroreduction to Ethane. Inorg Chem 2023; 62:16986-16993. [PMID: 37773890 DOI: 10.1021/acs.inorgchem.3c02746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Electrochemical reduction of carbon dioxide to value-added multicarbon (C2+) products is a promising way to obtain renewable fuels of high energy densities and chemicals and close the carbon cycle. However, the difficulty of C-C coupling and complexity of the proton-coupled electron transfer process greatly hinder CO2 electroreduction into specific C2+ products with high selectivity. Here, we design an electrocatalyst of Sr-doped CuO nanoribbons with a hydrophobic surface for CO2 electroreduction to ethane with high selectivity. Sr doping enhances the chemical adsorption and activation of CO2 by inducing oxygen vacancies and increasing *CO coverage by stabilizing Cu2+ active sites, thus further boosting subsequent C-C coupling. The hydrophobic surface with dodecyl sulfate anions (DS-) adsorption increases the oxophilicity of the catalyst surface, enhancing the conversion of the *OCH2CH3 intermediate to ethane. As a result, the optimized Sr1.97%-CuO exhibits a Faradaic efficiency of 53.4% and a partial current density of 13.5 mA cm-2 for ethane under a potential of -0.8 V. This study provides a strategy to design a Cu-based catalyst by alkaline earth metal ions doping with the hydrophobic surface to engineer the evolution of the intermediates for a desired product during CO2RR.
Collapse
Affiliation(s)
- Yan Hu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University Wuhu, Anhui 241002, China
| | - Jiahui Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University Wuhu, Anhui 241002, China
| | - Nannan Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University Wuhu, Anhui 241002, China
| | - Xinyue Zheng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University Wuhu, Anhui 241002, China
| | - Xingyue Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University Wuhu, Anhui 241002, China
| | - Zheng Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University Wuhu, Anhui 241002, China
| | - Zhengcui Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University Wuhu, Anhui 241002, China
| |
Collapse
|
16
|
Yan T, Chen X, Kumari L, Lin J, Li M, Fan Q, Chi H, Meyer TJ, Zhang S, Ma X. Multiscale CO 2 Electrocatalysis to C 2+ Products: Reaction Mechanisms, Catalyst Design, and Device Fabrication. Chem Rev 2023; 123:10530-10583. [PMID: 37589482 DOI: 10.1021/acs.chemrev.2c00514] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Electrosynthesis of value-added chemicals, directly from CO2, could foster achievement of carbon neutral through an alternative electrical approach to the energy-intensive thermochemical industry for carbon utilization. Progress in this area, based on electrogeneration of multicarbon products through CO2 electroreduction, however, lags far behind that for C1 products. Reaction routes are complicated and kinetics are slow with scale up to the high levels required for commercialization, posing significant problems. In this review, we identify and summarize state-of-art progress in multicarbon synthesis with a multiscale perspective and discuss current hurdles to be resolved for multicarbon generation from CO2 reduction including atomistic mechanisms, nanoscale electrocatalysts, microscale electrodes, and macroscale electrolyzers with guidelines for future research. The review ends with a cross-scale perspective that links discrepancies between different approaches with extensions to performance and stability issues that arise from extensions to an industrial environment.
Collapse
Affiliation(s)
- Tianxiang Yan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyi Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lata Kumari
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianlong Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Minglu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qun Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Haoyuan Chi
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sheng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
17
|
Peng X, Zeng L, Wang D, Liu Z, Li Y, Li Z, Yang B, Lei L, Dai L, Hou Y. Electrochemical C-N coupling of CO 2 and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds. Chem Soc Rev 2023; 52:2193-2237. [PMID: 36806286 DOI: 10.1039/d2cs00381c] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Electrochemical C-N coupling reactions based on abundant small molecules (such as CO2 and N2) have attracted increasing attention as a new "green synthetic strategy" for the synthesis of organonitrogen compounds, which have been widely used in organic synthesis, materials chemistry, and biochemistry. The traditional technology employed for the synthesis of organonitrogen compounds containing C-N bonds often requires the addition of metal reagents or oxidants under harsh conditions with high energy consumption and environmental concerns. By contrast, electrosynthesis avoids the use of other reducing agents or oxidants by utilizing "electrons", which are the cleanest "reagent" and can reduce the generation of by-products, consistent with the atomic economy and green chemistry. In this study, we present a comprehensive review on the electrosynthesis of high value-added organonitrogens from the abundant CO2 and nitrogenous small molecules (N2, NO, NO2-, NO3-, NH3, etc.) via the C-N coupling reaction. The associated fundamental concepts, theoretical models, emerging electrocatalysts, and value-added target products, together with the current challenges and future opportunities are discussed. This critical review will greatly increase the understanding of electrochemical C-N coupling reactions, and thus attract research interest in the fixation of carbon and nitrogen.
