1
|
Greco G, Schmuck B, Bäcklund FG, Reiter G, Rising A. Post-spin Stretch Improves Mechanical Properties, Reduces Necking, and Reverts Effects of Aging in Biomimetic Artificial Spider Silk Fibers. ACS APPLIED POLYMER MATERIALS 2024; 6:14342-14350. [PMID: 39697840 PMCID: PMC11650584 DOI: 10.1021/acsapm.4c02192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Recent biotechnological advancements in protein production and development of biomimetic spinning procedures make artificial spider silk a promising alternative to petroleum-based fibers. To enhance the competitiveness of artificial silk in terms of mechanical properties, refining the spinning techniques is imperative. One potential strategy involves the integration of post-spin stretching, known to improve fiber strength and stiffness while potentially offering additional advantages. Here, we demonstrate that post-spin stretching not only enhances the mechanical properties of artificial silk fibers but also restores a higher and more uniform alignment of the protein chains, leading to a higher fiber toughness. Additionally, fiber properties may be reduced by processes, such as aging, that cause increased network entropy. Post-spin stretching was found to partially restore the initial properties of fibers exposed aging. Finally, we propose to use the degree of necking as a simple measure of fiber quality in the development of spinning procedures for biobased fibers.
Collapse
Affiliation(s)
- Gabriele Greco
- Department
of Animal Biosciences, Swedish University
of Agricultural Sciences, Box 7011, Uppsala 750
07, Sweden
| | - Benjamin Schmuck
- Department
of Animal Biosciences, Swedish University
of Agricultural Sciences, Box 7011, Uppsala 750
07, Sweden
- Department
of Medicine Huddinge, Karolinska Institutet, Neo, Huddinge 141 83, Sweden
| | - Fredrik G. Bäcklund
- Division
Materials and Production, Department of Polymers, Fibers and Composites, RISE Research Institutes of Sweden, Mölndal 431 53, Sweden
| | - Günter Reiter
- Physikalisches
Institut, Albert-Ludwigs-Universität
Freiburg, Hermann-Herder-Straße
3, Freiburg 79104, Germany
| | - Anna Rising
- Department
of Animal Biosciences, Swedish University
of Agricultural Sciences, Box 7011, Uppsala 750
07, Sweden
- Department
of Medicine Huddinge, Karolinska Institutet, Neo, Huddinge 141 83, Sweden
| |
Collapse
|
2
|
Rosenberg A, Solomonov A, Cohen H, Eliaz D, Kellersztein I, Brookstein O, Kozell A, Wang L, Wagner HD, Daraio C, Shimanovich U. From Basic Principles of Protein-Polysaccharide Association to the Rational Design of Thermally Sensitive Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9210-9223. [PMID: 38330192 PMCID: PMC10895586 DOI: 10.1021/acsami.3c12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Biology resolves design requirements toward functional materials by creating nanostructured composites, where individual components are combined to maximize the macroscale material performance. A major challenge in utilizing such design principles is the trade-off between the preservation of individual component properties and emerging composite functionalities. Here, polysaccharide pectin and silk fibroin were investigated in their composite form with pectin as a thermal-responsive ion conductor and fibroin with exceptional mechanical strength. We show that segregative phase separation occurs upon mixing, and within a limited compositional range, domains ∼50 nm in size are formed and distributed homogeneously so that decent matrix collective properties are established. The composite is characterized by slight conformational changes in the silk domains, sequestering the hydrogen-bonded β-sheets as well as the emergence of randomized pectin orientations. However, most dominant in the composite's properties is the introduction of dense domain interfaces, leading to increased hydration, surface hydrophilicity, and increased strain of the composite material. Using controlled surface charging in X-ray photoelectron spectroscopy, we further demonstrate Ca ions (Ca2+) diffusion in the pectin domains, with which the fingerprints of interactions at domain interfaces are revealed. Both the thermal response and the electrical conductance were found to be strongly dependent on the degree of composite hydration. Our results provide a fundamental understanding of the role of interfacial interactions and their potential applications in the design of material properties, polysaccharide-protein composites in particular.
