1
|
Ghosh A, Bera AK, Singh V, Basu S, Pati F. Bioprinting of anisotropic functional corneal stroma using mechanically robust multi-material bioink based on decellularized cornea matrix. BIOMATERIALS ADVANCES 2024; 165:214007. [PMID: 39216318 DOI: 10.1016/j.bioadv.2024.214007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/08/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Corneal scarring is a common cause of blindness, affecting millions globally each year. A huge gap between the demand and supply of donor tissue currently limits corneal transplantation, the only definitive therapy for patients with corneal scarring. To overcome this challenge, researchers have harnessed the efficacy of 3D bioprinting to fabricate artificial corneal stromal constructs. With all the different bioinks available, the decellularized corneal matrix-based bioprinted construct can fulfill the required biological functionality but is limited by the lack of mechanical stiffness. Additionally, from a biophysical standpoint, it is necessary for an ideal corneal substitute to mimic the anisotropy of the cornea from the central optic zone to the surrounding periphery. In this study, we enhanced the mechanical robustness of decellularized cornea matrix (DCM) hydrogel by blending it with another natural polymer, sonicated silk fibroin solution in a defined ratio. Although hybrid hydrogel has an increased complex modulus than DCM hydrogel, it has a lower in vitro degradation rate and increased opaqueness due to the presence of crystalline beta-sheet conformation within the hydrogel. Therefore, we used this multi-material bioink-based approach to fabricate a corneal stromal equivalent where the outer peripheral corneal rim was printed with a mechanically robust polymeric blend of DCM and sonicated silk fibroin and the central optic zone was printed with only DCM. The bioprinted corneal stroma thus maintained its structural integrity and did not break when lifted with forceps. The two different bioinks were encapsulated with human limbus-derived mesenchymal stem cells (hLMSC) individually and 3D bioprinted in different patterns (concentric and parallel) to attain a native-like structure in terms of architecture and transparency. Thus, the bilayer cornea constructs maintained high cell viability and expressed keratocyte core proteins indicating optimal functionality. This approach helped to gain insight into bioprinting corneas with heterogeneous mechanical property without disturbing the structural clarity of the central optic zone.
Collapse
Affiliation(s)
- Anwesha Ghosh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Ashis Kumar Bera
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Vivek Singh
- Centre Ocular Regeneration, Prof. Brien Holden Eye Research Centre L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India
| | - Sayan Basu
- Centre Ocular Regeneration, Prof. Brien Holden Eye Research Centre L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
2
|
Amirian J, Wychowaniec JK, D′este M, Vernengo AJ, Metlova A, Sizovs A, Brangule A, Bandere D. Preparation and Characterization of Photo-Cross-Linkable Methacrylated Silk Fibroin and Methacrylated Hyaluronic Acid Composite Hydrogels. Biomacromolecules 2024; 25:7078-7097. [PMID: 39401165 PMCID: PMC11558566 DOI: 10.1021/acs.biomac.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 11/12/2024]
Abstract
Composite biomaterials with excellent biocompatibility and biodegradability are crucial in tissue engineering. In this work, a composite protein and polysaccharide photo-cross-linkable hydrogel was prepared using silk fibroin methacrylate (SFMA) and hyaluronic acid methacrylate (HAMA). SFMA was obtained by the methacrylation of degummed SF with glycidyl methacrylate (GMA), while HA was methacrylated by 2-aminoethyl methacrylate hydrochloride (AEMA). We investigated the effect of the addition of 1 wt % HAMA to 5, 10, and 20 wt % SFMA, which resulted in an increase in both static and cycling mechanical strengths. All composite hydrogels gelled under UV light in <30 s, allowing for rapid stabilization and stiffness increases. The biocompatibility of the hydrogels was confirmed by direct and indirect contact methods and by evaluation against the NIH3T3 and MC3T3 cell lines with a live-dead assay by confocal imaging. The range of obtained mechanical properties from developed composite and UV-cross-linkable hydrogels sets the basis as possible future biomaterials for various biomedical applications.
Collapse
Affiliation(s)
- Jhaleh Amirian
- Department
of Pharmaceutical Chemistry, Riga Stradins
University, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1048, Latvia
| | | | - Matteo D′este
- AO
Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | - Andrea J. Vernengo
- AO
Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | - Anastasija Metlova
- Laboratory
of Pharmaceutical Pharmacology, Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Antons Sizovs
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1048, Latvia
- Laboratory
of Pharmaceutical Pharmacology, Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Agnese Brangule
- Department
of Pharmaceutical Chemistry, Riga Stradins
University, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1048, Latvia
| | - Dace Bandere
- Department
of Pharmaceutical Chemistry, Riga Stradins
University, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1048, Latvia
| |
Collapse
|
3
|
Gao J, Boos AM, Kopp A, Isella B, Drinic A, Heim A, Christer T, Beier JP, Robering JW. Comparison of adipose derived stromal cells cultured on fibroin scaffolds fabricated by salt-leaching and by freeze-thawing. BIOMATERIALS ADVANCES 2024; 164:213992. [PMID: 39146605 DOI: 10.1016/j.bioadv.2024.213992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Fibroin, the main structural protein of Bombyx mori silk, is known for its mechanical properties, its biocompatibility and degradation characteristics in vivo. Various studies investigate its uses as cell carrier and/or material for surgical implants. Multiple protocols have been established to isolate fibroin from silk fibers and to produce scaffolds and films from fibroin solution. There is only limited literature available on how fibroin scaffolds manufactured by different methods compare to each other in terms of performance as cell carriers. This study compares the behaviour of human adipose derived stromal cells (ADSC) seeded on fibroin scaffolds produced by (i) salt-leaching and (ii) freeze-thawing. One type of freeze-thawing scaffold (poresize ≪ 315 μm) and three types of salt-leaching scaffolds (poresize ranging from 315 μm to 1000 μm) were used for this comparison. Measuring the DNA concentration on the seeded scaffolds as well as the seeded cells metabolic activity, we were able to determine freeze-thawed scaffolds to be superior for cell-seeding. ADSC seeded on salt-leaching scaffolds displayed a stronger downregulation of serum deprivation response gene than cells seeded on freeze-thaw scaffolds. In sum, our findings show that salt-leaching scaffolds offering different pore sizes differed much less among each other than salt-leaching from freeze-thawing scaffolds in terms of cell accommodation. Our work underlines the importance of physicochemical scaffold properties directly linked to different manufacturing methods and their influence on the cell seeding capacity of silk fibroin based carriers.
Collapse
Affiliation(s)
- J Gao
- Department of Plastic Surgery, Hand Surgery - Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - A M Boos
- Department of Plastic Surgery, Hand Surgery - Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - A Kopp
- Fibrothelium GmbH, Aachen, Germany
| | - B Isella
- Fibrothelium GmbH, Aachen, Germany
| | - A Drinic
- Fibrothelium GmbH, Aachen, Germany
| | - A Heim
- Fibrothelium GmbH, Aachen, Germany
| | - T Christer
- Department of Plastic Surgery, Hand Surgery - Burn Center, University Hospital RWTH Aachen, Aachen, Germany; Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour (ITTN), University of Veterinary Medicine Hannover, Hannover, Germany
| | - J P Beier
- Department of Plastic Surgery, Hand Surgery - Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - J W Robering
- Department of Plastic Surgery, Hand Surgery - Burn Center, University Hospital RWTH Aachen, Aachen, Germany; Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour (ITTN), University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
4
|
Zhuang X, Zhu H, Wang F, Hu X. Revolutionizing wild silk fibers: Ultrasound enhances structure, properties, and regenerability of protein biomaterials in ionic liquids. ULTRASONICS SONOCHEMISTRY 2024; 109:107018. [PMID: 39128406 DOI: 10.1016/j.ultsonch.2024.107018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Ultrasound-assisted regulation of biomaterial properties has attracted increasing attention due to the unique reaction conditions induced by ultrasound cavitation. In this study, we explored the fabrication of wild tussah silk nanofiber membranes via ultrasound spray spinning from an ionic liquid system, characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), atomic force microscopy (AFM), water contact angle, cytocompatibility tests, and enzymatic degradation studies. We investigated the effects of ultrasound propagation in an ionic liquid on the morphology, structure, thermal and mechanical properties, surface hydrophilicity, biocompatibility, and biodegradability of the fabricated fibers. The results showed that as ultrasound treatment time increased from 0 to 60 min, the regenerated silk fiber diameter decreased by 0.97 μm and surface area increased by 30.44 μm2, enhancing the fiber surface smoothness and uniformity. Ultrasound also promoted the rearrangement of protein molecular chains and transformation of disordered protein structures into β-sheets, increasing the β-sheet content to 54.32 %, which significantly improved the materials' thermal stability (with decomposition temperatures rising to 256.38 °C) and mechanical properties (elastic modulus reaching 0.75 GPa). In addition, hydrophilicity, cytocompatibility, and biodegradability of the fiber membranes all improved with longer ultrasound exposure, highlighting the potential of ultrasound technology in advancing the properties of natural biopolymers for applications in sustainable materials science and tissue regeneration.
Collapse
Affiliation(s)
- Xincheng Zhuang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Haomiao Zhu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
5
|
Oh S, Lee S, Kim SW, Kim CY, Jeong EY, Lee J, Kwon DA, Jeong JW. Softening implantable bioelectronics: Material designs, applications, and future directions. Biosens Bioelectron 2024; 258:116328. [PMID: 38692223 DOI: 10.1016/j.bios.2024.116328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/30/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Implantable bioelectronics, integrated directly within the body, represent a potent biomedical solution for monitoring and treating a range of medical conditions, including chronic diseases, neural disorders, and cardiac conditions, through personalized medical interventions. Nevertheless, contemporary implantable bioelectronics rely heavily on rigid materials (e.g., inorganic materials and metals), leading to inflammatory responses and tissue damage due to a mechanical mismatch with biological tissues. Recently, soft electronics with mechanical properties comparable to those of biological tissues have been introduced to alleviate fatal immune responses and improve tissue conformity. Despite their myriad advantages, substantial challenges persist in surgical handling and precise positioning due to their high compliance. To surmount these obstacles, softening implantable bioelectronics has garnered significant attention as it embraces the benefits of both rigid and soft bioelectronics. These devices are rigid for easy standalone implantation, transitioning to a soft state in vivo in response to environmental stimuli, which effectively overcomes functional/biological problems inherent in the static mechanical properties of conventional implants. This article reviews recent research and development in softening materials and designs for implantable bioelectronics. Examples featuring tissue-penetrating and conformal softening devices highlight the promising potential of these approaches in biomedical applications. A concluding section delves into current challenges and outlines future directions for softening implantable device technologies, underscoring their pivotal role in propelling the evolution of next-generation bioelectronics.
