1
|
Hu M, Zhu K, Wei J, Yang K, Wu L, Zong S, Wang Z. Silk fibroin-based wearable SERS biosensor for simultaneous sweat monitoring of creatinine and uric acid. Biosens Bioelectron 2024; 265:116662. [PMID: 39180829 DOI: 10.1016/j.bios.2024.116662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/13/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
Sweat biomarkers have the potential to offer valuable clinical insights into an individual's health and disease condition. Current sensors predominantly utilize enzymes and antibodies as biometric components to measure biomarkers present in sweat quantitatively. However, enzymes and antibodies are susceptible to interference by environmental factors, which may affect the performance of the sensor. Herein, we present a wearable microfluidic surface-enhanced Raman scattering (SERS) biosensor that enables the non-invasive and label-free detection of biomarkers in sweat. Concretely, we developed a bimetallic self-assembled anti-opal array structure with uniform hot spots, enhanced the Raman scattering effect, and integrated it into a silk fibroin-based sensing patch. Utilizing a silk fibroin substrate in the wearable SERS sensor imparts desirable properties such as softness, breathability, and biocompatibility, which enables the sensor to establish close contact with the skin without causing chemical or physical irritation. In addition, introducing microfluidic channels enables the controlled and high temporal resolution management of sweat, facilitating more efficient sweat collection. The proposed label-free SERS sensor can offer chemical 'fingerprint' information, enabling the identification of sweat analytes. As an illustration of the feasibility, we have effectively monitored the creatinine and uric acid levels in sweat. This study presents a versatile and highly sensitive approach for the simultaneous detection of biomarkers in human sweat, showcasing significant potential for application in point-of-care monitoring.
Collapse
Affiliation(s)
- Mengsu Hu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Kai Zhu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Jinxiu Wei
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Kuo Yang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Lei Wu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Shenfei Zong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
2
|
Feng B, Zhao W, Zhang M, Fan X, He T, Luo Q, Yan J, Sun J. Lignin-Based Carbon Nanomaterials for Biochemical Sensing Applications. Chem Asian J 2024; 19:e202400611. [PMID: 38995858 DOI: 10.1002/asia.202400611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Lignin-based carbon nanomaterials offer several advantages, including biodegradability, biocompatibility, high specific surface area, ease of functionalization, low toxicity, and cost-effectiveness. These materials show promise in biochemical sensing applications, particularly in the detection of metal ions, organic compounds, and human biosignals. Various methods can be employed to synthesize carbon nanomaterials with different dimensions ranging from 0D-3D, resulting in diverse structures and physicochemical properties. This study provides an overview of the preparation techniques and characteristics of multidimensional (0-3D) lignin-based carbon nanomaterials, such as carbon dots (CDs), carbon nanotubes (CNTs), graphene, and carbon aerogels (CAs). Additionally, the sensing capabilities of these materials are compared and summarized, followed by a discussion on the potential challenges and future prospects in sensor development.
Collapse
Affiliation(s)
- Baofang Feng
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Weidong Zhao
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan, 063015, P.R. China
| | - Min Zhang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Xu Fan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Ting He
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Qizhen Luo
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Jipeng Yan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Jian Sun
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Beijing Engineering Research Center of Cellulose and Its Derivatives, Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, P.R. China
| |
Collapse
|
3
|
Wang F, Wang Y, Li L, Yuan C, Zhang F, Zhang W, Yang T. All-solid-state K + sensing array based on Au@polystyrene nanocomposites. Mikrochim Acta 2024; 191:624. [PMID: 39322798 DOI: 10.1007/s00604-024-06703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
All-solid-state ion selective electrodes (ASS-ISEs) are easy to miniaturize and array, meeting the needs of home sensing devices. However, ASS-ISEs still faces challenges in accuracy and stability due to basic potential changes caused by non-specific adsorption of charged background compositions and the complex electrode preparation steps. To this end, our group successfully subtracted the background signal by integrating a self-calibrating channel in the sensing array and simplified the electrode preparation steps by preparing multi-functional PS-Au nanocomposites. However, the uniformity and gold content of PS-Au nanocomposites are difficult to control, so Au@PS nanocomposites are prepared as sensor materials in this paper to further reduce the differences between batches of electrodes. K+ Au@PS sensing array can be obtained by directly dropping Au@PS nanocomposites on the screen-printed carbon electrodes (SPCEs), which shows a near Nernstian behavior in the range 1.0 × 10-3 M to 0.3 M and good reproducibility in real sample testing. The detection results by K+ Au@PS sensing array for K+ in human morning urine agreed well with that tested by ICP-AES, which make the K+-ASS-ISE suitable for home health monitoring.