Collapse
Affiliation(s)
- Xianyun Peng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Libin Zeng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Dashuai Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Zhibin Liu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Yan Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Zhongjian Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Bin Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
- Donghai Laboratory, Zhoushan, China
| |
Collapse
|
18
|
Wei P, Gao D, Liu T, Li H, Sang J, Wang C, Cai R, Wang G, Bao X. Coverage-driven selectivity switch from ethylene to acetate in high-rate CO 2/CO electrolysis. NATURE NANOTECHNOLOGY 2023; 18:299-306. [PMID: 36635334 DOI: 10.1038/s41565-022-01286-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Tuning catalyst microenvironments by electrolytes and organic modifications is effective in improving CO2 electrolysis performance. An alternative way is to use mixed CO/CO2 feeds from incomplete industrial combustion of fossil fuels, but its effect on catalyst microenvironments has been poorly understood. Here we investigate CO/CO2 co-electrolysis over CuO nanosheets in an alkaline membrane electrode assembly electrolyser. With increasing CO pressure in the feed, the major product gradually switches from ethylene to acetate, attributed to the increased CO coverage and local pH. Under optimized conditions, the Faradaic efficiency and partial current density of multicarbon products reach 90.0% and 3.1 A cm-2, corresponding to a carbon selectivity of 100.0% and yield of 75.0%, outperforming thermocatalytic CO hydrogenation. The scale-up demonstration using an electrolyser stack achieves the highest ethylene formation rate of 457.5 ml min-1 at 150 A and acetate formation rate of 2.97 g min-1 at 250 A.
Collapse
Affiliation(s)
- Pengfei Wei
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dunfeng Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Tianfu Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hefei Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Sang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Cai
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
19
|
Zheng S, Liang X, Pan J, Hu K, Li S, Pan F. Multi-Center Cooperativity Enables Facile C–C Coupling in Electrochemical CO 2 Reduction on a Ni 2P Catalyst. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Shisheng Zheng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Xianhui Liang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Junjie Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Kang Hu
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Shunning Li
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
20
|
Xia T, Yang Y, Song Q, Luo M, Xue M, Ostrikov KK, Zhao Y, Li F. In situ characterisation for nanoscale structure-performance studies in electrocatalysis. NANOSCALE HORIZONS 2023; 8:146-157. [PMID: 36512394 DOI: 10.1039/d2nh00447j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, electrocatalytic reactions involving oxygen, nitrogen, water, and carbon dioxide have been developed to substitute conventional chemical processes, with the aim of producing clean energy, fuels and chemicals. A deepened understanding of catalyst structures, active sites and reaction mechanisms plays a critical role in improving the performance of these reactions. To this end, in situ/operando characterisations can be used to visualise the dynamic evolution of nanoscale materials and reaction intermediates under electrolysis conditions, thus enhancing our understanding of heterogeneous electrocatalytic reactions. In this review, we summarise the state-of-the-art in situ characterisation techniques used in electrocatalysis. We categorise them into three sections based on different working principles: microscopy, spectroscopy, and other characterisation techniques. The capacities and limits of the in situ characterisation techniques are discussed in each section to highlight the present-day horizons and guide further advances in the field, primarily aiming at the users of these techniques. Finally, we look at challenges and possible strategies for further development of in situ techniques.
Collapse
Affiliation(s)
- Tianlai Xia
- School of Chemical and Biomolecular Engineering and The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia.
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yu Yang
- School of Chemical and Biomolecular Engineering and The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia.
| | - Qiang Song
- School of Chemical and Biomolecular Engineering and The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia.
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Mianqi Xue
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Yong Zhao
- School of Chemical and Biomolecular Engineering and The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia.
- CSIRO Energy, Mayfield West, NSW 2304, Australia
| | - Fengwang Li
- School of Chemical and Biomolecular Engineering and The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
21
|
Li WJ, Lou ZX, Zhao JY, Liu PF, Yuan HY, Yang HG. Positive Valent Metal Sites in Electrochemical CO 2 Reduction Reaction. Chemphyschem 2023; 24:e202200657. [PMID: 36646629 DOI: 10.1002/cphc.202200657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/08/2022] [Indexed: 01/18/2023]
Abstract
The discovery of high-performance catalysts for the electrochemical CO2 reduction reaction (CO2 RR) has faced an enormous challenge for years. The lack of cognition about the surface active structures or centers of catalysts in complex conditions limits the development of advanced catalysts for CO2 RR. Recently, the positive valent metal sites (PVMS) are demonstrated as a kind of potential active sites, which can facilitate carbon dioxide (CO2 ) activation and conversation but are always unstable under reduction potentials. Many advanced technologies in theory and experiment have been utilized to understand and develop excellent catalysts with PVMS for CO2 RR. Here, we present an introduction of some typical catalysts with PVMS in CO2 RR and give some understanding of the activity and stability for these related catalysts.
Collapse
Affiliation(s)
- Wen Jing Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhen Xin Lou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia Yue Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
22
|
Metallic bismuth nanoclusters confined in micropores for efficient electrocatalytic reduction of carbon dioxide with long-term stability. J Colloid Interface Sci 2023; 630:81-90. [DOI: 10.1016/j.jcis.2022.09.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/11/2022]
|
23
|
Fundamental aspects in CO2 electroreduction reaction and solutions from in situ vibrational spectroscopies. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Song Z, Li J, Davis KD, Li X, Zhang J, Zhang L, Sun X. Emerging Applications of Synchrotron Radiation X-Ray Techniques in Single Atomic Catalysts. SMALL METHODS 2022; 6:e2201078. [PMID: 36207288 DOI: 10.1002/smtd.202201078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Single atom catalysts (SACs) can achieve a maximum atom utilization efficiency of 100%, which provides significantly increased active sites compared with traditional catalysts during catalytic reactions. Synchrotron radiation technology is an important characterization method for identifying single-atom catalysts. Several types of internal information, such as the coordination number, bond length and electronic structure of metals, can all be analyzed. This review will focus on the introduction of synchrotron radiation techniques and their applications in SACs. First, the fundamentals of synchrotron radiation and the corresponding techniques applied in characterization of SACs will be briefly introduced, such as X-ray absorption near edge spectroscopy and extended X-ray absorption fine structure spectroscopy and in situ techniques. The detailed information obtained from synchrotron radiation X-ray characterization is described through four routes: 1) the local environment of a specific atom; 2) the oxidation state of SACs; 3) electronic structures at different orbitals; and 4) the in situ structure modification during catalytic reaction. In addition, a systematic summary of synchrotron radiation X-ray characterization on different types of SACs (noble metals and transition metals) will be discussed.