Collapse
Affiliation(s)
- Subin Oh
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Simok Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sung Woo Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Choong Yeon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Eun Young Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Juhyun Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Do A Kwon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; KAIST Institute for Health Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
6
|
Du X, Li R, Zhang T, Hu Y, Hou Y, Zhang J, Wang L. Biodegradable quaternized silk fibroin sponge with highly uniform pore structure for traumatic hemostasis and anti-infection. Int J Biol Macromol 2024; 273:132989. [PMID: 38852717 DOI: 10.1016/j.ijbiomac.2024.132989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Developing a biodegradable sponge with rapid shape recovery and potent antibacterial and coagulation properties for traumatic hemostasis and anti-infection remains challenging. Herein, we fabricated quaternized silk fibroin (SF) sponges by freeze-drying under a constant cooling rate and modification with quaternary ammonium groups. We found the constant cooling rate enabled the sponges with a highly uniform pore structure, which provided excellent self-elasticity and shape recovery. Decoration with quaternary ammonium groups enhanced blood cells adhesion, aggregation, and activation, as well as resistance to infections from Staphylococcus aureus and Escherichia coli. The SF sponge had superior hemostatic capacity to gauze and commercial gelatin sponge in different hemorrhage models. The SF sponge exhibited favorable biodegradability and biocompatibility. Moreover, The SF sponge also promoted host cell infiltration, capillary formation, and tissue ingrowth, suggesting its potential for guiding tissue regeneration. The developed SF sponge holds great application prospects for traumatic hemostasis, anti-infection, and guiding tissue regeneration.
Collapse
Affiliation(s)
- Xinchen Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Department of Chemical and Environment Engineering, Hetao College, Bayannaoer, Inner Mongolia 015000, China
| | - Ruxiang Li
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tongxing Zhang
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, No. 406, Jiefangnan Road, Hexi District, Tianjin 300211, China
| | - Yaqi Hu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yiyang Hou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiamin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Lianyong Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Wu J, Cortes KAF, Li C, Wang Y, Guo C, Momenzadeh K, Yeritsyan D, Hanna P, Lechtig A, Nazarian A, Lin SJ, Kaplan DL. Tuning the Biodegradation Rate of Silk Materials via Embedded Enzymes. ACS Biomater Sci Eng 2024; 10:2607-2615. [PMID: 38478959 DOI: 10.1021/acsbiomaterials.3c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Conventional thinking when designing biodegradable materials and devices is to tune the intrinsic properties and morphological features of the material to regulate their degradation rate, modulating traditional factors such as molecular weight and crystallinity. Since regenerated silk protein can be directly thermoplastically molded to generate robust dense silk plastic-like materials, this approach afforded a new tool to control silk degradation by enabling the mixing of a silk-degrading protease into bulk silk material prior to thermoplastic processing. Here we demonstrate the preparation of these silk-based devices with embedded silk-degrading protease to modulate the degradation based on the internal presence of the enzyme to support silk degradation, as opposed to the traditional surface degradation for silk materials. The degradability of these silk devices with and without embedded protease XIV was assessed both in vitro and in vivo. Ultimately, this new process approach provides direct control of the degradation lifetime of the devices, empowered through internal digestion via water-activated proteases entrained and stabilized during the thermoplastic process.
Collapse
Affiliation(s)
- Junqi Wu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Kareen A Fajardo Cortes
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Kaveh Momenzadeh
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 115, Boston, Massachusetts 02215, United States
| | - Diana Yeritsyan
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 115, Boston, Massachusetts 02215, United States
| | - Philip Hanna
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 115, Boston, Massachusetts 02215, United States
| | - Aron Lechtig
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 115, Boston, Massachusetts 02215, United States
| | - Ara Nazarian
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., RN 115, Boston, Massachusetts 02215, United States
| | - Samuel J Lin
- Divisions of Plastic Surgery and Otolaryngology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
8
|
Yao M, Liang S, Zeng Y, Peng F, Zhao X, Du C, Ma X, Huang H, Wang D, Zhang Y. Dual Factor-Loaded Artificial Periosteum Accelerates Bone Regeneration. ACS Biomater Sci Eng 2024; 10:2200-2211. [PMID: 38447138 DOI: 10.1021/acsbiomaterials.3c01587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
In the clinic, inactivation of osteosarcoma using microwave ablation would damage the periosteum, resulting in frequent postoperative complications. Therefore, the development of an artificial periosteum is crucial for postoperative healing. In this study, we prepared an artificial periosteum using silk fibroin (SF) loaded with stromal cell-derived factor-1α (SDF-1α) and calcitonin gene-related peptide (CGRP) to accelerate bone remodeling after the microwave ablation of osteosarcoma. The prepared artificial periosteum showed a sustained release of SDF-1α and CGRP after 14 days of immersion. In vitro culture of rat periosteal stem cells (rPDSCs) demonstrated that the artificial periosteum is favorable for cell recruitment, the activity of alkaline phosphatase, and bone-related gene expression. Furthermore, the artificial periosteum improved the tube formation and angiogenesis-related gene expression of human umbilical vein endothelial cells (HUVECs). In an animal study, the periosteum in the femur of a rabbit was inactivated through microwave ablation and then removed. The damaged periosteum was replaced with the as-prepared artificial periosteum and favored bone regeneration. In all, the designed dual-factor-loaded artificial periosteum is a promising strategy to replace the damaged periosteum in the therapy of osteosarcoma for a better bone-rebuilding process.
Collapse
Affiliation(s)
- Mengyu Yao
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangzhou 510080, China
| | - Shengjie Liang
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, China
| | - Yanyan Zeng
- Department of Hyperbaric Oxygen Rehabilitation (Intensive Rehabilitation Center), Southern Theater Command General Hospital of PLA, Guangzhou 510010, Guangdong, China
| | - Feng Peng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangzhou 510080, China
| | - Xiujuan Zhao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chang Du
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaohan Ma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, U.K
| | - Huai Huang
- Department of Hyperbaric Oxygen Rehabilitation (Intensive Rehabilitation Center), Southern Theater Command General Hospital of PLA, Guangzhou 510010, Guangdong, China
| | - Donghui Wang
- Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangzhou 510080, China
| |
Collapse
|
9
|
Shi R, Wang F, Fu Q, Zeng P, Chen G, Chen Z. Molecular mechanism analysis of apoptosis induced by silk fibroin peptides. Int J Biol Macromol 2024; 264:130687. [PMID: 38462112 DOI: 10.1016/j.ijbiomac.2024.130687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Silk fibroin derived from silkworm cocoons exhibits excellent mechanical properties, good biocompatibility, and low immunogenicity. Previous studies showed that silk fibroin had an inhibitory effect on cells, suppressing proliferation and inducing apoptosis. However, the source of the toxicity and the mechanism of apoptosis induction are still unclear. In this study, we hypothesized that the toxicity of silk fibroin might originate from the crystalline region of the heavy chain of silk fibroin. We then verified the hypothesis and the specific induction mechanism. A target peptide segment was obtained from α-chymotrypsin. The potentially toxic mixture of silk fibroin peptides (SFPs) was separated by ion exchange, and the toxicity was tested by an MTT assay. The results showed that SFPs obtained after 4 h of enzymatic hydrolysis had significant cytotoxicity, and SFPs with isoelectric points of 4.0-6.8 (SFPα II) had a significant inhibitory effect on cell growth. LC-MS/MS analysis showed that SFPα II contained a large number of glycine-rich and alanine-rich repetitive sequence polypeptides from the heavy-chain crystallization region. A series of experiments showed that SFPα II mediated cell death through the apoptotic pathway by decreasing the expression of Bcl-2 protein and increasing the expression of Bax protein. SFPα II mainly affected the p53 pathway and the AMPK signaling pathway in HepG2 cells. SFPα II may indirectly increase the expression of Cers2 by inhibiting the phosphorylation of EGFR, which activated apoptotic signaling in the cellular mitochondrial pathway and inhibited the Akt/NF-κB pathway by increasing the expression of PPP2R2A.
Collapse
Affiliation(s)
- Ruyu Shi
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Fuping Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Qiang Fu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Peng Zeng
- The Seventh People's Hospital of Chongqing, Chongqing 400054, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zhongmin Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
10
|
Saad M, El-Samad LM, Gomaa RA, Augustyniak M, Hassan MA. A comprehensive review of recent advances in silk sericin: Extraction approaches, structure, biochemical characterization, and biomedical applications. Int J Biol Macromol 2023; 250:126067. [PMID: 37524279 DOI: 10.1016/j.ijbiomac.2023.126067] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Silks are natural polymers that have been widely used for centuries. Silk consists of a filament core protein, termed fibroin, and a glue-like coating substance formed of sericin (SER) proteins. This protein is extracted from the silkworm cocoons (particularly Bombyx mori) and is mainly composed of amino acids like glycine, serine, aspartic acid, and threonine. Silk SER can be obtained using numerous methods, including enzymatic extraction, high-temperature, autoclaving, ethanol precipitation, cross-linking, and utilizing acidic, alkali, or neutral aqueous solutions. Given the versatility and outstanding properties of SER, it is widely fabricated to produce sponges, films, and hydrogels for further use in diverse biomedical applications. Hence, many authors reported that SER benefits cell proliferation, tissue engineering, and skin tissue restoration thanks to its moisturizing features, antioxidant and anti-inflammatory properties, and mitogenic effect on mammalian cells. Remarkably, SER is used in drug delivery depending on its chemical reactivity and pH-responsiveness. These unique features of SER enhance the bioactivity of drugs, facilitating the fabrication of biomedical materials at nano- and microscales, hydrogels, and conjugated molecules. This review thoroughly outlines the extraction techniques, biological properties, and respective biomedical applications of SER.
