1
|
Hou Z, Liu Y, Yao S, Wang S, Ji Y, Fu W, Xie J, Yan YM, Yang Z. Inducing weak and negative Jahn-Teller distortions to alleviate structural deformations for stable sodium storage. MATERIALS HORIZONS 2024; 11:5674-5683. [PMID: 39224063 DOI: 10.1039/d4mh01006j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In the quest for efficient supercapacitor materials, manganese-based layered oxide cathodes stand out for their cost-effectiveness and high theoretical capacity. However, their progress is hindered by the Jahn-Teller (J-T) distortion due to the unavoidable Mn4+ to Mn3+ reduction during ion storage processes. Our study addresses this challenge by stabilizing the K0.5MnO2 cathode through strategic Mg2+ substitution. This substitution leads to an altered Mn3+ electronic configuration, effectively mitigating the strong J-T distortion during ion storage processes. We provide a comprehensive analysis combining experimental evidence and theoretical insights, highlighting the emergence of the weak and negative J-T effects with reduced structural deformation during electrochemical cycling. Our findings reveal that the K0.5Mn0.85Mg0.15O2 cathode exhibits remarkable durability, retaining 96.0% of initial capacitance after 8000 cycles. This improvement is attributed to the specific electronic configurations of Mn3+ ions, which play a crucial role in minimizing volumetric changes and counteracting structural deformation typically induced by the strong J-T distortion. Our study not only advances the understanding of managing J-T distortion in manganese-based cathodes but also opens new avenues for designing high-stability supercapacitors and other energy storage devices by tailoring electrode materials based on their electronic configurations.
Collapse
Affiliation(s)
- Zishan Hou
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Yuanming Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Shuyun Yao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Shiyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Yingjie Ji
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Weijie Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yi-Ming Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Zhiyu Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
2
|
Zhu Y, Wei J, Wu J, Chen R, Tsiakaras P, Yin S. Built-in electric field in NiO-CuO heterostructures to regulate the hydroxide adsorption sites for 5-hydroxymethylfurfural electrooxidation assisted hydrogen production. J Colloid Interface Sci 2024; 673:301-311. [PMID: 38878365 DOI: 10.1016/j.jcis.2024.05.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 07/26/2024]
Abstract
The development of catalysts with suitable adsorption behavior for the reaction molecules and the elucidation of their internal structure-adsorption-catalytic activity relationships are crucial for the electrooxidation of 5-hydroxymethylfurfural (HMF). In this work, NiO-CuO heterostructures with a spontaneous built-in electric field (BEF) are specifically designed and used to regulate the OH- adsorption site for freeing up the active site of HMF for the HMF oxidation reaction (HMFOR). The mechanism driving electron pumping/accumulation of the BEF is examined by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). Electrochemical data and theoretical calculations show that BEF modulates the adsorption energy and adsorption site of substrate molecules, thereby enhancing the performance of HMFOR and hydrogen evolution reaction (HER). Notably, the NiO-CuO electrode demonstrates high 2,5-Furandicarboxylic acid (FDCA) selectivity (99.76 %) and generation rate (13.79 mmol gcat-1 h-1). It only requires 1.33 V to obtain a current density of 10 mA cm-2 for HMFOR-coupled H2 evolution. This research introduces a novel approach by regulating the adsorption of reactive molecules for HMFOR-assisted H2 evolution.
Collapse
Affiliation(s)
- Yumei Zhu
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jinlv Wei
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jia Wu
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Rong Chen
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece.
| | - Shibin Yin
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece.
| |
Collapse
|
3
|
Chen D, Mu S. Molten Salt-Assisted Synthesis of Catalysts for Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408285. [PMID: 39246151 DOI: 10.1002/adma.202408285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Indexed: 09/10/2024]
Abstract
A breakthrough in manufacturing procedures often enables people to obtain the desired functional materials. For the field of energy conversion, designing and constructing catalysts with high cost-effectiveness is urgently needed for commercial requirements. Herein, the molten salt-assisted synthesis (MSAS) strategy is emphasized, which combines the advantages of traditional solid and liquid phase synthesis of catalysts. It not only provides sufficient kinetic accessibility, but effectively controls the size, morphology, and crystal plane features of the product, thus possessing promising application prospects. Specifically, the selection and role of the molten salt system, as well as the mechanism of molten salt assistance are analyzed in depth. Then, the creation of the catalyst by the MSAS and the electrochemical energy conversion related application are introduced in detail. Finally, the key problems and countermeasures faced in breakthroughs are discussed and look forward to the future. Undoubtedly, this systematical review and insights here will promote the comprehensive understanding of the MSAS and further stimulate the generation of new and high efficiency catalysts.
Collapse
Affiliation(s)
- Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
4
|
Liu D, Wei X, Lu J, Wang X, Liu K, Cai Y, Qi Y, Wang L, Ai H, Wang Z. Efficient and Ultrastable Seawater Electrolysis at Industrial Current Density with Strong Metal-Support Interaction and Dual Cl --Repelling Layers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408982. [PMID: 39449560 DOI: 10.1002/adma.202408982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Direct seawater electrolysis is emerging as a promising renewable energy technology for large-scale hydrogen generation. The development of Os-Ni4Mo/MoO2 micropillar arrays with strong metal-support interaction (MSI) as a bifunctional electrocatalyst for seawater electrolysis is reported. The micropillar structure enhances electron and mass transfer, extending catalytic reaction steps and improving seawater electrolysis efficiency. Theoretical and experimental studies demonstrate that the strong MSI between Os and Ni4Mo/MoO2 optimizes the surface electronic structure of the catalyst, reducing the reaction barrier and thereby improving catalytic activity. Importantly, for the first time, a dual Cl- repelling layer is constructed by electrostatic force to safeguard active sites against Cl- attack during seawater oxidation. This includes a strong Os─Cl adsorption and an in situ-formed MoO4 2- layer. As a result, the Os-Ni4Mo/MoO2 catalyst exhibits an ultralow overpotential of 113 and 336 mV to reach 500 mA cm-2 for HER and OER in natural seawater from the South China Sea (without purification, with 1 m KOH added). Notably, it demonstrates superior stability, degrading only 0.37 µV h-1 after 2500 h of seawater oxidation, significantly surpassing the technical target of 1.0 µV h-1 set by the United States Department of Energy.
Collapse
Affiliation(s)
- Dong Liu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaotian Wei
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianxi Lu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xin Wang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Kai Liu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yaohai Cai
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yingwei Qi
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haoqiang Ai
- Thermal Science Research Center, Shandong Institute of Advanced Technology, Jinan, 250103, China
| | - Zhenbo Wang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
5
|
Fan Y, Zhai J, Wang Z, Yin Z, Chen H, Ran M, Zhu Z, Ma Y, Ning C, Yu P, Mao C. Piezoelectric Heterojunctions as Bacteria-Killing Bone-Regenerative Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413171. [PMID: 39460412 DOI: 10.1002/adma.202413171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Heterojunctions are widely used in energy conversion, environmental remediation, and photodetection, but have not been fully explored in regenerative medicine. In particular, piezoelectric heterojunctions have never been examined in tissue regeneration. Here the development of piezoelectric heterojunctions is shown to promote bone regeneration while eradicating pathogenic bacteria through light-cellular force-electric coupling. Specifically, an array of heterojunctions (TiO2/Bi2WO6), made of piezoelectric nanocrystals (Bi2WO6) decorating TiO2 nanowires, is fabricated as a biocompatible implant. Upon exposure to near-infrared light, the piezoelectric heterojunctions generate reactive oxygen species and heat to kill bacteria through photodynamic and photothermal therapy, respectively. Meanwhile, the mechanical forces of the stem cells grown on the implant trigger the heterojunctions to produce electric fields that further promote osteogenesis to achieve osteointegration. The heterojunctions effectively suppress postoperative recurrent infections while promoting osseointegration through the local electric fields induced by cells. Therefore, the piezoelectric heterojunctions represent a promising antibacterial tissue-regenerative implant.
Collapse
Affiliation(s)
- Youzhun Fan
- School of Materials Science and Engineering, Guang Dong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jinxia Zhai
- School of Materials Science and Engineering, Guang Dong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Zhengao Wang
- School of Materials Science and Engineering, Guang Dong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Zhaoyi Yin
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Haoyan Chen
- School of Materials Science and Engineering, Guang Dong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Maofei Ran
- School of Materials Science and Engineering, Guang Dong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Zurong Zhu
- School of Materials Science and Engineering, Guang Dong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Yubin Ma
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, P. R. China
| | - Chengyun Ning
- School of Materials Science and Engineering, Guang Dong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Peng Yu
- School of Materials Science and Engineering, Guang Dong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, P. R. China
| |
Collapse
|
6
|
Li H, Huang H, Huang W, Zhang X, Hai G, Lai F, Zhu T, Bai S, Zhang N, Liu T. Interfacial Accumulation and Stability Enhancement Effects Triggered by Built-in Electric Field of SnO 2/LaOCl Nanofibers Boost Carbon Dioxide Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402654. [PMID: 38830339 DOI: 10.1002/smll.202402654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Indexed: 06/05/2024]
Abstract
Constructing a built-in interfacial electric field (BIEF) is an effective approach to enhance the electrocatalysts performance, but it has been rarely demonstrated for electrochemical carbon dioxide reduction reaction (CO2RR) to date. Herein, for the first time, SnO2/LaOCl nanofibers (NFs) with BIEF is created by electrospinning, exhibiting a high Faradaic efficiency (FE) of 100% C1 product (CO and HCOOH) at -0.9--1.1 V versus reversible hydrogen electrode (RHE) and a maximum FEHCOOH of 90.1% at -1.2 VRHE in H-cell, superior to the commercial SnO2 nanoparticles (NPs) and LaOCl NFs. SnO2/LaOCl NFs also exhibit outstanding stability, maintaining negligible activity degradation even after 10 h of electrolysis. Moreover, their current density and FEHCOOH are almost 400 mA cm-2 at -2.31 V and 83.4% in flow-cell. The satisfactory CO2RR performance of SnO2/LaOCl NFs with BIEF can be ascribed to tight interface of coupling SnO2 NPs and LaOCl NFs, which can induce charge redistribution, rich active sites, enhanced CO2 adsorption, as well as optimized Gibbs free energy of *OCHO. The work reveals that the BIEF will trigger interfacial accumulation and stability enhancement effects in promoting CO2RR activity and stability of SnO2-based materials, providing a novel approach to develop stable and efficient CO2RR electrocatalysts.
Collapse
Affiliation(s)
- Hanjun Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Honggang Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wenshuai Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xu Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Guangtong Hai
- Institute of Zhejiang University-Quzhou, Zhejiang University, Quzhou, 324000, China
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Ting Zhu
- National Laboratory of Solid-State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Shuxing Bai
- Institute of Sustainable Energy and Resources, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Nan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
7
|
Yu Y, Qiao Z, Ding C. Built-In Electric Field Boost Photocatalytic Degradation of Pollutants in Wastewater. CHEM REC 2024; 24:e202400106. [PMID: 39321420 DOI: 10.1002/tcr.202400106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Indexed: 09/27/2024]
Abstract
The photocatalysis technique shows significant potential for wastewater degradation; however, the rapid recombination of photogenerated holes and electrons severely limits its photocatalytic efficiency. This situation necessitates the development of effective strategies to tackle these challenges. One well-documented approach is built-in electric field engineering in heterojunctions or composites, which has been shown to enhance electron transfer and thereby reduce the recombination of electrons and holes. This strategy has proven highly effective in significantly improving photocatalytic activity for the degradation of pollutants in wastewater. In this context, we summarize recent advancements in built-in electric field engineering in photocatalysts, highlighting the fundamentals and modifications of this approach, as well as its positive impact on photocatalytic performance in the degradation of wastewater pollutants.