Collapse
Affiliation(s)
- Zhongxin Song
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Junjie Li
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Kieran Doyle Davis
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Xifei Li
- Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Jiujun Zhang
- Institute for New Energy Materials and Engineering/College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Lei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
25
|
Wang X, Hu Q, Li G, Yang H, He C. Recent Advances and Perspectives of Electrochemical CO2 Reduction Toward C2+ Products on Cu-Based Catalysts. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Mandal SC, Das A, Roy D, Das S, Nair AS, Pathak B. Developments of the heterogeneous and homogeneous CO2 hydrogenation to value-added C2+-based hydrocarbons and oxygenated products. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Ai L, Ng SF, Ong WJ. A Prospective Life Cycle Assessment of Electrochemical CO 2 Reduction to Selective Formic Acid and Ethylene. CHEMSUSCHEM 2022; 15:e202200857. [PMID: 35781794 DOI: 10.1002/cssc.202200857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Converting CO2 into valuable C1 -C2 chemicals through electrochemical CO2 reduction (ECR) has potential to remedy the ever-increasing climate problems owing to the intensification of industrial activity. In this work, cradle-to-gate life cycle assessment (LCA) was performed to quantify the environmental impacts of formic acid (FA) and ethylene production through ECR benchmarked with the conventional processes. At the midpoint level, global warming potential (GWP) effects of FA and ethylene production through ECR recorded 5.6 and 1.6-times that of the conventional process, respectively. Although ECR currently has limited environmental benefits, the incorporation of hydropower has vast potential after evaluating four sustainable electricity sources, namely hydropower, wind, solar, and biomass. Notably, ECR to FA recorded a 24 % reduction in petrochemical usage. For ethylene production, human health damage, ecosystem damage, and petrochemical use were reduced by 67, 94, and 110 %, respectively. Sensitivity analysis indicated that a sustainable energy supply chain for ECR will accelerate the development of a circular economy.
Collapse
Affiliation(s)
- Ling Ai
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Sue-Faye Ng
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, P. R. China
| |
Collapse
|
28
|
Unraveling the electrocatalytic reduction mechanism of enols on copper in aqueous media. Nat Commun 2022; 13:5840. [PMID: 36192409 PMCID: PMC9530228 DOI: 10.1038/s41467-022-33620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Deoxygenation of aldehydes and their tautomers to alkenes and alkanes has implications in refining biomass-derived fuels for use as transportation fuel. Electrochemical deoxygenation in ambient, aqueous solution is also a potential green synthesis strategy for terminal olefins. In this manuscript, direct electrochemical conversion of vinyl alcohol and acetaldehyde on polycrystalline Cu to ethanol, ethylene and ethane; and propenol and propionaldehyde to propanol, propene and propane is reported. Sensitive detection was achieved using a rotating disk electrode coupled with gas chromatography-mass spectrometry. In-situ attenuated total reflection surface-enhanced infrared absorption spectroscopy, and in-situ Raman spectroscopy confirmed the adsorption of the vinyl alcohol. Calculations using canonical and grand-canonical density functional theory and experimental findings suggest that the rate-determining step for ethylene and ethane formation is an electron transfer step to the adsorbed vinyl alcohol. Finally, we extend our conclusions to the enol reaction from higher-order soluble aldehyde and ketone. The products observed from the reduction reaction also sheds insights into plausible reaction pathways of CO2 to C2 and C3 products. Understanding the electrochemical deoxygenation pathway of aldehydes and ketones is important yet challenging. Here the authors use acetaldehyde as a model system to elucidate the role of enols in the electroreduction of aldehydes and ketones, which may shed light on the reaction pathway of CO2 to C2 and C3 products.
