1
|
Guo Y, Li P, Guo X, Yao C, Yang D. Synthetic Nanoassemblies for Regulating Organelles: From Molecular Design to Precision Therapeutics. ACS NANO 2024; 18:30224-30246. [PMID: 39441007 DOI: 10.1021/acsnano.4c10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Each organelle referring to a complex multiorder architecture executes respective biological processes via its distinct spatial organization and internal microenvironment. As the assembly of biomolecules is the structural basis of living cells, creating synthetic nanoassemblies with specific physicochemical and morphological properties in living cells to interfere or couple with the natural organelle architectures has attracted great attention in precision therapeutics of cancers. In this review, we give an overview of the latest advances in the synthetic nanoassemblies for precise organelle regulation, including the formation mechanisms, triggering strategies, and biomedical applications in precision therapeutics. We summarize the emerging material systems, including polymers, peptides, and deoxyribonucleic acids (DNAs), and their respective intermolecular interactions for intercellular synthetic nanoassemblies, and highlight their design principles in constructing precursors that assemble into synthetic nanoassemblies targeting specific organelles in the complex cellular environment. We further showcase the developed intracellular synthetic nanoassemblies targeting specific organelles including mitochondria, the endoplasmic reticulum, lysosome, Golgi apparatus, and nucleus and describe their underlying mechanisms for organelle regulation and precision therapeutics for cancer. Last, the essential challenges in this field and prospects for future precision therapeutics of synthetic nanoassemblies are discussed. This review should facilitate the rational design of organelle-targeting synthetic nanoassemblies and the comprehensive recognition of organelles by materials and contribute to the deep understanding and application of the synthetic nanoassemblies for precision therapeutics.
Collapse
Affiliation(s)
- Yanfei Guo
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
| | - Peiran Li
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Xiaocui Guo
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Dayong Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|
2
|
Saidjalolov S, Chen XX, Moreno J, Cognet M, Wong-Dilworth L, Bottanelli F, Sakai N, Matile S. Asparagusic Golgi Trackers. JACS AU 2024; 4:3759-3765. [PMID: 39483219 PMCID: PMC11522900 DOI: 10.1021/jacsau.4c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 11/03/2024]
Abstract
Thiol-mediated uptake (TMU) is thought to occur through dynamic covalent cascade exchange networks. Here we show that the cascade accounting for TMU of asparagusic acid derivatives (AspA) ends in the Golgi apparatus (G) and shifts from disulfide to thioester exchange with palmitoyl transferases as the final exchange partner. As a result, AspA combined with pH-sensitive fluoresceins, red-shifted silicon-rhodamines, or mechanosensitive flipper probes selectively labels the Golgi apparatus in fluorescence microscopy images in living and fixed cells. AspA Golgi trackers work without cellular engineering and excel with speed, simplicity, generality, and compatibility with G/ER and cis/trans discrimination, morphological changes, anterograde vesicular trafficking, and superresolution imaging by stimulated emission depletion microscopy. Golgi flippers in particular can image membrane order and tension in the Golgi and, if desired, at the plasma membrane during TMU.
Collapse
Affiliation(s)
| | - Xiao-Xiao Chen
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Julia Moreno
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Michael Cognet
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Luis Wong-Dilworth
- Institute
for Chemistry and Biochemistry, Freie Universität
Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Francesca Bottanelli
- Institute
for Chemistry and Biochemistry, Freie Universität
Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Naomi Sakai
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Stefan Matile
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
3
|
Bojarska J, Wolf WM. Short Peptides as Powerful Arsenal for Smart Fighting Cancer. Cancers (Basel) 2024; 16:3254. [PMID: 39409876 PMCID: PMC11476321 DOI: 10.3390/cancers16193254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Short peptides have been coming around as a strong weapon in the fight against cancer on all fronts-in immuno-, chemo-, and radiotherapy, and also in combinatorial approaches. Moreover, short peptides have relevance in cancer imaging or 3D culture. Thanks to the natural 'smart' nature of short peptides, their unique structural features, as well as recent progress in biotechnological and bioinformatics development, short peptides are playing an enormous role in evolving cutting-edge strategies. Self-assembling short peptides may create excellent structures to stimulate cytotoxic immune responses, which is essential for cancer immunotherapy. Short peptides can help establish versatile strategies with high biosafety and effectiveness. Supramolecular short peptide-based cancer vaccines entered clinical trials. Peptide assemblies can be platforms for the delivery of antigens, adjuvants, immune cells, and/or drugs. Short peptides have been unappreciated, especially in the vaccine aspect. Meanwhile, they still hide the undiscovered unlimited potential. Here, we provide a timely update on this highly active and fast-evolving field.
Collapse
Affiliation(s)
- Joanna Bojarska
- Chemistry Department, Institute of Inorganic and Ecological Chemistry, Łódź University of Technology, S. Żeromskiego Str. 116, 90-924 Łódź, Poland;
| | | |
Collapse
|
4
|
Wu C, Jiang P, Su W, Yan Y. Alkaline Phosphatase-Instructed Peptide Assemblies for Imaging and Therapeutic Applications. Biomacromolecules 2024; 25:5609-5629. [PMID: 39185628 DOI: 10.1021/acs.biomac.4c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Self-assembly, a powerful strategy for constructing highly stable and well-ordered supramolecular structures, widely exists in nature and in living systems. Peptides are frequently used as building blocks in the self-assembly process due to their advantageous characteristics, such as ease of synthesis, tunable mechanical stability, good biosafety, and biodegradability. Among the initiators for peptide self-assembly, enzymes are excellent candidates for guiding this process under mild reaction conditions. As a crucial and commonly used biomarker, alkaline phosphatase (ALP) cleaves phosphate groups, triggering a hydrophilicity-to-hydrophobicity transformation that induces peptide self-assembly. In recent years, ALP-instructed peptide self-assembly has made breakthroughs in biological imaging and therapy, inspiring the development of self-assembly biomaterials for diagnosis and therapeutics. In this review, we highlight the most recent advancements in ALP-instructed peptide assemblies and provide perspectives on their potential impact. Finally, we briefly discuss the ongoing challenges for future research in this field.
Collapse
Affiliation(s)
- Chengfan Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Pingge Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wen Su
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
5
|
Kim S, Lee Y, Seu MS, Sim Y, Ryu JH. Enzyme-instructed intramitochondrial polymerization for enhanced anticancer treatment without the development of drug-resistance. J Control Release 2024; 373:189-200. [PMID: 39002798 DOI: 10.1016/j.jconrel.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Intracellular polymerization in living cells motivated chemists to generate polymeric structures with a multitude of possibilities to interact with biomacromolecules. However, out-of-control of the intracellular chemical reactions would be an obstacle restricting its application, providing the toxicity of non-targeted cells. Here, we reported intracellular thioesterase-mediated polymerization for selectively occurring polymerization using disulfide bonds in cancer cells. The acetylated monomers did not form disulfide bonds even under an oxidative environment, but they could polymerize into the polymeric structure after cleavage of acetyl groups only when encountered activity of thioesterase enzyme. Furthermore, acetylated monomers could be self-assembled with doxorubicin, providing doxorubicin loaded micelles for efficient intracellular delivery of drug and monomers. Since thioesterase enzymes were overexpressed in cancer cells specifically, the micelles were disrupted under activity of the enzyme and the polymerization could occur selectively in the cancer mitochondria. The resulting polymeric structures disrupted the mitochondrial membrane, thus activating the cellular death of cancer cells with high selectivity. This strategy selectively targets diverse cancer cells involving drug-resistant cells over normal cells. Moreover, the mitochondria targeting strategy overcomes the development of drug resistance even with repeated treatment. This approach provides a way for selective intracellular polymerization with desirable anticancer treatment.
Collapse
Affiliation(s)
- Sangpil Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yeji Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min-Seok Seu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Youjung Sim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
6
|
Niu J, Yu J, Wu X, Zhang YM, Chen Y, Yu Z, Liu Y. Host-guest binding between cucurbit[8]uril and amphiphilic peptides achieved tunable supramolecular aggregates for cancer diagnosis. Chem Sci 2024; 15:13779-13787. [PMID: 39211500 PMCID: PMC11351706 DOI: 10.1039/d4sc04261a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
The manipulation of biocompatible supramolecular nanostructures at subcellular and cellular levels has become one of the increasingly significant topics but remains a formidable challenge in chemical and biological science. In this work, a controllable supramolecular aggregate based on host-guest competitive binding is elaborately constructed using cucurbit[8]uril, methionine-containing amphiphilic peptide, and perylene diimide, displaying in situ oxidation-driven macrocycle-confined fluorescence enhancement for cell imaging and morphological reconstruction for cancer cell death. The experimental results demonstrate that cucurbit[8]uril possesses a high binding affinity with the methionine peptide, while this value sharply decreases after the methionine residue is oxidized to sulfoxide or sulfone. Therefore, perylene diimide can be competitively included by cucurbit[8]uril in the co-assemblies, eventually resulting in a 10-fold fluorescence enhancement and the conversion of topological morphology from nano-sized particles to micron-sized sheets. Moreover, the obtained ternary assemblies can be oxidized by endogenous reactive oxygen species in cancer cells, thus not only providing enhanced fluorescence for cell imaging, but also leading to endoplasmic reticulum dysfunction and significant cell death. Therefore, the controllable and oxidation-responsive morphological transformation based on the host-guest competitive binding in biological media can be viewed as a feasible means for efficient disease theragnosis.