Collapse
Affiliation(s)
- Yang Yu
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, China
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013, Zhenjiang, China
| | - Zhiyong Qiao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, China
- Jiangsu Ruilante New Materials Co., Ltd., Yangzhou, 211400, China
- Institute of Mechanics and Advanced Materials, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Changming Ding
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, China
- Jiangsu Ruilante New Materials Co., Ltd., Yangzhou, 211400, China
| |
Collapse
|
8
|
Seok H, Kim M, Cho J, Son S, Megra YT, Lee J, Nam MG, Kim KW, Aydin K, Yoo SS, Lee H, Kanade VK, Kim M, Mun J, Kim JK, Suk JW, Kim HU, Yoo PJ, Kim T. Electron Release via Internal Polarization Fields for Optimal S-H Bonding States. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411211. [PMID: 39246277 DOI: 10.1002/adma.202411211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Transition metal dichalcogenides (TMDs) have received considerable attention as promising electrocatalysts for the hydrogen evolution reaction (HER), yet their potential is often constrained by the inertness of the basal planes arising from their poor hydrogen adsorption ability. Here, the relationship between the electronic structure of the WS2 basal plane and HER activity is systemically analyzed to establish a clear insight. The valance state of the sulfur atoms on the basal plane has been tuned to enhance hydrogen adsorption through sequential engineering processes, including direct phase transition and heterostructure that induces work function-difference-induced unidirectional electron transfer. Additionally, an innovative synthetic approach, harnessing the built-in internal polarization field at the W-graphene heterointerface, triggers the in-situ formation of sulfur vacancies in the bottom WSx (x < 2) layers. The resultant modulation of the valance state of the sulfur atom stabilizes the W-S bond, while destabilizing the S-H bond. The electronic structural changes are further amplified by the release and transfer of surplus electrons via sulfur vacancies, filling the valance state of W and S atoms. Consequently, this work provides a comprehensive understanding of the interplay between the electronic structure of the WS2 basal plane and the HER activity, focusing on optimizing S-H bonding state.
Collapse
Affiliation(s)
- Hyunho Seok
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Minjun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jinill Cho
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sihoon Son
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yonas Tsegaye Megra
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jinhyoung Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Myeong Gyun Nam
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Keon-Woo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Kubra Aydin
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Seong Soo Yoo
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Hyeonjeong Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Vinit K Kanade
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Muyoung Kim
- Plasma Engineering Laboratory, Korea Institute of Machinery and Materials, Daejeon, 34103, Republic of Korea
| | - Jihun Mun
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Jin Kon Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Ji Won Suk
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
- Department of Smart-Fab. Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeong-U Kim
- Plasma Engineering Laboratory, Korea Institute of Machinery and Materials, Daejeon, 34103, Republic of Korea
- Nano-Mechatronics, KIMM Campus, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Pil J Yoo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Taesung Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
9
|
Liu J, Guo P, Liu D, Yan X, Tu X, Pan H, Wu R. Activating TiO 2 through the Phase Transition-Mediated Hydrogen Spillover to Outperform Pt for Electrocatalytic pH-Universal Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400783. [PMID: 38573959 DOI: 10.1002/smll.202400783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Endowing conventional materials with specific functions that are hardly available is invariably of significant importance but greatly challenging. TiO2 is proven to be highly active for the photocatalytic hydrogen evolution while intrinsically inert for electrocatalytic hydrogen evolution reaction (HER) due to its poor electrical conductivity and unfavorable hydrogen adsorption/desorption behavior. Herein, the first activation of inert TiO2 for electrocatalytic HER is demonstrated by synergistically modulating the positions of d-band center and triggering hydrogen spillover through the dual doping-induced partial phase transition. The N, F co-doping-induced partial phase transition from anatase to rutile phase in TiO2 (AR-TiO2|(N,F)) exhibits extraordinary HER performance with overpotentials of 74, 80, and 142 mV at a current density of 10 mA cm-2 in 1.0 M KOH, 0.5 M H2SO4, and 1.0 M phosphate-buffered saline electrolytes, respectively, which are substantially better than pure TiO2, and even superior to the benchmark Pt/C catalysts. These findings may open a new avenue for the development of low-cost alternative to noble metal catalysts for electrocatalytic hydrogen production.
Collapse
Affiliation(s)
- Jiexian Liu
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Peifang Guo
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Da Liu
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Xiaoxiao Yan
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Xin Tu
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Renbing Wu
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
10
|
Zhang H, Liu Z, Fang J, Peng F. Modulation of π-Electron Density in Ultrathin 2D Layers of Graphite Carbon Nitride for Efficient Photocatalytic Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404929. [PMID: 39180452 DOI: 10.1002/smll.202404929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/10/2024] [Indexed: 08/26/2024]
Abstract
The rational design and synthesis of novel semiconductor nano-/quantum materials have been ambitiously pursued in the field of photocatalysis as the technology is promising and critical for attaining future energy and environmental sustainability. Herein, the integrity of aromatic carbon into graphitic carbon nitride (CN) at the same molecular plane with a few 2D layers is achieved by using modulated precursors of CN, forming carbon regulated ultrathin CN (CUCN) with improved charge transfer kinetics and photocatalytic hydrogen production. The grafted graphite rings adjacent to carbon nitride frameworks induce a significant rearrangement and relocalization of the overall framework, and form conjugated sp2 hybridized interfaces and internal electric fields that drive the separation and directional transfer of photogenerated electrons from CN sheets towards intralayer graphite regions, where the photocatalytic hydrogen evolution reaction occurs extensively, yielding largely increased HER rate of 2231.8 µmol g-1 h-1 by 8.2 times relative to CN, as well as a remarkable apparent quantum yield of 2.93% under monochromatic light at 420 nm. The high physicochemical stability and low synthesis cost of CUCN make it a potential benchmark photocatalyst that can be readily modified via element doping, heterojunction introduction, defect engineering, and so on, to further enhance its HER performance.
Collapse
Affiliation(s)
- Honghua Zhang
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, P. R. China
| | - Zhang Liu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Jianzhang Fang
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, P. R. China
| | - Feng Peng
- School of Chemistry and Chemical Engineering, Guangzhou University, University Town, Guangzhou, 510006, P. R. China
| |
Collapse
|
11
|
Liu X, Wei S, Cao S, Zhang Y, Xue W, Wang Y, Liu G, Li J. Lattice Strain with Stabilized Oxygen Vacancies Boosts Ceria for Robust Alkaline Hydrogen Evolution Outperforming Benchmark Pt. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405970. [PMID: 38866382 DOI: 10.1002/adma.202405970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Earth-abundant metal oxides are usually considered as stable but catalytically inert toward hydrogen evolution reaction (HER) due to their unfavorable hydrogen intermediate adsorption performance. Herein, a heavy rare earth (Y) and transition metal (Co) dual-doping induced lattice strain and oxygen vacancy stabilization strategy is proposed to boost CeO2 toward robust alkaline HER. The induced lattice compression and increased oxygen vacancy (Ov) concentration in CeO2 synergistically improve the water dissociation on Ov sites and sequential hydrogen adsorption at activated Ov-neighboring sites, leading to significantly enhanced HER kinetics. Meanwhile, Y doping offers stabilization effect on Ov by its stronger Y─O bonding over Ce─O, which endows the catalyst with excellent stability. The Y,Co-CeO2 electrocatalyst exhibits an ultra-low HER overpotential (27 mV at 10 mA cm-2) and Tafel slope (48 mV dec-1), outperforming the benchmark Pt electrocatalyst. Moreover, the anion exchange membrane water electrolyzer incorporated with Y,Co-CeO2 achieves excellent stability of 500 h under 600 mA cm-2. This synergistic lattice strain and oxygen vacancy stabilization strategy sheds new light on the rational development of efficient and stable oxide-based HER electrocatalysts.
Collapse
Affiliation(s)
- Xiaojing Liu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Shuaichong Wei
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Shuyi Cao
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Yongguang Zhang
- Power Battery & System Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wei Xue
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Yanji Wang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Guihua Liu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Jingde Li
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
12
|
Qi Z, Lu Z, Guo X, Jiang J, Liu S, Sun J, Wang X, Zhu J, Fu Y. Constructing Directional Electrostatic Potential Difference via Gradient Nitrogen Doping for Efficient Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401221. [PMID: 38593294 DOI: 10.1002/smll.202401221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Nitrogen doping has been recognized as an important strategy to enhance the oxygen reduction reaction (ORR) activity of carbon-encapsulated transition metal catalysts (TM@C). However, previous reports on nitrogen doping have tended to result in a random distribution of nitrogen atoms, which leads to disordered electrostatic potential differences on the surface of carbon layers, limiting further control over the materials' electronic structure. Herein, a gradient nitrogen doping strategy to prepare nitrogen-deficient graphene and nitrogen-rich carbon nanotubes encapsulated cobalt nanoparticles catalysts (Co@CNTs@NG) is proposed. The unique gradient nitrogen doping leads to a gradual increase in the electrostatic potential of the carbon layer from the nitrogen-rich region to the nitrogen-deficient region, facilitating the directed electron transfer within these layers and ultimately optimizing the charge distribution of the material. Therefore, this strategy effectively regulates the density of state and work function of the material, further optimizing the adsorption of oxygen-containing intermediates and enhancing ORR activity. Theoretical and experimental results show that under controlled gradient nitrogen doping, Co@CNTs@NG exhibits significantly ORR performance (Eonset = 0.96 V, E1/2 = 0.86 V). At the same time, Co@CNTs@NG also displays excellent performance as a cathode material for Zn-air batteries, with peak power density of 132.65 mA cm-2 and open-circuit voltage (OCV) of 1.51 V. This work provides an effective gradient nitrogen doping strategy to optimize the ORR performance.
Collapse
Affiliation(s)
- Zhijie Qi
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhenjie Lu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiangjie Guo
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Jiang
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shujun Liu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jingwen Sun
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xin Wang
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yongsheng Fu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
13
|
Wang RX, Yang L, Chen HY, Wang N, Zhang WJ, Li R, Chen YQ, You CY, Ramakrishna S, Long YZ. Rationally designing of Co-WS 2 catalysts with optimized electronic structure to enhance hydrogen evolution reaction. J Colloid Interface Sci 2024; 667:192-198. [PMID: 38636221 DOI: 10.1016/j.jcis.2024.04.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Designing and developing cost-effective, high-performance catalysts for hydrogen evolution reaction (HER) is crucial for advancing hydrogen production technology. Tungsten-based sulfides (WSx) exhibit great potential as efficient HER catalysts, however, the activity is limited by the larger energy required for water dissociation under alkaline conditions. Herein, we adopt a top-down strategy to construct heterostructure Co-WS2 nanofiber catalysts. The experimental results and theoretical simulations unveil that the work functions-induced built-in electric field at the interface of Co-WS2 catalysts facilitates the electron transfer from Co to WS2, significantly reducing water dissociation energy and optimizing the Gibbs free energy of the entire reaction step for HER. Besides, the self-supported catalysts of Co-WS2 nanoparticles confining 1D nanofibers exhibit an increased number of active sites. As expected, the heterostructure Co-WS2 catalysts exhibit remarkable HER activity with an overpotential of 113 mV to reach 10 mA cm-2 and stability with 30 h catalyzing at 23 mA cm-2. This work can provide an avenue for designing highly efficient catalysts applicable to the field of energy storage and conversion.