Collapse
Affiliation(s)
- Asaf Rosenberg
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aleksei Solomonov
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hagai Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dror Eliaz
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Israel Kellersztein
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Ori Brookstein
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anna Kozell
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Linghui Wang
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hanoch Daniel Wagner
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chiara Daraio
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Ulyana Shimanovich
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
The mechanical behavior of silk-fibroin reinforced alginate hydrogel biocomposites - Toward functional tissue biomimetics. J Mech Behav Biomed Mater 2023; 138:105598. [PMID: 36455380 DOI: 10.1016/j.jmbbm.2022.105598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Soft tissues are constructed as fiber-reinforced composites consisting of structural mechanisms and unique mechanical behavior. Biomimetics of their mechanical behavior is currently a significant bioengineering challenge, emphasizing the need to replicate structural and mechanical mechanisms into novel biocomposite designs. Here we present a novel silk-based biocomposite laminate constructed from long natural silk and fibroin fibers embedded in an alginate hydrogel matrix. Controlling the mechanical features of these laminates were studied for different fiber volume fractions (VF) and orientations using unidirectional tensile tests. Three material systems were investigated having different fiber orientations: longitudinal (0°), transverse (90°), and cross-plied (0/90°). The general behavior of the biocomposite laminates was anisotropic hyperelastic with large deformations. Longitudinal fibroin laminates have shown a tensile modulus of 178.55 ± 14.46 MPa and tensile strength of 18.47 ± 2.01 MPa for 0.48 VF. With similar VF, cross-plied fibroin laminates demonstrated structural shielding ability, having a tensile modulus and tensile strength of 101.73 ± 8.04 MPa and 8.29 ± 1.63 MPa for only a third of the VF directed in the stretching direction. The stress-strain behavior was in a similar range to highly stiff native human soft tissues such as ligament and meniscus. These findings demonstrate the potential of the fibroin fiber-reinforced biocomposites to mimic the mechanics of tissues with a quantitatively controlled amount of fibers and designed spatial arrangement. This can lead to new solutions for the repair and replacement of damaged functional and highly stiff soft tissues.
Collapse
|
4
|
Development of New Bio-Composite of PEO/Silk Fibroin Blends Loaded with Piezoelectric Material. Polymers (Basel) 2022; 14:polym14194209. [PMID: 36236157 PMCID: PMC9571570 DOI: 10.3390/polym14194209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
New bio-composite nanofibers composed of polyethylene oxide (PEO)/silk fibroin (SF)/barium titanate (BaTiO3) are introduced in this study. The SF solution was added to the PEO solution to form a PEO/SF blend with different weight percentages (5, 10, 15, 20 wt.%). The PEO/15 wt.% SF blend was selected to continue the experimental plan based on the optimum nanofiber morphology. Different wt.% of BaTiO3 particles (0.2, 0.4, 0.8, 1 wt.%) were added to the PEO/15 wt.% SF blend solution, and the suspensions obtained were introduced to an electrospinning device. The fabricated tissue was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy. The zeta potential of the solution and the piezoelectric performance of the fabricated tissue were characterized. A newly designed pizoTester was used to investigate piezoelectric properties. The results showed that a well-organized, smooth PEO/15 wt.% SF/0.2 wt.% BaTiO3 nanofiber composite with low bead contents was obtained. Improved properties and electrical coupling were achieved in the newly introduced material. Electrospun PEO/15 wt.% SF/0.2 wt.% BaTiO3 mats increased the output voltage (1150 mV) compared to pristine PEO and PEO/SF composite fibers (410 and 290 mV, respectively) upon applying 20 N force at 5 Hz frequency. The observed enhancement in piezoelectric properties suggests that the prepared composite could be a promising material in cardiac tissue engineering (CTE).