Collapse
Affiliation(s)
- Jie Niu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Jie Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Xuan Wu
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou Jiangsu 225002 P. R. China
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
7
|
Lu H, Yu X, Li W, Zhang Y, Sun S. Prognosis and metabolism with a Golgi apparatus-related genes-based formula in breast cancer. Medicine (Baltimore) 2024; 103:e39177. [PMID: 39151519 PMCID: PMC11332736 DOI: 10.1097/md.0000000000039177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/20/2024] [Accepted: 07/15/2024] [Indexed: 08/19/2024] Open
Abstract
The Golgi apparatus (GA), an organelle that processes, sorts, and transports proteins synthesized by the endoplasmic reticulum, is also involved in many cellular processes associated with cancer, such as angiogenesis, the innate immune response, and tumor invasion and migration. We aimed to construct a breast cancer (BC) prognosis prediction model based on GA-related genetic information to evaluate the prognosis of patients with BC more accurately than existing models and to stratify patients for clinical therapy. In this study, The Cancer Genome Atlas-breast invasive carcinoma was used as the training cohort, and the Molecular Taxonomy of Breast Cancer International Consortium cohort was used as the validation cohort. Using bioinformatics methods, we constructed a GA-related gene risk score (GRS). The GRS was used to divide BC patients into a high-GRS group and a low-GRS group, and functional analysis, survival analysis, mutation analysis, immune landscape analysis, and metabolic analysis were performed to compare the 2 groups. Finally, a nomogram was constructed for clinical application. The genes in the GRS model were mainly related to the glucose metabolism pathway, and the main mutations in the 2 groups of patients were mutations in TP53 and CHD1. The mutation rate in the high-GRS group was greater than that in the low-GRS group. The high GRS group had higher tumor immune activity glycolysis; the pentose phosphate pathway tended to be the dominant metabolic pathways in this group, while fatty acid oxidation and glutamine catabolism tended to be dominant in the low-GRS group. GA-related genes were used to construct a prediction model for BC patients and had high accuracy in predicting prognosis. The mutations associated with the GRS are mainly TP53 and CDH1. Interestingly, the GRS is correlated with glucose metabolism in terms of gene expression and functional enrichment. In summary, the role of GRS-related genes in glucose metabolism is worthy of further study.
Collapse
Affiliation(s)
- Hang Lu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Cardiovascular Surgery, Xijing Hospital, Xi’an, China
| | - Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenge Li
- Department of Oncology, Shanghai Artemed Hospital, Shanghai, China
| | - Yimin Zhang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Cai X, Xu W, Ren C, Zhang L, Zhang C, Liu J, Yang C. Recent progress in quantitative analysis of self-assembled peptides. EXPLORATION (BEIJING, CHINA) 2024; 4:20230064. [PMID: 39175887 PMCID: PMC11335468 DOI: 10.1002/exp.20230064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 08/24/2024]
Abstract
Self-assembled peptides have been among the important biomaterials due to its excellent biocompatibility and diverse functions. Over the past decades, substantial progress and breakthroughs have been made in designing self-assembled peptides with multifaceted biomedical applications. The techniques for quantitative analysis, including imaging-based quantitative techniques, chromatographic technique and computational approach (molecular dynamics simulation), are becoming powerful tools for exploring the structure, properties, biomedical applications, and even supramolecular assembly processes of self-assembled peptides. However, a comprehensive review concerning these quantitative techniques remains scarce. In this review, recent progress in techniques for quantitative investigation of biostability, cellular uptake, biodistribution, self-assembly behaviors of self-assembled peptide etc., are summarized. Specific applications and roles of these techniques are highlighted in detail. Finally, challenges and outlook in this field are concluded. It is believed that this review will provide technical guidance for researchers in the field of peptide-based materials and pharmaceuticals, and facilitate related research for newcomers in this field.
Collapse
Affiliation(s)
- Xiaoyao Cai
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Wei Xu
- Department of PathologyCharacteristic Medical Center of Chinese People's Armed Police ForcesTianjinP. R. China
| | - Chunhua Ren
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Liping Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Congrou Zhang
- Metabolomics and Analytics Center, Leiden Academic Centre of Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| |
Collapse
|
9
|
Wen X, Zhang C, Tian Y, Miao Y, Liu S, Xu JJ, Ye D, He J. Smart Molecular Imaging and Theranostic Probes by Enzymatic Molecular In Situ Self-Assembly. JACS AU 2024; 4:2426-2450. [PMID: 39055152 PMCID: PMC11267545 DOI: 10.1021/jacsau.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Enzymatic molecular in situ self-assembly (E-MISA) that enables the synthesis of high-order nanostructures from synthetic small molecules inside a living subject has emerged as a promising strategy for molecular imaging and theranostics. This strategy leverages the catalytic activity of an enzyme to trigger probe substrate conversion and assembly in situ, permitting prolonging retention and congregating many molecules of probes in the targeted cells or tissues. Enhanced imaging signals or therapeutic functions can be achieved by responding to a specific enzyme. This E-MISA strategy has been successfully applied for the development of enzyme-activated smart molecular imaging or theranostic probes for in vivo applications. In this Perspective, we discuss the general principle of controlling in situ self-assembly of synthetic small molecules by an enzyme and then discuss the applications for the construction of "smart" imaging and theranostic probes against cancers and bacteria. Finally, we discuss the current challenges and perspectives in utilizing the E-MISA strategy for disease diagnoses and therapies, particularly for clinical translation.
Collapse
Affiliation(s)
- Xidan Wen
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing 210008, China
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Chao Zhang
- Department
of Neurosurgery, Zhujiang Hospital, Southern
Medical University, Guangzhou 510282, China
| | - Yuyang Tian
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Yinxing Miao
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Shaohai Liu
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Jing-Juan Xu
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Deju Ye
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Jian He
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing 210008, China
| |
Collapse
|
10
|
Xu S, Yan KC, Xu ZH, Wang Y, James TD. Fluorescent probes for targeting the Golgi apparatus: design strategies and applications. Chem Soc Rev 2024; 53:7590-7631. [PMID: 38904177 DOI: 10.1039/d3cs00171g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The Golgi apparatus is an essential organelle constructed by the stacking of flattened vesicles, that is widely distributed in eukaryotic cells and is dynamically regulated during cell cycles. It is a central station which is responsible for collecting, processing, sorting, transporting, and secreting some important proteins/enzymes from the endoplasmic reticulum to intra- and extra-cellular destinations. Golgi-specific fluorescent probes provide powerful non-invasive tools for the real-time and in situ visualization of the temporal and spatial fluctuations of bioactive species. Over recent years, more and more Golgi-targeting probes have been developed, which are essential for the evaluation of diseases including cancer. However, when compared with systems that target other important organelles (e.g. lysosomes and mitochondria), Golgi-targeting strategies are still in their infancy, therefore it is important to develop more Golgi-targeting probes. This review systematically summarizes the currently reported Golgi-specific fluorescent probes, and highlights the design strategies, mechanisms, and biological uses of these probes, we have structured the review based on the different targeting groups. In addition, we highlight the future challenges and opportunities in the development of Golgi-specific imaging agents and therapeutic systems.
Collapse
Affiliation(s)
- Silin Xu
- Key Laboratory of Chemo/Biosensing and Detection, Xuchang University, 461000, P. R. China.
| | - Kai-Cheng Yan
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, Xuchang University, 461000, P. R. China.
- College of Chemical and Materials Engineering, Xuchang University, Xuchang, 461000, P. R. China
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, P. R. China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
11
|
Zhao X, Wu X, Shang R, Chen H, Tan N. A structure-guided strategy to design Golgi apparatus-targeted type-I/II aggregation-induced emission photosensitizers for efficient photodynamic therapy. Acta Biomater 2024; 183:235-251. [PMID: 38801870 DOI: 10.1016/j.actbio.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
The Golgi apparatus (GA) is a vital target for anticancer therapy due to its sensitivity against reactive oxygen species (ROS)-induced oxidative stress that could lead to cell death. In this study, we designed a series of aggregation-induced emission (AIE)-based photosensitizers (TPAPyTZ, TPAPyTC, TPAPyTM, and TPAPyTI) carrying different ROS with selective GA-targeted ability. The in vitro study showed that TPAPyTZ and TPAPyTC displayed strong AIE characteristics, robust type-I/II ROS production capabilities, specific GA-targeted, high photostability, and high imaging quality. The cell-uptake of TPAPyTZ was found primarily through an energy-dependent caveolae/raft-mediated endocytosis pathway. Remarkably, TPAPyTZ induced GA-oxidative stress, leading to GA fragmentation, downregulation of GM130 expression, and activation of mitochondria caspase-related apoptosis during photodynamic therapy (PDT). In vivo experiments revealed that TPAPyTZ significantly inhibited tumor proliferation under lower-intensity white light irradiation with minimal side effects. Overall, our work presents a promising strategy for designing AIEgens for fluorescence imaging-guided PDT. Additionally, it enriched the collection of GA-targeted leads for the development of cancer theranostics capable of visualizing dynamic changes in the GA during cancer cell apoptosis, which could potentially enable early diagnosis applications in the future. STATEMENT OF SIGNIFICANCE: AIE luminogens (AIEgens) are potent phototheranostic agents that can exhibit strong fluorescence emission and enhance ROS production in the aggregate states. In this study, through the precise design of photosensitizers with four different electron-acceptors, we constructed a series of potent AIEgens (TPAPyTZ, TPAPyTC, TPAPyTM, and TPAPyTI) with strong fluorescence intensity and ROS generation capacity. Among them, TPAPyTZ with an extended π-conjugation displayed the strongest ROS generation ability and anti-tumor activity, resulting in an 88 % reduction in tumor weight. Our studies revealed that the enhanced activity of TPAPyTZ may be due to its unique Golgi apparatus (GA)-targeted ability, which causes GA oxidative stress followed by effective cancer cell apoptosis. This unique GA-targeted feature of TPAPyTZ remains rare in the reported AIEgens, which mainly target organelles such as lysosome, mitochondria, and cell membrane. The successful design of a GA-targeted and potent AIEgen could enrich the collection of GA-targeted luminogens, providing a lead theranostic for the further development of fluorescence imaging-guided PDT, and serving as a tool to explore the potential mechanism and discover new GA-specific drug targets.
Collapse
Affiliation(s)
- Xing Zhao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xi Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ranran Shang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huachao Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
12
|
Shi M, Fu Z, Pan W, Wang K, Liu X, Li N, Tang B. A Golgi Apparatus-Targeted Photothermal Agent with Protein Anchoring for Enhanced Cancer Photothermal Therapy. Adv Healthc Mater 2024; 13:e2303749. [PMID: 38483042 DOI: 10.1002/adhm.202303749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/06/2024] [Indexed: 03/23/2024]
Abstract
The Golgi apparatus (GA) is central in shuttling proteins from the endoplasmic reticulum to different cellular areas. Therefore, targeting the GA to precisely destroy its proteins through local heat could induce apoptosis, offering a potential avenue for effective cancer therapy. Herein, a GA-targeted photothermal agent based on protein anchoring is introduced for enhanced photothermal therapy of tumor through the modification of near-infrared molecular dye with maleimide derivative and benzene sulfonamide. The photothermal agent can actively target the GA and covalently anchor to its sulfhydryl proteins, thereby increasing its retention within the GA. Under laser irradiation, the heat generated by the photothermal agent efficiently disrupts sulfhydryl proteins in situ, leading to GA dysfunction and ultimately inducing cell apoptosis. In vivo experiments demonstrate that the photothermal agent can precisely treat tumors and significantly reduce side effects.