Collapse
Affiliation(s)
- Fan Wang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Yalan Wang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Linbo Li
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Chenyang Yuan
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Wanqing Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Tianyou Yang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
4
|
Ye H, Chen X, Huang X, Li C, Yin X, Zhao W, Wang T. Patterned Gold Nanoparticle Superlattice Film for Wearable Sweat Sensors. NANO LETTERS 2024; 24:11082-11089. [PMID: 39171663 DOI: 10.1021/acs.nanolett.4c03254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Nanoparticle superlattices are beneficial in terms of providing strong and uniform signals in analysis owing to their closely packed uniform structures. However, nanoparticle superlattices are prone to cracking during physical activities because of stress concentrations, which hinders their detection performance and limits their analytical applications. In this work, template printing methods were used in this study to prepare a patterned gold nanoparticle (AuNP) superlattice film. By adjustment of the size of the AuNP superlattice domain below the critical size of fracture, the mechanical stability of the AuNP superlattice domain is improved. Thus, long-term sustainable high-performance signal output is achieved. The patterned AuNP superlattice film was used to construct a wearable sweat sensor based on surface-enhanced Raman scattering (SERS). The designed sensor showed promise for long-term reliable use in actual scenarios in terms of recommending water replenishment, monitoring hydration states, and tracking the intensity of activity.
Collapse
Affiliation(s)
- Haochen Ye
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiangyu Chen
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Xiaobin Huang
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Cancan Li
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaomeng Yin
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weidong Zhao
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Tie Wang
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
5
|
Gao T, Yachi T, Shi X, Sato R, Sato C, Yonamine Y, Kanie K, Misawa H, Ijiro K, Mitomo H. Ultrasensitive Surface-Enhanced Raman Scattering Platform for Protein Detection via Active Delivery to Nanogaps as a Hotspot. ACS NANO 2024; 18:21593-21606. [PMID: 39093951 PMCID: PMC11328179 DOI: 10.1021/acsnano.4c09578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is an attractive technique in molecular detection with high sensitivity and label-free characteristics. However, its use in protein detection is limited by the large volume of proteins, hindering its approach to the narrow spaces of hotspots. In this study, we fabricated a Au nanoTriangle plate Array on Gel (AuTAG) as an SERS substrate by attaching a Au nanoTriangle plate (AuNT) arrangement on a thermoresponsive hydrogel surface. The AuTAG acts as an actively tunable plasmonic device, on which the interparticle distance is altered by controlling temperature via changes in hydrogel volume. Further, we designed a Gel Filter Trapping (GFT) method as an active protein delivery strategy based on the characteristics of hydrogels, which can absorb water and separate biopolymers through their three-dimensional (3D) polymer networks. On the AuTAGs, fabricated with AuNTs modified with charged surface ligands to prevent the nonspecific adsorption of analytes to particles, the GFT method helped the delivery of proteins to hotspot areas on the AuNT arrangement. This combination of a AuTAG substrate and the GFT method enables ultrahigh sensitivity for protein detection by SERS up to a single-molecule level as well as a wide quantification concentration range of 6 orders due to their geometric advantages.