Collapse
Affiliation(s)
- Marwa Saad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Rehab A Gomaa
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| |
Collapse
|
11
|
Presley KF, Falcucci T, Shaidani S, Fitzpatrick V, Barry J, Ly JT, Dalton MJ, Grusenmeyer TA, Kaplan DL. Engineered porosity for tissue-integrating, bioresorbable lifetime-based phosphorescent oxygen sensors. Biomaterials 2023; 301:122286. [PMID: 37643490 DOI: 10.1016/j.biomaterials.2023.122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Versatile silk protein-based material formats were studied to demonstrate bioresorbable, implantable optical oxygen sensors that can integrate with the surrounding tissues. The ability to continuously monitor tissue oxygenation in vivo is desired for a range of medical applications. Silk was chosen as the matrix material due to its excellent biocompatibility, its unique chemistry that facilitates interactions with chromophores, and the potential to tune degradation time without altering chemical composition. A phosphorescent Pd (II) benzoporphyrin chromophore was incorporated to impart oxygen sensitivity. Organic solvent-based processing methods using 1,1,1,3,3,3-hexafluoro-2-propanol were used to fabricate: 1) silk-chromophore films with varied thickness and 2) silk-chromophore sponges with interconnected porosity. All compositions were biocompatible and exhibited photophysical properties with oxygen sensitivities (i.e., Stern-Volmer quenching rate constants of 2.7-3.2 × 104 M-1) useful for monitoring physiological tissue oxygen levels and for detecting deviations from normal behavior (e.g., hyperoxia). The potential to tune degradation time without significantly impacting photophysical properties was successfully demonstrated. Furthermore, the ability to consistently monitor tissue oxygenation in vivo was established via a multi-week rodent study. Histological assessments indicated successful tissue integration for the sponges, and this material format responded more quickly to various oxygen challenges than the film samples.
Collapse
Affiliation(s)
- Kayla F Presley
- Air Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, Wright-Patterson AFB, Ohio, 45433, United States; UES, Inc., 4401 Dayton-Xenia Road, Dayton, OH, 45432, United States.
| | - Thomas Falcucci
- Tufts University, Biomedical Engineering, 4 Colby Street, Medford, MA, 02155, United States
| | - Sawnaz Shaidani
- Tufts University, Biomedical Engineering, 4 Colby Street, Medford, MA, 02155, United States
| | - Vincent Fitzpatrick
- Tufts University, Biomedical Engineering, 4 Colby Street, Medford, MA, 02155, United States
| | - Jonah Barry
- Tufts University, Biomedical Engineering, 4 Colby Street, Medford, MA, 02155, United States
| | - Jack T Ly
- Air Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, Wright-Patterson AFB, Ohio, 45433, United States; UES, Inc., 4401 Dayton-Xenia Road, Dayton, OH, 45432, United States
| | - Matthew J Dalton
- Air Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, Wright-Patterson AFB, Ohio, 45433, United States
| | - Tod A Grusenmeyer
- Air Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, Wright-Patterson AFB, Ohio, 45433, United States.
| | - David L Kaplan
- Tufts University, Biomedical Engineering, 4 Colby Street, Medford, MA, 02155, United States.
| |
Collapse
|
12
|
Lee HG, Jang MJ, Um IC. Fabrication, Structural Characteristics, and Properties of Sericin-Coated Wool Nonwoven Fabrics. Int J Mol Sci 2023; 24:14750. [PMID: 37834199 PMCID: PMC10572829 DOI: 10.3390/ijms241914750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Recently, nonwoven fabrics from natural silk have attracted considerable attention for biomedical and cosmetic applications because of their good mechanical properties and cytocompatibility. Although these fabrics can be easily fabricated using the binding character of sericin, the high cost of silk material may restrict its industrial use in certain areas. In this study, sericin was added as a binder to a cheaper material (wool) to prepare wool-based nonwoven fabrics and investigate the effect of the amount of sericin added on the structural characteristics and properties of the wool nonwoven fabric. It was found using SEM that sericin coated the surface of wool fibers and filled the space between them. With an increase in sericin addition, the porosity, moisture regain, and the contact angle of the sericin-coated wool nonwoven fabric decreased. The maximum stress and initial Young's modulus of the nonwoven fabric increased with the increase in sericin amount up to 32.5%, and decreased with a further increase in the amount of sericin. Elongation at the end steadily decreased with the increase in sericin addition. All of the nonwoven fabrics showed good cytocompatibility, which increased with the amount of sericin added. These results indicate that sericin-coated wool-based nonwoven fabrics may be successfully prepared by adding sericin to wool fibers, and that the properties of these fabrics may be diversely controlled by altering the amount of sericin added, making them promising candidates for biomedical and cosmetic applications.
Collapse
Affiliation(s)
- Hye Gyeoung Lee
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi Jin Jang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - In Chul Um
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
13
|
Kim YE, Bae YJ, Jang MJ, Um IC. Effect of Sericin Content on the Structural Characteristics and Properties of New Silk Nonwoven Fabrics. Biomolecules 2023; 13:1186. [PMID: 37627251 PMCID: PMC10452508 DOI: 10.3390/biom13081186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Recently, natural silk nonwoven fabrics have attracted attention in biomedical and cosmetic applications because of their excellent biocompatibility, mechanical properties, and easy preparation. Herein, silk nonwoven fabrics were prepared by carding silk filaments to improve their productivity, and the effect of sericin content on the structure and properties of silk nonwoven fabrics was investigated. Owing to the binding effect of sericin in silk, a natural silk nonwoven fabric was successfully prepared through carding, wetting, and hot press treatments. Sericin content affected the structural characteristics and properties of the silk nonwoven fabrics. As the sericin content increased, the silk nonwoven fabrics became more compact with reduced porosity and thickness. Further, with increasing sericin content, the crystallinity and elongation of the silk nonwoven fabrics decreased while the moisture regain and the maximum stress increased. The thermal stability of most silk nonwoven fabrics was not affected by the sericin content. However, silk nonwoven fabrics without sericin had a lower thermal decomposition temperature than other nonwoven fabrics. Regardless of the sericin content, all silk nonwoven fabrics exhibited optimal cell viability and are promising candidates for cosmetic and biomedical applications.
Collapse
Affiliation(s)
- Ye Eun Kim
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea (Y.J.B.)
| | - Yu Jeong Bae
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea (Y.J.B.)
| | - Mi Jin Jang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - In Chul Um
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea (Y.J.B.)
| |
Collapse
|
14
|
Choi YY, Jang MJ, Park BD, Um IC. Fabrication, Structure, and Properties of Nonwoven Silk Fabrics Prepared with Different Cocoon Layers. Int J Mol Sci 2023; 24:11485. [PMID: 37511244 PMCID: PMC10380708 DOI: 10.3390/ijms241411485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, five different nonwoven silk fabrics were fabricated with silk fibers from different cocoon layers, and the effect of the cocoon layer on the structural characteristics and properties of the nonwoven silk fabric was examined. The diameter of the silk fiber and thickness of the nonwoven silk fabric decreased from the outer to the inner cocoon layer. More amino acids with higher hydrophilicity (serine, aspartic acid, and glutamic acid) and lower hydrophilicity (glycine and alanine) were observed in the outer layers. From the outer to the inner layer, the overall crystallinity and contact angle of the nonwoven silk fabric increased, whereas its yellowness index, moisture retention, and mechanical properties decreased. Regardless of the cocoon layer at which the fiber was sourced, the thermal stability of fibroin and sericin and good cell viability remained unchanged. The results of this study indicate that the properties of nonwoven silk fabric can be controlled by choosing silk fibers from the appropriate cocoon layers. Moreover, the findings in this study will increase the applicability of nonwoven silk fabric in the biomedical and cosmetic fields, which require specific properties for industrialization.
Collapse
Affiliation(s)
- Yun Yeong Choi
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi Jin Jang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Byung-Dae Park
- Department of Wood and Paper Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In Chul Um
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
15
|
Yonesi M, Ramos M, Ramirez-Castillejo C, Fernández-Serra R, Panetsos F, Belarra A, Chevalier M, Rojo FJ, Pérez-Rigueiro J, Guinea GV, González-Nieto D. Resistance to Degradation of Silk Fibroin Hydrogels Exposed to Neuroinflammatory Environments. Polymers (Basel) 2023; 15:polym15112491. [PMID: 37299290 DOI: 10.3390/polym15112491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Central nervous system (CNS) diseases represent an extreme burden with significant social and economic costs. A common link in most brain pathologies is the appearance of inflammatory components that can jeopardize the stability of the implanted biomaterials and the effectiveness of therapies. Different silk fibroin scaffolds have been used in applications related to CNS disorders. Although some studies have analyzed the degradability of silk fibroin in non-cerebral tissues (almost exclusively upon non-inflammatory conditions), the stability of silk hydrogel scaffolds in the inflammatory nervous system has not been studied in depth. In this study, the stability of silk fibroin hydrogels exposed to different neuroinflammatory contexts has been explored using an in vitro microglial cell culture and two in vivo pathological models of cerebral stroke and Alzheimer's disease. This biomaterial was relatively stable and did not show signs of extensive degradation across time after implantation and during two weeks of in vivo analysis. This finding contrasted with the rapid degradation observed under the same in vivo conditions for other natural materials such as collagen. Our results support the suitability of silk fibroin hydrogels for intracerebral applications and highlight the potentiality of this vehicle for the release of molecules and cells for acute and chronic treatments in cerebral pathologies.
Collapse
Affiliation(s)
- Mahdi Yonesi
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Milagros Ramos
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Ramirez-Castillejo
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Rocío Fernández-Serra
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, Calle Navacerrada 18, Urb. Puerto Galapagar, 28260 Madrid, Spain
| | - Fivos Panetsos
- Silk Biomed SL, Calle Navacerrada 18, Urb. Puerto Galapagar, 28260 Madrid, Spain
- Bioactive Surfaces SL, Puerto de Navacerrada 18. Galapagar, 28260 Madrid, Spain
- Neurocomputing and Neurorobotics Research Group, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040 Madrid, Spain
| | - Adrián Belarra
- Laboratorio Micro-CT UCM, Departamento de Radiología, Rehabilitación y Fisioterapia, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Margarita Chevalier
- Laboratorio Micro-CT UCM, Departamento de Radiología, Rehabilitación y Fisioterapia, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Francisco J Rojo
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, Calle Navacerrada 18, Urb. Puerto Galapagar, 28260 Madrid, Spain
- Bioactive Surfaces SL, Puerto de Navacerrada 18. Galapagar, 28260 Madrid, Spain
- Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, Calle Navacerrada 18, Urb. Puerto Galapagar, 28260 Madrid, Spain
- Bioactive Surfaces SL, Puerto de Navacerrada 18. Galapagar, 28260 Madrid, Spain
- Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040 Madrid, Spain
| | - Gustavo V Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, Calle Navacerrada 18, Urb. Puerto Galapagar, 28260 Madrid, Spain
- Bioactive Surfaces SL, Puerto de Navacerrada 18. Galapagar, 28260 Madrid, Spain
- Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040 Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Silk Biomed SL, Calle Navacerrada 18, Urb. Puerto Galapagar, 28260 Madrid, Spain
- Bioactive Surfaces SL, Puerto de Navacerrada 18. Galapagar, 28260 Madrid, Spain
| |
Collapse
|
16
|
Structural Characteristics and Properties of Cocoon and Regenerated Silk Fibroin from Different Silkworm Strains. Int J Mol Sci 2023; 24:ijms24054965. [PMID: 36902396 PMCID: PMC10003124 DOI: 10.3390/ijms24054965] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Silk has attracted the attention of researchers as a biomedical and cosmetic material because of its good biocompatibility and cytocompatibility. Silk is produced from the cocoons of silkworms, which have various strains. In this study, silkworm cocoons and silk fibroins (SFs) were obtained from ten silkworm strains, and their structural characteristics and properties were examined. The morphological structure of the cocoons depended on the silkworm strains. The degumming ratio of silk ranged from 22.8% to 28% depending on the silkworm strains. The highest and lowest solution viscosities of SF were shown by 9671 and 9153, respectively, showing a 12-fold difference. The silkworm strains of 9671, KJ5, and I-NOVI showed a two-fold higher work of ruptures for the regenerated SF film than 181 and 2203, indicating that the silkworm strains considerably influence the mechanical properties of the regenerated SF film. Regardless of the silkworm strain, all silkworm cocoons showed good cell viability, making them suitable candidates for advanced functional biomaterials.