Collapse
|
5
|
Changes in Natural Silk Fibres by Hydration, Tensile Loading and Heating as Studied by 1H NMR: Anisotropy in NMR Relaxation Times. Polymers (Basel) 2022; 14:polym14173665. [PMID: 36080741 PMCID: PMC9460615 DOI: 10.3390/polym14173665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
B. mori silkworm natural silk is a fibrous biopolymer with a block copolymer design containing both hydrophobic and hydrophilic regions. Using 1H NMR relaxation, this work studied B. mori natural silk fibres oriented at 0° and 90° to the static magnetic field B0 to clarify how measured NMR parameters reflect the structure and anisotropic properties of hydrated silk fibres. The FTIR method was applied to monitor the changes in the silk I and β-sheet conformations. Unloaded B. mori silk fibres at different hydration levels (HL), the silk threads before and after tensile loading in water, and fibres after a stepped increase in temperature have been explored. NMR data discovered two components in T1 and T2 relaxations for both orientations of silk fibres (0° and 90°). For the slower T2 component, the results showed an obvious anisotropic effect with higher relaxation times for the silk fibres oriented at 90° to B0. The T1 component (water protons, HL = 0.11) was sequentially decreased over a range of fibres: 0° oriented, randomly oriented, silk B. mori cocoon, 90° oriented. The degree of anisotropy in T2 relaxation was decreasing with increasing HL. The T2 in silk threads oriented at 0° and 90° also showed anisotropy in increased HL (to 0.42 g H2O/g dry matter), at tensile loading, and at an increasing temperature towards 320 K. The changes in NMR parameters and different relaxation mechanisms affecting water molecular interactions and silk properties have been discussed. The findings provide new insights relating to the water anisotropy in hydrated Bombyx mori silk fibres at tensile loading and under a changing HL and temperature.
Collapse
|
6
|
Silk Vascular Grafts with Optimized Mechanical Properties for the Repair and Regeneration of Small Caliber Blood Vessels. MATERIALS 2022; 15:ma15103735. [PMID: 35629761 PMCID: PMC9147556 DOI: 10.3390/ma15103735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 01/27/2023]
Abstract
As the incidence of cardiovascular diseases has been growing in recent years, the need for small-diameter vascular grafts is increasing. Considering the limited success of synthetic grafts, vascular tissue engineering/repair/regeneration aim to find novel solutions. Silk fibroin (SF) has been widely investigated for the development of vascular grafts, due to its good biocompatibility, tailorable biodegradability, excellent mechanical properties, and minimal inflammatory reactions. In this study, a new generation of three-layered SF vascular scaffolds has been produced and optimized. Four designs of the SILKGraft vascular prosthesis have been developed with the aim of improving kink resistance and mechanical strength, without compromising the compliance with native vessels and the proven biocompatibility. A more compact arrangement of the textile layer allowed for the increase in the mechanical properties along the longitudinal and circumferential directions and the improvement of the compliance value, which approached that reported for the saphenous and umbilical veins. The higher braid density slightly affected the grafts’ morphology, increasing surface roughness, but the novel design mimicked the corrugation approach used for synthetic grafts, causing significant improvements in kink resistance.
Collapse
|
7
|
Extensible and self-recoverable proteinaceous materials derived from scallop byssal thread. Nat Commun 2022; 13:2731. [PMID: 35585058 PMCID: PMC9117251 DOI: 10.1038/s41467-022-30415-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/18/2022] [Indexed: 11/08/2022] Open
Abstract
Biologically derived and biologically inspired fibers with outstanding mechanical properties have found attractive technical applications across diverse fields. Despite recent advances, few fibers can simultaneously possess high-extensibility and self-recovery properties especially under wet conditions. Here, we report protein-based fibers made from recombinant scallop byssal proteins with outstanding extensibility and self-recovery properties. We initially investigated the mechanical properties of the native byssal thread taken from scallop Chlamys farreri and reveal its high extensibility (327 ± 32%) that outperforms most natural biological fibers. Combining transcriptome and proteomics, we select the most abundant scallop byssal protein type 5-2 (Sbp5-2) in the thread region, and produce a recombinant protein consisting of 7 tandem repeat motifs (rTRM7) of the Sbp5-2 protein. Applying an organic solvent-enabled drawing process, we produce bio-inspired extensible rTRM7 fiber with high-extensibility (234 ± 35%) and self-recovery capability in wet condition, recapitulating the hierarchical structure and mechanical properties of the native scallop byssal thread. We further show that the mechanical properties of rTRM7 fiber are highly regulated by hydrogen bonding and intermolecular crosslinking formed through disulfide bond and metal-carboxyl coordination. With its outstanding mechanical properties, rTRM7 fiber can also be seamlessly integrated with graphene to create motion sensors and electrophysiological signal transmission electrode. Bio-inspired materials are an intense area of study as researchers try to adapt biomaterials for other applications. Here, the authors report on the processing of protein materials derived from the byssal thread of scallops to create high-extensibility materials with self-recovery under wet conditions.