Collapse
Affiliation(s)
- Mingwan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Jinan, 250014, P. R. China
| | - Zhongliang Fu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Jinan, 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Jinan, 250014, P. R. China
| | - Kaiye Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Jinan, 250014, P. R. China
| | - Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Jinan, 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Jinan, 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Jinan, 250014, P. R. China
- Laoshan Laboratory, Qingdao, 266237, P. R. China
| |
Collapse
|
13
|
Tan W, Zhang Q, Lee M, Lau W, Xu B. Enzymatic control of intermolecular interactions for generating synthetic nanoarchitectures in cellular environment. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2373045. [PMID: 39011064 PMCID: PMC11249168 DOI: 10.1080/14686996.2024.2373045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024]
Abstract
Nanoarchitectonics, as a technology to arrange nano-sized structural units such as molecules in a desired configuration, requires nano-organization, which usually relies on intermolecular interactions. This review briefly introduces the development of using enzymatic reactions to control intermolecular interactions for generating artificial nanoarchitectures in a cellular environment. We begin the discussion with the early examples and uniqueness of enzymatically controlled self-assembly. Then, we describe examples of generating intracellular nanostructures and their relevant applications. Subsequently, we discuss cases of forming nanostructures on the cell surface via enzymatic reactions. Following that, we highlight the use of enzymatic reactions for creating intercellular nanostructures. Finally, we provide a summary and outlook on the promises and future direction of this strategy. Our aim is to give an updated introduction to the use of enzymatic reaction in regulating intermolecular interactions, a phenomenon ubiquitous in biology but relatively less explored by chemists and materials scientists. Our goal is to stimulate new developments in this simple and versatile approach for addressing societal needs.
Collapse
Affiliation(s)
- Weiyi Tan
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Mikki Lee
- Department of Chemistry, Brandeis University, Waltham, MA, USA
- Department of Pharmacy and Pharmaceutical Sciences, National University ofSingapore, Singapore
| | - William Lau
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| |
Collapse
|
14
|
Singh IR, Aggarwal N, Srivastava S, Panda JJ, Mishra J. Small Peptide-Based Nanodelivery Systems for Cancer Therapy and Diagnosis. J Pharmacol Exp Ther 2024; 390:30-44. [PMID: 37977815 DOI: 10.1124/jpet.123.001845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
Developing nano-biomaterials with tunable topology, size, and surface characteristics has shown tremendously favorable benefits in various biologic and clinical applications. Among various nano-biomaterials, peptide-based drug delivery systems offer multiple merits over other synthetic systems due to their enhanced bio- and cytocompatibility and desirable biochemical and biophysical properties. Currently, around 100 peptide-based drugs are clinically available for numerous therapeutic purposes. In conjugation with chemotherapeutic moieties, peptides demonstrate a remarkable ability to reduce nonspecific drug effects by improving drug targetability at cancer sites. This review encompasses a wide-ranging role played by different peptide-based nanostructures in cancer theranostics. Section 1 introduces the rising concern about cancer as a disease and further describes peptide-based nanomaterials as biomedical agents to tackle the ailment. The subsequent section explores the mechanistic pathways behind the self-assembly of peptides to form hierarchically distinct assemblies. The crux of our review lies in an exhaustive exploration of the applications of various types of peptide-based nanostructures in cancer therapy and diagnosis. SIGNIFICANCE STATEMENT: Peptide-based drug delivery systems possess superior biocompatibility, biochemical, and biophysical properties compared to other synthetic alternatives. The development of these nano-biomaterials with customizable topology, size, and surface characteristics have shown promising outcomes in biomedical contexts. Peptides in conjunction with chemotherapeutic agents exhibit the ability to enhance drug targetability at cancer sites, reducing nonspecific drug effects. This comprehensive review emphasizes the pivotal role of diverse peptide-based nanostructures as cancer theranostics, elucidating their potential in revolutionizing cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Imocha Rajkumar Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| | - Nidhi Aggarwal
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| | - Swapnil Srivastava
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| | - Jiban Jyoti Panda
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| | - Jibanananda Mishra
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| |
Collapse
|
15
|
Qian Z, Sun L, Wang R, Dong X, Sun J, Dong C, Qu D, Gu X, Zhao C. High-Fidelity Spatiotemporal Recognition of Golgi ALP through an Initial-Accumulation and Postactivation Strategy. Anal Chem 2024; 96:9737-9743. [PMID: 38825763 DOI: 10.1021/acs.analchem.4c02202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Various signal molecules mediate complex physiological processes collectively in the Golgi. However, most currently accessible probes are questionable in illuminating the functions of these reactive species in Golgi because of the inability to irradiate these probes only at the desired Golgi location, which compromises specificity and accuracy. In this study, we rationally designed the first photocontrollable and Golgi-targeted fluorescent probe to in situ visualize the Golgi alkaline phosphatase (ALP). The designed probe with natural yellow fluorescence can provide access into Golgi and monitor the exact timing of accumulation in Golgi. On-demand photoactivation at only the desired Golgi location affords a significant emission response to ALP with illuminating red fluorescence at 710 nm. Through the photocontrollable fluorescence responsiveness to ALP, precise spatiotemporal recognition of Golgi ALP fluctuations is successfully performed. With this probe, for the first time, we revealed the Golgi ALP levels during cisplatin-induced acute kidney injury (AKI), which will further facilitate and complement the comprehensive exploration of ALP kinetics during physiological and pathological processes.
Collapse
Affiliation(s)
- Zehua Qian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lixin Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuemei Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chengjun Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Dahui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
16
|
Gong Z, Zhao H, Bai J. pH-responsive drug-loaded peptides enhance drug accumulation and promote apoptosis in tumor cells. Colloids Surf B Biointerfaces 2024; 239:113954. [PMID: 38744076 DOI: 10.1016/j.colsurfb.2024.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
The efficacy of chemotherapeutic drugs in tumor treatment is limited by their toxicity and side effects due to their inability to selectively accumulate in tumor tissue. In addition, chemotherapeutic agents are easily pumped out of tumor cells, resulting in their inadequate accumulation. To overcome these challenges, a drug delivery system utilizing the amphiphilic peptide Pep1 was designed. Pep1 can self-assemble into spherical nanoparticles (PL/Pep1) and encapsulate paclitaxel (PTX) and lapatinib (LAP). PL/Pep1 transformed into nanofibers in an acidic environment, resulting in longer drug retention and higher drug concentrations within tumor cells. Ultimately, PL/Pep1 inhibited tumor angiogenesis and enhanced tumor cell apoptosis. The use of shape-changing peptides as drug carriers to enhance cancer cell apoptosis is promising.
Collapse
Affiliation(s)
- Zhongying Gong
- College of Economics and Management, Qingdao University of Science and Technology, Qingdao, China
| | - Hongxia Zhao
- College of Economics and Management, Qingdao University of Science and Technology, Qingdao, China.
| | - Jingkun Bai
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, China.
| |
Collapse
|
17
|
Wu L, Xing L, Wu R, Fan X, Ni M, Xiao X, Zhou Z, Li L, Wen J, Huang Y. Lipoic acid-mediated oral drug delivery system utilizing changes on cell surface thiol expression for the treatment of diabetes and inflammatory diseases. J Mater Chem B 2024; 12:3970-3983. [PMID: 38563351 DOI: 10.1039/d3tb02899b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Lipoic acid (LA), which has good safety and oral absorption, is obtained from various plant-based food sources and needs to be supplemented through human diet. Moreover, substances with a disulfide structure can enter cells through dynamic covalent disulfide exchange with thiol groups on the cell membrane surface. Based on these factors, we constructed LA-modified nanoparticles (LA NPs). Our results showed that LA NPs can be internalized into intestinal epithelial cells through surface thiols, followed by intracellular transcytosis via the endoplasmic reticulum-Golgi pathway. Further mechanistic studies indicated that disulfide bonds within the structure of LA play a critical role in this transport process. In a type I diabetes rat model, the oral administration of insulin-loaded LA NPs exhibited a more potent hypoglycemic effect, with a pharmacokinetic bioavailability of 5.42 ± 0.53%, representing a 1.6 fold enhancement compared to unmodified PEG NPs. Furthermore, a significant upregulation of surface thiols in inflammatory macrophages was reported. Thus, we turned our direction to investigate the uptake behavior of inflammatory macrophages with increased surface thiols towards LA NPs. Inflammatory macrophages showed a 2.6 fold increased uptake of LA NPs compared to non-inflammatory macrophages. Surprisingly, we also discovered that the antioxidant resveratrol facilitates the uptake of LA NPs in a concentration-dependent manner. This is mainly attributed to an increase in glutathione, which is involved in thiol uptake. Consequently, we employed LA NPs loaded with resveratrol for the treatment of colitis and observed a significant alleviation of colitis symptoms. These results suggest that leveraging the variations of thiol expression levels on cell surfaces under both healthy and diseased states through an oral drug delivery system mediated by the small-molecule nutrient LA can be employed for the treatment of diabetes and certain inflammatory diseases.
Collapse
Affiliation(s)
- Licheng Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Liyun Xing
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ruinan Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xiaoxing Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Mingjie Ni
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xin Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zhou Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Science, The University of Auckland, Auckland 1142, New Zealand
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
18
|
Tyagi K, Venkatesh V. Emerging potential approaches in alkaline phosphatase (ALP) activatable cancer theranostics. RSC Med Chem 2024; 15:1148-1160. [PMID: 38665831 PMCID: PMC11042160 DOI: 10.1039/d3md00565h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/09/2024] [Indexed: 04/28/2024] Open
Abstract
Alkaline phosphatase (ALP) is known as one of the most crucial members of the phosphatase family and encompasses the enormous ability to hydrolyze the phosphate group in various biomolecules; by this, it regulates several events in the pool of biological medium. Owing to its overexpression in various cancer cells, recently, its potential has evolved as a prominent biomarker in cancer research. In this article, we have underlined the recent advances (2019 onwards) of alkaline phosphatase in the arena of emerging cancer theranostics. Herein, we mainly focused on phosphate-locked molecular systems such as peptides, prodrugs, and aggregation-induced emission (AIE)-based molecules. When these theranostics encounter cancer cell-overexpressed ALP, it results in the hydrolysis of the phosphate group, which leads to the release of highly cytotoxic agents along with turn-on fluorophore/pre-existing fluorophore.