Collapse
Affiliation(s)
- Tianxu Gao
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takehiro Yachi
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Xu Shi
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
- Creative Research Institution, Hokkaido University, Sapporo 001-0021, Japan
| | - Rina Sato
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Chikara Sato
- AIST Tsukuba central 7, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
- Biological Science Course, Graduate School of Science and Engineering, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Division of Immune Homeostasis, Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi 173-8610, Japan
| | - Yusuke Yonamine
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kiyoshi Kanie
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, Sendai 980-8577, Japan
| | - Hiroaki Misawa
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 770-8530, Japan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
6
|
Pan X, Zhang Z, Yun Y, Zhang X, Sun Y, Zhang Z, Wang H, Yang X, Tan Z, Yang Y, Xie H, Bogdanov B, Zmaga G, Senyushkin P, Wei X, Song Y, Su M. Machine Learning-Assisted High-Throughput Identification and Quantification of Protein Biomarkers with Printed Heterochains. J Am Chem Soc 2024; 146:19239-19248. [PMID: 38949598 DOI: 10.1021/jacs.4c04460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Advanced in vitro diagnosis technologies are highly desirable in early detection, prognosis, and progression monitoring of diseases. Here, we engineer a multiplex protein biosensing strategy based on the tunable liquid confinement self-assembly of multi-material heterochains, which show improved sensitivity, throughput, and accuracy compared to standard ELISA kits. By controlling the material combination and the number of ligand nanoparticles (NPs), we observe robust near-field enhancement as well as both strong electromagnetic resonance in polymer-semiconductor heterochains. In particular, their optical signals show a linear response to the coordination number of the semiconductor NPs in a wide range. Accordingly, a visible nanophotonic biosensor is developed by functionalizing antibodies on central polymer chains that can identify target proteins attached to semiconductor NPs. This allows for the specific detection of multiple protein biomarkers from healthy people and pancreatic cancer patients in one step with an ultralow detection limit (1 pg/mL). Furthermore, rapid and high-throughput quantification of protein expression levels in diverse clinical samples such as buffer, urine, and serum is achieved by combining a neural network algorithm, with an average accuracy of 97.3%. This work demonstrates that the heterochain-based biosensor is an exemplary candidate for constructing next-generation diagnostic tools and suitable for many clinical settings.
Collapse
Affiliation(s)
- Xiangyu Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Zeying Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Yang Yun
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Xu Zhang
- Department of Clinical Laboratory, the first Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yali Sun
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Zixuan Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Huadong Wang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Xu Yang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Zhiyu Tan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Yaqi Yang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Hongfei Xie
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Bogdan Bogdanov
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Georgii Zmaga
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Pavel Senyushkin
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Xuemei Wei
- Department of Clinical Laboratory, the first Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| |
Collapse
|
7
|
Golmohammadi H, Parnianchi F, Sharifi AR, Naghdi T, Tabatabaee RS, Peyravian M, Kashanian S. Spicy Recipe for At-Home Diagnostics: Smart Salivary Sensors for Point-of-Care Diagnosis of Jaundice. ACS Sens 2024; 9:3455-3464. [PMID: 38875528 DOI: 10.1021/acssensors.4c01066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Even though significant advances have been made, there is still a lack of reliable sensors capable of noninvasively monitoring bilirubin and diagnosing jaundice as the most common neonatal disease, particularly at the point-of-care (POC) where blood sampling from infants is accompanied by serious challenges and concerns. Herein, for the first time, using an easy-to-fabricate/use assay, we demonstrate the capability of curcumin embedded within paper for noninvasive optical monitoring of bilirubin in saliva. The highly selective sensing of the developed sensor toward bilirubin is attributed to bilirubin photoisomerization under blue light exposure, which can selectively restore the bilirubin-induced quenched fluorescence of curcumin. We also fabricated an IoT-enabled hand-held optoelectronic reader to measure and quantify the fluorescence and color signals of our sensor. Clinical analysis on the saliva of 18 jaundiced infants by using our developed smart salivary sensor proved that it is amenable to be widely exploited in POC applications for bilirubin monitoring as there are good correlations between its results with those of reference methods in saliva and blood. Meeting all WHO's REASSURED criteria by our developed sensor makes it a highly promising sensor for smart noninvasive diagnosis and therapeutic monitoring of jaundice, hepatitis, and other bilirubin-induced neurologic diseases at the POC.