Collapse
|
17
|
Bhowmik P, Kant R, Singh H. Effect of Degumming Duration on the Behavior of Waste Filature Silk-Reinforced Wheat Gluten Composite for Sustainable Applications. ACS OMEGA 2023; 8:6268-6278. [PMID: 36844546 PMCID: PMC9948187 DOI: 10.1021/acsomega.2c05963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
Silkworm silk proteins are of great importance in several fields of science owing to their outstanding properties. India generates waste silk fibers, also known as waste filature silk, in abundance. Utilizing waste filature silk as reinforcement in biopolymers enhances its physiochemical properties. However, the hydrophilic sericin layer on the surface of the fibers makes it very difficult to have proper fiber-matrix adhesion. Thus, degumming the fiber surface allows better control of the fiber properties. The present study uses filature silk (Bombyx mori) as fiber reinforcement to prepare wheat gluten-based natural composites for low-strength green applications. The fibers were degummed in sodium hydroxide (NaOH) solution from a 0 to 12 h duration, and composites were prepared from them. The analysis exhibited optimized fiber treatment duration and its effect on the composite properties. The traces of the sericin layer were found before 6 h of fiber treatment, which interrupted homogeneous fiber-matrix adhesion in the composite. The X-ray diffraction study showed enhanced crystallinity of the degummed fibers. The FTIR study of the prepared composites with degummed fibers showed that shifted peaks toward lower wavenumbers supported better bonding among the constituents. Similarly, the tensile and impact strength of the composite made of 6 h of degummed fibers showed better mechanical properties than others. The same can be validated with the SEM analysis and TGA as well. This study also showed that prolonged exposure to alkali solution reduces the fiber properties, thus reducing composite properties too. As a green alternative, the prepared composite sheets can potentially be applied in manufacturing seedling trays and one-time nursery pots.
Collapse
|
18
|
Evaluation of the effect of process parameters on the protein content of silk fibroin. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Diez-Galán A, Cobos R, Ibañez A, Calvo-Peña C, Coque JJR. Biodegradation of Pine Processionary Caterpillar Silk Is Mediated by Elastase- and Subtilisin-like Proteases. Int J Mol Sci 2022; 23:ijms232315253. [PMID: 36499578 PMCID: PMC9741414 DOI: 10.3390/ijms232315253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pine processionary caterpillar nests are made from raw silk. Fibroin protein is the main component of silk which, in the case of pine processionary caterpillar, has some unusual properties such as a higher resistance to chemical hydrolysis. Isolation of microorganisms naturally present in silk nests led to identification of Bacillus licheniformis and Pseudomonas aeruginosa strains that in a defined minimal medium were able to carry out extensive silk biodegradation. A LasB elastase-like protein from P. aeruginosa was shown to be involved in silk biodegradation. A recombinant form of this protein expressed in Escherichia coli and purified by affinity chromatography was able to efficiently degrade silk in an in vitro assay. However, silk biodegradation by B. licheniformis strain was mediated by a SubC subtilisin-like protease. Homologous expression of a subtilisin Carlsberg encoding gene (subC) allowed faster degradation compared to the biodegradation kinetics of a wildtype B. licheniformis strain. This work led to the identification of new enzymes involved in biodegradation of silk materials, a finding which could lead to possible applications for controlling this pest and perhaps have importance from sanitary and biotechnological points of view.
Collapse
|
20
|
Sideratou Z, Biagiotti M, Tsiourvas D, Panagiotaki KN, Zucca MV, Freddi G, Lovati AB, Bottagisio M. Antibiotic-Loaded Hyperbranched Polyester Embedded into Peptide-Enriched Silk Fibroin for the Treatment of Orthopedic or Dental Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3182. [PMID: 36144970 PMCID: PMC9503932 DOI: 10.3390/nano12183182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The development of innovative osteoconductive matrices, which are enriched with antibiotic delivery nanosystems, has the invaluable potential to achieve both local contaminant eradication and the osseointegration of implanted devices. With the aim of producing safe, bioactive materials that have osteoconductive and antibacterial properties, novel, antibiotic-loaded, functionalized nanoparticles (AFN)-based on carboxylic acid functionalized hyperbranched aliphatic polyester (CHAP) that can be integrated into peptide-enriched silk fibroin (PSF) matrices with osteoconductive properties-were successfully synthesized. The obtained AFNPSF sponges were first physico-chemically characterized and then tested in vitro against eukaryotic cells and bacteria involved in orthopedic or oral infections. The biocompatibility and microbiological tests confirmed the promising characteristics of the AFN-PSF products for both orthopedic and dental applications. These preliminary results encourage the establishment of AFN-PSF-based preventative strategies in the fight against implant-related infections.
Collapse
Affiliation(s)
- Zili Sideratou
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15310 Aghia Paraskevi, Greece
| | | | - Dimitris Tsiourvas
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15310 Aghia Paraskevi, Greece
| | - Katerina N. Panagiotaki
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15310 Aghia Paraskevi, Greece
| | - Marta V. Zucca
- Silk Biomaterials SRL, Via Cavour 2, 22074 Lomazzo, Italy
| | | | - Arianna B. Lovati
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Via R. Galeazzi 4, 20161 Milan, Italy
| | - Marta Bottagisio
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Clinical Chemistry and Microbiology, Via R. Galeazzi 4, 20161 Milan, Italy
| |
Collapse
|
21
|
Ashouri Sharafshadeh S, Mehdinavaz Aghdam R, Akhlaghi P, Heirani-Tabasi A. Amniotic membrane/silk fibroin-alginate nanofibrous scaffolds containing Cu-based metal organic framework for wound dressing. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2120876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Sina Ashouri Sharafshadeh
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Parisa Akhlaghi
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Asieh Heirani-Tabasi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular, Tehran Heart Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
|
23
|
Angelova L, Daskalova A, Filipov E, Vila XM, Tomasch J, Avdeev G, Teuschl-Woller AH, Buchvarov I. Optimizing the Surface Structural and Morphological Properties of Silk Thin Films via Ultra-Short Laser Texturing for Creation of Muscle Cell Matrix Model. Polymers (Basel) 2022; 14:polym14132584. [PMID: 35808630 PMCID: PMC9269134 DOI: 10.3390/polym14132584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Temporary scaffolds that mimic the extracellular matrix’s structure and provide a stable substratum for the natural growth of cells are an innovative trend in the field of tissue engineering. The aim of this study is to obtain and design porous 2D fibroin-based cell matrices by femtosecond laser-induced microstructuring for future applications in muscle tissue engineering. Ultra-fast laser treatment is a non-contact method, which generates controlled porosity—the creation of micro/nanostructures on the surface of the biopolymer that can strongly affect cell behavior, while the control over its surface characteristics has the potential of directing the growth of future muscle tissue in the desired direction. The laser structured 2D thin film matrices from silk were characterized by means of SEM, EDX, AFM, FTIR, Micro-Raman, XRD, and 3D-roughness analyses. A WCA evaluation and initial experiments with murine C2C12 myoblasts cells were also performed. The results show that by varying the laser parameters, a different structuring degree can be achieved through the initial lifting and ejection of the material around the area of laser interaction to generate porous channels with varying widths and depths. The proper optimization of the applied laser parameters can significantly improve the bioactive properties of the investigated 2D model of a muscle cell matrix.
Collapse
Affiliation(s)
- Liliya Angelova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Blvd., 1784 Sofia, Bulgaria; (A.D.); (E.F.)
- Correspondence:
| | - Albena Daskalova
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Blvd., 1784 Sofia, Bulgaria; (A.D.); (E.F.)
| | - Emil Filipov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Blvd., 1784 Sofia, Bulgaria; (A.D.); (E.F.)
| | - Xavier Monforte Vila
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria; (X.M.V.); (J.T.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Janine Tomasch
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria; (X.M.V.); (J.T.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Georgi Avdeev
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., 1113 Sofia, Bulgaria;
| | - Andreas H. Teuschl-Woller
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria; (X.M.V.); (J.T.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Ivan Buchvarov
- Faculty of Physics, St. Kliment Ohridski University of Sofia, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| |
Collapse
|
24
|
Gao D, Lv J, Lee PS. Natural Polymer in Soft Electronics: Opportunities, Challenges, and Future Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105020. [PMID: 34757632 DOI: 10.1002/adma.202105020] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Indexed: 05/21/2023]
Abstract
Pollution caused by nondegradable plastics has been a serious threat to environmental sustainability. Natural polymers, which can degrade in nature, provide opportunities to replace petroleum-based polymers, meanwhile driving technological advances and sustainable practices. In the research field of soft electronics, regenerated natural polymers are promising building blocks for passive dielectric substrates, active dielectric layers, and matrices in soft conductors. Here, the natural-polymer polymorphs and their compatibilization with a variety of inorganic/organic conductors through interfacial bonding/intermixing and surface functionalization for applications in various device modalities are delineated. Challenges that impede the broad utilization of natural polymers in soft electronics, including limited durability, compromises between conductivity and deformability, and limited exploration in controllable degradation, etc. are explicitly inspected, while the potential solutions along with future prospects are also proposed. Finally, integrative considerations on material properties, device functionalities, and environmental impact are addressed to warrant natural polymers as credible alternatives to synthetic ones, and provide viable options for sustainable soft electronics.