Collapse
Affiliation(s)
- Kartikay Tyagi
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee Uttarakhand-247667 India
| | - V Venkatesh
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee Uttarakhand-247667 India
| |
Collapse
|
19
|
Gao G, Jiang YW, Chen J, Xu X, Sun X, Xu H, Liang G, Liu X, Zhan W, Wang M, Xu Y, Zheng J, Wang G. Three-in-One Peptide Prodrug with Targeting, Assembly and Release Properties for Overcoming Bacterium-Induced Drug Resistance and Potentiating Anti-Cancer Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312153. [PMID: 38444205 DOI: 10.1002/adma.202312153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/02/2024] [Indexed: 03/07/2024]
Abstract
The presence of bacteria in tumor results in chemotherapeutic drug resistance and weakens the immune response in colorectal cancer. To overcome bacterium-induced chemotherapeutic drug resistance and potentiate antitumor immunity, herein a novel molecule Biotin-Lys(SA-Cip-OH)-Lys(SA-CPT)-Phe-Phe-Nap (Biotin-Cip-CPT-Nap) is rationally designed containing four functional motifs (i.e., a biotin motif for targeting, Phe-Phe(-Nap) motif for self-assembly, ciprofloxacin derivative (Cip-OH) motif for antibacterial effect, and camptothecin (CPT) motif for chemotherapy). Using the designed molecule, a novel strategy of intracellular enzymatic nanofiber formation and synergistic antibacterium-enhanced chemotherapy and immunotherapy is achieved. Under endocytosis mediated by highly expressed biotin receptor in colorectal cancer cell membrane and the catalysis of highly expressed carboxylesterase in the cytoplasm, this novel molecule can be transformed into Biotin-Nap, which self-assembled into nanofibers. Meanwhile, antibiotic Cip-OH and chemotherapeutic drug CPT are released, overcoming bacterium-induced drug resistance and enhancing the therapeutic efficacy of immunotherapy towards colorectal cancer. This work offers a feasible strategy for the design of novel multifunctional prodrugs to improve the efficiency of colorectal cancer treatment.
Collapse
Affiliation(s)
- Ge Gao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Yao-Wen Jiang
- School of Medical Imaging, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Jiaxuan Chen
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Xiaodi Xu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Xianbao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Haidong Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Wenjun Zhan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Yixin Xu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| |
Collapse
|
20
|
Giltrap A, Yuan Y, Davis BG. Late-Stage Functionalization of Living Organisms: Rethinking Selectivity in Biology. Chem Rev 2024; 124:889-928. [PMID: 38231473 PMCID: PMC10870719 DOI: 10.1021/acs.chemrev.3c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024]
Abstract
With unlimited selectivity, full post-translational chemical control of biology would circumvent the dogma of genetic control. The resulting direct manipulation of organisms would enable atomic-level precision in "editing" of function. We argue that a key aspect that is still missing in our ability to do this (at least with a high degree of control) is the selectivity of a given chemical reaction in a living organism. In this Review, we systematize existing illustrative examples of chemical selectivity, as well as identify needed chemical selectivities set in a hierarchy of anatomical complexity: organismo- (selectivity for a given organism over another), tissuo- (selectivity for a given tissue type in a living organism), cellulo- (selectivity for a given cell type in an organism or tissue), and organelloselectivity (selectivity for a given organelle or discrete body within a cell). Finally, we analyze more traditional concepts such as regio-, chemo-, and stereoselective reactions where additionally appropriate. This survey of late-stage biomolecule methods emphasizes, where possible, functional consequences (i.e., biological function). In this way, we explore a concept of late-stage functionalization of living organisms (where "late" is taken to mean at a given state of an organism in time) in which programmed and selective chemical reactions take place in life. By building on precisely analyzed notions (e.g., mechanism and selectivity) we believe that the logic of chemical methodology might ultimately be applied to increasingly complex molecular constructs in biology. This could allow principles developed at the simple, small-molecule level to progress hierarchically even to manipulation of physiology.
Collapse
Affiliation(s)
- Andrew
M. Giltrap
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Yizhi Yuan
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Benjamin G. Davis
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| |
Collapse
|
21
|
Zhang X, Wang J, Zhang Y, Yang Z, Gao J, Gu Z. Synthesizing biomaterials in living organisms. Chem Soc Rev 2023; 52:8126-8164. [PMID: 37921625 DOI: 10.1039/d2cs00999d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Living organisms fabricate biomacromolecules such as DNA, RNA, and proteins by the self-assembly process. The research on the mechanism of biomacromolecule formation also inspires the exploration of in vivo synthesized biomaterials. By elaborate design, artificial building blocks or precursors can self-assemble or polymerize into functional biomaterials within living organisms. In recent decades, these so-called in vivo synthesized biomaterials have achieved extensive applications in cell-fate manipulation, disease theranostics, bioanalysis, cellular surface engineering, and tissue regeneration. In this review, we classify strategies for in vivo synthesis into non-covalent, covalent, and genetic types. The development of these approaches is based on the chemical principles of supramolecular chemistry and synthetic chemistry, biological cues such as enzymes and microenvironments, and the means of synthetic biology. By summarizing the design principles in detail, some insights into the challenges and opportunities in this field are provided to enlighten further research.
Collapse
Affiliation(s)
- Xiangyang Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Junxia Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
22
|
Abstract
Higher-order or supramolecular protein assemblies, usually regulated by enzymatic reactions, are ubiquitous and essential for cellular functions. This evolutionary fact has provided a rigorous scientific foundation, as well as an inspiring blueprint, for exploring supramolecular assemblies of man-made molecules that are responsive to biological cues as a novel class of therapeutics for biomedicine. Among the emerging man-made supramolecular structures, peptide assemblies, formed by enzyme reactions or other stimuli, have received most of the research attention and advanced most rapidly.In this Account, we will review works that apply enzyme-instructed self-assembly (EISA) to generate intracellular peptide assemblies for developing a new kind of biomedicine, especially in the field of novel cancer nanomedicines and modulating cell morphogenesis. As a versatile and cell-compatible approach, EISA can generate nondiffusive peptide assemblies locally; thus, it provides a unique approach to target subcellular organelles with exceptional cell selectivity. We have arranged this Account in the following way: after introducing the concept, simplicity, and uniqueness of EISA, we discuss the EISA-formed intracellular peptide assemblies, including artificial filaments, in the cell cytosol. Then, we describe the representative examples targeting subcellular organelles, such as mitochondria, endoplasmic reticulum, Golgi apparatus, lysosomes, and the nucleus, by enzyme-instructed intracellular peptide assemblies for potential cancer therapeutics. After that, we highlight the recent exploration of the transcytosis of peptide assemblies for controlling cell morphogenesis. Finally, we provide a brief outlook of enzyme-instructed intracellular peptide assemblies. This Account aims to illustrate the promise of EISA-generated intracellular peptide assemblies in understanding diseases, controlling cell behaviors, and developing new therapeutics from a class of less explored molecular entities, which are substrates of enzymes and become building blocks of self-assembly after the enzymatic reactions.
Collapse
Affiliation(s)
- Zhiyu Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Yuchen Qiao
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
23
|
Kim S, Chae JB, Kim D, Park CW, Sim Y, Lee H, Park G, Lee J, Hong S, Jana B, Kim C, Chung H, Ryu JH. Supramolecular Senolytics via Intracellular Oligomerization of Peptides in Response to Elevated Reactive Oxygen Species Levels in Aging Cells. J Am Chem Soc 2023; 145:21991-22008. [PMID: 37664981 DOI: 10.1021/jacs.3c06898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Senolytics, which eliminate senescent cells from tissues, represent an emerging therapeutic strategy for various age-related diseases. Most senolytics target antiapoptotic proteins, which are overexpressed in senescent cells, limiting specificity and inducing severe side effects. To overcome these limitations, we constructed self-assembling senolytics targeting senescent cells with an intracellular oligomerization system. Intracellular aryl-dithiol-containing peptide oligomerization occurred only inside the mitochondria of senescent cells due to selective localization of the peptides by RGD-mediated cellular uptake into integrin αvβ3-overexpressed senescent cells and elevated levels of reactive oxygen species, which can be used as a chemical fuel for disulfide formation. This oligomerization results in an artificial protein-like nanoassembly with a stable α-helix secondary structure, which can disrupt the mitochondrial membrane via multivalent interactions because the mitochondrial membrane of senescent cells has weaker integrity than that of normal cells. These three specificities (integrin αvβ3, high ROS, and weak mitochondrial membrane integrity) of senescent cells work in combination; therefore, this intramitochondrial oligomerization system can selectively induce apoptosis of senescent cells without side effects on normal cells. Significant reductions in key senescence markers and amelioration of retinal degeneration were observed after elimination of the senescent retinal pigment epithelium by this peptide senolytic in an age-related macular degeneration mouse model and in aged mice, and this effect was accompanied by improved visual function. This system provides a strategy for the treatment of age-related diseases using supramolecular senolytics.
Collapse
Affiliation(s)
- Sangpil Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae-Byoung Chae
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Dohyun Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chul-Woo Park
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Youjung Sim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyungwoo Lee
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Gaeun Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaeeun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seongho Hong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Batakrishna Jana
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chaekyu Kim
- Fusion Biotechnology, Ulsan 44919, Republic of Korea
| | - Hyewon Chung
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
24
|
Ge X, Cao Y, Zhu X, Yuan B, He L, Wu A, Li J. Self-Assembly of Organelle-Localized Neuropeptides Triggers Intrinsic Apoptosis Against Breast Cancer. Adv Healthc Mater 2023; 12:e2300265. [PMID: 37306309 DOI: 10.1002/adhm.202300265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/23/2023] [Indexed: 06/13/2023]
Abstract
Biosynthesis has become a diverse toolbox for the development of bioactive molecules and materials, particularly for enzyme-induced modification and assembly of peptides. However, intracellular spatiotemporal regulation of artificial biomolecular aggregates based on neuropeptide remains challenging. Here, an enzyme responsive precursor (Y1 L-KGRR-FF-IR) is developed based on the neuropeptide Y Y1 receptor ligand, which self-assembles into nanoscale assemblies in the lysosomes and subsequently has an appreciable destructive effect on the mitochondria and cytoskeleton, resulting in breast cancer cell apoptosis. More importantly, in vivo studies reveal that Y1 L-KGRR-FF-IR has a good therapeutic effect, reduces breast cancer tumor volume and generates excellent tracer efficacy in lung metastasis models. This study provides a novel strategy for stepwise targeting and precise regulation of tumor growth inhibition through functional neuropeptide Y-based artificial aggregates for intracellular spatiotemporal regulation.