Collapse
|
29
|
Liu YY, Wang ZS, Liao PQ, Chen XM. A stable metal-azolate framework with cyclic tetracopper(I) clusters for highly selective electroreduction of CO2 to C2 products. Chem Asian J 2022; 17:e202200764. [PMID: 36066571 DOI: 10.1002/asia.202200764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/02/2022] [Indexed: 11/12/2022]
Abstract
It is of great significance for constructing electrocatalysts with accurate structures and compositions to pinpoint the active sites, thereby improving the C 2 products (C 2 H 4 , C 2 H 5 OH and CH 3 COOH) selectivity during electrocatalytic CO 2 reduction raction. Here, we report a tetracopper(I) cluster-based metal-organic framework that exhibits long-term stability and remarkable performance for electroreduction CO 2 towards C 2 products in an H-type cell with a maximum Faradaic efficiency (FE) of 72%, and delivers a current density of 350 mA cm -2 with a FE(C 2 ) up to 46% in a flow cell device, outperforming most of the Cu-based electrocatalysts such as Cu derivatives and Cu nanostructured materials. Importantly, no obvious degradation was observed at 350 mA cm -2 over 20 hours of continuous operation, strengthening the practicability. In-situ infrared spectroscopy analysis showed the cooperative effect of adjacent Cu(I) ions in tetracopper(I) cluster may promote the C-C coupling to generate C 2 products.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Sun Yat-Sen University, School of Chemistry, Guang Zhou, CHINA
| | | | - Pei-Qin Liao
- Sun Yat-Sen University, School of Chemistry, No. 135, Xingang Xi Road, 510275, Guangzhou, CHINA
| | | |
Collapse
|
30
|
Crystal facet-dependent electrocatalytic performance of metallic Cu in CO2 reduction reactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Li K, Xu J, Zheng T, Yuan Y, Liu S, Shen C, Jiang T, Sun J, Liu Z, Xu Y, Chuai M, Xia C, Chen W. In Situ Dynamic Construction of a Copper Tin Sulfide Catalyst for High-Performance Electrochemical CO 2 Conversion to Formate. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ke Li
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jingwen Xu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Tingting Zheng
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Yuan Yuan
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shuang Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chunyue Shen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Taoli Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jifei Sun
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zaichun Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yan Xu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mingyan Chuai
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Xia
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
32
|
|
33
|
Guo C, Zhou W, Lan X, Wang Y, Li T, Han S, Yu Y, Zhang B. Electrochemical Upgrading of Formic Acid to Formamide via Coupling Nitrite Co-Reduction. J Am Chem Soc 2022; 144:16006-16011. [PMID: 35905476 DOI: 10.1021/jacs.2c05660] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Formic acid (HCOOH) can be exclusively prepared through CO2 electroreduction at an industrial current density (0.5 A cm-2). However, the global annual demand for formic acid is only ∼1 million tons, far less than the current CO2 emission scale. The exploration of an economical and green approach to upgrading CO2-derived formic acid is significant. Here, we report an electrochemical process to convert formic acid and nitrite into high-valued formamide over a copper catalyst under ambient conditions, which offers the selectivity from formic acid to formamide up to 90.0%. Isotope-labeled in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy and quasi in situ electron paramagnetic resonance results reveal the key C-N bond formation through coupling *CHO and *NH2 intermediates. This work offers an electrochemical strategy to upgrade CO2-derived formic acid into high-value formamide.
Collapse
Affiliation(s)
- Chengying Guo
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Wei Zhou
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Xianen Lan
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yuting Wang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Tieliang Li
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Shuhe Han
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yifu Yu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
34
|
Carbonized Yolk-shell Metal-Organic Frameworks for Electrochemical Conversion of CO2 into Ethylene. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Wang YR, Zhuang Q, Cao R, Li Y, Gao FY, Li ZR, He Z, Shi L, Meng YF, Li X, Wang JL, Duan Y, Gao MR, Zheng X, Yu SH. Reduction-Controlled Atomic Migration for Single Atom Alloy Library. NANO LETTERS 2022; 22:4232-4239. [PMID: 35533211 DOI: 10.1021/acs.nanolett.2c01314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Picturing the atomic migration pathways of catalysts in a reactive atmosphere is of central significance for uncovering the underlying catalytic mechanisms and directing the design of high-performance catalysts. Here, we describe a reduction-controlled atomic migration pathway that converts nanoparticles to single atom alloys (SAAs), which has remained synthetically challenging in prior attempts due to the elusive mechanism. We achieved this by thermally treating the noble-metal nanoparticles M (M = Ru, Rh, Pd, Ag, Ir, Pt, and Au) on metal oxide (CuO) supports with H2/Ar. Atomic-level characterization revealed such conversion as the synergistic consequence of noble metal-promoted H2 dissociation and concomitant CuO reduction. The observed atomic migration pathway offers an understanding of the dynamic mechanisms study of nanomaterials formation and catalyst design.