Collapse
Affiliation(s)
- Hamed Golmohammadi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
- IMTEK─Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| | - Fatemeh Parnianchi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
- Faculty of Chemistry, Razi University, Kermanshah 6714414971, Iran
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284, United States
| | - Amir Reza Sharifi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Tina Naghdi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
- IMTEK─Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| | - Raziyeh Sadat Tabatabaee
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Mohammad Peyravian
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Soheila Kashanian
- Faculty of Chemistry, Razi University, Kermanshah 6714414971, Iran
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran
| |
Collapse
|
8
|
Guo Z, Ma M, Lu S, Ma Y, Yu Y, Guo Q. Applications of Raman spectroscopy in ocular biofluid detection. Front Chem 2024; 12:1407754. [PMID: 38915903 PMCID: PMC11194368 DOI: 10.3389/fchem.2024.1407754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
Ophthalmic and many systemic diseases may damage the eyes, resulting in changes in the composition and content of biomolecules in ocular biofluids such as aqueous humor and tear. Therefore, the biomolecules in biofluids are potential biomarkers to reveal pathological processes and diagnose diseases. Raman spectroscopy is a non-invasive, label-free, and cost-effective technique to provide chemical bond information of biomolecules and shows great potential in the detection of ocular biofluids. This review demonstrates the applications of Raman spectroscopy technology in detecting biochemical components in aqueous humor and tear, then summarizes the current problems encountered for clinical applications of Raman spectroscopy and looks forward to possible approaches to overcome technical bottlenecks. This work may provide a reference for wider applications of Raman spectroscopy in biofluid detection and inspire new ideas for the diagnosis of diseases using ocular biofluids.
Collapse
Affiliation(s)
- Zhijun Guo
- Beijing Institute of Petrochemical Technology, Beijing, China
- Beijing Academy of Safety Engineering and Technology, Beijing, China
| | - Miaoli Ma
- Beijing Institute of Petrochemical Technology, Beijing, China
| | - Sichao Lu
- Beijing Institute of Petrochemical Technology, Beijing, China
| | - Ying Ma
- Beijing Institute of Petrochemical Technology, Beijing, China
| | - Yansuo Yu
- Beijing Institute of Petrochemical Technology, Beijing, China
| | - Qianjin Guo
- Beijing Institute of Petrochemical Technology, Beijing, China
| |
Collapse
|
9
|
Lu X, Zhou X, Song B, Zhang H, Cheng M, Zhu X, Wu Y, Shi H, Chu B, He Y, Wang H, Hong J. Framework Nucleic Acids Combined with 3D Hybridization Chain Reaction Amplifiers for Monitoring Multiple Human Tear Cytokines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400622. [PMID: 38489844 DOI: 10.1002/adma.202400622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Existing tear sensors are difficult to perform multiplexed assays due to the minute amounts of biomolecules in tears and the tiny volume of tears. Herein, the authors leverage DNA tetrahedral frameworks (DTFs) modified on the wireless portable electrodes to effectively capture 3D hybridization chain reaction (HCR) amplifiers for automatic and sensitive monitoring of multiple cytokines in human tears. The developed sensors allow the sensitive determination of various dry eye syndrome (DES)-associated cytokines in human tears with the limit of detection down to 0.1 pg mL-1, consuming as little as 3 mL of tear fluid. Double-blind testing of clinical DES samples using the developed sensor and commercial ELISA shows no significant difference between them. Compared with single-biomarker diagnosis, the diagnostic accuracy of this sensor based on multiple biomarkers has improved by ≈16%. The developed system offers the potential for tear sensors to enable personalized and accurate diagnosis of various ocular diseases.