Collapse
Affiliation(s)
- Rong-Xu Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Lei Yang
- Research Center for Smart Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China.
| | - Han-Yang Chen
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Nan Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Wen-Jie Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Ru Li
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - You-Qiang Chen
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Chao-Yu You
- Research Center for Smart Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University), Qingdao, 266071, China.
| |
Collapse
|
14
|
Zhou Q, Xue W, Cui X, Wang P, Zuo S, Mo F, Li C, Liu G, Ouyang S, Zhan S, Chen J, Wang C. Oxygen-bridging Fe, Co dual-metal dimers boost reversible oxygen electrocatalysis for rechargeable Zn-air batteries. Proc Natl Acad Sci U S A 2024; 121:e2404013121. [PMID: 39024111 PMCID: PMC11287248 DOI: 10.1073/pnas.2404013121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Rechargeable zinc-air batteries (ZABs) are regarded as a remarkably promising alternative to current lithium-ion batteries, addressing the requirements for large-scale high-energy storage. Nevertheless, the sluggish kinetics involving oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) hamper the widespread application of ZABs, necessitating the development of high-efficiency and durable bifunctional electrocatalysts. Here, we report oxygen atom-bridged Fe, Co dual-metal dimers (FeOCo-SAD), in which the active site Fe-O-Co-N6 moiety boosts exceptional reversible activity toward ORR and OER in alkaline electrolytes. Specifically, FeOCo-SAD achieves a half-wave potential (E1/2) of 0.87 V for ORR and an overpotential of 310 mV at a current density of 10 mA cm-2 for OER, with a potential gap (ΔE) of only 0.67 V. Meanwhile, FeOCo-SAD manifests high performance with a peak power density of 241.24 mW cm-2 in realistic rechargeable ZABs. Theoretical calculations demonstrate that the introduction of an oxygen bridge in the Fe, Co dimer induced charge spatial redistribution around Fe and Co atoms. This enhances the activation of oxygen and optimizes the adsorption/desorption dynamics of reaction intermediates. Consequently, energy barriers are effectively reduced, leading to a strong promotion of intrinsic activity toward ORR and OER. This work suggests that oxygen-bridging dual-metal dimers offer promising prospects for significantly enhancing the performance of reversible oxygen electrocatalysis and for creating innovative catalysts that exhibit synergistic effects and electronic states.
Collapse
Affiliation(s)
- Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, People’s Republic of China
| | - Wendan Xue
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, People’s Republic of China
| | - Xun Cui
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan430200, People’s Republic of China
| | - Pengfei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, People’s Republic of China
| | - Sijin Zuo
- State of Key Laboratory of Natural Medicines School of Engineering, China Pharmaceutical University, Nanjing210009, People’s Republic of China
| | - Fan Mo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, People’s Republic of China
| | - Chengzhi Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, People’s Republic of China
| | - Gaolei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, People’s Republic of China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, People’s Republic of China
| | - Sihui Zhan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, People’s Republic of China
| | - Juan Chen
- College of Environment, Hohai University, Nanjing210098, People’s Republic of China
| | - Chao Wang
- College of Environment, Hohai University, Nanjing210098, People’s Republic of China
| |
Collapse
|
15
|
Wu H, Wang C, Ma Y, Huang S, Ren Y, Ding F, Li F, Yang Y, Gu J, Tang S, Meng X. NiO/RuO 2 p-n Heterojunction Nanofoam as a High-Performance Electrocatalyst for Desulfurization and Concurrent Hydrogen Evolution. Inorg Chem 2024; 63:12604-12614. [PMID: 38918078 DOI: 10.1021/acs.inorgchem.4c01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The development of bifunctional electrocatalysts with excellent performance in both the hydrogen evolution reaction (HER) and sulfide oxidation reaction (SOR) remains a formidable challenge. Herein, we experimentally synthesize a NiO/RuO2 p-n heterojunction nanofoam that exhibits highly desirable electrocatalytic properties for both the HER and the SOR. We further design an electrolytic cell by pairing alkaline HER with SOR utilizing the NiO/RuO2 heterojunction nanofoam as both the anode and the cathode, which demands a low applied voltage of 0.846 V to achieve a current density of 10 mA cm-2. Density functional theory calculations confirm that the formation of the NiO/RuO2 p-n heterojunction nanofoam effectively regulates the electronic structure, thereby boosting the electrocatalytic performances for both HER and SOR. This work not only provides a novel strategy to prepare an efficient and stable nanofoam electrocatalyst for hydrogen production but also highlights the potential application of oxide heterojunction electrocatalysts in treating sulfur-containing waste liquid.
Collapse
Affiliation(s)
- Hao Wu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Cong Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Yujie Ma
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
- School of Intelligent Manufacturing and Information, Jiangsu Shipping College, Nantong 226010, PR China
| | - Sirui Huang
- College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yilun Ren
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Fan Ding
- Department of Computer Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Fengqi Li
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Yurong Yang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Jian Gu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Shaochun Tang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Xiangkang Meng
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| |
Collapse
|
16
|
Gao X, Chen Y, Wang Y, Zhao L, Zhao X, Du J, Wu H, Chen A. Next-Generation Green Hydrogen: Progress and Perspective from Electricity, Catalyst to Electrolyte in Electrocatalytic Water Splitting. NANO-MICRO LETTERS 2024; 16:237. [PMID: 38967856 PMCID: PMC11226619 DOI: 10.1007/s40820-024-01424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/22/2024] [Indexed: 07/06/2024]
Abstract
Green hydrogen from electrolysis of water has attracted widespread attention as a renewable power source. Among several hydrogen production methods, it has become the most promising technology. However, there is no large-scale renewable hydrogen production system currently that can compete with conventional fossil fuel hydrogen production. Renewable energy electrocatalytic water splitting is an ideal production technology with environmental cleanliness protection and good hydrogen purity, which meet the requirements of future development. This review summarizes and introduces the current status of hydrogen production by water splitting from three aspects: electricity, catalyst and electrolyte. In particular, the present situation and the latest progress of the key sources of power, catalytic materials and electrolyzers for electrocatalytic water splitting are introduced. Finally, the problems of hydrogen generation from electrolytic water splitting and directions of next-generation green hydrogen in the future are discussed and outlooked. It is expected that this review will have an important impact on the field of hydrogen production from water.
Collapse
Affiliation(s)
- Xueqing Gao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Yutong Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Yujun Wang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Luyao Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Xingyuan Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Haixia Wu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
17
|
Huang R, Zhai Z, Chen X, Liang X, Yu T, Yang Y, Li B, Yin S. Constructing Built-In Electric Field in NiCo 2O 4-CeO 2 Heterostructures to Regulate Li 2O 2 Formation Routes at High Current Densities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310808. [PMID: 38386193 DOI: 10.1002/smll.202310808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/03/2024] [Indexed: 02/23/2024]
Abstract
Developing catalysts with suitable adsorption energy for oxygen-containing intermediates and elucidating their internal structure-performance relationships are essential for the commercialization of Li-O2 batteries (LOBs), especially under high current densities. Herein, NiCo2O4-CeO2 heterostructure with a spontaneous built-in electric field (BIEF) is designed and utilized as a cathode catalyst for LOBs at high current density. The driving mechanism of electron pumping/accumulation at heterointerface is studied via experiments and density functional theory (DFT) calculations, elucidating the growth mechanism of discharge products. The results show that BIEF induced by work function difference optimizes the affinity for LiO2 and promotes the formation of nano-flocculent Li2O2, thus improving LOBs performance at high current density. Specifically, NiCo2O4-CeO2 cathode exhibits a large discharge capacity (9546 mAh g-1 at 4000 mA g-1) and high stability (>430 cycles at 4000 mA g-1), which are better than the majority of previously reported metal-based catalysts. This work provides a new method for tuning the nucleation and decomposition of Li2O2 and inspires the design of ideal catalysts for LOBs to operate at high current density.
Collapse
Affiliation(s)
- Renshu Huang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Zhixiang Zhai
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Xingfa Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Xincheng Liang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Tianqi Yu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Yueyao Yang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Bin Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Shibin Yin
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| |
Collapse
|
18
|
Chen W, Niu M, Zhang Z, Chen L, Li X, Zhang J, Sun R, Cao H, Wang X. Phase-Transition of Mo 2C Induced by Tungsten Doping as Heterointerface-Rich Electrocatalyst for Optimizing Hydrogen Evolution Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311026. [PMID: 38377298 DOI: 10.1002/smll.202311026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Electrochemical hydrogen evolution reaction (HER) from water splitting driven by renewable energy is considered a promising method for large-scale hydrogen production, and as an alternative to noble-metal electrocatalysts, molybdenum carbide (Mo2C) has exhibited effective HER performance. However, the strong bonding strength of intermediate adsorbed H (Hads) with Mo active site slows down the HER kinetics of Mo2C. Herein, using phase-transition strategy, hexagonal β-Mo2C could be easily transferred to cubic δ-Mo2C through electron injection triggered by tungsten (W) doping, and heterointerface-rich Mo2C-based composites, including β-Mo2C, δ-Mo2C, and MoO2, are presented. Experimental results and density functional theory calculations reveal that W doping mainly contributes to the phase-transition process, and the generated heterointerfaces are the dominant factor in inducing remarkable electron accumulation around Mo active sites, thus weakening the Mo─H coupling. Wherein, the β-Mo2C/MoO2 interface plays an important role in optimizing the electronic structure of Mo 3d orbital and hydrogen adsorption Gibbs free energy (ΔGH*), enabling these Mo2C-based composites to have excellent intrinsic catalytic activity like low overpotential (η10 = 99.8 mV), small Tafel slope (60.16 dec-1), and good stability in 1 m KOH. This work sheds light on phase-transition engineering and offers a convenient route to construct heterointerfaces for large-scale HER production.