Collapse
Affiliation(s)
- Xiaojiao Ge
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Yi Cao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xueli Zhu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Bo Yuan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Lulu He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
25
|
Qiao Y, Xu B. Peptide Assemblies for Cancer Therapy. ChemMedChem 2023; 18:e202300258. [PMID: 37380607 PMCID: PMC10613339 DOI: 10.1002/cmdc.202300258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
Supramolecular assemblies made by the self-assembly of peptides are finding an increasing number of applications in various fields. While the early exploration of peptide assemblies centered on tissue engineering or regenerative medicine, the recent development has shown that peptide assemblies can act as supramolecular medicine for cancer therapy. This review covers the progress of applying peptide assemblies for cancer therapy, with the emphasis on the works appeared over the last five years. We start with the introduction of a few seminal works on peptide assemblies, then discuss the combination of peptide assemblies with anticancer drugs. Next, we highlight the use of enzyme-controlled transformation or shapeshifting of peptide assemblies for inhibiting cancer cells and tumors. After that, we provide the outlook for this exciting field that promises new kind of therapeutics for cancer therapy.
Collapse
Affiliation(s)
- Yuchen Qiao
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
26
|
Liu J, Tang J, Tong Z, Teng G, Yang D. DNA-guided self-assembly in living cells. iScience 2023; 26:106620. [PMID: 37250313 PMCID: PMC10214402 DOI: 10.1016/j.isci.2023.106620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Self-assembly processes exist widely in life systems and play essential roles in maintaining life activities. It is promising to explore the molecular fundamentals and mechanisms of life systems through artificially constructing self-assembly systems in living cells. As an excellent self-assembly construction material, deoxyribonucleic acid (DNA) has been widely used to achieve the precise construction of self-assembly systems in living cells. This review focuses on the recent progress of DNA-guided intracellular self-assembly. First, the methods of intracellular DNA self-assembly based on the conformational transition of DNA are summarized, including complementary base pairing, the formation of G-quadruplex/i-motif, and the specific recognition of DNA aptamer. Next, The applications of DNA-guided intracellular self-assembly on the detection of intracellular biomolecules and the regulation of cell behaviors are introduced, and the molecular design of DNA in the self-assembly systems is discussed in detail. Ultimately, the challenges and opportunities of DNA-guided intracellular self-assembly are commented.
Collapse
Affiliation(s)
- Jinqiao Liu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Zhaobin Tong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Guangshuai Teng
- Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315200, P.R. China
| |
Collapse
|
27
|
Tyagi K, Kumari R, Venkatesh V. Alkaline phosphatase (ALP) activatable small molecule-based prodrugs for cancer theranostics. Org Biomol Chem 2023; 21:4455-4464. [PMID: 37191120 DOI: 10.1039/d3ob00510k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Highly water-soluble small molecule-based prodrugs (5-FUPD and SAHAPD) are formulated. They comprise a phosphate group to lock the active drug payload (5-fluorouracil and SAHA) along with a turn-on fluorophore consisting of a glutathione (GSH) depletory feature. Installation of the phosphate group along with purification of final product has been accomplished in an operationally facile manner. Activation of the prodrugs is facilitated by alkaline phosphatase (ALP)-mediated hydrolysis of the phosphate group followed by 1,8-elimination. The prodrugs were found to be highly effective against ALP flared human cervical cancer (HeLa) and liver cancer (HepG2) cell lines. Most notably, they were found to be innocuous to normal liver cells (WRL-68).
Collapse
Affiliation(s)
- Kartikay Tyagi
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand-247667, India.
| | - Reena Kumari
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand-247667, India.
| | - V Venkatesh
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand-247667, India.
| |
Collapse
|
28
|
Xie L, Ding Y, Zhang X, Zhang Z, Zeng S, Wang L, Yang Z, Liu Q, Hu ZW. A Cascade-Targeted Enzyme-Instructed Peptide Self-Assembly Strategy for Cancer Immunotherapy through Boosting Immunogenic Cell Death. SMALL METHODS 2023; 7:e2201416. [PMID: 36965100 DOI: 10.1002/smtd.202201416] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/04/2023] [Indexed: 05/17/2023]
Abstract
Immunogenic cell death (ICD) approaches by encumbering mitochondrial functions provide great promise for the treatment of malignant tumors, but these kinds of ICD strategies are still in their infancy. Here, one multifunctional drug-loaded, cascade-targeted, and enzyme-instructed self-assembling peptide nanomedicine (Comp. 4) for ICD-based cancer therapy is constructed. Comp. 4 consists of 1) lonidamine (LND) that specifically interferes with mitochondrial functions; 2) a programmed death ligand 1 (PD-L1) binding peptide sequence (NTYYEDQG) and a mitochondria-specific motif (triphenylphosphonium, TPP) that can sequentially control the cell membrane and mitochondria targeting capacities, respectively; and 3) a -GD FD FpD Y- assembly core to in situ organize peptide assemblies responsive to alkaline phosphatase (ALP). Comp. 4 demonstrates noticeable structural and morphological transformations in the presence of ALP and produces peptide assemblies in mouse colon cancer cells (CT26) with high expressions of both ALP and PD-L1. Moreover, the presence of PD-L1- and mitochondria-specific motifs can assist Comp. 4 for effective endocytosis and endosomal escape, forming peptide assemblies and delivering LND into mitochondria. Consequently, Comp. 4 shows superior capacities to in vivo induce abundant mitochondrial oxidative stress, provoke robust ICD responses, and produce an immunogenic tumor microenvironment, successfully inhibiting CT26 tumor growth by eliciting a systemic ICD-based antitumor immunity.
Collapse
Affiliation(s)
- Limin Xie
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yinghao Ding
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Xiangyang Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Zhenghao Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Sheng Zeng
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, P. R. China
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Ling Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Zhimou Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, P. R. China
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Zhi-Wen Hu
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
29
|
Zhou Y, Li Q, Wu Y, Li X, Zhou Y, Wang Z, Liang H, Ding F, Hong S, Steinmetz NF, Cai H. Molecularly Stimuli-Responsive Self-Assembled Peptide Nanoparticles for Targeted Imaging and Therapy. ACS NANO 2023; 17:8004-8025. [PMID: 37079378 DOI: 10.1021/acsnano.3c01452] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Self-assembly has emerged as an extensively used method for constructing biomaterials with sizes ranging from nanometers to micrometers. Peptides have been extensively investigated for self-assembly. They are widely applied owing to their desirable biocompatibility, biodegradability, and tunable architecture. The development of peptide-based nanoparticles often requires complex synthetic processes involving chemical modification and supramolecular self-assembly. Stimuli-responsive peptide nanoparticles, also termed "smart" nanoparticles, capable of conformational and chemical changes in response to stimuli, have emerged as a class of promising materials. These smart nanoparticles find a diverse range of biomedical applications, including drug delivery, diagnostics, and biosensors. Stimuli-responsive systems include external stimuli (such as light, temperature, ultrasound, and magnetic fields) and internal stimuli (such as pH, redox environment, salt concentration, and biomarkers), facilitating the generation of a library of self-assembled biomaterials for biomedical imaging and therapy. Thus, in this review, we mainly focus on peptide-based nanoparticles built by self-assembly strategy and systematically discuss their mechanisms in response to various stimuli. Furthermore, we summarize the diverse range of biomedical applications of peptide-based nanomaterials, including diagnosis and therapy, to demonstrate their potential for medical translation.
Collapse
Affiliation(s)
- Yang Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Qianqian Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Ye Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Xinyu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Ya Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Zhu Wang
- Department of Urology, Affiliated People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong 518109, PR China
| | - Hui Liang
- Department of Urology, Affiliated People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong 518109, PR China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Sheng Hong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Nicole F Steinmetz
- Department of NanoEngineering, Department of Biongineering, Department of Radiology, Moores Cancer Center, Center for Nano-ImmunoEngineering, Center for Engineering in Cancer, Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| |
Collapse
|
30
|
Wu D, Lei J, Zhang Z, Huang F, Buljan M, Yu G. Polymerization in living organisms. Chem Soc Rev 2023; 52:2911-2945. [PMID: 36987988 DOI: 10.1039/d2cs00759b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Vital biomacromolecules, such as RNA, DNA, polysaccharides and proteins, are synthesized inside cells via the polymerization of small biomolecules to support and multiply life. The study of polymerization reactions in living organisms is an emerging field in which the high diversity and efficiency of chemistry as well as the flexibility and ingeniousness of physiological environment are incisively and vividly embodied. Efforts have been made to design and develop in situ intra/extracellular polymerization reactions. Many important research areas, including cell surface engineering, biocompatible polymerization, cell behavior regulation, living cell imaging, targeted bacteriostasis and precise tumor therapy, have witnessed the elegant demeanour of polymerization reactions in living organisms. In this review, recent advances in polymerization in living organisms are summarized and presented according to different polymerization methods. The inspiration from biomacromolecule synthesis in nature highlights the feasibility and uniqueness of triggering living polymerization for cell-based biological applications. A series of examples of polymerization reactions in living organisms are discussed, along with their designs, mechanisms of action, and corresponding applications. The current challenges and prospects in this lifeful field are also proposed.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China
| | - Jiaqi Lei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Zhankui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China
| | - Marija Buljan
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
- School of Medicine, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
31
|
Pan Y, Luan X, Gao Y, Zeng F, Wang X, Zhou D, Li W, Wang Y, He B, Song Y. In-Tumor Biosynthetic Construction of Upconversion Nanomachines for Precise Near-Infrared Phototherapy. ACS NANO 2023; 17:4515-4525. [PMID: 36847587 DOI: 10.1021/acsnano.2c10453] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Targeted construction of therapeutic nanoplatforms in tumor cells with specific activation remains appealing but challenging. Here, we design a cancer-motivated upconversion nanomachine (UCNM) based on porous upconversion nanoparticles (p-UCNPs) for precise phototherapy. The nanosystem is equipped with a telomerase substrate (TS) primer and simultaneously encapsulates 5-aminolevulinic acid (5-ALA) and d-arginine (d-Arg). After coating with hyaluronic acid (HA), it can readily get into tumor cells, where 5-ALA induces efficient accumulation of protoporphyrin IX (PpIX) via the inherent biosynthetic pathway, and the overexpressed telomerase prolonged the TS to form G-quadruplexes (G4) for binding the resulting PpIX as a nanomachine. This nanomachine can respond to near-infrared (NIR) light and promote the active singlet oxygen (1O2) production due to the efficiency of Förster resonance energy transfer (FRET) between p-UCNPs and PpIX. Intriguingly, such oxidative stress can oxidize d-Arg into nitric oxide (NO), which relieves the tumor hypoxia and in turn improves the phototherapy effect. This in situ assembly approach significantly enhances targeting in cancer therapy and might be of considerable clinical value.