Collapse
Affiliation(s)
- Xing Lu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Xujiao Zhou
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Hong Zhang
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Mingrui Cheng
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Xingyu Zhu
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Yuqi Wu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Haoliang Shi
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Binbin Chu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Macao Translatoinal Medicine Center, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
- Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Jiaxu Hong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
- Shanghai Engineering Research Center of Synthetic Immunology, Shanghai, 200032, China
| |
Collapse
|
10
|
Huang J, Zu Y, Zhang L, Cui W. Progress in Procalcitonin Detection Based on Immunoassay. RESEARCH (WASHINGTON, D.C.) 2024; 7:0345. [PMID: 38711476 PMCID: PMC11070848 DOI: 10.34133/research.0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/04/2024] [Indexed: 05/08/2024]
Abstract
Procalcitonin (PCT) serves as a crucial biomarker utilized in diverse clinical contexts, including sepsis diagnosis and emergency departments. Its applications extend to identifying pathogens, assessing infection severity, guiding drug administration, and implementing theranostic strategies. However, current clinical deployed methods cannot meet the needs for accurate or real-time quantitative monitoring of PCT. This review aims to introduce these emerging PCT immunoassay technologies, focusing on analyzing their advantages in improving detection performances, such as easy operation and high precision. The fundamental principles and characteristics of state-of-the-art methods are first introduced, including chemiluminescence, immunofluorescence, latex-enhanced turbidity, enzyme-linked immunosorbent, colloidal gold immunochromatography, and radioimmunoassay. Then, improved methods using new materials and new technologies are briefly described, for instance, the combination with responsive nanomaterials, Raman spectroscopy, and digital microfluidics. Finally, the detection performance parameters of these methods and the clinical importance of PCT detection are also discussed.
Collapse
Affiliation(s)
- Jiayue Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy,
Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yan Zu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China
| | - Lexiang Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China
- Joint Centre of Translational Medicine,
the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, P.R. China
| | - Wenguo Cui
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy,
Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Shanghai Institute of Traumatology and Orthopedics,Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P.R. China
| |
Collapse
|
11
|
Hu S, Li Y, Dong B, Tang Z, Zhou B, Wang Y, Sun L, Xu L, Wang L, Zhang X, Alifu N, Sun L, Song H. Highly hydrostable and flexible opal photonic crystal film for enhanced up-conversion fluorescence sensor of COVID-19 antibody. Biosens Bioelectron 2023; 237:115484. [PMID: 37352761 DOI: 10.1016/j.bios.2023.115484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Efficient detection of related markers is significant for the early screening of COVID-19. Near infrared (NIR) light excited up-conversion fluorescence probes are ideal for biosensing but limited by the low luminescence efficiency. In this work, a novel highly stable opal photonic crystal (OPC) structure was designed to provide an OPC effect for up-conversion fluorescence enhancement, and sensitive Novel Coronavirus IgG up-conversion FRET-based sensor was further constructed. For the problems of water stability and mechanical stability of polymer OPC which cannot be solved for a long time, polymer spray combined with a flipped OPC film strategy is presented. Fragmented size OPC film was firmly fixed by polymer modification layer, which gave large size OPC film great water stability, mechanical stability and bending performance without affecting the fluorescence enhancement property. On this basis, the up-conversion emission intensity was enhanced significantly, and fluorescence resonant energy transfer (FRET) based Novel Coronavirus IgG antibody sensor was constructed. Monolayer up-conversion nanoparticles (UCNPs) on the surface of the polydopamine (PDA)/OPC film can make the fluorescent signal more sensitive, and effectively reduce the detection limit. The test device integrating NIR excitation and mobile phone realized the visual fast detection, showing remarkable sensing performance for COVID-19 antibodies with the limit of detection (LOD) of 0.1 ng mL-1. This detection platform will provide a more effective tool for early detection of the novel coronavirus.
Collapse
Affiliation(s)
- Songtao Hu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Yige Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China.
| | - Zixin Tang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Bingshuai Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Yue Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Liheng Sun
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Lin Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Xueliang Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830011, PR China
| | - Nuernisha Alifu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830011, PR China.