Collapse
Affiliation(s)
- Wansong Chen
- School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Mang Niu
- School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhaozuo Zhang
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Lin Chen
- School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Xing Li
- School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jinming Zhang
- School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Ruoxin Sun
- School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Haijie Cao
- School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Xiaoxia Wang
- School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
19
|
Chang Y, Lu X, Wang S, Li X, Yuan Z, Bao J, Liu Y. Built-In Electric Field Boosted Overall Water Electrolysis at Large Current Density for the Heterogeneous Ir/CoMoO 4 Nanosheet Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311763. [PMID: 38348916 DOI: 10.1002/smll.202311763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/28/2024] [Indexed: 07/19/2024]
Abstract
Advanced bifunctional electrocatalysts are essential for propelling overall water splitting (OWS) progress. Herein, relying on the obvious difference in the work function of Ir (5.44 eV) and CoMoO4 (4.03 eV) and the constructed built-in electric field (BEF), an Ir/CoMoO4/NF heterogeneous catalyst, with ultrafine Ir nanoclusters (1.8 ± 0.2 nm) embedded in CoMoO4 nanosheet arrays on the surface of nickel foam skeleton, is reported. Impressively, the Ir/CoMoO4/NF shows remarkable electrocatalytic bifunctionality toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), especially at large current densities, requiring only 13 and 166 mV to deliver 10 and 1000 mA cm-2 for HER and 196 and 318 mV for OER. Furthermore, the Ir/CoMoO4/NF||Ir/CoMoO4/NF electrolyzer demands only 1.43 and 1.81 V to drive 10 and 1000 mA cm-2 for OWS. Systematical theoretical calculations and tests show that the formed BEF not only optimizes interfacial charge distribution and the Fermi level of both Ir and CoMoO4, but also reduces the Gibbs free energy (ΔGH*, from 0.25 to 0.03 eV) and activation energy (from 13.6 to 8.9 kJ mol-1) of HER, the energy barrier (from 3.47 to 1.56 eV) and activation energy (from 21.1 to 13.9 kJ mol-1) of OER, thereby contributing to the glorious electrocatalytic bifunctionality.
Collapse
Affiliation(s)
- Yanan Chang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xuyun Lu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Shasha Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaoxuan Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zeyu Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jianchun Bao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
20
|
Mao T, Chen J, Wang R, Yang Z, Han X, Huang J, Dong S, Wang J, Jin H, Wang S. Constructing a Stable Built-In Electric Field in Bi/Bi 2Te 3 Nanowires for Electrochemical CO 2 Reduction Reaction. Inorg Chem 2024; 63:10809-10816. [PMID: 38813764 DOI: 10.1021/acs.inorgchem.4c01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Electrochemically converting carbon dioxide (CO2) into valuable fuels and renewable chemical feedstocks is considered a highly promising approach to achieve carbon neutrality. In this work, a robust interfacial built-in electric field (BEF) has been successfully designed and created in Bi/Bi2Te3 nanowires (NWs). The Bi/Bi2Te3 NWs consistently maintain over 90% Faradaic efficiency (FE) within a wide potential range (-0.8 to -1.2 V), with HCOOH selectivity reaching 97.2% at -1.0 V. Moreover, the FEHCOOH of Bi/Bi2Te3 NWs can still reach 94.3% at a current density of 100 mA cm-2 when it is used as a cathode electrocatalyst in a flow-cell system. Detailed in situ experiments confirm that the presence of interfacial BEF between Bi and Bi/Bi2Te3 promotes the formation of *OHCO intermediates, thus facilitating the production of HCOOH species. DFT calculations show that Bi/Bi2Te3 NWs increase the formation energies of H* and *COOH while reducing the energy barrier for *OCHO formation, thus achieving a bidirectional optimization of intermediate adsorption. This work provides a feasible scheme for exploring electrocatalytic reaction intermediates by using the BEF strategy.
Collapse
Affiliation(s)
- Tingjie Mao
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jiadong Chen
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Ren Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Zhenrui Yang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xiang Han
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jinglian Huang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Siyuan Dong
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Juan Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Huile Jin
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shun Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
21
|
Yang H, Ni C, Gao X, Lin S, He X, Tian L, Li Z. Constructing Built-in-Electric Field for Boosting Electrocatalytic Water Splitting. CHEMSUSCHEM 2024:e202400977. [PMID: 38831717 DOI: 10.1002/cssc.202400977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Electrocatalytic water splitting shows great potential for producing clean and green hydrogen, but it is hindered by slow reaction kinetics. Advanced electrocatalysts are needed to lower the energy barriers. The establishment of built-in electric fields (BIEF) in heterointerfaces has been found to be beneficial for speeding up electron transfer, increasing electrical conductivity, adjusting the local reaction environment, and optimizing the chemisorption energy with intermediates. Engineering and modifying the BIEF in heterojunctions offer significant opportunities to enhance the electronic properties of catalysts, thus improving the reaction kinetics. This comprehensive review focuses on the latest advances in BIEF engineering in heterojunction catalysts for efficient water electrolysis. It highlights the fundamentals, engineering, modification, characterization, and application of BIEF in electrocatalytic water splitting. The review also discusses the challenges and future prospects of BIEF engineering. Overall, this review provides a thorough examination of BIEF engineering for the next generation of water electrolysis devices.
Collapse
Affiliation(s)
- Huimin Yang
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Chunmei Ni
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Xuena Gao
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Shaohao Lin
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Xiaoyan He
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Lin Tian
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| |
Collapse
|
22
|
Li Y, Dou Z, Pan Y, Zhao H, Yao L, Wang Q, Zhang C, Yue Z, Zou Z, Cheng Q, Yang H. Crystalline Phase Engineering to Modulate the Interfacial Interaction of the Ruthenium/Molybdenum Carbide for Acidic Hydrogen Evolution. NANO LETTERS 2024; 24:5705-5713. [PMID: 38701226 DOI: 10.1021/acs.nanolett.4c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Ruthenium (Ru) is an ideal substitute to commercial Pt/C for the acidic hydrogen evolution reaction (HER), but it still suffers from undesirable activity due to the strong adsorption free energy of H* (ΔGH*). Herein, we propose crystalline phase engineering by loading Ru clusters on precisely prepared cubic and hexagonal molybdenum carbide (α-MoC/β-Mo2C) supports to modulate the interfacial interactions and achieve high HER activity. Advanced spectroscopies demonstrate that Ru on β-Mo2C shows a lower valence state and withdraws more electrons from the support than that of Ru on α-MoC, indicative of a strong interfacial interaction. Density functional theory reveals that the ΔGH* of Ru/β-Mo2C approaches 0 eV, illuminating an enhancement mechanism at the Ru/β-Mo2C interface. The resultant Ru/β-Mo2C exhibits an encouraging performance in a proton exchange membrane water electrolyzer with a low cell voltage (1.58 V@ 1.0 A cm-2) and long stability (500 h@ 1.0 A cm-2).
Collapse
Affiliation(s)
- Yuze Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhenlan Dou
- State Grid Shanghai Municipal Electric Power Company, Shanghai 200122, P. R. China
| | - Yongyu Pan
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Longping Yao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiansen Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chunyan Zhang
- State Grid Shanghai Municipal Electric Power Company, Shanghai 200122, P. R. China
| | - Zhouying Yue
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Zhiqing Zou
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Qingqing Cheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Hui Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| |
Collapse
|
23
|
Chen D, Yu R, Yu K, Lu R, Zhao H, Jiao J, Yao Y, Zhu J, Wu J, Mu S. Bicontinuous RuO 2 nanoreactors for acidic water oxidation. Nat Commun 2024; 15:3928. [PMID: 38724489 PMCID: PMC11082236 DOI: 10.1038/s41467-024-48372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Improving activity and stability of Ruthenium (Ru)-based catalysts in acidic environments is eager to replace more expensive Iridium (Ir)-based materials as practical anode catalyst for proton-exchange membrane water electrolyzers (PEMWEs). Here, a bicontinuous nanoreactor composed of multiscale defective RuO2 nanomonomers (MD-RuO2-BN) is conceived and confirmed by three-dimensional tomograph reconstruction technology. The unique bicontinuous nanoreactor structure provides abundant active sites and rapid mass transfer capability through a cavity confinement effect. Besides, existing vacancies and grain boundaries endow MD-RuO2-BN with generous low-coordination Ru atoms and weakened Ru-O interaction, inhibiting the oxidation of lattice oxygen and dissolution of high-valence Ru. Consequently, in acidic media, the electron- and micro-structure synchronously optimized MD-RuO2-BN achieves hyper water oxidation activity (196 mV @ 10 mA cm-2) and an ultralow degradation rate of 1.2 mV h-1. A homemade PEMWE using MD-RuO2-BN as anode also conveys high water splitting performance (1.64 V @ 1 A cm-2). Theoretical calculations and in-situ Raman spectra further unveil the electronic structure of MD-RuO2-BN and the mechanism of water oxidation processes, rationalizing the enhanced performance by the synergistic effect of multiscale defects and protected active Ru sites.
Collapse
Affiliation(s)
- Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- The Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572000, China
| | - Kesong Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ruihu Lu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Hongyu Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jixiang Jiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Youtao Yao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan, 430070, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
24
|
Xu T, Tian F, Jiao D, Fan J, Jin Z, Zhang L, Zhang W, Zheng L, Singh DJ, Zhang L, Zheng W, Cui X. In Situ Construction of Built-In Opposite Electric Field Balanced Surface Adsorption for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309249. [PMID: 38152975 DOI: 10.1002/smll.202309249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/19/2023] [Indexed: 12/29/2023]
Abstract
Achieving a balance between H-atom adsorption and binding with H2 desorption is crucial for catalyzing hydrogen evolution reaction (HER). In this study, the feasibility of designing and implementing built-in opposite electric fields (OEF) is demonstrated to enable optimal H atom adsorption and H2 desorption using the Ni3(BO3)2/Ni5P4 heterostructure as an example. Through density functional theory calculations of planar averaged potentials, it shows that opposite combinations of inward and outward electric fields can be achieved at the interface of Ni3(BO3)2/Ni5P4, leading to the optimization of the H adsorption free energy (ΔGH*) near electric neutrality (0.05 eV). Based on this OEF concept, the study experimentally validated the Ni3(BO3)2/Ni5P4 system electrochemically forming Ni3(BO3)2 through cyclic voltammetry scanning of B-doped Ni5P4. The surface of Ni3(BO3)2 undergoes reconstruction, as characterized by Grazing Incidence Wide-Angle X-ray Scattering (GIWAXS) and in situ Raman spectroscopy. The resulting catalyst exhibits excellent HER activity in alkaline media, with a low overpotential of 33 mV at 10 mA cm-2 and stability maintained for over 360 h. Therefore, the design strategy of build-in opposite electric field enables the development of high-performance HER catalysts and presents a promising approach for electrocatalyst advancement.
Collapse
Affiliation(s)
- Tianyi Xu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Fuyu Tian
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Dongxu Jiao
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Jinchang Fan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Zhaoyong Jin
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Lei Zhang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Wei Zhang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - David J Singh
- Department of Physics and Astronomy and Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Lijun Zhang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| |
Collapse
|
25
|
Chen L, Wang HY, Tian WW, Wang L, Sun ML, Ren JT, Yuan ZY. Enabling Internal Electric Field in Heterogeneous Nanosheets to Significantly Accelerate Alkaline Hydrogen Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307252. [PMID: 38054813 DOI: 10.1002/smll.202307252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Efficient bifunctional hydrogen electrocatalysis, encompassing both hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR), is of paramount significance in advancing hydrogen-based societies. While non-precious-metal-based catalysts, particularly those based on nickel (Ni), are essential for alkaline HER/HOR, their intrinsic catalytic activity often falls short of expectations. Herein, an internal electric field (IEF) strategy is introduced for the engineering of heterogeneous nickel-vanadium oxide nanosheet arrays grown on porous nickel foam (Ni-V2O3/PNF) as bifunctional electrocatalysts for hydrogen electrocatalysis. Strikingly, the Ni-V2O3/PNF delivers 10 mA cm-2 at an overpotential of 54 mV for HER and a mass-specific kinetic current of 19.3 A g-1 at an overpotential of 50 mV for HOR, placing it on par with the benchmark 20% Pt/C, while exhibiting enhanced stability in alkaline electrolytes. Density functional theory calculations, in conjunction with experimental characterizations, unveil that the interface IEF effect fosters asymmetrical charge distributions, which results in more thermoneutral hydrogen adsorption Gibbs free energy on the electron-deficient Ni side, thus elevating the overall efficiency of both HER and HOR. The discoveries reported herein guidance are provided for further understanding and designing efficient non-precious-metal-based electrocatalysts through the IEF strategy.