Collapse
Affiliation(s)
- Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| | - Fei Zeng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| | - Xuyuan Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| | - Dongtao Zhou
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| | - Wanqi Li
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, 211816 Nanjing, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| |
Collapse
|
32
|
Peng X, Hao J, Tao W, Guo D, Liang T, Hu X, Xu H, Fan X, Chen C. Amyloid-like aggregates of short self-assembly peptide selectively induce melanoma cell apoptosis. J Colloid Interface Sci 2023; 640:498-509. [PMID: 36871514 DOI: 10.1016/j.jcis.2023.02.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/04/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023]
Abstract
With the rising global incidence of melanoma, new anti-melanoma drugs with low-inducing drug resistance and high selectivity are in urgent need. Inspired by the physiological events in which fibrillar aggregates formed by amyloid proteins are toxic to normal tissues, we here rationally design a tyrosinase responsive peptide, I4K2Y* (Ac-IIIIKKDopa-NH2). Such peptide self-assembled into long nanofibers outside the cells, while it was catalyzed into amyloid-like aggregates by tyrosinase which was rich in melanoma cells. The newly formed aggregates concentrated around the nucleus of melanoma cells, blocking the exchange of biomolecules between the nucleus and cytoplasm and finally leading to cell apoptosis via the S phase arrest in cell cycle distribution and dysfunction of mitochondria. Furthermore, I4K2Y* effectively inhibited B16 melanoma growth in a mouse model but with minimal side effects. We believe that the strategy of combining the usage of toxic amyloid-like aggregates and in-situ enzymatic reactions by specific enzymes in tumor cells will bring profound implications for designing new anti-tumor drugs with high selectivity.
Collapse
Affiliation(s)
- Xiaoting Peng
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, China
| | - Jiachen Hao
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, China
| | - Wenwen Tao
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, China
| | - Diange Guo
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, China
| | - Tiantian Liang
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, China
| | - Xuelei Hu
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, China
| | - Xinglong Fan
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China.
| | - Cuixia Chen
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, China.
| |
Collapse
|
33
|
Chen H, Li T, Liu Z, Tang S, Tong J, Tao Y, Zhao Z, Li N, Mao C, Shen J, Wan M. A nitric-oxide driven chemotactic nanomotor for enhanced immunotherapy of glioblastoma. Nat Commun 2023; 14:941. [PMID: 36804924 PMCID: PMC9941476 DOI: 10.1038/s41467-022-35709-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 12/20/2022] [Indexed: 02/22/2023] Open
Abstract
The major challenges of immunotherapy for glioblastoma are that drugs cannot target tumor sites accurately and properly activate complex immune responses. Herein, we design and prepare a kind of chemotactic nanomotor loaded with brain endothelial cell targeting agent angiopep-2 and anti-tumor drug (Lonidamine modified with mitochondrial targeting agent triphenylphosphine, TLND). Reactive oxygen species and inducible nitric oxide synthase (ROS/iNOS), which are specifically highly expressed in glioblastoma microenvironment, are used as chemoattractants to induce the chemotactic behavior of the nanomotors. We propose a precise targeting strategy of brain endothelial cells-tumor cells-mitochondria. Results verified that the released NO and TLND can regulate the immune circulation through multiple steps to enhance the effect of immunotherapy, including triggering the immunogenic cell death of tumor, inducing dendritic cells to mature, promoting cytotoxic T cells infiltration, and regulating tumor microenvironment. Moreover, this treatment strategy can form an effective immune memory effect to prevent tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Zhiyong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Shuwan Tang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Jintao Tong
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Yingfang Tao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Zinan Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Nan Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China.
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China.
| |
Collapse
|
34
|
Wu X, Liu M, Niu J, Liu Q, Jiang X, Zheng Y, Qian Y, Zhang YM, Shen J, Liu Y. An in situ protonation-activated supramolecular self-assembly for selective suppression of tumor growth. Chem Sci 2023; 14:1724-1731. [PMID: 36819851 PMCID: PMC9930980 DOI: 10.1039/d2sc05652f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
An in situ supramolecular self-assembly in the subcellular organelles could provide a new strategy to treat diseases. Herein, we report a protonation-activated in situ supramolecular self-assembly system in the lysosomes, which could destabilize the lysosome membrane, resulting in the selective suppression of cancer cells. In this system, pyridyl-functionalized tetraphenylethylene (TPE-Py) was protonated in the lysosomes of A549 lung cancer cells to form octahedron-like structures with cucurbit[8]uril (CB[8]), which impaired the integrity of the lysosome membrane, resulting in selective suppression of cancer cells. Moreover, its anticancer efficiency was also systematically evaluated in vivo, triggering the apoptosis of tumor tissues with ignorable effects on normal organs. Overall, the protonation-activated self-assembly in the lysosomes based on the host-guest complexation would provide a method for novel anti-cancer systems.
Collapse
Affiliation(s)
- Xuan Wu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou Zhejiang 325035 China .,University of the Chinese Academy of Sciences Wenzhou Institute Wenzhou Zhejiang 325035 China
| | - Ming Liu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Jie Niu
- Department of Chemistry, State Key Laboratory of Elemento Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University Tianjin 300071 China
| | - Qian Liu
- University of the Chinese Academy of Sciences Wenzhou InstituteWenzhouZhejiang 325035China
| | - Xin Jiang
- Department of Urology, Xiangya Hospital, Central South UniversityChangsha 410008China
| | - Yujing Zheng
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Yuna Qian
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou Zhejiang 325035 China .,University of the Chinese Academy of Sciences Wenzhou Institute Wenzhou Zhejiang 325035 China
| | - Ying-Ming Zhang
- Department of Chemistry, State Key Laboratory of Elemento Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University Tianjin 300071 China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou Zhejiang 325035 China .,University of the Chinese Academy of Sciences Wenzhou Institute Wenzhou Zhejiang 325035 China
| | - Yu Liu
- Department of Chemistry, State Key Laboratory of Elemento Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University Tianjin 300071 China
| |
Collapse
|
35
|
Stimulus-responsive and dual-target DNA nanodrugs for rheumatoid arthritis treatment. Int J Pharm 2023; 632:122543. [PMID: 36572263 DOI: 10.1016/j.ijpharm.2022.122543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Tumor necrosis factor receptor-1 (TNFR1) and DEK are closely associated with the development of rheumatoid arthritis (RA). Taking advantage of the high adenosine triphosphate (ATP) in RA microenvironment and the interactions of DNA aptamers with their targets, an ATP-responsive DNA nanodrug was constructed that simultaneously targets TNFR1 and DEK for RA therapy. To this end, DEK target aptamer DTA and TNFR1 target aptamer Apt1-67 were equipped with sticky ends to hybridize with ATP aptamer (AptATP) and fabricated DNA nanodrug DAT. Our results showed that DAT was successfully prepared with good stability. In the presence of ATP, DAT was disassembled, resulting in the release of DTA and Apt1-67. In vitro studies demonstrated that DAT was superior to the non-responsive DNA nanodrug TD-3A3T in terms of anti-inflammation activity and ATP was inevitable to maximize the anti-inflammation ability of DAT. The superior efficacy of DAT is attributed to the more potent inhibition of caspase-3 and NETs formation. In vivo results further confirmed the anti-RA efficacy of DAT, whereas the administration routes (intravenous injection and transdermal administration via microneedles) did not cause significant differences. Overall, the present study supplies an intelligent strategy for RA therapy and explores a promising administration route for future clinical medication of RA patients.
Collapse
|
36
|
Hamley IW. Self-Assembly, Bioactivity, and Nanomaterials Applications of Peptide Conjugates with Bulky Aromatic Terminal Groups. ACS APPLIED BIO MATERIALS 2023; 6:384-409. [PMID: 36735801 PMCID: PMC9945136 DOI: 10.1021/acsabm.2c01041] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The self-assembly and structural and functional properties of peptide conjugates containing bulky terminal aromatic substituents are reviewed with a particular focus on bioactivity. Terminal moieties include Fmoc [fluorenylmethyloxycarbonyl], naphthalene, pyrene, naproxen, diimides of naphthalene or pyrene, and others. These provide a driving force for self-assembly due to π-stacking and hydrophobic interactions, in addition to the hydrogen bonding, electrostatic, and other forces between short peptides. The balance of these interactions leads to a propensity to self-assembly, even for conjugates to single amino acids. The hybrid molecules often form hydrogels built from a network of β-sheet fibrils. The properties of these as biomaterials to support cell culture, or in the development of molecules that can assemble in cells (in response to cellular enzymes, or otherwise) with a range of fascinating bioactivities such as anticancer or antimicrobial activity, are highlighted. In addition, applications of hydrogels as slow-release drug delivery systems and in catalysis and other applications are discussed. The aromatic nature of the substituents also provides a diversity of interesting optoelectronic properties that have been demonstrated in the literature, and an overview of this is also provided. Also discussed are coassembly and enzyme-instructed self-assembly which enable precise tuning and (stimulus-responsive) functionalization of peptide nanostructures.
Collapse
|
37
|
Song N, Song Y, Hu B, Liu X, Yu X, Zhou H, Long J, Yu Z. Persistent Endoplasmic Reticulum Stress Stimulated by Peptide Assemblies for Sensitizing Cancer Chemotherapy. Adv Healthc Mater 2023; 12:e2202039. [PMID: 36353887 DOI: 10.1002/adhm.202202039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Pharmacological targeting of endoplasmic reticulum (ER) stress represents one of important methods for disease therapy, which, however, is significantly suppressed by the ER homeostatic processe. Herein, a proof-of-concept strategy is reported for persistent stimulation of ER stress via preventing ER stress adaptation by utilizing multifunctional peptide assemblies. The strategy is established via creation of peptide assemblies with ER-targeting and chaperone glucose-regulated protein 78 (GRP78)-inhibiting functions. The peptides assemblies form well-defined nanofibers that are retrieved by ER organelles in human cervical cancer cell. The underlying mechanism studies unravel that the ER-accumulated peptide assemblies simultaneously stimulate ER stress and inhibit GRP78 refolding activity and thereby promoting endogenous protein aggregation. Combining the internalized peptide assemblies with the induced protein aggregates leads to the persistent stimulation of ER stress. The persistent ER stress induced by the peptide assemblies bestows their application in sensitizing cancer chemotherapy. Both in vitro and in vivo results confirm the enhanced cytotoxicity of drug toyocamycin against HeLa cells by peptide assemblies, thus efficiently inhibiting in vivo tumor growth. The strategy reported here discloses the fundamental keys for efficient promotion of ER stress, thus providing the guidance for development of ER-targeting-assisted cancer chemotherapy in the future.