Collapse
Affiliation(s)
- Dace Gao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jian Lv
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
25
|
Remadevi R, AV Morton D, Hapgood K, Rashida N, Rajkhowa R. Improving the dynamic properties of silk particles by co-spray drying with L-leucine. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
26
|
Ealla KKR, Veeraraghavan VP, Ravula NR, Durga CS, Ramani P, Sahu V, Poola PK, Patil S, Panta P. Silk Hydrogel for Tissue Engineering: A Review. J Contemp Dent Pract 2022; 23:467-477. [PMID: 35945843 DOI: 10.5005/jp-journals-10024-3322] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
AIM This review aims to explore the importance of silk hydrogel and its potential in tissue engineering (TE). BACKGROUND Tissue engineering is a procedure that incorporates cells into the scaffold materials with suitable growth factors to regenerate injured tissue. For tissue formation in TE, the scaffold material plays a key role. Different forms of silk fibroin (SF), such as films, mats, hydrogels, and sponges, can be easily manufactured when SF is disintegrated into an aqueous solution. High precision procedures such as micropatterning and bioprinting of SF-based scaffolds have been used for enhanced fabrication. REVIEW RESULTS In this narrative review, SF physicochemical and mechanical properties have been presented. We have also discussed SF fabrication techniques like electrospinning, spin coating, freeze-drying, and physiochemical cross-linking. The application of SF-based scaffolds for skeletal, tissue, joint, muscle, epidermal, tissue repair, and tympanic membrane regeneration has also been addressed. CONCLUSION SF has excellent mechanical properties, tunability, biodegradability, biocompatibility, and bioresorbability. CLINICAL SIGNIFICANCE Silk hydrogels are an ideal scaffold matrix material that will significantly impact tissue engineering applications, given the rapid scientific advancements in this field.
Collapse
Affiliation(s)
- Kranti Kiran Reddy Ealla
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospital, SIMATS, Chennai, Tamil Nadu, India; Department of Oral Pathology and Microbiology, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India, e-mail:
| | | | - Nikitha Reddy Ravula
- Center for Research Development and Sustenance, Malla Reddy Health City, Hyderabad, Telangana, India
| | | | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Vikas Sahu
- Center for Research Development and Sustenance, Malla Reddy Health City, Hyderabad, Telangana, India
| | | | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Prashanth Panta
- Department of Oral Medicine and Radiology, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India, e-mail:
| |
Collapse
|
27
|
Gore PM, Naebe M, Wang X, Kandasubramanian B. Nano-fluoro dispersion functionalized superhydrophobic degummed & waste silk fabric for sustained recovery of petroleum oils & organic solvents from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127822. [PMID: 34823952 DOI: 10.1016/j.jhazmat.2021.127822] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Superwettable and chemically stable waste silk fabric and degummed silk were used in this study for treatment of oily wastewater and oil/solvent recovery. Silk functionalized with a nano-fluoro dispersion showed a superhydrophobic and oleophilic nature. The functionalized silk demonstrated superoleophilicity towards petroleum oils and organic solvents, and exhibited filtration efficiencies of more than 95%, and up to 70% till 25 re-usable cycles. Furthermore, the functionalized silk materials demonstrated high permeation flux of 584 L.m-2.h-1 (for Diesel) for continuous oil-water separation operation. The pH based study in highly acidic and alkaline mediums (pH from 1 to 13) showed excellent stability of nano-fluoro coated silk. Thermogravimetric analysis showed thermal stability up to 250 °C, and 400 °C, for functionalized waste silk, and degummed silk, respectively. FE-SEM analysis revealed randomly oriented spindle shaped nano particles anchored on the silk surface exhibiting hierarchical patterns, as required for the superhydrophobic Cassie-Baxter state. The rate absorption study showed close curve fitting for pseudo second order kinetics (R2 = 0.999), which indicated physical absorption process. BET analysis confirmed the porous nature, while the elemental XPS and EDX analysis confirmed strong bonding and uniform coating of fluoro nanoparticles on silk surface. The results demonstrated that nano-fluoro dispersion functionalized silk can be successfully employed for effective oil/solvent-water filtration, oil/solvent-spill cleanups, and treatment of oily wastewater for protection of water resources.
Collapse
Affiliation(s)
- Prakash M Gore
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3220, Victoria, Australia; Nano Surface Texturing Lab, Department of Metallurgical & Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, India
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3220, Victoria, Australia
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3220, Victoria, Australia
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Lab, Department of Metallurgical & Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, India.
| |
Collapse
|
28
|
Zheng H, Yang H, Zhou Y, Li T, Ma Q, Wang B, Fang Q, Chen H. Rapid Enrichment and Detection of Silk Residues from Tombs by Double-Antibody Sandwich ELISA Based on Immunomagnetic Beads. Anal Chem 2021; 93:14440-14447. [PMID: 34664943 DOI: 10.1021/acs.analchem.1c02556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The extraction and identification of silk residues in tombs is of great significance for studying the distribution and spread of early silk. However, the complex organic matter in the tomb hinders the accurate identification of silk. In this study, a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) based on immunomagnetic beads (IMBs) was developed for the rapid enrichment and detection of silk residues. The double-antibody sandwich ELISA method established by pairing the IMBs prepared by the silk fibroin monoclonal antibody SF-3 and the silk fibroin monoclonal-labeled antibody bio-SF-1 had the highest detection sensitivity, with a linear detection range of 10 to 104 ng mL-1 and a detection limit of 5.12 ng mL-1. This method was excellent in the extraction and analysis of silk residues from archaeological imprints and soil samples and successfully identified silk residues in samples at the final stage of silk degradation (physical invisible silk). The proteomics analysis results demonstrated the feasibility and practicability of this method.
Collapse
Affiliation(s)
- Hailing Zheng
- College of Textile Science and Engineer (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China.,China National Silk Museum, Hangzhou 310002, China
| | | | - Yang Zhou
- China National Silk Museum, Hangzhou 310002, China
| | - Tianxiao Li
- Joint International Research Laboratory of Environmental and Social Archaeology, Shandong University, Qingdao 266237, China
| | - Qinglin Ma
- Joint International Research Laboratory of Environmental and Social Archaeology, Shandong University, Qingdao 266237, China
| | - Bing Wang
- School of Materials Sciences & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qin Fang
- Hubei Provincial Museum, Wuhan 430077, China
| | - Haixiang Chen
- School of Materials Sciences & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
29
|
Di Foggia M, Tsukada M, Taddei P. Vibrational Study on Structure and Bioactivity of Protein Fibers Grafted with Phosphorylated Methacrylates. Molecules 2021; 26:6487. [PMID: 34770891 PMCID: PMC8587459 DOI: 10.3390/molecules26216487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
In the last decades, silk fibroin and wool keratin have been considered functional materials for biomedical applications. In this study, fabrics containing silk fibers from Bombyx mori and Tussah silk fibers from Antheraea pernyi, as well as wool keratin fabrics, were grafted with phosmer CL and phosmer M (commercial names, i.e., methacrylate monomers containing phosphate groups in the molecular side chain) with different weight gains. Both phosmers were recently proposed as flame retarding agents, and their chemical composition suggested a possible application in bone tissue engineering. IR and Raman spectroscopy were used to disclose the possible structural changes induced by grafting and identify the most reactive amino acids towards the phosmers. The same techniques were used to investigate the nucleation of a calcium phosphate phase on the surface of the samples (i.e., bioactivity) after ageing in simulated body fluid (SBF). The phosmers were found to polymerize onto the biopolymers efficiently, and tyrosine and serine underwent phosphorylation (monitored through the strengthening of the Raman band at 1600 cm-1 and the weakening of the Raman band at 1400 cm-1, respectively). In grafted wool keratin, cysteic acid and other oxidation products of disulphide bridges were detected together with sulphated residues. Only slight conformational changes were observed upon grafting, generally towards an enrichment in ordered domains, suggesting that the amorphous regions were more prone to react (and, sometimes, degrade). All samples were shown to be bioactive, with a weight gain of up to 8%. The most bioactive samples contained the highest phosmers amounts, i.e., the highest amounts of phosphate nucleating sites. The sulphate/sulphonate groups present in grafted wool samples appeared to increase bioactivity, as shown by the five-fold increase of the IR phosphate band at 1040 cm-1.
Collapse
Affiliation(s)
- Michele Di Foggia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Belmeloro 8/2, 40126 Bologna, Italy;
| | - Masuhiro Tsukada
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan;
| | - Paola Taddei
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Belmeloro 8/2, 40126 Bologna, Italy;
| |
Collapse
|
30
|
Xu X, Ren Z, Zhang M, Ma L. Enzymatic degradability and release properties of graphene oxide/silk fibroin nanocomposite films. J Appl Polym Sci 2021. [DOI: 10.1002/app.51173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiafan Xu
- School of Chemistry and Chemical Engineering Guangxi University Nanning P. R. China
| | - Zilong Ren
- School of Chemistry and Chemical Engineering Guangxi University Nanning P. R. China
| | - Meiqi Zhang
- School of Chemistry and Chemical Engineering Guangxi University Nanning P. R. China
| | - Lin Ma
- School of Chemistry and Chemical Engineering Guangxi University Nanning P. R. China
| |
Collapse
|
31
|
Single-cell RNA-seq reveals functionally distinct biomaterial degradation-related macrophage populations. Biomaterials 2021; 277:121116. [PMID: 34478932 DOI: 10.1016/j.biomaterials.2021.121116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/31/2022]
Abstract
Macrophages play crucial roles in host tissue reaction to biomaterials upon implantation in vivo. However, the complexity of biomaterial degradation-related macrophage subpopulations that accumulate around the implanted biomaterials in situ is not fully understood. Here, using single cell RNA-seq, we analyze the transcriptome profiles of the various cell types around the scaffold to map the scaffold-induced reaction, in an unbiased approach. This enables mapping of all biomaterial degradation-associated cells at high resolution, revealing distinct subpopulations of tissue-resident macrophages as the major cellular sources of biomaterial degradation in situ. We also find that scaffold architecture can affect the mechanotransduction and catabolic activity of specific material degradation-related macrophage subpopulations in an Itgav-Mapk1-Stat3 dependent manner, eventually leading to differences in scaffold degradation rate in vivo. Our work dissects unanticipated aspects of the cellular and molecular basis of biomaterial degradation at the single-cell level, and provides a conceptual framework for developing functional tissue engineering scaffolds in future.