Collapse
Affiliation(s)
- Lei Chen
- School of Materials Science, Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, China
| | - Hao Yu Wang
- School of Materials Science, Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, China
| | - Wen Wen Tian
- School of Materials Science, Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, China
| | - Lei Wang
- School of Materials Science, Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, China
| | - Ming Lei Sun
- School of Materials Science, Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, China
| | - Jin Tao Ren
- School of Materials Science, Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, China
| | - Zhong Yong Yuan
- School of Materials Science, Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, China
| |
Collapse
|
26
|
Zhao W, Jin K, Xu P, Wu F, Fu L, Xu B. Bismuth Telluride Supported Sub-1 nm Polyoxometalate Cluster for High-Efficiency Thermoelectric Energy Conversion. NANO LETTERS 2024; 24:5361-5370. [PMID: 38630986 DOI: 10.1021/acs.nanolett.4c01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Size plays a crucial role in chemistry and material science. Subnanometer polyoxometalate (POM) clusters have gained attention in various fields, but their use in thermoelectrics is still limited. To address this issue, we propose the POM clusters as an effective second phase to enhance the thermoelectric properties of Bi0.4Sb1.6Te3. Thanks to their subnanometer size, POM clusters improve electrical transport behavior through the superposition of atomic orbitals and the interfacial scattering effect. Furthermore, their ultrasmall size strongly reduces thermal conductivity. Consequently, the introduction of a mere 0.1 mol % of POM into the Bi0.4Sb1.6Te3 matrix realizes a state-of-the-art zT value of 1.46 at 348 K, a 45% enhancement over Bi0.4Sb1.6Te3 (1.01), along with a maximum thermoelectric-conversion efficiency of the integrated module of 6.0%. The enhancement of carrier mobility and the suppression of thermal conduction achieved by introducing the subnanometer clusters hold promise for various applications, such as electronic devices and thermal management.
Collapse
Affiliation(s)
- Wei Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Kangpeng Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Pengfei Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Fanshi Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Liangwei Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Biao Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| |
Collapse
|
27
|
Wang Q, Fei Z, Shen D, Cheng C, Dyson PJ. Ginkgo Leaf-Derived Carbon Supports for the Immobilization of Iron/Iron Phosphide Nanospheres for Electrocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309830. [PMID: 38174610 DOI: 10.1002/smll.202309830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Iron/iron phosphide nanospheres supported on ginkgo leaf-derived carbon (Fe&FeP@gl-C) are prepared using a post-phosphidation approach, with varying amounts of iron (Fe). The activity of the catalysts in the hydrogen evolution reaction (HER) outperforms iron/iron carbide nanospheres supported on ginkgo leaf-derived carbon (Fe&FexC@gl-C), due to enhanced work function, electron transfer, and Volmer processes. The d-band centers of Fe&FeP@gl-C-15 move away from the Fermi level, lowering the H2 desorption energy and accelerating the Heyrovsky reaction. Density functional theory (DFT) calculations reveal that the hydrogen-binding free energy |ΔGH*| value is close to zero for the Fe&FeP@gl-C-15 catalyst, showing a good balance between Volmer and Heyrovsky processes. The Fe&FeP@gl-C-15 catalyst shows excellent hydrogen evolution performance in 0.5 m H2SO4, driving a current density of 10 mA cm-2 at an overpotential of 92 mV. Notably, the Fe&FeP@gl-C-15 catalyst outperforms a 20 wt% Pt/C catalyst, with a smaller overpotential required to drive a higher current density above 375 mA cm-2.
Collapse
Affiliation(s)
- Qichang Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, P. R. China
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Zhaofu Fei
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Dekui Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, P. R. China
| | - Chongbo Cheng
- Engineering Laboratory of Energy System Process Conversion and Emission Reduction Technology of Jiangsu Province, School of Energy & Mechanical Engineering, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| |
Collapse
|
28
|
Wang J, Yuan L, Zhang P, Mao J, Fan J, Zhang XL. Advances in zeolitic-imidazolate-framework-based catalysts for photo-/electrocatalytic water splitting, CO 2 reduction and N 2 reduction applications. NANOSCALE 2024; 16:7323-7340. [PMID: 38511283 DOI: 10.1039/d3nr06411e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Harnessing electrical or solar energy for the renewable production of value-added fuels and chemicals through catalytic processes (such as photocatalysis and electrocatalysis) is promising to achieve the goal of carbon neutrality. Owing to the large number of highly accessible active sites, highly porous structure, and charge separation/transfer ability, as well as excellent stability against chemical and electrochemical corrosion, zeolite imidazolate framework (ZIF)-based catalysts have attracted significant attention. Strategic construction of heterojunctions, and alteration of the metal node and the organic ligand of the ZIFs effectively regulate the binding energy of intermediates and the reaction energy barriers that allow tunable catalytic activity and selectivity of a product during reaction. Focusing on the currently existing critical issues of insufficient kinetics for electron transport and selective generation of ideal products, this review starts from the characteristics and physiochemical advantages of ZIFs in catalytic applications, then introduces promising regulatory approaches for advancing the kinetic process in emerging CO2 reduction, water splitting and N2 reduction applications, before proposing perspective modification directions.
Collapse
Affiliation(s)
- Jiaorong Wang
- School of Materials Science and Engineering, Zhengzhou University, 450001, P.R. China.
| | - Lihong Yuan
- School of Materials Science and Engineering, Zhengzhou University, 450001, P.R. China.
| | - Pan Zhang
- School of Materials Science and Engineering, Zhengzhou University, 450001, P.R. China.
| | - Jing Mao
- School of Materials Science and Engineering, Zhengzhou University, 450001, P.R. China.
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, 450001, P.R. China.
| | - Xiao Li Zhang
- School of Materials Science and Engineering, Zhengzhou University, 450001, P.R. China.
| |
Collapse
|
29
|
Liu L, Wu N, Ouyang M, Xing Y, Tian J, Chen P, Wu J, Hu Y, Niu X, Fu M, Ye D. Enhancement Effect Induced by the Second Metal to Promote Ozone Catalytic Oxidation of VOCs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6725-6735. [PMID: 38565876 DOI: 10.1021/acs.est.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
It is a promising research direction to develop catalysts with high stability and ozone utilization for low-temperature ozone catalytic oxidation of VOCs. While bimetallic catalysts exhibit excellent catalytic activity compared with conventional single noble metal catalysts, limited success has been achieved in the influence of the bimetallic effect on the stability and ozone utilization of metal catalysts. Herein, it is necessary to systematically study the enhancement effect in the ozone catalytic reaction induced by the second metal. With a simple continuous impregnation method, a platinum-cerium bimetallic catalyst is prepared. Also highlighted are studies from several aspects of the contribution of the second metal (Ce) to the stability and ozone utilization of the catalysts, including the "electronic effect" and "geometric effect". The synergistic removal rate of toluene and ozone is nearly 100% at 30 °C, and it still shows positive stability after high humidity and a long reaction time. More importantly, the instructive significance, which is the in-depth knowledge of enhanced catalytic mechanism of bimetallic catalysts resulting from a second metal, is provided by this work.
Collapse
Affiliation(s)
- Lei Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ning Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ming Ouyang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yun Xing
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Juntai Tian
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Peirong Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China
| | - Junliang Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China
| | - Yun Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China
| |
Collapse
|
30
|
Wan F, Liu R, Xia Y, Hu K, Lei Y, Wang C, Zhang S, Li S, Yang D, Zheng Y, Chen W. Phase-Modified Strongly Coupled δ/ε-MnO 2 Homojunction Cathode for Kinetics-Enhanced Zinc-Ion Batteries. Inorg Chem 2024; 63:6988-6997. [PMID: 38569109 DOI: 10.1021/acs.inorgchem.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Rechargeable Zn-MnO2 batteries using mild water electrolytes have garnered significant interest owing to their impressive theoretical energy density and eco-friendly characteristics. However, MnO2 suffers from huge structural changes during the cycles, resulting in very poor stability at high charge-discharge depths. Briefly, the above problems are caused by slow kinetic processes and the dissolution of Mn atoms in the cycles. In this paper, a 2D homojunction electrode material (δ/ε-MnO2) based on δ-MnO2 and ε-MnO2 has been prepared by a two-step electrochemical deposition method. According to the DFT calculations, the charge transfer and bonding between interfaces result in the generation of electronic states near the Fermi surface, giving δ/ε-MnO2 a more continuous distribution of electron states and better conductivity, which is conducive to the rapid insertion/extraction of Zn2+ and H+. Moreover, the strongly coupled Mn-O-Mn interfacial bond can effectively impede dissolution of Mn atoms and thus maintain the structural integrity of δ/ε-MnO2 during the cycles. Accordingly, the δ/ε-MnO2 cathode exhibits high capacity (383 mAh g-1 at 0.1 A g-1), superior rate performance (150 mAh g-1 at 5 A g-1), and excellent cycling stability over 2000 cycles (91.3% at 3 A g-1). Profoundly, this unique homojunction provides a novel paradigm for reasonable selection of different components.
Collapse
Affiliation(s)
- Fu Wan
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Ruiqi Liu
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Yaoyang Xia
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Kaida Hu
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Yu Lei
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Changding Wang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Sida Zhang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Shufan Li
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Da Yang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Yujie Zheng
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Weigen Chen
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
31
|
Prabhu P, Do VH, Yoshida T, Zhou Y, Ariga-Miwa H, Kaneko T, Uruga T, Iwasawa Y, Lee JM. Subnanometric Osmium Clusters Confined on Palladium Metallenes for Enhanced Hydrogen Evolution and Oxygen Reduction Catalysis. ACS NANO 2024; 18:9942-9957. [PMID: 38552006 DOI: 10.1021/acsnano.3c10219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Highly efficient, cost-effective, and durable electrocatalysts, capable of accelerating sluggish reaction kinetics and attaining high performance, are essential for developing sustainable energy technologies but remain a great challenge. Here, we leverage a facile heterostructure design strategy to construct atomically thin Os@Pd metallenes, with atomic-scale Os nanoclusters of varying geometries confined on the surface layer of the Pd lattice, which exhibit excellent bifunctional properties for catalyzing both hydrogen evolution (HER) and oxygen reduction reactions (ORR). Importantly, Os5%@Pd metallenes manifest a low η10 overpotential of only 11 mV in 1.0 M KOH electrolyte (HER) as well as a highly positive E1/2 potential of 0.92 V in 0.1 M KOH (ORR), along with superior mass activities and electrochemical durability. Theoretical investigations reveal that the strong electron redistribution between Os and Pd elements renders a precise fine-tuning of respective d-band centers, thereby guiding adsorption of hydrogen and oxygen intermediates with an appropriate binding energy for the optimal HER and ORR.