Collapse
Affiliation(s)
- Na Song
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yanqiu Song
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Binbin Hu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xin Liu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiunan Yu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhilin Yu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
38
|
Wang Y, Su H, Wang Y, Cui H. Discovery of Y-Shaped Supramolecular Polymers in a Self-Assembling Peptide Amphiphile System. ACS Macro Lett 2022; 11:1355-1361. [PMID: 36413439 DOI: 10.1021/acsmacrolett.2c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Supramolecular polymers (SPs) formed by self-assembly of peptide-based molecular units assume a variety of interesting one-dimensional (1D) morphologies. While the morphological complexity and phase behavior of self-assembling peptide conjugates bear some resemblance to those of low-molecular-weight and macromolecular surfactants, Y-junctions, or three-way connected constructs, a topological defect observed in traditional surfactants has not been identified, likely due to the intolerance of defective packing by the strong, associative interactions afforded by the peptide segments. Here we report our discovery of branched SPs with Y-junctions and occasionally enlarged spherical end-caps formed by micellization of a ferrocene-based peptide amphiphile in water. Our results suggest that the incorporation of two ferrocenes into the amphiphile design is key to ensure the formation of branched SPs. We hypothesize that the complex interplay of internal interactions limits the effective propagation of hydrogen bonding within the assemblies and, consequently, creates fragmented β-sheets that are more tolerant for supramolecular branching. Given the redox sensitivity of the ferrocene units, sequential addition of reductants and oxidants to the solution led the assemblies to reversibly transform between branched SPs and spherical aggregates.
Collapse
Affiliation(s)
| | | | | | - Honggang Cui
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, Maryland 21231, United States
| |
Collapse
|
39
|
Tan W, Zhang Q, Hong P, Xu B. A Self-Assembling Probe for Imaging the States of Golgi Apparatus in Live Single Cells. Bioconjug Chem 2022; 33:1983-1988. [PMID: 35312281 PMCID: PMC9489815 DOI: 10.1021/acs.bioconjchem.2c00084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the enormous progress in genomics and proteomics, it is still challenging to assess the states of organelles in living cells with high spatiotemporal resolution. Based on our recent finding of enzyme-instructed self-assembly of a thiophosphopeptide that targets the Golgi Apparatus (GA) instantly, we use the thiophosphopeptide, which is enzymatically responsive and redox active, as an integrative probe for revealing the state of the GA of live cells at the single cell level. By imaging the probe in the GA of live cells over time, our results show that the accumulation of the probe at the GA depends on cell types. By comparison to a conventional Golgi probe, this self-assembling probe accumulates at the GA much faster and are sensitive to the expression of alkaline phosphatases. In addition, subtle changes of the fluorophore results in slightly different GA responses. This work illustrates a novel class of active molecular probes that combine enzyme-instructed self-assembly and redox reaction for high-resolution imaging of the states of subcellular organelles over a large area and extended times.
Collapse
Affiliation(s)
- Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Pengyu Hong
- Department of Computer Science, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| |
Collapse
|
40
|
Zhang W, Zhang S, Chen C, Liu N, Yang D, Wang P, Ren F. The internalization mechanisms and trafficking of the pea albumin in Caco-2 cells. Int J Biol Macromol 2022; 217:111-119. [PMID: 35764167 DOI: 10.1016/j.ijbiomac.2022.06.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
Abstract
Pea albumin (PA) can reach the intestine in the active form because it is highly resistant to gastric acid and proteolytic enzymes after their oral intake, which can supply various bioactivities. However, there is no detailed knowledge of the intestinal cell uptake about PA. The aim of this work was to study the internalization mechanism and intracellular trafficking route of PA. The uptake of PA-cyanine 5.5 NHS ester (Cy5.5) was a time-dependent and concentration-dependent process in Caco-2 cells. Endocytosis inhibitors or small interfering RNA (siRNA) techniques revealed that the internalization of PA-Cy5.5 was energy-dependent and mediated by caveolin-mediated endocytosis. Furthermore, we observed colocalization of PA-Cy5.5 and its subcellular localization in Caco-2 cells by using confocal laser scanning microscopy, which revealed that the intracellular trafficking process of PA-Cy5.5 was related to endoplasmic reticulum, Golgi, and lysosome. Interestingly, PA can alleviate lipopolysaccharide -induced ER stress, which may be the main reason why pea albumin is anti-inflammatory. Overall, our findings suggest caveolin may be critical for PA uptake in enterocytes and could contribute to explore the bioactivities mechanism of pea albumin in body.
Collapse
Affiliation(s)
- Weibo Zhang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Department of Nutrition and Health, China Agricultural University, Beijing 100083, China..
| | - Shucheng Zhang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Chong Chen
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Ning Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Dong Yang
- Inner Mongolia Caoyuanxinhe Technology Research Co. Ltd., Inner Mongolia 01500, China
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China..
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Department of Nutrition and Health, China Agricultural University, Beijing 100083, China..
| |
Collapse
|
41
|
Xu Y, Wang H, Qiao Z. Precise Control of Self‐Assembly in Vivo Based on Polymer‐Peptide Conjugates. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yin‐Sheng Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100190 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100190 China
| | - Zeng‐Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
42
|
Wang J, Wang X, Yang K, Hu S, Wang W. Self-Assembly of Small Organic Molecules into Luminophores for Cancer Theranostic Applications. BIOSENSORS 2022; 12:683. [PMID: 36140068 PMCID: PMC9496225 DOI: 10.3390/bios12090683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
Abstract
Self-assembled biomaterials have been widely explored for real-time fluorescence imaging, imaging-guided surgery, and targeted therapy for tumors, etc. In particular, small molecule-based self-assembly has been established as a reliable strategy for cancer theranostics due to the merits of small-sized molecules, multiple functions, and ease of synthesis and modification. In this review, we first briefly introduce the supramolecular chemistry of small organic molecules in cancer theranostics. Then, we summarize and discuss advanced small molecule-based self-assembly for cancer theranostics based on three types, including peptides, amphiphilic molecules, and aggregation-induced emission luminogens. Finally, we conclude with a perspective on future developments of small molecule-based self-assembled biomaterials integrating diagnosis and therapy for biomedical applications. These applications highlight the opportunities arising from the rational design of small organic molecules with self-assembly properties for precision medicine.
Collapse
Affiliation(s)
- Jing Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| | - Xueliang Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Sijun Hu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Wanhe Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| |
Collapse
|
43
|
Lu Q, Hu Y, Yin Li C, Kuang Y. Aptamer-Array-Guided Protein Assembly Enhances Synthetic mRNA Switch Performance. Angew Chem Int Ed Engl 2022; 61:e202207319. [PMID: 35703374 PMCID: PMC9544043 DOI: 10.1002/anie.202207319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/17/2022]
Abstract
Synthetic messenger RNA (mRNA) switches are powerful synthetic biological tools that can sense cellular molecules to manipulate cell fate. However, their performances are limited by high output signal noise due to leaky output protein expression. Here, we designed a readout control module that disables protein leakage from generating signal. Aptamer array on the switch guides the inactive output protein to self-assemble into functional assemblies that generate output signal. Leaky protein expression fails to saturate the array, thus produces marginal signal. In this study, we demonstrated that switches with this module exhibit substantially lower signal noise and, consequently, higher input sensitivity and wider output range. Such switches are applicable for different types of input molecules and output proteins. The work here demonstrates a new type of spatially guided protein self-assembly, affording novel synthetic mRNA switches that promise accurate cell manipulation for biomedical applications.
Collapse
Affiliation(s)
- Qiuyu Lu
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyClear Water Bay, Kowloon, Hong KongHong Kong
| | - Yaxin Hu
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyClear Water Bay, Kowloon, Hong KongHong Kong
| | - Cheuk Yin Li
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyClear Water Bay, Kowloon, Hong KongHong Kong
| | - Yi Kuang
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyClear Water Bay, Kowloon, Hong KongHong Kong
- HKUST Shenzhen Research InstituteShenzhenGuangdongChina
| |
Collapse
|
44
|
Cheng C, Sun Q, Wang X, He B, Jiang T. Enzyme-manipulated hydrogelation of small molecules for biomedical applications. Acta Biomater 2022; 151:88-105. [PMID: 35970483 DOI: 10.1016/j.actbio.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
Enzyme-manipulated hydrogelation based on self-assembly of small molecules is an attractive methodology for development of functional biomaterials. Upon the catalysis of enzymes, small-molecular precursors are converted into assemblable building blocks, which arrange into high-ordered nanofibers via non-covalent interactions at the molecular level, and further trap water to form hydrogels at the macroscopic level. Such approach has numerous advantages of region- and enantioselectivity, and mild reaction conditions for encapsulation of biomedications or cells that are fragile to environmental change. In addition to the common applications as drug reservoirs or cell scaffolds, the utilization of endogenous enzymes as stimuli to initiate self-assembly in the living cells and tissue is considered as an intelligent spatiotemporally controllable hydrogelation strategy for biomedical applications. The enzyme-instructed in situ self-assembly and hydrogelation can modulate the cell behavior, and even present therapeutic bioactivities, which provides a new perspective in the field of disease treatment. In this review, we categorize distinct enzymatic stimuli and elaborate substrate design, catalytic characteristics, and mechanisms of self-assembly and hydrogelation. The biomedical applications in drug delivery, tissue engineering, bioimaging, and in situ gelation-produced bioactivity are outlined. Advantages and limitations regarding the state-of-the-art enzyme-driven hydrogelation technologies and future perspectives are also discussed. STATEMENT OF SIGNIFICANCE: Hydrogel is a semi-solid soft material containing a large amount of water. Due to the features of adjustable flexibility, extremely porous architecture, and the high similarity of structure to natural extracellular matrices, the hydrogel has broad application prospects in biomedicine. In recent 20 years, enzyme-manipulated hydrogelation based on self-assembly of small molecules has developed rapidly as an attractive methodology for the construction of functional biomaterials. Upon the catalysis of enzymes, small-molecular precursors are converted into assemblable building blocks, which arrange into high-ordered nanofibers via non-covalent interactions at the molecular level, and further trap water to form hydrogels at the macroscopic level. This review summarized the characteristics of enzymatic hydrogel, as well as the traditional application and emerging prospect of enzyme-instructed self-assembly and hydrogelation.