Collapse
Affiliation(s)
- Yan-Ru Wang
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Qingfeng Zhuang
- Division of Theoretical and Computational Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Rui Cao
- Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yi Li
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Fei-Yue Gao
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Zhao-Rui Li
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Zhen He
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Lei Shi
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Yu-Feng Meng
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Xu Li
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Jin-Long Wang
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Yu Duan
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Min-Rui Gao
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Xiao Zheng
- Division of Theoretical and Computational Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| |
Collapse
|
36
|
Yang Y, Roh I, Louisia S, Chen C, Jin J, Yu S, Salmeron MB, Wang C, Yang P. Operando Resonant Soft X-ray Scattering Studies of Chemical Environment and Interparticle Dynamics of Cu Nanocatalysts for CO 2 Electroreduction. J Am Chem Soc 2022; 144:8927-8931. [PMID: 35575474 DOI: 10.1021/jacs.2c03662] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the chemical environment and interparticle dynamics of nanoparticle electrocatalysts under operating conditions offers valuable insights into tuning their activity and selectivity. This is particularly important to the design of Cu nanocatalysts for CO2 electroreduction due to their dynamic nature under bias. Here, we have developed operando electrochemical resonant soft X-ray scattering (EC-RSoXS) to probe the chemical identity of active sites during the dynamic structural transformation of Cu nanoparticle (NP) ensembles through 1 μm thick electrolyte. Operando scattering-enhanced X-ray absorption spectroscopy (XAS) serves as a powerful technique to investigate the size-dependent catalyst stability under beam exposure while monitoring the potential-dependent surface structural changes. Small NPs (7 nm) in aqueous electrolyte were found to experience a predominant soft X-ray beam-induced oxidation to CuO despite only sub-second X-ray exposure. In comparison, large NPs (18 nm) showed improved resistivity to beam damage, which allowed the reliable observation of surface Cu2O electroreduction to metallic Cu. Small-angle X-ray scattering (SAXS) statistically probes the particle-particle interactions of large ensembles of NPs. This study points out the need for rigorous examination of beam effects for operando X-ray studies on electrocatalysts. The strategy of using EC-RSoXS that combines soft XAS and SAXS can serve as a general approach to simultaneously investigate the chemical environment and interparticle information on nanocatalysts.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Miller Institute for Basic Research in Science, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Inwhan Roh
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sheena Louisia
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chubai Chen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jianbo Jin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sunmoon Yu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Miquel B Salmeron
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
37
|
Jiang Y, Zhong D, Wang L, Li J, Hao G, Li J, Zhao Q. Roughness Effect of Cu on Electrocatalytic CO2 Reduction towards C2H4. Chem Asian J 2022; 17:e202200380. [PMID: 35535732 DOI: 10.1002/asia.202200380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Indexed: 11/06/2022]
Abstract
Electrochemical reduction of CO 2 to produce valuable multi-carbon products is a promising avenue for promoting CO 2 conversion and achieving renewable energy storage, and it has also attracted considerable attention recently. However, the synthesis of Cu electrode with a controllable electrochemical active surface area (ECSA) to understand its role in CO 2 reduction to C 2 H 4 remains challenging. Herein, a series of Cu electrodes with different ECSA is synthesized through a simple oxidation-reduction approach. We reveal that the improved selectivity of C 2 H 4 is proportional to the ECSA of Cu in the low ECSA range, and a further increase in ECSA has a negligible effect on its selectivity. The enlarged surface area could strengthen the local pH effect near the surface of Cu electrode and suppress the generation of C 1 products as well as H 2 . The study provides a feasible strategy to rationally design electrocatalysts with high electrochemical CO 2 reduction performances.
Collapse
Affiliation(s)
- Yong Jiang
- Taiyuan University of Technology, College of Chemical Engineering and Technology, CHINA
| | - Dazhong Zhong
- Taiyuan University of Technology, College of Chemical Engineering and Technology, CHINA
| | - Lei Wang
- Taiyuan University of Technology, College of Chemical Engineering and Technology, CHINA
| | - Jiayuan Li
- Taiyuan University of Technology, College of Materials Science and Engineering, CHINA
| | - Genyan Hao
- Taiyuan University of Technology, College of Chemical Engineering and Technology, CHINA
| | - Jinping Li
- Taiyuan University of Technology, College of Chemical Engineering and Technology, CHINA
| | - Qiang Zhao
- Taiyuan University of Technology, College of Chemistry and Chemical Engineering, No.79 West Yingze Street, 030024, Taiyuan, CHINA
| |
Collapse
|
38
|
Chen R, Cheng L, Liu J, Wang Y, Ge W, Xiao C, Jiang H, Li Y, Li C. Toward High-Performance CO 2 -to-C 2 Electroreduction via Linker Tuning on MOF-Derived Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200720. [PMID: 35373471 DOI: 10.1002/smll.202200720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Copper (Cu)-based metal-organic frameworks (MOFs) and MOF-derived catalysts are well studied for electroreduction of carbon dioxide (CO2 ); however, the effects of organic linkers for the selectivity of CO2 reduction are still unrevealed. Here, a series of Cu-based MOF-derived catalysts is investigated with different organic linkers appended, named X-Cu-BDC (BDC = 1,4-benzenedicarboxylic acid, X = NH2 , OH, H, F, and 2F). It is found that the linkers affect the faradaic efficiency (FE) for C2 products with an order of NH2 < OH < bare Cu-BDC < F < 2F, thus tuning the FEC2 :FEC1 ratios from 0.6 to 3.8. As a result, the highest C2 FE of ≈63% at a current density of 150 mA cm-2 on 2F-Cu-BDC derived catalyst is achieved. Using operando Raman measurements, it is revealed that the MOF derives to Cu2 O during eCO2 RR but organic linkers are stable. The fluorine group in organic linker can promote the H2 O dissociation to *H species, further facilitating the hydrogenation of *CO to *CHO that helps CC coupling.