Collapse
Affiliation(s)
- P Prabhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Viet-Hung Do
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
- Energy Research Institute @ NTU, ERI@N, Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Takefumi Yoshida
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5198, Japan
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Hiroko Ariga-Miwa
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5198, Japan
| | - Takuma Kaneko
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Tomoya Uruga
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Yasuhiro Iwasawa
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5198, Japan
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| |
Collapse
|
32
|
Zhong X, Xu J, Chen J, Wang X, Zhu Q, Zeng H, Zhang Y, Pu Y, Hou X, Wu X, Niu Y, Zhang W, Wu YA, Wang Y, Zhang B, Huang K, Feng S. Spatially and Temporally Resolved Dynamic Response of Co-Based Composite Interface during the Oxygen Evolution Reaction. J Am Chem Soc 2024; 146:7467-7479. [PMID: 38446421 DOI: 10.1021/jacs.3c12820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Interfacial interaction dictates the overall catalytic performance and catalytic behavior rules of the composite catalyst. However, understanding of interfacial active sites at the microscopic scale is still limited. Importantly, identifying the dynamic action mechanism of the "real" active site at the interface necessitates nanoscale, high spatial-time-resolved complementary-operando techniques. In this work, a Co3O4 homojunction with a well-defined interface effect is developed as a model system to explore the spatial-correlation dynamic response of the interface toward oxygen evolution reaction. Quasi in situ scanning transmission electron microscopy-electron energy-loss spectroscopy with high spatial resolution visually confirms the size characteristics of the interface effect in the spatial dimension, showing that the activation of active sites originates from strong interfacial electron interactions at a scale of 3 nm. Multiple time-resolved operando spectroscopy techniques explicitly capture dynamic changes in the adsorption behavior for key reaction intermediates. Combined with density functional theory calculations, we reveal that the dynamic adjustment of multiple adsorption configurations of intermediates by highly activated active sites at the interface facilitates the O-O coupling and *OOH deprotonation processes. The dual dynamic regulation mechanism accelerates the kinetics of oxygen evolution and serves as a pivotal factor in promoting the oxygen evolution activity of the composite structure. The resulting composite catalyst (Co-B@Co3O4/Co3O4 NSs) exhibits an approximately 70-fold turnover frequency and 20-fold mass activity than the monomer structure (Co3O4 NSs) and leads to significant activity (η10 ∼257 mV). The visual complementary analysis of multimodal operando/in situ techniques provides us with a powerful platform to advance our fundamental understanding of interfacial structure-activity relationships in composite structured catalysts.
Collapse
Affiliation(s)
- Xia Zhong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China
| | - Jingyao Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Junnan Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Qian Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hui Zeng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yaowen Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yinghui Pu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China
| | - Xiangyan Hou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaofeng Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China
| | - Wei Zhang
- Electron Microscopy Center, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, P. R. China
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
33
|
Su Q, Sheng R, Liu Q, Ding J, Wang P, Wang X, Wang J, Wang Y, Wang B, Huang Y. Surface reconstruction of RuO 2/Co 3O 4 amorphous-crystalline heterointerface for efficient overall water splitting. J Colloid Interface Sci 2024; 658:43-51. [PMID: 38096678 DOI: 10.1016/j.jcis.2023.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
The rational construction of amorphous-crystalline heterointerface can effectively improve the activity and stability of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, RuO2/Co3O4 (RCO) amorphous-crystalline heterointerface is prepared via oxidation method. The optimal RCO-10 exhibits low overpotentials of 57 and 231 mV for HER and OER at 10 mA cm-2, respectively. Experimental characterization and density functional theory (DFT) results show that the optimized electronic structure and surface reconstruction endow RCO-10 with excellent catalytic activity. DFT results show that electrons transfer from RuO2 to Co3O4 through the amorphous-crystalline heterointerface, achieving electron redistribution and moving the d-band center upward, which optimizes the adsorption free energy of the hydrogen reaction intermediate. Moreover, the reconstructed Ru/Co(OH)2 during the HER process has low hydrogen adsorption free energy to enhance HER activity. The reconstructed RuO2/CoOOH during the OER process has a low energy barrier for the elementary reaction (O*→*OOH) to enhance OER activity. Furthermore, RCO-10 requires only 1.50 V to drive 10 mA cm-2 and maintains stability over 200 h for overall water splitting. Meanwhile, RCO-10 displays stability for 48 h in alkaline solutions containing 0.5 M NaCl. The amorphous-crystalline heterointerface may bring new breakthroughs in the design of efficient and stable catalysts.
Collapse
Affiliation(s)
- Qiaohong Su
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Rui Sheng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Qingcui Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Juan Ding
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Pengyue Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Xingchao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Jiulin Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, PR China.
| | - Bao Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Yudai Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
34
|
Wu K, Lyu C, Cheng J, Guo Z, Li H, Zhu X, Lau WM, Zheng J. Modulating Electronic Structure by Etching Strategy to Construct NiSe 2 /Ni 0.85 Se Heterostructure for Urea-Assisted Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304390. [PMID: 37845029 DOI: 10.1002/smll.202304390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Exploring and developing novel strategies for constructing heterostructure electrocatalysts is still challenging for water electrolysis. Herein, a creative etching treatment strategy is adopted to construct NiSe2 /Ni0.85 Se heterostructure. The rich heterointerfaces between NiSe2 and Ni0.85 Se emerge strong electronic interaction, which easily induces the electron transfer from NiSe2 to Ni0.85 Se, and tunes the charge-state of NiSe2 and Ni0.85 Se. In the NiSe2 /Ni0.85 Se heterojunction nanomaterial, the higher charge-state Ni0.85 Se is capable of affording partial electrons to combine with hydrogen protons, inducing the rapid formation of H2 molecule. Accordingly, the lower charge-state NiSe2 in the NiSe2 /Ni0.85 Se heterojunction nanomaterial is more easily oxidized into high valence state Ni3+ during the oxygen evolution reaction (OER) process, which is beneficial to accelerate the mass/charge transfer and enhance the electrocatalytic activities towards OER. Theoretical calculations indicate that the heterointerfaces are conducive to modulating the electronic structure and optimizing the adsorption energy toward intermediate H* during the hydrogen evolution reaction (HER) process, leading to superior electrocatalytic activities. To expand the application of the NiSe2 /Ni0.85 Se-2h electrocatalyst, urea is served as the adjuvant to proceed with the energy-saving hydrogen production and pollutant degradation, and it is proven to be a brilliant strategy.
Collapse
Affiliation(s)
- Kaili Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Chaojie Lyu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jiarun Cheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhonglu Guo
- School of Materials Science and Engineering, Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Hongyu Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xixi Zhu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Woon-Ming Lau
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, P. R. China
| | - Jinlong Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, P. R. China
| |
Collapse
|
35
|
He F, Lu Y, Wu Y, Wang S, Zhang Y, Dong P, Wang Y, Zhao C, Wang S, Zhang J, Wang S. Rejoint of Carbon Nitride Fragments into Multi-Interfacial Order-Disorder Homojunction for Robust Photo-Driven Generation of H 2 O 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307490. [PMID: 37939231 DOI: 10.1002/adma.202307490] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Photocatalytic technology based on carbon nitride (C3 N4 ) offers a sustainable and clean approach for hydrogen peroxide (H2 O2 ) production, but the yield is severely limited by the sluggish hot carriers due to the weak internal electric field. In this study, a novel approach is devised by fragmenting bulk C3 N4 into smaller pieces (CN-NH4 ) and then subjecting it to a directed healing process to create multiple order-disorder interfaces (CN-NH4 -NaK). The resulting junctions in CN-NH4 -NaK significantly boost charge dynamics and facilitate more spatially and orderly separated redox centers. As a result, CN-NH4 -NaK demonstrates outstanding photosynthesis of H2 O2 via both two-step single-electron and one-step double-electron oxygen reduction pathways, achieving a remarkable yield of 16675 µmol h-1 g-1 , excellent selectivity (> 91%), and a prominent solar-to-chemical conversion efficiency exceeding 2.3%. These remarkable results surpass pristine C3 N4 by 158 times and outperform previously reported C3 N4 -based photocatalysts. This work represents a significant advancement in catalyst design and modification technology, inspiring the development of more efficient metal-free photocatalysts for the synthesis of highly valued fuels.
Collapse
Affiliation(s)
- Fengting He
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Yangming Lu
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Yuzhao Wu
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Shuling Wang
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Yang Zhang
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Pei Dong
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Yongqiang Wang
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Chaocheng Zhao
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Shuaijun Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jinqiang Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
36
|
Hou L, Li Z, Jang H, Kim MG, Cho J, Liu S, Liu X. Grain Boundary Tailors the Local Chemical Environment on Iridium Surface for Alkaline Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202315633. [PMID: 38151468 DOI: 10.1002/anie.202315633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/14/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
Even though grain boundaries (GBs) have been previously employed to increase the number of active catalytic sites or tune the binding energies of reaction intermediates for promoting electrocatalytic reactions, the effect of GBs on the tailoring of the local chemical environment on the catalyst surface has not been clarified thus far. In this study, a GBs-enriched iridium (GB-Ir) was synthesized and examined for the alkaline hydrogen evolution reaction (HER). Operando Raman spectroscopy and density functional theory (DFT) calculations revealed that a local acid-like environment with H3 O+ intermediates was created in the GBs region owing to the electron-enriched surface Ir atoms at the GBs. The H3 O+ intermediates lowered the energy barrier for water dissociation and provided enough hydrogen proton to promote the generation of hydrogen spillover from the sites at the GBs to the sites away from the GBs, thus synergistically enhancing the hydrogen evolution activity. Notably, the GB-Ir catalyst exhibited a high alkaline HER activity (10 mV @ 10 mA cm-2 , 20 mV dec-1 ). We believe that our findings will promote further research on GBs and the surface science of electrochemical reactions.
Collapse
Affiliation(s)
- Liqiang Hou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Haeseong Jang
- Department of Advanced Materials Engineering, Chung-Ang University, Seoul, 156-756, South Korea
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang, 790-784, Korea
| | - Jaephil Cho
- Department of Energy Engineering, Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Shangguo Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xien Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
37
|
Wang Y, Li H, Zhai B, Li X, Niu P, Odent J, Wang S, Li L. Highly Crystalline Poly(heptazine imide)-Based Carbonaceous Anodes for Ultralong Lifespan and Low-Temperature Sodium-Ion Batteries. ACS NANO 2024; 18:3456-3467. [PMID: 38227835 DOI: 10.1021/acsnano.3c10779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Carbon nitrides with layered structures and scalable syntheses have emerged as potential anode choices for the commercialization of sodium-ion batteries. However, the low crystallinity of materials synthesized through traditional thermal condensation leads to insufficient conductivity and poor cycling stability, which significantly hamper their practical applications. Herein, a facile salt-covering method was proposed for the synthesis of highly ordered crystalline C3N4-based all-carbon nanocomposites. The sealing environment created by this strategy leads to the formation of poly(heptazine imide) (PHI), the crystalline phase of C3N4, with extended π-conjugation and a fully condensed nanosheet structure. Meanwhile, theoretical calculations reveal the high crystallinity of C3N4 significantly reduces the energy barrier for electron transition and enables the generation of efficient charge transfer channels at the heterogeneous interface between carbon and C3N4. Accordingly, such nanocomposites present ultrastable cycling performances over 5000 cycles, with a high reversible capacity of 245.1 mAh g-1 at 2 A g-1 delivered. More importantly, they also exhibit an outstanding low-temperature capacity of 196.6 mAh g-1 at -20 °C. This work offers opportunities for the energy storage use of C3N4 and provides some clues for developing long-life and high-capacity anodes operated under extreme conditions.