Collapse
Affiliation(s)
- Cheng Cheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Qingyun Sun
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xiuping Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
45
|
Lu Q, Hu Y, Li CY, Kuang Y. Aptamer‐Array‐Guided Protein Assembly Enhances Synthetic mRNA Switch Performance. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qiuyu Lu
- Hong Kong University of Science and Technology School of Engineering Chemical and Biological Engineering HONG KONG
| | - Yaxin Hu
- Hong Kong University of Science and Technology School of Engineering Chemical and Biological Engineering HONG KONG
| | - Cheuk Yin Li
- Hong Kong University of Science and Technology School of Engineering Chemical and Biological Engineering HONG KONG
| | - Yi Kuang
- Hong Kong University of Science and Technology Chemical and Biological Engineering Room 5578, Academic Bldg,Clear Water Bay 000000 Kowloon HONG KONG
| |
Collapse
|
46
|
Liu M, Chen Y, Guo Y, Yuan H, Cui T, Yao S, Jin S, Fan H, Wang C, Xie R, He W, Guo Z. Golgi apparatus-targeted aggregation-induced emission luminogens for effective cancer photodynamic therapy. Nat Commun 2022; 13:2179. [PMID: 35449133 PMCID: PMC9023483 DOI: 10.1038/s41467-022-29872-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 04/05/2022] [Indexed: 12/21/2022] Open
Abstract
Golgi apparatus (GA) oxidative stress induced by in situ reactive oxygen species (ROS) could severely damage the morphology and function of GA, which may open up an avenue for effective photodynamic therapy (PDT). However, due to the lack of effective design strategy, photosensitizers (PSs) with specific GA targeting ability are in high demand and yet quite challenging. Herein, we report an aggregation-induced emission luminogen (AIEgen) based PS (TPE-PyT-CPS) that can effectively target the GA via caveolin/raft mediated endocytosis with a Pearson correlation coefficient up to 0.98. Additionally, the introduction of pyrene into TPE-PyT-CPS can reduce the energy gap between the lowest singlet state (S1) and the lowest triplet state (T1) (ΔEST) and exhibits enhanced singlet oxygen generation capability. GA fragmentation and cleavage of GA proteins (p115/GM130) are observed upon light irradiation. Meanwhile, the apoptotic pathway is activated through a crosstalk between GA oxidative stress and mitochondria in HeLa cells. More importantly, GA targeting TPE-T-CPS show better PDT effect than its non-GA-targeting counterpart TPE-PyT-PS, even though they possess very close ROS generation rate. This work provides a strategy for the development of PSs with specific GA targeting ability, which is of great importance for precise and effective PDT. Aggregation induced emission luminogen (AIEgen) based photosensitizers (PSs) have been developed for photodynamic cancer therapy. Here the authors report a series of AIEgen-based PSs that selectively target the Golgi apparatus, showing enhanced singlet oxygen generation and photodynamic therapy performance in cancer models.
Collapse
Affiliation(s)
- Minglun Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China. .,Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing, 210000, China.
| | - Yan Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Hao Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Tongxiao Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Shankun Yao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Suxing Jin
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Huanhuan Fan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Chengjun Wang
- Sinopec Shengli Petroleum Engineering Limited Company, Dongying, 257068, China
| | - Ran Xie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China. .,Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing, 210000, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China. .,Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing, 210000, China.
| |
Collapse
|
47
|
Tan W, Zhang Q, Quiñones-Frías MC, Hsu AY, Zhang Y, Rodal A, Hong P, Luo HR, Xu B. Enzyme-Responsive Peptide Thioesters for Targeting Golgi Apparatus. J Am Chem Soc 2022; 144:6709-6713. [PMID: 35404599 PMCID: PMC9069992 DOI: 10.1021/jacs.2c02238] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Golgi apparatus (GA) is the hub of intracellular trafficking, but selectively targeting GA remains a challenge. We show an unconventional types of peptide thioesters, consisting of an aminoethyl thioester and acting as substrates of thioesterases, for instantly targeting the GA of cells. The peptide thioesters, above or below their critical micelle concentrations, enter cells mainly via caveolin-mediated endocytosis or macropinocytosis, respectively. After being hydrolyzed by GA-associated thioesterases, the resulting thiopeptides form dimers and accumulate in the GA. After saturating the GA, the thiopeptides are enriched in the endoplasmic reticulum (ER). Their buildup in ER and GA disrupts protein trafficking, thus leading to cell death via multiple pathways. The peptide thioesters target the GA of a wide variety of cells, including human, murine, and Drosophila cells. Changing d-diphenylalanine to l-diphenylalanine in the peptide maintains the GA-targeting ability. In addition, targeting GA redirects protein (e.g., NRAS) distribution. This work illustrates a thioesterase-responsive and redox-active molecular platform for targeting the GA and controlling cell fates.
Collapse
Affiliation(s)
- Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | | | - Alan Y. Hsu
- Department of Pathology, Harvard Medical School and Department of Laboratory Medicine, Children’s Hospital Boston and Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Yichi Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Avital Rodal
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Pengyu Hong
- Department of Computer Science, Brandeis University, Waltham, MA 02453, USA
| | - Hongbo R. Luo
- Department of Pathology, Harvard Medical School and Department of Laboratory Medicine, Children’s Hospital Boston and Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| |
Collapse
|
48
|
Wang XJ, Cheng J, Zhang LY, Zhang JG. Self-assembling peptides-based nano-cargos for targeted chemotherapy and immunotherapy of tumors: recent developments, challenges, and future perspectives. Drug Deliv 2022; 29:1184-1200. [PMID: 35403517 PMCID: PMC9004497 DOI: 10.1080/10717544.2022.2058647] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Xue-Jun Wang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Jian Cheng
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
| | - Le-Yi Zhang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Jun-Gang Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
49
|
Song Y, Li M, Song N, Liu X, Wu G, Zhou H, Long J, Shi L, Yu Z. Self-Amplifying Assembly of Peptides in Macrophages for Enhanced Inflammatory Treatment. J Am Chem Soc 2022; 144:6907-6917. [PMID: 35388694 DOI: 10.1021/jacs.2c01323] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Enzyme-regulated in situ self-assembly of peptides represents one versatile strategy in the creation of theranostic agents, which, however, is limited by the strong dependence on enzyme overexpression. Herein, we reported the self-amplifying assembly of peptides precisely in macrophages associated with enzyme expression for improving the anti-inflammatory efficacy of conventional drugs. The self-amplifying assembling system was created via coassembling an enzyme-responsive peptide with its derivative functionalized with a protein ligand. Reduction of the peptides by the enzyme NAD(P)H quinone dehydrogenase 1 (NQO1) led to the formation of nanofibers with high affinity to the protein, thereby facilitating NQO1 expression. The improved NQO1 level conversely promoted the assembly of the peptides into nanofibers, thus establishing an amplifying relationship between the peptide assembly and the NQO1 expression in macrophages. Utilization of the amplifying assembling system as vehicles for drug dexamethasone allowed for its passive targeting delivery to acute injured lungs. Both in vitro and in vivo studies confirmed the capability of the self-amplifying assembling system to enhance the anti-inflammatory efficacy of dexamethasone via simultaneous alleviation of the reactive oxygen species side effect and downregulation of proinflammatory cytokines. Our findings demonstrate the manipulation of the assembly of peptides in living cells with a regular enzyme level via a self-amplification process, thus providing a unique strategy for the creation of supramolecular theranostic agents in living cells.
Collapse
Affiliation(s)
- Yanqiu Song
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mingming Li
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Na Song
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Liu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guangyao Wu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Linqi Shi
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhilin Yu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
50
|
Behzadi M, Eghtedardoost M, Bagheri M. Endocytosis Involved d-Oligopeptide of Tryptophan and Arginine Displays Ordered Nanostructures and Cancer Cell Stereoselective Toxicity by Autophagy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14928-14943. [PMID: 35319877 DOI: 10.1021/acsami.1c23846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their self-aggregation propensity and selective interaction with the anionic membranes, the peptides rich in tryptophan (Trp) and arginine (Arg) are considered for the development of novel anticancer therapeutics. However, the structural insights from the perspective of backbone chirality and spatial orientation of side chains into the selective toxicity of peptides are limited. Here, we investigated the selectivity and cellular uptake of HHC36, a Trp/Arg-rich nonapeptide, and its d-enantiomer (allDHHC36) and a retroinverso analogue in the lung A549 and breast MDA-MB-231 cancer cells. We realized that the d-peptides can specifically induce autophagy at nontoxic concentrations only in the A549 cells supported from the LC 3-II immunostaining expression in the vicinity of the nucleus and the ultrastructural analysis revealing the autophagosome formation. The autophagic flux was also remarkable in the cells exposed to d-peptides at a far lower concentration in synergism with doxorubicin (DOX). In marked contrast, nonselective cell death was observed only if a high amount of HHC36 was applied. HHC36 tended to irregular collagen-like fibrils relative to allDHHC36 that distinctly formed higher-order coiled nanostructures. Interestingly, the short d-peptide fragments were generated in a harsh oxidative condition. Compared with the direct membrane transduction of HHC36, the entry of d-peptides into the lung cancer cells was controlled by endocytosis through the contribution of heparan sulfate proteoglycans (HSPGs) and cholesterol (CHO). However, both l- and d-peptides feasibly crossed the membrane and localized inside the S-phase-arrested cell nucleus. This suggested the likelihood of peptide intercalation with DNA that might differently appear in selective and/or nonselective deaths. These results unraveled the d-handedness-selective toxicity of a self-assembling Trp/Arg-rich sequence that is dependent on the cell type from the aspects of the density of anionic charges and CHO in the outer leaflet of the plasma membrane, as well as the intracellular redox imbalance that may drive the formation of toxic peptide nanostructure fragments.
Collapse
Affiliation(s)
- Malihe Behzadi
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| | - Marzieh Eghtedardoost
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| | - Mojtaba Bagheri
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| |
Collapse
|