Collapse
|
32
|
Jameson JF, Pacheco MO, Butler JE, Stoppel WL. Estimating Kinetic Rate Parameters for Enzymatic Degradation of Lyophilized Silk Fibroin Sponges. Front Bioeng Biotechnol 2021; 9:664306. [PMID: 34295878 PMCID: PMC8290342 DOI: 10.3389/fbioe.2021.664306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/31/2021] [Indexed: 11/25/2022] Open
Abstract
Sponge-like biomaterials formed from silk fibroin are promising as degradable materials in clinical applications due to their controllable breakdown into simple amino acids or small peptides in vivo. Silk fibroin, isolated from Bombyx mori silkworm cocoons, can be used to form sponge-like materials with a variety of tunable parameters including the elastic modulus, porosity and pore size, and level of nanocrystalline domains. These parameters can be independently tuned during formulation resulting in a wide parameter space and set of final materials. Determining the mechanism and rate constants for biomaterial degradation of these tunable silk materials would allow scientists to evaluate and predict the biomaterial performance for the large array of tissue engineering applications and patient ailments a priori. We first measured in vitro degradation rates of silk sponges using common protein-degrading enzymes such as Proteinase K and Protease XIV. The concentration of the enzyme in solution was varied (1, 0.1, 0.01 U/mL) along with one silk sponge formulation parameter: the level of crystallinity within the sponge. Additionally, two experimental degradation methods were evaluated, termed continuous and discrete degradation methods. Silk concentration, polymer chain length and scaffold pore size were held constant during experimentation and kinetic parameter estimation. Experimentally, we observed that the enzyme itself, enzyme concentration within the bulk solution, and the sponge fabrication water annealing time were the major experimental parameters dictating silk sponge degradation in our experimental design. We fit the experimental data to two models, a Michaelis-Menten kinetic model and a modified first order kinetic model. Weighted, non-linear least squares analysis was used to determine the parameters from the data sets and Monte-Carlo simulations were utilized to obtain estimates of the error. We found that modified first order reaction kinetics fit the time-dependent degradation of lyophilized silk sponges and we obtained first order-like rate constants. These results represent the first investigations into determining kinetic parameters to predict lyophilized silk sponge degradation rates and can be a tool for future mathematical representations of silk biomaterial degradation.
Collapse
Affiliation(s)
- Julie F Jameson
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, United States
| | - Marisa O Pacheco
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, United States
| | - Jason E Butler
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, United States
| | - Whitney L Stoppel
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
33
|
Śliwka-Kaszyńska M, Ślebioda M, Brillowska-Dąbrowska A, Mroczyńska M, Karczewski J, Marzec A, Rybiński P, Drążkowska A. Multi-Technique Investigation of Grave Robes from 17th and 18th Century Crypts Using Combined Spectroscopic, Spectrometric Techniques, and New-Generation Sequencing. MATERIALS 2021; 14:ma14133535. [PMID: 34202830 PMCID: PMC8269536 DOI: 10.3390/ma14133535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022]
Abstract
The textile fragments of the funeral clothes found in the 17th and 18th century crypts were subjected to spectroscopic, spectrometric, and microbial investigation. The next-generation sequencing enabled DNA identification of microorganisms at the genus and in five cases to the species level. The soft hydrofluoric acid extraction method was optimized to isolate different classes of dyes from samples that had direct contact with human remains. High-performance liquid chromatography coupled with diode matrix and tandem mass spectrometry detectors with electrospray ionization (HPLC-DAD-ESI-MS/MS) enabled the detection and identification of 34 colourants that are present in historical textiles. Some of them are thus far unknown and uncommon dyes. Indigo, madder, cochineal, turmeric, tannin-producing plant, and young fustic were identified as sources of dyes in textiles. Scanning electron microscopy with energy-dispersive X-ray detector (SEM-EDS) and Fourier transform infrared spectroscopy (FT-IR) were used to identify and characterize fibres and mordants in funeral gowns. Of the 23 textile samples tested, 19 were silk while the remaining four were recognized as wool. The presence of iron, aluminium, sodium, and calcium suggests that they were used as mordants. Traces of copper, silica, and magnesium might originate from the contaminants. The large amount of silver indicated the presence of metal wire in one of the dyed silk textiles. SEM images showed that textile fibres were highly degraded.
Collapse
Affiliation(s)
- Magdalena Śliwka-Kaszyńska
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology (Gdańsk Tech), 80-233 Gdańsk, Poland
- Correspondence: ; Fax: +48-58-347-2694
| | - Marek Ślebioda
- Perlan Technologies, Sp. z.o.o., 02-785 Warszawa, Poland;
| | - Anna Brillowska-Dąbrowska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology (Gdańsk Tech), 80-233 Gdańsk, Poland; (A.B.-D.); (M.M.)
| | - Martyna Mroczyńska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology (Gdańsk Tech), 80-233 Gdańsk, Poland; (A.B.-D.); (M.M.)
| | - Jakub Karczewski
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology (Gdańsk Tech), 80-233 Gdańsk, Poland;
| | - Anna Marzec
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Przemysław Rybiński
- Institute of Chemistry, Faculty of Natural Science, The Jan Kochanowski University, 25-369 Kielce, Poland;
| | - Anna Drążkowska
- Faculty of History, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| |
Collapse
|
34
|
Bae YS, Um IC. Effects of Fabrication Conditions on Structure and Properties of Mechanically Prepared Natural Silk Web and Non-Woven Fabrics. Polymers (Basel) 2021; 13:polym13101578. [PMID: 34069044 PMCID: PMC8156477 DOI: 10.3390/polym13101578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
In this study, natural silk web and natural silk non-woven fabric were prepared mechanically using the binding character of the sericin in silk. The effect of process variables on the preparation, structure, and properties of the silk web and the non-woven fabric was examined. The reeling velocity affected the morphology and mechanical properties of the web but had almost no influence on the crystalline structure of the silk. From the viewpoint of reel-ability and the mechanical properties (work of rupture) of silk web, a reeling velocity of 39.2 m/min represented the optimal processing velocity. The porosity and swelling ratio of the silk web decreased slightly with increasing reeling velocity. Furthermore, the reeling bath temperature had a significant effect on the reel-ability of silk filaments from a silkworm cocoon. Bath temperatures ≥50 °C yielded good reel-ability (>900 m reeling length). The porosity, swelling ratio in water, and mechanical properties of the silk web and silk non-woven fabric changed only slightly with the reeling bath temperature but changed significantly with the hot press treatment. The hot-pressed silk web (i.e., silk non-woven fabric) exhibited higher tensile strength as well as lower elongation at break, porosity, and swelling ratio than the silk web.
Collapse
Affiliation(s)
- Yeon-Su Bae
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Korea;
| | - In-Chul Um
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Korea;
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-7757; Fax: +82-53-950-6744
| |
Collapse
|
35
|
Molinnus D, Drinic A, Iken H, Kröger N, Zinser M, Smeets R, Köpf M, Kopp A, Schöning MJ. Towards a flexible electrochemical biosensor fabricated from biocompatible Bombyx mori silk. Biosens Bioelectron 2021; 183:113204. [PMID: 33836429 DOI: 10.1016/j.bios.2021.113204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
In modern days, there is an increasing relevance of and demand for flexible and biocompatible sensors for in-vivo and epidermal applications. One promising strategy is the implementation of biological (natural) polymers, which offer new opportunities for flexible biosensor devices due to their high biocompatibility and adjustable biodegradability. As a proof-of-concept experiment, a biosensor was fabricated by combining thin- (for Pt working- and counter electrode) and thick-film (for Ag/AgCl quasi-reference electrode) technologies: The biosensor consists of a fully bio-based and biodegradable fibroin substrate derived from silk fibroin of the silkworm Bombyx mori combined with immobilized enzyme glucose oxidase. The flexible glucose biosensor is encapsulated by a biocompatible silicon rubber which is certificated for a safe use onto human skin. Characterization of the sensor set-up is exemplarily demonstrated by glucose measurements in buffer and Ringer's solution, while the stability of the quasi-reference electrode has been investigated versus a commercial Ag/AgCl reference electrode. Repeated bending studies validated the mechanical properties of the electrode structures. The cross-sensitivity of the biosensor against ascorbic acid, noradrenaline and adrenaline was investigated, too. Additionally, biocompatibility and degradation tests of the silk fibroin with and without thin-film platinum electrodes were carried out.
Collapse
Affiliation(s)
- Denise Molinnus
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmann-Strasse 1, 52428, Jülich, Germany
| | - Aleksander Drinic
- Fibrothelium GmbH, TRIWO Technopark Aachen, Philipsstr. 8, 52068, Aachen, Germany
| | - Heiko Iken
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmann-Strasse 1, 52428, Jülich, Germany
| | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Max Zinser
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, Germany
| | - Marius Köpf
- Fibrothelium GmbH, TRIWO Technopark Aachen, Philipsstr. 8, 52068, Aachen, Germany
| | - Alexander Kopp
- Fibrothelium GmbH, TRIWO Technopark Aachen, Philipsstr. 8, 52068, Aachen, Germany
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmann-Strasse 1, 52428, Jülich, Germany; Forschungszentrum Jülich GmbH, Institute of Biological Information Processing (IBI-3), Wilhelm-Johnen-Strasse 6, 52425, Jülich, Germany.
| |
Collapse
|
36
|
Maintaining Inducibility of Dermal Follicle Cells on Silk Fibroin/Sodium Alginate Scaffold for Enhanced Hair Follicle Regeneration. BIOLOGY 2021; 10:biology10040269. [PMID: 33810528 PMCID: PMC8066588 DOI: 10.3390/biology10040269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
The extracellular matrix (ECM) is important for maintaining cell phenotype and promoting cell proliferation and differentiation. In order to better solve the problem of skin appendage regeneration, a combination of mechanical/enzymatic digestion methods was used to self-extract dermal papilla cells (DPCs), which were seeded on silk fibroin/sodium alginate scaffolds as seed cells to evaluate the possibility of skin regeneration/regeneration of accessory organs. Scanning electron microscopy (SEM) graphs showed that the interconnected pores inside the scaffold had a pore diameter in the range of 153-311 μm and a porosity of 41-82%. Immunofluorescence (IF) staining and cell morphological staining proved that the extracted cells were DPCs. The results of a Cell Counting Kit-8 (CCK-8) and Calcein-AM/PI live-dead cell staining showed that the DPCs grew well in the composite scaffold extract. Normal cell morphology and characteristics of aggregation growth were maintained during the 3-day culture, which showed that the silk fibroin/sodium alginate (SF/SA) composite scaffold had good cell-compatibility. Hematoxylin-eosin (H&E) staining of tissue sections further proved that the cells adhered closely and aggregated to the pore wall of the scaffold, and retained the ability to induce differentiation of hair follicles. All these results indicate that, compared with a pure scaffold, the composite scaffold promotes the adhesion and growth of DPCs. We transplanted the SF/SA scaffolds into the back wounds of SD rats, and evaluated the damage model constructed in vivo. The results showed that the scaffold inoculated with DPCs could accelerate the repair of the skin and promote the regeneration of the hair follicle structure.