Collapse
Affiliation(s)
- Ying Wang
- School of Metallurgy, Northeastern University, Shenyang 110819, P. R. China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, Liaoning, P. R. China
- Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, Guangdong, P. R. China
| | - Hongguan Li
- School of Metallurgy, Northeastern University, Shenyang 110819, P. R. China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, Liaoning, P. R. China
- Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, Guangdong, P. R. China
| | - Boyin Zhai
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, P. R. China
| | - Xinglong Li
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, P. R. China
| | - Ping Niu
- School of Metallurgy, Northeastern University, Shenyang 110819, P. R. China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, Liaoning, P. R. China
- Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, Guangdong, P. R. China
| | - Jérémy Odent
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Shulan Wang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, P. R. China
| | - Li Li
- School of Metallurgy, Northeastern University, Shenyang 110819, P. R. China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, Liaoning, P. R. China
- Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, Guangdong, P. R. China
| |
Collapse
|
38
|
Song T, Xue H, Sun J, Guo N, Sun J, Hao YR, Wang Q. Incorporating a built-in electric field into a NiFe LDH heterojunction for enhanced oxygen evolution and urea oxidation. Chem Commun (Camb) 2024; 60:972-975. [PMID: 38165772 DOI: 10.1039/d3cc05540j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Herein, a N-doped carbon-supported Co and NiFe LDH (Co-NC@NiFe LDH) array was developed, which demonstrated superior catalytic activities for both the OER and UOR in an alkaline medium. The intrinsic electron transfer is effectively regulated by the construction of a built-in electric field, which reduces the reaction energy barrier and consequently leads to a significant enhancement in electrocatalytic activity.
Collapse
Affiliation(s)
- Tianshan Song
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Hui Xue
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Niankun Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Jiawen Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Yi-Ru Hao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Qin Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| |
Collapse
|
39
|
Deng EZ, Fan YZ, Wang HP, Li Y, Peng C, Liu J. Engineering a Z-Scheme Heterostructure on ZnIn 2S 4@NH 2-MIL-125 Composites for Boosting the Photocatalytic Performance. Inorg Chem 2024; 63:1449-1461. [PMID: 38221879 DOI: 10.1021/acs.inorgchem.3c03968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Constructing a Z-scheme heterostructure on a metal-organic framework (MOF) composite with an explicit charge transfer mechanism at the interface is considered to be an effective strategy for improving the photocatalytic performance of MOFs. Herein, an internal electric field (IEF)-induced Z-scheme heterostructure on the ZnIn2S4@NH2-MIL-125 composite is designed and fabricated by a facile electrostatic self-assembly process. Systematic investigations reveal that close interfacial contact and difference in work function between NH2-MIL-125 and ZnIn2S4 enable the formation of the IEF, which drives the Z-scheme charge transfer as revealed by the in situ irradiated X-ray photoelectron spectroscopy (ISI-XPS), photoirradiated Kelvin probe force microscope (KPFM) measurement, electron paramagnetic resonance (EPR) radical trapping experiment, as well as density functional theory (DFT) calculation; meanwhile, directions of the interfacial IEFs are determined. Benefiting from the unique merit of IEF-induced Z-scheme charge transfer, the optimized ZnIn2S4@NH2-MIL-125 composite exhibits significantly enhanced photocatalytic activity for the photoreduction of 4-nitroaniline (4-NA) to p-phenylenediamine (PPD) under visible light irradiation. This work not only provides in-depth insights for charge transfer in the IEF-induced Z scheme heterostructure but also affords useful inspirations on designing the Z-scheme MOF composite to boost the photocatalytic performance.
Collapse
Affiliation(s)
- En-Ze Deng
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, P. R. China
- Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, P. R. China
| | - Yan-Zhong Fan
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Hai-Ping Wang
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, P. R. China
| | - Yuying Li
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, P. R. China
| | - Chao Peng
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, P. R. China
- Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, P. R. China
| | - Jiewei Liu
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, P. R. China
- Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, P. R. China
| |
Collapse
|
40
|
Lu B, Min Z, Xiao X, Wang B, Chen B, Lu G, Liu Y, Mao R, Song Y, Zeng XX, Sun Y, Yang J, Zhou G. Recycled Tandem Catalysts Promising Ultralow Overpotential Li-CO 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309264. [PMID: 37985147 DOI: 10.1002/adma.202309264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Indexed: 11/22/2023]
Abstract
Lithium-carbon dioxide (Li-CO2 ) batteries are regarded as a prospective technology to relieve the pressure of greenhouse emissions but are confronted with sluggish CO2 redox kinetics and low energy efficiency. Developing highly efficient and low-cost catalysts to boost bidirectional activities is craved but remains a huge challenge. Herein, derived from the spent lithium-ion batteries, a tandem catalyst is subtly synthesized and significantly accelerates the CO2 reduction and evolution reactions (CO2 RR and CO2 ER) kinetics with an in-built electric field (BEF). Combining with the theoretical calculations and advanced characterization techniques, this work reveals that the designed interface-induced BEF regulates the adsorption/decomposition of the intermediates during CO2 RR and CO2 ER, endowing the recycled tandem catalyst with excellent bidirectional activities. As a result, the spent electronics-derived tandem catalyst exhibits remarkable bidirectional catalytic performance, such as an ultralow voltage gap of 0.26 V and an ultrahigh energy efficiency of 92.4%. Profoundly, this work affords new opportunities to fabricate low-cost electrocatalysts from recycled spent electronics and inspires fresh perceptions of interfacial regulation including but not limited to BEF to engineer better Li-CO2 batteries.
Collapse
Affiliation(s)
- Bingyi Lu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhiwen Min
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiao Xiao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Boran Wang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Biao Chen
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Gongxun Lu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yingqi Liu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Rui Mao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yanze Song
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xian-Xiang Zeng
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Yuanmiao Sun
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jinlong Yang
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
41
|
Liu X, Yu Q, Qu X, Wang X, Chi J, Wang L. Manipulating Electron Redistribution in Ni 2 P for Enhanced Alkaline Seawater Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307395. [PMID: 37740701 DOI: 10.1002/adma.202307395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/10/2023] [Indexed: 09/25/2023]
Abstract
Developing bifunctional electrocatalyst for seawater splitting remains a persistent challenge. Herein, an approach is proposed through density functional theory (DFT) preanalysis to manipulate electron redistribution in Ni2 P addressed by cation doping and vacancy engineering. The needle-like Fe-doped Ni2 P with P vacancy (Fe-Ni2 Pv) is successfully synthesized on nickel foam, exhibiting a superior bifunctional hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalytic activity for seawater electrolysis in alkaline condition. As a result, bifunctional Fe-Ni2 Pv achieves the industrially required current densities of 1.0 and 3.0 A cm-2 at low voltages of 1.68 and 1.73 V, respectively, for seawater splitting at 60 °C in 6.0 m KOH circumstances. The theoretical calculation and the experimental results collectively reveal the reasons for the enhancement of catalyst activity. Specifically, Fe doping and P vacancies can accelerate the reconstruction of OER active species and optimize the hydrogen adsorption free energy (ΔGH* ) for HER. In addition, the active sites of Fe-Ni2 Pv are identified, where P vacancies greatly improve the electrical conductivity and Ni sites are the dominant OER active centers, meanwhile Fe atoms as active centers for the HER. The study provides a deep insight into the exploration for the enhancement of activity of nickel-based phosphide catalysts and the identification of their real active centers.
Collapse
Affiliation(s)
- Xiaobin Liu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qingping Yu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xinyue Qu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xinping Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jingqi Chi
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
42
|
Yu X, Li Y, Fang T, Gao J, Ma Y. Interfacial and Electronic Modulation of W Bridging Heterostructure Between WS 2 and Cobalt-Based Compounds for Efficient Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304512. [PMID: 37653588 DOI: 10.1002/smll.202304512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/08/2023] [Indexed: 09/02/2023]
Abstract
The development of high performance electrocatalysts for effective hydrogen production is urgently needed. Herein, three hybrid catalysts formed by WS2 and Co-based metal-organic frameworks (MOFs) derivatives are constructed, in which the small amount of W in the MOFs derivatives acts as a bridge to provide the charge transfer channel and enhance the stability. In addition, the effects of the surface charge distribution on the catalytic performance are fully investigated. Due to the optimal interfacial electron coupling and rearrangement as well as its unique porous morphology, WS2 @W-CoPx exhibits superior bifunctional performance in alkaline media with low overpotentials in hydrogen evolution reaction (HER) (62 mV at 10 mA cm-2 ) and oxygen evolution reaction (OER) (278 mV at 100 mA cm-2 ). For overall water splitting (OWS), WS2 @W-CoPx only requires a cell voltage of 1.78 V at 50 mA cm-2 and maintains good stability within 72 h. Density functional theory calculations verify that the combination of W-CoPx with WS2 can effectively enhance the activity of OER and HER with weakened OH (or O) adsorption and enhanced H atom adsorption. This work provides a feasible idea for the design and practical application of WS2 or phosphide-based catalysts in OWS.
Collapse
Affiliation(s)
- Xin Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yaxin Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Tingting Fang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Juan Gao
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yurong Ma
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
43
|
Zhang J, Du W, Chen L, Lin Y, Gui Y, Liu L. Optimizing electronic states of Pd/WO 3 nanofibers for enhanced catalytic reduction of hexavalent chromium with formic acid. J Colloid Interface Sci 2023; 652:1917-1924. [PMID: 37690299 DOI: 10.1016/j.jcis.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Through theoretical calculations, we show that integrating Pd with WO3 nanomaterials can trigger the interfacial electron transfer from Pd to WO3, thus upshifting the d-band center (εd) of Pd to optimize toxic hexavalent chromium (Cr(VI)) reduction. The elevated εd can derive stronger chemisorption capability toward crucial formic acid molecules, notably lowering the thermodynamic energy barrier and speeding up the kinetics process. In order to realize this concept, we synthesized unique Pd/WO3 nanofibers by loading Pd nanoparticles onto electrospun WO3 nanofibers through an in situ photodeposition technique. Extensive structural, morphological, and X-ray photoelectron spectrometer (XPS) characterizations confirm the successful formation of the above nanofibers. As anticipated, the as-designed Pd/WO3 nanofibers exhibit enhanced catalytic performance in the Cr(VI) reduction with a high turnover frequency (TOF) value of 62.12 min-1, surpassing a series of reported Pd-based catalysts. Such nanofibrous WO3-induced electronic modification of Pd with a high specific area leads to catalytic enhancement, providing a novel model for catalyst design.