Collapse
|
8
|
Mahajan A, Singh A, Datta D, Katti DS. Bioinspired Injectable Hydrogels Dynamically Stiffen and Contract to Promote Mechanosensing-Mediated Chondrogenic Commitment of Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7531-7550. [PMID: 35119254 DOI: 10.1021/acsami.1c11840] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing stiff and resilient injectable hydrogels that can mechanically support load-bearing joints while enabling chondrogenic differentiation of stem cells is a major challenge in the field of cartilage tissue engineering. In the present work, a triple-network injectable hydrogel system was engineered using Bombyx mori silk fibroin, carboxymethyl cellulose (CMC), and gelatin. The developed hydrogel demonstrated a simultaneous increase in both stiffness and contraction over time, thereby imparting a four-dimensional (4D) evolving niche to the cells. While resilience was provided by CMC, the dynamic alterations in the hydrogel matrix were attributed to the formation of β-sheets in silk. The engineered contraction facilitated condensation of cells that mimicked an important step during cartilage development. Subsequently, this led to downregulation of YAP signaling and enhanced chondrogenic commitment of stem cells. More importantly, the in vivo study showed that the ectopically regenerated cartilage was mature and closely resembled native articular cartilage. Overall, this strategy of engineering mechanotransduction that promotes chondrogenesis by contraction-mediated condensation is a promising and translatable approach for cartilage repair.
Collapse
Affiliation(s)
- Aman Mahajan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology─Kanpur, Kanpur 208016, Uttar Pradesh, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology─Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Akhilesh Singh
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Dipak Datta
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Dhirendra S Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology─Kanpur, Kanpur 208016, Uttar Pradesh, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology─Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
9
|
Cianci C, Chelazzi D, Poggi G, Modi F, Giorgi R, Laurati M. Hybrid fibroin-nanocellulose composites for the consolidation of aged and historical silk. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Biagiotti M, Bassani GA, Chiarini A, Vincoli VT, Dal Prà I, Cosentino C, Alessandrino A, Taddei P, Freddi G. Electrospun Silk Fibroin Scaffolds for Tissue Regeneration: Chemical, Structural, and Toxicological Implications of the Formic Acid-Silk Fibroin Interaction. Front Bioeng Biotechnol 2022; 10:833157. [PMID: 35155396 PMCID: PMC8829063 DOI: 10.3389/fbioe.2022.833157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 01/11/2023] Open
Abstract
The dissolution of Bombyx mori silk fibroin (SF) films in formic acid (FA) for the preparation of electrospinning dopes is widely exploited to produce electrospun SF scaffolds. The SILKBridge® nerve conduit is an example of medical device having in its wall structure an electrospun component produced from an FA spinning dope. Though highly volatile, residual FA remains trapped into the bulk of the SF nanofibers. The purpose of this work is to investigate the type and strength of the interaction between FA and SF in electrospun mats, to quantify its amount and to evaluate its possible toxicological impact on human health. The presence of residual FA in SF mats was detected by FTIR and Raman spectroscopy (new carbonyl peak at about 1,725 cm−1) and by solid state NMR, which revealed a new carbonyl signal at about 164.3 ppm, attributed to FA by isotopic 13C substitution. Changes occurred also in the spectral ranges of hydroxylated amino acids (Ser and Thr), demonstrating that FA interacted with SF by forming formyl esters. The total amount of FA was determined by HS-GC/MS analysis and accounted for 247 ± 20 μmol/g. The greatest part was present as formyl ester, a small part (about 3%) as free FA. Approximately 17% of the 1,500 μmol/g of hydroxy amino acids (Ser and Thr) theoretically available were involved in the formation of formyl esters. Treatment with alkali (Na2CO3) succeeded to remove the greatest part of FA, but not all. Alkali-treated electrospun SF mats underwent morphological, physical, and mechanical changes. The average diameter of the fibers increased from about 440 nm to about 480 nm, the mat shrunk, became stiffer (the modulus increased from about 5.5 MPa to about 7 MPa), and lost elasticity (the strain decreased from about 1 mm/mm to about 0.8 mm/mm). Biocompatibility studies with human adult dermal fibroblasts did not show significant difference in cell proliferation (313 ± 18 and 309 ± 23 cells/mm2 for untreated and alkali-treated SF mat, respectively) and metabolic activity. An in-depth evaluation of the possible toxicological impact of residual FA was made using the SILKBridge® nerve conduit as case study, following the provisions of the ISO 10993-1 standard. The Potential Patient Daily Intake, calculated from the total amount of FA determined by HS-GC/MS, was 2.4 mg/day and the Tolerable Exposure level was set to 35.4 mg/day. This allowed to obtain a value of the Margin of Safety of 15, indicating that the amount of FA left on SF mats after electrospinning does not raise concerns for human health.