Collapse
|
37
|
Yonesi M, Garcia-Nieto M, Guinea GV, Panetsos F, Pérez-Rigueiro J, González-Nieto D. Silk Fibroin: An Ancient Material for Repairing the Injured Nervous System. Pharmaceutics 2021; 13:429. [PMID: 33806846 PMCID: PMC8004633 DOI: 10.3390/pharmaceutics13030429] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
Silk refers to a family of natural fibers spun by several species of invertebrates such as spiders and silkworms. In particular, silkworm silk, the silk spun by Bombyx mori larvae, has been primarily used in the textile industry and in clinical settings as a main component of sutures for tissue repairing and wound ligation. The biocompatibility, remarkable mechanical performance, controllable degradation, and the possibility of producing silk-based materials in several formats, have laid the basic principles that have triggered and extended the use of this material in regenerative medicine. The field of neural soft tissue engineering is not an exception, as it has taken advantage of the properties of silk to promote neuronal growth and nerve guidance. In addition, silk has notable intrinsic properties and the by-products derived from its degradation show anti-inflammatory and antioxidant properties. Finally, this material can be employed for the controlled release of factors and drugs, as well as for the encapsulation and implantation of exogenous stem and progenitor cells with therapeutic capacity. In this article, we review the state of the art on manufacturing methodologies and properties of fiber-based and non-fiber-based formats, as well as the application of silk-based biomaterials to neuroprotect and regenerate the damaged nervous system. We review previous studies that strategically have used silk to enhance therapeutics dealing with highly prevalent central and peripheral disorders such as stroke, Alzheimer's disease, Parkinson's disease, and peripheral trauma. Finally, we discuss previous research focused on the modification of this biomaterial, through biofunctionalization techniques and/or the creation of novel composite formulations, that aim to transform silk, beyond its natural performance, into more efficient silk-based-polymers towards the clinical arena of neuroprotection and regeneration in nervous system diseases.
Collapse
Affiliation(s)
- Mahdi Yonesi
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
| | | | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Fivos Panetsos
- Silk Biomed SL, 28260 Madrid, Spain;
- Neurocomputing and Neurorobotics Research Group, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
38
|
Uddin MG, Allardyce BJ, Rashida N, Rajkhowa R. Mechanical, structural and biodegradation characteristics of fibrillated silk fibres and papers. Int J Biol Macromol 2021; 179:20-32. [PMID: 33667557 DOI: 10.1016/j.ijbiomac.2021.02.211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/16/2021] [Accepted: 02/27/2021] [Indexed: 11/15/2022]
Abstract
We characterised fibres and papers of microfibrillated silk from Bombyx mori produced by mechanical and enzymatic process. Milling increased the specific surface area of fibres from 1.5 to 8.5 m2/g and that enzymatic pre-treatment increased it further to 16.5 m2/g. These fibrils produced a uniform, significantly strong (tenacity 55 Nm/g) and stiff (Young's modulus > 2 GPa) papers. Enzymatic pre-treatment did not reduce molecular weight and tensile strength of papers but significantly improved fibrillation. Silk remained highly crystalline throughout the fibrillation process. Protease biodegradation was more rapid after fibrillation. Biodegradation was impacted by structural change due to enzymatic pre-treatment during the fibrillation. Biodegraded silk had much higher thermal degradation temperature. The unique combination of high strength, slow yet predicable degradation and controllable wicking properties make the materials ideally suited to biomedical and healthcare applications.
Collapse
Affiliation(s)
- Mohammad Gias Uddin
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | | | - Nigar Rashida
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Rangam Rajkhowa
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
39
|
Farokhi M, Aleemardani M, Solouk A, Mirzadeh H, Teuschl AH, Redl H. Crosslinking strategies for silk fibroin hydrogels: promising biomedical materials. Biomed Mater 2021; 16:022004. [PMID: 33594992 DOI: 10.1088/1748-605x/abb615] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Due to their strong biomimetic potential, silk fibroin (SF) hydrogels are impressive candidates for tissue engineering, due to their tunable mechanical properties, biocompatibility, low immunotoxicity, controllable biodegradability, and a remarkable capacity for biomaterial modification and the realization of a specific molecular structure. The fundamental chemical and physical structure of SF allows its structure to be altered using various crosslinking strategies. The established crosslinking methods enable the formation of three-dimensional (3D) networks under physiological conditions. There are different chemical and physical crosslinking mechanisms available for the generation of SF hydrogels (SFHs). These methods, either chemical or physical, change the structure of SF and improve its mechanical stability, although each method has its advantages and disadvantages. While chemical crosslinking agents guarantee the mechanical strength of SFH through the generation of covalent bonds, they could cause some toxicity, and their usage is not compatible with a cell-friendly technology. On the other hand, physical crosslinking approaches have been implemented in the absence of chemical solvents by the induction of β-sheet conformation in the SF structure. Unfortunately, it is not easy to control the shape and properties of SFHs when using this method. The current review discusses the different crosslinking mechanisms of SFH in detail, in order to support the development of engineered SFHs for biomedical applications.
Collapse
Affiliation(s)
- Maryam Farokhi
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran. Maryam Farokhi and Mina Aleemardani contributed equally
| | | | | | | | | | | |
Collapse
|
40
|
Microroughness induced biomimetic coating for biodegradation control of magnesium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111811. [PMID: 33579455 DOI: 10.1016/j.msec.2020.111811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/02/2020] [Accepted: 12/12/2020] [Indexed: 12/23/2022]
Abstract
Herein we explore a combination of anodization induced micro-roughness and biomimetic coating on pure magnesium (Mg) metal at different applied voltages to control adhesion, biodegradation, and corrosion performance in simulated body fluid solution. The anodic film was fabricated using two different potentials, 3 and 5 V, respectively, to create microroughness on the Mg surface. The microroughened Mg surface was subsequently coated with a biomimetic silk thin film; and the characteristics of the treated Mg-substrates were evaluated using various spectroscopic, microscopic, immersion, and electrochemical techniques. A number of independent measurements, including hydrogen evolution, weight loss and electrochemical methods were employed to assess the corrosion characteristics. The silk-coated anodized samples revealed dramatically reduced degradation rate in terms of volume of hydrogen gas generation and weight loss compared to the respective anodized but uncoated, which revealed that optimized biomimetic silk-coated Mg surface (anodized at 5 V and subsequently biomimetic silk-coated ANMg5V) exhibited the best corrosion performance among all other tested samples. The ANMg5V Silk showed the highest polarization resistance (46.12 kΩ·cm2), protection efficiency (>0.99) and lowest corrosion rate (only 0.017 mm/year) relative to untreated Mg (8.457 mm/year), and anodized Mg (1.039 for anodized at 3 V and 0.986 for anodized at 5 V) surface due to the formation of a pore-free dense biomimetic protective film over Mg surface. The results of the cytotoxicity test confirm that silk-coated samples are significantly less cytotoxic compared to bare and anodized Mg samples. With enhanced corrosion resistance and cytocompatibility, silk-coated Mg could be a potential material for clinical applications.
Collapse
|
41
|
Sun W, Gregory DA, Tomeh MA, Zhao X. Silk Fibroin as a Functional Biomaterial for Tissue Engineering. Int J Mol Sci 2021; 22:ijms22031499. [PMID: 33540895 PMCID: PMC7867316 DOI: 10.3390/ijms22031499] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Tissue engineering (TE) is the approach to combine cells with scaffold materials and appropriate growth factors to regenerate or replace damaged or degenerated tissue or organs. The scaffold material as a template for tissue formation plays the most important role in TE. Among scaffold materials, silk fibroin (SF), a natural protein with outstanding mechanical properties, biodegradability, biocompatibility, and bioresorbability has attracted significant attention for TE applications. SF is commonly dissolved into an aqueous solution and can be easily reconstructed into different material formats, including films, mats, hydrogels, and sponges via various fabrication techniques. These include spin coating, electrospinning, freeze drying, physical, and chemical crosslinking techniques. Furthermore, to facilitate fabrication of more complex SF-based scaffolds with high precision techniques including micro-patterning and bio-printing have recently been explored. This review introduces the physicochemical and mechanical properties of SF and looks into a range of SF-based scaffolds that have been recently developed. The typical TE applications of SF-based scaffolds including bone, cartilage, ligament, tendon, skin, wound healing, and tympanic membrane, will be highlighted and discussed, followed by future prospects and challenges needing to be addressed.
Collapse
Affiliation(s)
- Weizhen Sun
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (W.S.); (D.A.G.); (M.A.T.)
| | - David Alexander Gregory
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (W.S.); (D.A.G.); (M.A.T.)
- Department of Material Science and Engineering, University of Sheffield, Sheffield S3 7HQ, UK
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (W.S.); (D.A.G.); (M.A.T.)
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (W.S.); (D.A.G.); (M.A.T.)
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- Correspondence: ; Tel.: +44(0)-114-222-8256
| |
Collapse
|
42
|
Neubauer VJ, Döbl A, Scheibel T. Silk-Based Materials for Hard Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:674. [PMID: 33535662 PMCID: PMC7867174 DOI: 10.3390/ma14030674] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Hard tissues, e.g., bone, are mechanically stiff and, most typically, mineralized. To design scaffolds for hard tissue regeneration, mechanical, physico-chemical and biological cues must align with those found in the natural tissue. Combining these aspects poses challenges for material and construct design. Silk-based materials are promising for bone tissue regeneration as they fulfill several of such necessary requirements, and they are non-toxic and biodegradable. They can be processed into a variety of morphologies such as hydrogels, particles and fibers and can be mineralized. Therefore, silk-based materials are versatile candidates for biomedical applications in the field of hard tissue engineering. This review summarizes silk-based approaches for mineralized tissue replacements, and how to find the balance between sufficient material stiffness upon mineralization and cell survival upon attachment as well as nutrient supply.