Collapse
Affiliation(s)
- Rongzhen Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ling Cheng
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jinze Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yating Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wangxin Ge
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chuqian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hao Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuhang Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
39
|
Rehman ZU, Bilal M, Hou J, Butt FK, Ahmad J, Ali S, Hussain A. Photocatalytic CO 2 Reduction Using TiO 2-Based Photocatalysts and TiO 2 Z-Scheme Heterojunction Composites: A Review. Molecules 2022; 27:molecules27072069. [PMID: 35408467 PMCID: PMC9000641 DOI: 10.3390/molecules27072069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
Photocatalytic CO2 reduction is a most promising technique to capture CO2 and reduce it to non-fossil fuel and other valuable compounds. Today, we are facing serious environmental issues due to the usage of excessive amounts of non-renewable energy resources. In this aspect, photocatalytic CO2 reduction will provide us with energy-enriched compounds and help to keep our environment clean and healthy. For this purpose, various photocatalysts have been designed to obtain selective products and improve efficiency of the system. Semiconductor materials have received great attention and have showed good performances for CO2 reduction. Titanium dioxide has been widely explored as a photocatalyst for CO2 reduction among the semiconductors due to its suitable electronic/optical properties, availability at low cost, thermal stability, low toxicity, and high photoactivity. Inspired by natural photosynthesis, the artificial Z-scheme of photocatalyst is constructed to provide an easy method to enhance efficiency of CO2 reduction. This review covers literature in this field, particularly the studies about the photocatalytic system, TiO2 Z-scheme heterojunction composites, and use of transition metals for CO2 photoreduction. Lastly, challenges and opportunities are described to open a new era in engineering and attain good performances with semiconductor materials for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Zia Ur Rehman
- School of Physics, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China; (Z.U.R.); (M.B.); (A.H.)
- School of Environmental Science and Engineering, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Muhammad Bilal
- School of Physics, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China; (Z.U.R.); (M.B.); (A.H.)
- School of Environmental Science and Engineering, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Jianhua Hou
- School of Physics, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China; (Z.U.R.); (M.B.); (A.H.)
- School of Environmental Science and Engineering, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China
- Guangling College, Yangzhou University, Yangzhou 225009, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
- Correspondence: (J.H.); (F.K.B.)
| | - Faheem K. Butt
- Department of Physics, Division of Science and Technology, University of Education Lahore, Lahore 54000, Pakistan; (J.A.); (S.A.)
- Correspondence: (J.H.); (F.K.B.)
| | - Junaid Ahmad
- Department of Physics, Division of Science and Technology, University of Education Lahore, Lahore 54000, Pakistan; (J.A.); (S.A.)
| | - Saif Ali
- Department of Physics, Division of Science and Technology, University of Education Lahore, Lahore 54000, Pakistan; (J.A.); (S.A.)
| | - Asif Hussain
- School of Physics, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China; (Z.U.R.); (M.B.); (A.H.)
- School of Environmental Science and Engineering, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
40
|
Wang Y, Zhao J, Liu Y, Liu G, Ding S, Li Y, Xia J, Li H. Synergy between plasmonic and sites on gold nanoparticle-modified bismuth-rich bismuth oxybromide nanotubes for the efficient photocatalytic CC coupling synthesis of ethane. J Colloid Interface Sci 2022; 616:649-658. [PMID: 35245792 DOI: 10.1016/j.jcis.2022.02.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
The photocatalytic reduction of carbon dioxide (CO2) to fossil fuels has attracted widespread attention. However, obtaining the high value-added hydrocarbons, especially C2+ products, remains a considerable challenge. Herein, gold (Au) nanoparticle-modified bismuth-rich bismuth oxybromide Bi12O17Br2 nanotube composites were designed and tested. Au nanoparticles act as electron traps and thermal electron donors that promote the efficient separation and migration of carriers to form the C2+ product. As a result, compared with the pure Bi12O17Br2 nanotubes, Au@Bi12O17Br2 composites can not only produce the carbon monoxide (CO) and methane (CH4), but also covert CO2 into ethane (C2H6). In this study, Au@Bi12O17Br2-700 was used to obtain a C2H6 production rate of 29.26 μmol h-1 g-1. The selectivities during a 5-hour test reached 94.86% for hydrocarbons and 90.81% for C2H6. The proposed approach could be used to design high-performance photocatalysts to convert CO2 into high value-added hydrocarbon products.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China
| | - Junze Zhao
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China
| | - Yunmiao Liu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China
| | - Gaopeng Liu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China
| | - Shunmin Ding
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Yingjie Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China
| | - Jiexiang Xia
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| | - Huaming Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| |
Collapse
|
41
|
Wang X, Jiao Y, Li L, Zheng Y, Qiao S. Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xuesi Wang
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Yan Jiao
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Laiquan Li
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Yao Zheng
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Shi‐Zhang Qiao
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
42
|
Umeda T, Kurome T, Sakamoto A, Kubo K, Mizuta T, Son SU, Kume S. Uniform Wrapping of Copper(I) Oxide Nanocubes by Self-Controlled Copper-Catalyzed Azide–Alkyne Cycloaddition toward Selective Carbon Dioxide Electrocatalysis. Chem Commun (Camb) 2022; 58:8053-8056. [DOI: 10.1039/d2cc02017c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We wrapped copper(I) oxide nanocubes with an extremely uniform organic layer grown by self-controlled, Cu-mediated catalysis. The layer held copper within the initial cubic structure during its use as a...