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Hongwei Song
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China.
| |
Collapse
|
12
|
Cutshaw G, Uthaman S, Hassan N, Kothadiya S, Wen X, Bardhan R. The Emerging Role of Raman Spectroscopy as an Omics Approach for Metabolic Profiling and Biomarker Detection toward Precision Medicine. Chem Rev 2023; 123:8297-8346. [PMID: 37318957 PMCID: PMC10626597 DOI: 10.1021/acs.chemrev.2c00897] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Omics technologies have rapidly evolved with the unprecedented potential to shape precision medicine. Novel omics approaches are imperative toallow rapid and accurate data collection and integration with clinical information and enable a new era of healthcare. In this comprehensive review, we highlight the utility of Raman spectroscopy (RS) as an emerging omics technology for clinically relevant applications using clinically significant samples and models. We discuss the use of RS both as a label-free approach for probing the intrinsic metabolites of biological materials, and as a labeled approach where signal from Raman reporters conjugated to nanoparticles (NPs) serve as an indirect measure for tracking protein biomarkers in vivo and for high throughout proteomics. We summarize the use of machine learning algorithms for processing RS data to allow accurate detection and evaluation of treatment response specifically focusing on cancer, cardiac, gastrointestinal, and neurodegenerative diseases. We also highlight the integration of RS with established omics approaches for holistic diagnostic information. Further, we elaborate on metal-free NPs that leverage the biological Raman-silent region overcoming the challenges of traditional metal NPs. We conclude the review with an outlook on future directions that will ultimately allow the adaptation of RS as a clinical approach and revolutionize precision medicine.
Collapse
Affiliation(s)
- Gabriel Cutshaw
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Nora Hassan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Xiaona Wen
- Biologics Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| |
Collapse
|
13
|
Zhou Y, Lu Y, Liu Y, Hu X, Chen H. Current strategies of plasmonic nanoparticles assisted surface-enhanced Raman scattering toward biosensor studies. Biosens Bioelectron 2023; 228:115231. [PMID: 36934607 DOI: 10.1016/j.bios.2023.115231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023]
Abstract
With the progressive nanofabrication technology, plasmonic nanoparticles (PNPs) have been increasingly deployed in the field of biosensing. PNPs have favorable biocompatibility, conductivity, and tunable optical properties. In addition, the localized surface plasmon resonance (LSPR) of PNPs plays a vital role in surface-enhanced Raman scattering (SERS). PNPs-based SERS biosensing enables wide-ranging applications for sensitive detection and high spatial and temporal resolution imaging. Numerous reviews of PNPs in the field of SERS biosensing highlight the fabrication or applications in one or more fields. However, the specific strategies for the SERS biosensor construction had not been summarized systematically. Thus, this work offers a comprehensive overview of SERS enhancement strategies based on PNPs, with a focus on SERS label-free detection along with label detection sensing construction, as well as its challenges and future trends.
Collapse
Affiliation(s)
- Yangyang Zhou
- School of Medicine, Shanghai University, Shanghai, 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yongkai Lu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yawen Liu
- School of Medicine, Shanghai University, Shanghai, 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
14
|
Liu T, Liu L, Gou GY, Fang Z, Sun J, Chen J, Cheng J, Han M, Ma T, Liu C, Xue N. Recent Advancements in Physiological, Biochemical, and Multimodal Sensors Based on Flexible Substrates: Strategies, Technologies, and Integrations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21721-21745. [PMID: 37098855 DOI: 10.1021/acsami.3c02690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Flexible wearable devices have been widely used in biomedical applications, the Internet of Things, and other fields, attracting the attention of many researchers. The physiological and biochemical information on the human body reflects various health states, providing essential data for human health examination and personalized medical treatment. Meanwhile, physiological and biochemical information reveals the moving state and position of the human body, and it is the data basis for realizing human-computer interactions. Flexible wearable physiological and biochemical sensors provide real-time, human-friendly monitoring because of their light weight, wearability, and high flexibility. This paper reviews the latest advancements, strategies, and technologies of flexibly wearable physiological and biochemical sensors (pressure, strain, humidity, saliva, sweat, and tears). Next, we systematically summarize the integration principles of flexible physiological and biochemical sensors with the current research progress. Finally, important directions and challenges of physiological, biochemical, and multimodal sensors are proposed to realize their potential applications for human movement, health monitoring, and personalized medicine.