Collapse
Affiliation(s)
- Jianhua Zhang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Wenxin Du
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Lv Chen
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Yuan Lin
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Yunyun Gui
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Lijun Liu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China.
| |
Collapse
|
44
|
Fei J, Zhang D, Wang T, Shi Y, Zhu J, Zhan T, Tian M, Lai J, Wang L. Precise Interstitial Built-In Electric Field Tuning for Hydrogen Evolution Electrocatalysis. Inorg Chem 2023. [PMID: 38012066 DOI: 10.1021/acs.inorgchem.3c03291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The built-in electric field (BEF) has become an effective means of adjusting the electronic structure and hydrogen spillover to influence the adsorption of intermediates. However, the previously reported BEF cannot be tuned continuously and precisely. Herein, a series of nanocatalysts with interstitial BEF were successfully synthesized, and the effect of precisely tuned interstitial BEF on the intermediate's adsorption and hydrogen spillover was systematically investigated using changing the insertion of interstitial B. Three catalysts with different BEF strengths were obtained by changing the interstitial content (B0.22-Cu/NC, B0.30-Cu/NC, B0.41-Cu/NC), and it was demonstrated that B0.30-Cu/NC gave the best catalytic performance for hydrogen evolution reactions (HERs). The turnover frequency (TOF) value is shown to reach 0.36 s-1 at just -0.1 V vs. RHE, which is about 3 times that of Cu (0.12 s-1). For the HER, it is one of the best Cu-based catalysts reported to date (Table S3). Besides, when the catalyst was applied to the cathode of the PEM water electrolyzer, B0.30-Cu/NC exhibited long-time stability at a water-splitting current density of 500 mA cm-2. Density functional theory and in situ Raman spectroscopy suggest that a suitable interstitial BEF can not only optimize the intermediate's adsorption but also promote hydrogen spillover.
Collapse
Affiliation(s)
- Jiawei Fei
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Dan Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Tiantian Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Yue Shi
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Jiawei Zhu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Tianrong Zhan
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Minge Tian
- Jining Economic Development Zone, Scientific Green (Shandong) Environmental Technology Co. Ltd., Jining 272113, Shandong, P. R. China
| | - Jianping Lai
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| |
Collapse
|
45
|
Jia S, Hu M, Gu M, Ma J, Li D, Xiang G, Liu P, Wang K, Servati P, Ge WK, Sun XW. Optimizing ZnO-Quantum Dot Interface with Thiol as Ligand Modification for High-Performance Quantum Dot Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307298. [PMID: 37972284 DOI: 10.1002/smll.202307298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/16/2023] [Indexed: 11/19/2023]
Abstract
As the electron transport layer in quantum dot light-emitting diodes (QLEDs), ZnO suffers from excessive electrons that lead to luminescence quenching of the quantum dots (QDs) and charge-imbalance in QLEDs. Therefore, the interplay between ZnO and QDs requires an in-depth understanding. In this study, DFT and COSMOSL simulations are employed to investigate the effect of sulfur atoms on ZnO. Based on the simulations, thiol ligands (specifically 2-hydroxy-1-ethanethiol) to modify the ZnO nanocrystals are adopted. This modification alleviates the excess electrons without causing any additional issues in the charge injection in QLEDs. This modification strategy proves to be effective in improving the performance of red-emitting QLEDs, achieving an external quantum efficiency of over 23% and a remarkably long lifetime T95 of >12 000 h at 1000 cd m-2 . Importantly, the relationship between ZnO layers with different electronic properties and their effect on the adjacent QDs through a single QD measurement is investigated. These findings show that the ZnO surface defects and electronic properties can significantly impact the device performance, highlighting the importance of optimizing the ZnO-QD interface, and showcasing a promising ligand strategy for the development of highly efficient QLEDs.
Collapse
Affiliation(s)
- Siqi Jia
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Advanced Displays and Imaging, Henan Academy of Sciences, Zhengzhou, 450046, China
- Peng Cheng Laboratory, Shenzhen, 518038, China
| | - Menglei Hu
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mi Gu
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingrui Ma
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Depeng Li
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guohong Xiang
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pai Liu
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Deep Subwavelength Scale Photonics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kai Wang
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Peyman Servati
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Wei Kun Ge
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao Wei Sun
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
46
|
Feng YS, Li YN, Wang P, Guo ZP, Cao FF, Ye H. Work-Function-Induced Interfacial Electron/Ion Transport in Carbon Hosts toward Dendrite-Free Lithium Metal Anodes. Angew Chem Int Ed Engl 2023; 62:e202310132. [PMID: 37713281 DOI: 10.1002/anie.202310132] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 09/17/2023]
Abstract
Coupled electron/ion transport is a decisive feature of Li plating/stripping, wherein the compatibility of electron/ion transport rates determines the morphology of deposited Li. Local Li+ hotspots form due to inhomogeneous interfacial charge transfer and lead to uncontrolled Li deposition, which decreases the Li utilization rate and safety of Li metal anodes. Herein, we report a method to obtain dendrite-free Li metal anodes by driving electron pumping and accumulating and boosting Li ion diffusion by tuning the work function of a carbon host using cobalt-containing catalysts. The results reveal that increasing the work function provides an electron deviation from C to Co, and electron-rich Co shows favorable binding to Li+ . The Co catalysts boost Li+ diffusion on the carbon fiber scaffolds without local aggregation by reducing the Li+ migration barrier. The as-obtained dendrite-free Li metal anode exhibits a Coulombic efficiency of 99.0 %, a cycle life of over 2000 h, a Li utilization rate of 50 %, and a capacity retention of 83.4 % after 130 cycles in pouch cells at a negative/positive capacity ratio of 2.5. These findings provide a novel strategy to stabilize Li metal by regulating the work function of materials using electrocatalysts.
Collapse
Affiliation(s)
- Yu-Shuai Feng
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yun-Nuo Li
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Pei Wang
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zai-Ping Guo
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Fei-Fei Cao
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Huan Ye
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
47
|
Song S, Shao Z, Zhu Q, Hou X, Zheng B. Constructing the coordination environment of Se-O in Cu 2-xSe for electrochemical hydrogen evolution. Chem Commun (Camb) 2023; 59:12589-12592. [PMID: 37791432 DOI: 10.1039/d3cc04054b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In this work, a Se-O bond is introduced by a simple oxidation method to realize the structural transformation from Cu2-xSe to Cu2O(SeO3) for enhanced electrocatalytic hydrogen evolution reaction (HER). The experiment and calculation results showed that Cu2O(SeO3) facilitated charge transfer and possessed a small barrier during the HER.
Collapse
Affiliation(s)
- Shuhua Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry and Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, China
| | - Zhiyu Shao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry and Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, China
| | - Qian Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry and Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, China
| | - Xiangyan Hou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry and Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, China
| | - Beining Zheng
- College of Physics, Jilin University, Qianjin Street 2699, Changchun 130012, P.R China.
| |
Collapse
|
48
|
Huang X, Yu L, Wang X, Feng L. Insights into Fe-doping effect-induced heterostructure formation for the oxygen evolution reaction. Chem Commun (Camb) 2023; 59:12294-12297. [PMID: 37752858 DOI: 10.1039/d3cc03485b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Fe-doping effect-induced heterostructure formation and charge redistribution in Fe-doped NiS were revealed significantly for boosting the electrochemical oxygen evolution reaction.
Collapse
Affiliation(s)
- Xingyu Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Lice Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Xinzhong Wang
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| |
Collapse
|
49
|
Qi L, Huang Z, Liao M, Wang L, Wang L, Gao M, Taylor Isimjan T, Yang X. Synergistic Promotion of Large-Current Water Splitting through Interfacial Engineering of Hierarchically Structured CoP-FeP Nanosheets with Rich P Vacancies. Chemistry 2023; 29:e202301521. [PMID: 37435858 DOI: 10.1002/chem.202301521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
The development of hydrogen evolution reaction (HER) catalysts with high performance under large current density is still a challenge. Introducing P vacancies in heterostructure is an appealing strategy to enhance HER kinetics. This study investigates a CoP-FeP heterostructure catalyst with abundant P vacancies (Vp-CoP-FeP/NF) on nickel foam (NF), which was prepared using dipping and phosphating treatment. The optimized Vp-CoP-FeP catalyst exerted prominent HER catalytic capability, requiring an ultra-low overpotential (58 mV @ 10 mA cm-2 ) and displaying robust durability (50 h @ 200 mA cm-2 ) in 1.0 M KOH solution. Furthermore, the catalyst demonstrated superior overall water splitting activity as cathode, demanding only cell voltage of 1.76 V at 200 mA cm-2 , outperforming Pt/C/NF(-) || RuO2 /NF(+) . The catalyst's outstanding performance can be attributed to the hierarchical structure of porous nanosheets, abundant P vacancies, and synergistic effect between CoP and FeP components, which promote water dissociation and H* adsorption and desorption, thereby synergically accelerating HER kinetics and enhancing HER activity. This study demonstrates the potential of HER catalysts with phosphorus-rich vacancies that can work under industrial-scale current density, highlighting the importance of developing durable and efficient catalysts for hydrogen production.
Collapse
Affiliation(s)
- Luoluo Qi
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zhiyang Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Miao Liao
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Lei Wang
- Department of Food and Environment Engineering, Chuzhou Polytechnic, Chuzhou, 239000, China
| | - Lixia Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Mingcheng Gao
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
50
|
Feng C, Lv M, Shao J, Wu H, Zhou W, Qi S, Deng C, Chai X, Yang H, Hu Q, He C. Lattice Strain Engineering of Ni 2 P Enables Efficient Catalytic Hydrazine Oxidation-Assisted Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305598. [PMID: 37433070 DOI: 10.1002/adma.202305598] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Hydrazine-assisted water electrolysis provides new opportunities to enable energy-saving hydrogen production while solving the issue of hydrazine pollution. Here, the synthesis of compressively strained Ni2 P as a bifunctional electrocatalyst for boosting both the anodic hydrazine oxidation reaction (HzOR) and cathodic hydrogen evolution reaction (HER) is reported. Different from a multistep synthetic method that induces lattice strain by creating core-shell structures, a facile strategy is developed to tune the strain of Ni2 P via dual-cation co-doping. The obtained Ni2 P with a compressive strain of -3.62% exhibits significantly enhanced activity for both the HzOR and HER than counterparts with tensile strain and without strain. Consequently, the optimized Ni2 P delivers current densities of 10 and 100 mA cm-2 at small cell voltages of 0.16 and 0.39 V for hydrazine-assisted water electrolysis, respectively. Density functional theory (DFT) calculations reveal that the compressive strain promotes water dissociation and concurrently tunes the adsorption strength of hydrogen intermediates, thereby facilitating the HER process on Ni2 P. As for the HzOR, the compressive strain reduces the energy barrier of the potential-determining step for the dehydrogenation of *N2 H4 to *N2 H3 . Clearly, this work paves a facile pathway to the synthesis of lattice-strained electrocatalysts via the dual-cation co-doping.
Collapse
Affiliation(s)
- Chao Feng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Miaoyuan Lv
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jiaxin Shao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Hanyang Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Weiliang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Shuai Qi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Chen Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Xiaoyan Chai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| |
Collapse
|