Collapse
|
43
|
Wang X, Jiao Y, Li L, Zheng Y, Qiao SZ. Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angew Chem Int Ed Engl 2021; 61:e202114253. [PMID: 34825452 DOI: 10.1002/anie.202114253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/07/2022]
Abstract
We demonstrate a widely applicable method to alter the adsorption configuration of multi-carbon containing reactants by no catalyst engineering but simply adjusting the local reaction environment of the catalyst surface. Using electrocatalytic acetone to propane hydrogenation (APH) as a model reaction and common commercial Pt/Pt-based materials as catalysts, we found local H+ concentration can significantly influence the adsorption mode of acetone reactant, for example, in vertical or flat mode, and target product selectivity. Electrocatalytic measurement combined with in situ spectroscopic characterizations reveals that the vertically adsorbed acetone is favorable for propane production while the flatly adsorbed mode suppresses the reaction. DFT calculations indicate that the H coverage on catalyst surface plays a decisive role in the adsorption configuration of acetone. The increased local acidity can facilitate the adsorption configuration of acetone from flat to vertical mode and suppress the competing hydrogen evaluation reaction, which consequently enhances the APH selectivity.
Collapse
Affiliation(s)
- Xuesi Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yan Jiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Laiquan Li
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yao Zheng
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
44
|
Dongare S, Singh N, Bhunia H, Bajpai PK, Das AK. Electrochemical Reduction of Carbon Dioxide to Ethanol: A Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202102829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saudagar Dongare
- Department of Chemical Engineering Thapar Institute of Engineering and Technology (Deemed to be University) Patiala 147004 Punjab India
| | - Neetu Singh
- Department of Chemical Engineering Thapar Institute of Engineering and Technology (Deemed to be University) Patiala 147004 Punjab India
| | - Haripada Bhunia
- Department of Chemical Engineering Thapar Institute of Engineering and Technology (Deemed to be University) Patiala 147004 Punjab India
| | - Pramod K. Bajpai
- Ex-Distinguished Professor Department of Chemical Engineering Thapar Institute of Engineering and Technology (Deemed to be University) Patiala 147004 Punjab India
- Present address: G-1 Ekta Apartment 120/912 Ranjeet Nagar Kanpur 208005 Uttar Pradesh India
| | - Asit Kumar Das
- Head, Refinery R&D and Process Development, Reliance Industries Limited Jamnagar 361142 Gujarat India
| |
Collapse
|
45
|
Kim J, Choi S, Cho J, Kim SY, Jang HW. Toward Multicomponent Single-Atom Catalysis for Efficient Electrochemical Energy Conversion. ACS MATERIALS AU 2021; 2:1-20. [PMID: 36855696 PMCID: PMC9888646 DOI: 10.1021/acsmaterialsau.1c00041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-atom catalysts (SACs) have recently emerged as the ultimate solution for overcoming the limitations of traditional catalysts by bridging the gap between homogeneous and heterogeneous catalysts. Atomically dispersed identical active sites enable a maximal atom utilization efficiency, high activity, and selectivity toward the wide range of electrochemical reactions, superior structural robustness, and stability over nanoparticles due to strong atomic covalent bonding with supports. Mononuclear active sites of SACs can be further adjusted by engineering with multicomponent elements, such as introducing dual-metal active sites or additional neighbor atoms, and SACs can be regarded as multicomponent SACs if the surroundings of the active sites or the active sites themselves consist of multiple atomic elements. Multicomponent engineering offers an increased combinational diversity in SACs and unprecedented routes to exceed the theoretical catalytic performance limitations imposed by single-component scaling relationships for adsorption and transition state energies of reactions. The precisely designed structures of multicomponent SACs are expected to be responsible for the synergistic optimization of the overall electrocatalytic performance by beneficially modulating the electronic structure, the nature of orbital filling, the binding energy of reaction intermediates, the reaction pathways, and the local structural transformations. This Review demonstrates these synergistic effects of multicomponent SACs by highlighting representative breakthroughs on electrochemical conversion reactions, which might mitigate the global energy crisis of high dependency on fossil fuels. General synthesis methods and characterization techniques for SACs are also introduced. Then, the perspective on challenges and future directions in the research of SACs is briefly summarized. We believe that careful tailoring of multicomponent active sites is one of the most promising approaches to unleash the full potential of SACs and reach the superior catalytic activity, selectivity, and stability at the same time, which makes SACs promising candidates for electrocatalysts in various energy conversion reactions.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungkyun Choi
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinhyuk Cho
- Department
of Materials Science and Engineering, Korea
University, Seoul 02841, Republic of Korea
| | - Soo Young Kim
- Department
of Materials Science and Engineering, Korea
University, Seoul 02841, Republic of Korea,
| | - Ho Won Jang
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea,Advanced
Institute of Convergence Technology, Seoul
National University, Suwon 16229, Republic of Korea,
| |
Collapse
|
46
|
Zhi X, Jiao Y, Zheng Y, Qiao SZ. Key to C 2 production: selective C-C coupling for electrochemical CO 2 reduction on copper alloy surfaces. Chem Commun (Camb) 2021; 57:9526-9529. [PMID: 34546247 DOI: 10.1039/d1cc03796j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The C-C coupling kinetic variations are observed on Cu alloys with Pt, Pd, or Au surface sites. The OC-COH coupling is kinetically more favorable than OC-CHO coupling, which originates from increased reactivity of adsorbed *CO species. Linear energy relations for C-C association/dissociation could simplify the energetic evaluation for C2 production.