Collapse
Affiliation(s)
- Vanessa J. Neubauer
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.J.N.); (A.D.)
| | - Annika Döbl
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.J.N.); (A.D.)
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.J.N.); (A.D.)
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayerisches Polymerinstitut (BPI), Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
43
|
Biggi S, Bassani GA, Vincoli V, Peroni D, Bonaldo V, Biagiotti M, Belli R, Alessandrino A, Biasini E, Freddi G. Characterization of Physical, Mechanical, and Biological Properties of SilkBridge Nerve Conduit after Enzymatic Hydrolysis. ACS APPLIED BIO MATERIALS 2020; 3:8361-8374. [PMID: 35019608 DOI: 10.1021/acsabm.0c00613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The in vitro degradation profile and the cytotoxicity of the degradation products of a silk fibroin (SF)-based nerve conduit (SilkBridge), with a complex three-layered wall architecture comprising both native and regenerated (electrospun) fibers, are reported. The bacterial protease type XIV from Streptomyces griseus was used as a hydrolytic agent at three different enzyme/substrate ratios (1:8, 1:80, and 1:800 w/w) to account for the different susceptibility to degradation of the native and regenerated components. The incubation time was extended up to 91 days. At fixed time points, the remaining device, the insoluble debris, and the incubation buffers containing soluble degradation products were separated and analyzed. The electrospun fibers forming the inner and outer layers of the conduit wall were almost completely degraded within 10 days of incubation at an enzyme/substrate ratio of 1:80 w/w. The progression of degradation was highlighted by the emergence of zones of erosion and discontinuity along the electrospun fibers, weakening of the electrospun layers, and decrease in resistance to compressive stress. Native SF microfibers forming the middle layer of the conduit wall displayed a higher resistance to enzymatic degradation. When incubated at an enzyme/substrate ratio of 1:8 w/w, the weight decreased gradually over the incubation time as a consequence of fiber erosion and fragmentation. Analogously, the tensile properties markedly decreased. Both spectroscopic and thermal analyses confirmed the gradual increase in the crystalline character of the fibers. The incubation buffers containing the soluble degradation products were subjected to cytotoxicity testing with human HEK293 cells and mouse neuroblastoma N2a cells. No detrimental effects on cell viability were observed, suggesting that the degradation products do not retain any toxic property. Finally, the mass spectrometry analysis of degradation products showed that the SF polypeptides recovered in the incubation buffers were representative of the aminoacidic sequence of the fibroin light chain and of the highly repetitive fibroin heavy chain, indicating that virtually the entire sequence of the fibroin protein constituent of SilkBridge was degraded.
Collapse
Affiliation(s)
- Silvia Biggi
- Dulbecco Telethon Laboratory of Prions and Amyloids, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo, TN, Italy
| | | | | | - Daniele Peroni
- Mass Spectrometry (MS) Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo, TN, Italy
| | - Valerio Bonaldo
- Dulbecco Telethon Laboratory of Prions and Amyloids, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo, TN, Italy
| | - Marco Biagiotti
- Silk Biomaterials Srl, Via Cavour 2, 22074 Lomazzo, Co, Italy
| | - Romina Belli
- Mass Spectrometry (MS) Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo, TN, Italy
| | | | - Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo, TN, Italy
| | - Giuliano Freddi
- Silk Biomaterials Srl, Via Cavour 2, 22074 Lomazzo, Co, Italy
| |
Collapse
|
44
|
Recent advances in formulating electrospun nanofiber membranes: Delivering active phytoconstituents. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Chakraborty J, Ghosh S. Cellular Proliferation, Self-Assembly, and Modulation of Signaling Pathways in Silk Fibroin Gelatin-Based 3D Bioprinted Constructs. ACS APPLIED BIO MATERIALS 2020; 3:8309-8320. [DOI: 10.1021/acsabm.0c01252] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Juhi Chakraborty
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sourabh Ghosh
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
46
|
Review on the Biological Degradation of Polymers in Various Environments. MATERIALS 2020; 13:ma13204586. [PMID: 33076314 PMCID: PMC7602512 DOI: 10.3390/ma13204586] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/25/2022]
Abstract
Biodegradable plastics can make an important contribution to the struggle against increasing environmental pollution through plastics. However, biodegradability is a material property that is influenced by many factors. This review provides an overview of the main environmental conditions in which biodegradation takes place and then presents the degradability of numerous polymers. Polylactide (PLA), which is already available on an industrial scale, and the polyhydroxyalkanoates polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-valerate (PHBV), which are among the few plastics that have been proven to degrade in seawater, will be discussed in detail, followed by a summary of the degradability of further petroleum-, cellulose-, starch-, protein- and CO2-based biopolymers and some naturally occurring polymers.
Collapse
|
47
|
Madden PW, Klyubin I, Ahearne MJ. Silk fibroin safety in the eye: a review that highlights a concern. BMJ Open Ophthalmol 2020; 5:e000510. [PMID: 33024827 PMCID: PMC7513638 DOI: 10.1136/bmjophth-2020-000510] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/15/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022] Open
Abstract
The biomedical use of silk as a suture dates back to antiquity. Fibroin is the structural element that determines the strength of silk and here we consider the safety of fibroin in its role in ophthalmology. The high mechanical strength of silk meant sufficiently thin threads could be made for eye microsurgery, but such usage was all but superseded by synthetic polymer sutures, primarily because silk in its entirety was more inflammatory. Significant immunological response can normally be avoided by careful manufacturing to provide high purity fibroin, and it has been utilised in this form for tissue engineering an array of fibre and film substrata deployed in research with cells of the eye. Films of fibroin can also be made transparent, which is a required property in the visual pathway. Transparent layers of corneal epithelial, stromal and endothelial cells have all been demonstrated with maintenance of phenotype, as have constructs supporting retinal cells. Fibroin has a lack of demonstrable infectious agent transfer, an ability to be sterilised and prepared with minimal contamination, long-term predictable degradation and low direct cytotoxicity. However, there remains a known ability to be involved in amyloid formation and potential amyloidosis which, without further examination, is enough to currently question whether fibroin should be employed in the eye given its innervation into the brain.
Collapse
Affiliation(s)
- Peter W Madden
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology Therapeutics, School of Medicine, Trinity College Dublin, the University of Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - Mark J Ahearne
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| |
Collapse
|
48
|
Abstract
As a biomaterial, silk presents unique features with a combination of excellent mechanical properties, biocompatibility, and biodegradability. The biodegradability aspects of silk biomaterials, especially with options to control the rate from short (days) to long (years) time frames in vivo, make this protein-based biopolymer a good candidate for developing biodegradable devices used for tissue repairs and tissue engineering, as well as medical device implants. Silk materials, including native silk fibers and a broad spectrum of regenerated silk materials, have been investigated in vitro and in vivo to demonstrate degradation by proteolytic enzymes. In this Review, we summarize the findings on these studies on the enzymatic degradation of Bombyx mori (B. mori) silk materials. We also present a discussion on the factors that dictate the degradation properties of silk materials. Finally, in future perspectives, we highlight some key challenges and potential directions toward the future study of the degradation of silk materials.
Collapse
Affiliation(s)
- Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155 USA
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155 USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155 USA
| |
Collapse
|
49
|
Gore PM, Naebe M, Wang X, Kandasubramanian B. Silk fibres exhibiting biodegradability & superhydrophobicity for recovery of petroleum oils from oily wastewater. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121823. [PMID: 31859169 DOI: 10.1016/j.jhazmat.2019.121823] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 05/06/2023]
Abstract
Present study reports superhydrophobic-oleophilic, environment-friendly, & biodegradable silk material derived from Bombyx mori silkworm, for practical oil-water separation and oil recovery applications. In this study, raw silk fibers were degummed using water and Na2CO3 (at 100 °C), for removal of outer gummy sericin protein layer, which was confirmed using FTIR & FE-SEM analysis. The water & Na2CO3 degummed silk fibers showed superhydrophobicity with water contact angles (WCA) of 153° & 158°, respectively, demonstrating Wenzel & Cassi-Baxter states. Degummed silk fibers showed superoleophilicity (OCA∼0°) towards petroleum oils like Petrol, Diesel, & Engine oil. The water & Na2CO3 degummed silk fibers showed oil-water separation efficiencies of 95 % & 87.5 %, respectively. Both degummed silk fibers showed more than 50 % efficiency till 10 separation cycles. Further, raw & degummed silk fibers showed an environmental biocompatibility, by their biodegradation under in-house developed biotic de-compost culture consisting of biodegrading micro-organisms. Their analysis showed that biotic de-compost culture rendered biodegradation weight loss of 11 % and 18 %, respectively, in 35 days. Successive results showed that, degummed silk fibers can be effectively utilized for practical oil-water separation, and further, they can be environmentally biodegraded, thereby mitigating their waste generation and disposal problem.
Collapse
Affiliation(s)
- Prakash M Gore
- Institute for Frontier Materials, Deakin University, Warun Ponds Campus, Geelong 3220, Victoria, Australia; Nano Surface Texturing Lab, Department of Metallurgical & Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, India
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Warun Ponds Campus, Geelong 3220, Victoria, Australia
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Warun Ponds Campus, Geelong 3220, Victoria, Australia
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Lab, Department of Metallurgical & Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, India.
| |
Collapse
|
50
|
Cordelle J, Mantero S. Insight on the endothelialization of small silk-based tissue-engineered vascular grafts. Int J Artif Organs 2020; 43:631-644. [DOI: 10.1177/0391398820906547] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Along with an increased incidence of cardiovascular diseases, there is a strong need for small-diameter vascular grafts. Silk has been investigated as a biomaterial to develop such grafts thanks to different processing options. Endothelialization was shown to be extremely important to ensure graft patency and there is ongoing research on the development and behavior of endothelial cells on vascular tissue-engineered scaffolds. This article reviews the endothelialization of silk-based scaffolds processed throughout the years as silk non-woven nets, films, gel spun, electrospun, or woven scaffolds. Encouraging results were reported with these scaffolds both in vitro and in vivo when implanted in small- to middle-sized animals. The use of coatings and heparin or sulfur to enhance, respectively, cell adhesion and scaffold hemocompatibility is further presented. Bioreactors also showed their interest to improve cell adhesion and thus promoting in vitro pre-endothelialization of grafts even though they are still not systematically used. Finally, the importance of the animal models used to study the right mechanism of endothelialization is discussed.
Collapse
Affiliation(s)
| | - Sara Mantero
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| |
Collapse
|