Collapse
Affiliation(s)
- Tiezhu Liu
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Lidan Liu
- Zhucheng Jiayue Central Hospital, Shandong 262200, China
| | - Guang-Yang Gou
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Zhen Fang
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Jianhai Sun
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Jiamin Chen
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Jianqun Cheng
- School of Integrated Circuit, Quanzhou University of Information Engineering, Quanzhou, Fujian 362000, China
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100091, China
| | - Tianjun Ma
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Chunxiu Liu
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Ning Xue
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| |
Collapse
|
15
|
Liu G, Mu Z, Guo J, Shan K, Shang X, Yu J, Liang X. Surface-enhanced Raman scattering as a potential strategy for wearable flexible sensing and point-of-care testing non-invasive medical diagnosis. Front Chem 2022; 10:1060322. [PMID: 36405318 PMCID: PMC9669362 DOI: 10.3389/fchem.2022.1060322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
As a powerful and effective analytical tool, surface-enhanced Raman scattering (SERS) has attracted considerable research interest in the fields of wearable flexible sensing and non-invasive point-of-care testing (POCT) medical diagnosis. In this mini-review, we briefly summarize the design strategy, the development progress of wearable SERS sensors and its applications in this field. We present SERS substrate analysis of material design requirements for wearable sensors and highlight the benefits of novel plasmonic particle-in-cavity (PIC)-based nanostructures for flexible SERS sensors, as well as the unique interfacial adhesion effect and excellent mechanical properties of natural silk fibroin (SF) derived from natural cocoons, indicating promising futures for applications in the field of flexible electronic, optical, and electrical sensors. Additionally, SERS wearable sensors have shown great potential in the fields of different disease markers as well as in the diagnosis testing for COVID-19. Finally, the current challenges in this field are pointed out, as well as the promising prospects of combining SERS wearable sensors with other portable health monitoring systems for POCT medical diagnosis in the future.
Collapse
Affiliation(s)
- Guoran Liu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhimei Mu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jing Guo
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ke Shan
- Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiaoyi Shang
- Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jing Yu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Physics and Electronics, Shandong Provincial Engineering and Technical Center of Light Manipulation, Shandong Normal University, Jinan, China
| | - Xiu Liang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Physics and Electronics, Shandong Provincial Engineering and Technical Center of Light Manipulation, Shandong Normal University, Jinan, China
| |
Collapse
|
16
|
Huang X, Zhao W, Chen X, Li J, Ye H, Li C, Yin X, Zhou X, Qiao X, Xue Z, Wang T. Gold Nanoparticle-Bridge Array to Improve DNA Hybridization Efficiency of SERS Sensors. J Am Chem Soc 2022; 144:17533-17539. [PMID: 36000980 DOI: 10.1021/jacs.2c06623] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interfacial mass transfer rate of a target has a significant impact on the sensing performance. The surface reaction forms a concentration gradient perpendicular to the surface, wherein a slow mass transfer process decreases the interfacial reaction rate. In this work, we self-assembled gold nanoparticles (AuNPs) in the gap of a SiO2 opal array to form a AuNP-bridge array. The diffusion paths of vertical permeability and a microvortex effect provided by the AuNP-bridge array synergistically improved the target mass transfer efficiency. As a proof of concept, we used DNA hybridization efficiency as a research model, and the surface-enhanced Raman spectroscopy (SERS) signal acted as a readout index. The experimental verification and theoretical simulation show that the AuNP-bridge array exhibited rapid mass transfer and high sensitivity. The DNA hybridization efficiency of the AuNP-bridge array was 15-fold higher than that of the AuNP-planar array. We believe that AuNP-bridge arrays can be potentially applied for screening drug candidates, genetic variations, and disease biomarkers.
Collapse
Affiliation(s)
- Xiaobin Huang
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weidong Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jinming Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haochen Ye
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Cancan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaomeng Yin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xinyuan Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xuezhi Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhenjie Xue
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Tie Wang
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|