Collapse
Affiliation(s)
- Xing Zhi
- Centre for Materials in Energy and Catalysis (CMEC), School of Chemical Engineering and Advanced Materials, The University of Adelaide, SA 5005, Australia.
| | - Yan Jiao
- Centre for Materials in Energy and Catalysis (CMEC), School of Chemical Engineering and Advanced Materials, The University of Adelaide, SA 5005, Australia.
| | - Yao Zheng
- Centre for Materials in Energy and Catalysis (CMEC), School of Chemical Engineering and Advanced Materials, The University of Adelaide, SA 5005, Australia.
| | - Shi-Zhang Qiao
- Centre for Materials in Energy and Catalysis (CMEC), School of Chemical Engineering and Advanced Materials, The University of Adelaide, SA 5005, Australia.
| |
Collapse
|
47
|
Zhang W, Ding L, Sun W, Wu Z, Chen Z, Gao F. Br-Doped CuO Multilamellar Mesoporous Nanosheets with Oxygen Vacancies and Cetyltrimethyl Ammonium Cations Adsorption for Optimizing Intermediate Species and Their Adsorption Behaviors toward CO 2 Electroreduction to Ethanol with a High Faradaic Efficiency. Inorg Chem 2021; 60:14371-14381. [PMID: 34461723 DOI: 10.1021/acs.inorgchem.1c02102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is a prospective tactic to actualize the carbon cycle via CO2 electroreduction reaction (CO2ER) into ethanol, where the crucial point is to design highly active and selective electrocatalysts. In this work, Br-doped CuO multilamellar mesoporous nanosheets with oxygen vacancies and cetyltrimethyl ammonium (CTA+) cations adsorption were synthesized on Cu foam by one-step liquid-phase method at room temperature. The nanosheets with numerous mesopores and rough edges provided abundant active sites for the adsorption of CO2 molecules and brought about a long retention time for intermediates. The dopant of Br- ions induced copious oxygen vacancies on CuO lattices, thereby reducing the activation energy of CO2 molecules and optimizing intermediate species and their adsorption behaviors, while adsorbed CTA+ cations modulated the O affinity of the Cu sites, favoring *OCH2CH3 intermediate converting to ethanol. The optimized Br1.95%-CuO can effectively catalyze CO2ER to C2H5OH in 0.1 M KHCO3. The faradaic efficiency of C2H5OH reached 53.3% with the partial current density of 7.1 mA cm-2 at a low potential of -0.6 V. In addition, after 14 h CO2ER test at -0.6 V, the current density and faradaic efficiency of C2H5OH on Br1.95%-CuO retained 99.6 and 93.9% of their original values, respectively, indicating its prominent catalytic stability. This work provided a novel strategy for designing a CuO catalyst by nonmetal doping and long-chain organic molecules adsorption with multiple active sites for optimizing intermediate species and their adsorption behaviors toward CO2ER to ethanol.
Collapse
Affiliation(s)
- Wuzhengzhi Zhang
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), The Key Laboratory of Functional Molecular Solids, Ministry of Education, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Lianchun Ding
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), The Key Laboratory of Functional Molecular Solids, Ministry of Education, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Weipei Sun
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), The Key Laboratory of Functional Molecular Solids, Ministry of Education, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Zhengcui Wu
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), The Key Laboratory of Functional Molecular Solids, Ministry of Education, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Zheng Chen
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), The Key Laboratory of Functional Molecular Solids, Ministry of Education, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Feng Gao
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), The Key Laboratory of Functional Molecular Solids, Ministry of Education, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
48
|
Liu C, Gong J, Gao Z, Xiao L, Wang G, Lu J, Zhuang L. Regulation of the activity, selectivity, and durability of Cu-based electrocatalysts for CO2 reduction. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1120-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
49
|
Zhu HL, Huang JR, Zhang XW, Wang C, Huang NY, Liao PQ, Chen XM. Highly Efficient Electroconversion of CO 2 into CH 4 by a Metal–Organic Framework with Trigonal Pyramidal Cu(I)N 3 Active Sites. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02980] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xue-Wen Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chao Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ning-Yu Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
50
|
Zhang B, Zhang B, Jiang Y, Ma T, Pan H, Sun W. Single-Atom Electrocatalysts for Multi-Electron Reduction of CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101443. [PMID: 34242473 DOI: 10.1002/smll.202101443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/20/2021] [Indexed: 05/21/2023]
Abstract
The multi-electron reduction of CO2 to hydrocarbons or alcohols is highly attractive in a sustainable energy economy, and the rational design of electrocatalysts is vital to achieve these reactions efficiently. Single-atom electrocatalysts are promising candidates due to their well-defined coordination configurations and unique electronic structures, which are critical for delivering high activity and selectivity and may accelerate the explorations of the activity origin at atomic level as well. Although much effort has been devoted to multi-electron reduction of CO2 on single-atom electrocatalysts, there are still no reviews focusing on this emerging field and constructive perspectives are also urgent to be addressed. Herein recent advances in how to design efficient single-atom electrocatalysts for multi-electron reduction of CO2 , with emphasis on strategies in regulating the interactions between active sites and key reaction intermediates, are summarized. Such interactions are crucial in designing active sites for optimizing the multi-electron reduction steps and maximizing the catalytic performance. Different design strategies including regulation of metal centers, single-atom alloys, non-metal single-atom catalysts, and tandem catalysts, are discussed accordingly. Finally, current challenges and future opportunities for deep electroreduction of CO2 are proposed.
Collapse
Affiliation(s)
- Bingxing Zhang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Baohua Zhang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yinzhu Jiang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Hongge Pan
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|