Collapse
Affiliation(s)
| | | | - Anna Chiarini
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Human Histology and Embryology Unit, Medical School, University of Verona, Verona, Italy
| | | | - Ilaria Dal Prà
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Human Histology and Embryology Unit, Medical School, University of Verona, Verona, Italy
| | | | | | - Paola Taddei
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuliano Freddi
- Silk Biomaterials S.r.l, Lomazzo, Italy
- *Correspondence: Giuliano Freddi,
| |
Collapse
|
11
|
Li C, Wu J, Shi H, Xia Z, Sahoo JK, Yeo J, Kaplan DL. Fiber-Based Biopolymer Processing as a Route toward Sustainability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105196. [PMID: 34647374 PMCID: PMC8741650 DOI: 10.1002/adma.202105196] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/04/2021] [Indexed: 05/02/2023]
Abstract
Some of the most abundant biomass on earth is sequestered in fibrous biopolymers like cellulose, chitin, and silk. These types of natural materials offer unique and striking mechanical and functional features that have driven strong interest in their utility for a range of applications, while also matching environmental sustainability needs. However, these material systems are challenging to process in cost-competitive ways to compete with synthetic plastics due to the limited options for thermal processing. This results in the dominance of solution-based processing for fibrous biopolymers, which presents challenges for scaling, cost, and consistency in outcomes. However, new opportunities to utilize thermal processing with these types of biopolymers, as well as fibrillation approaches, can drive renewed opportunities to bridge this gap between synthetic plastic processing and fibrous biopolymers, while also holding sustainability goals as critical to long-term successful outcomes.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Junqi Wu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Haoyuan Shi
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca NY 14853, USA
| | - Zhiyu Xia
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca NY 14853, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
12
|
Piorkowski D, Liao CP, Joel AC, Wu CL, Doran N, Blamires SJ, Pugno NM, Tso IM. Adhesion of spider cribellate silk enhanced in high humidity by mechanical plasticization of the underlying fiber. J Mech Behav Biomed Mater 2020; 114:104200. [PMID: 33214109 DOI: 10.1016/j.jmbbm.2020.104200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022]
Abstract
The disruptive nature of water presents a significant challenge when designing synthetic adhesives that maintain functionality in wet conditions. However, many animal adhesives can withstand high humidity or underwater conditions, and some are even enhanced by them. An understudied mechanism in such systems is the influence of material plasticization by water to induce adhesive work through deformation. Cribellate silk is a dry adhesive used by particular spiders to capture moving prey. It presents as a candidate for testing the water plasticization model as it can remain functional at high humidity despite lacking an aqueous component. We performed herein tensile and adhesion tests on cribellate threads from the spider, Hickmania troglodytes; a spider that lives within wet cave environments. We found that the work of adhesion of its cribellate threads increased as the axial fibre deformed during pull-off experiments. This effect was enhanced when the silk was wetted and as spider body size increased. Dry threads on the other hand were stiff with low adhesion. We rationalized our experiments by a series of scaling law models. We concluded that these cribellate threads operate best when the nanofibrils and axial fibers both contribute to adhesion. Design of future synthetic materials could draw inspiration from how water facilitates, rather than diminishes, cribellate silk adhesion.
Collapse
Affiliation(s)
- Dakota Piorkowski
- Department of Life Science, Tunghai University, Taichung, 40704, Taiwan
| | - Chen-Pan Liao
- Department of Life Science, Tunghai University, Taichung, 40704, Taiwan; Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Anna-Christin Joel
- Department of Biological Sciences, Macquarie University, Sydney, Australia; Institute of Biology II, RWTH Aachen University, Aachen, Germany
| | - Chung-Lin Wu
- Center for Measurement Standards, Industrial Technology Research Institute, Hsinchu, Taiwan
| | | | - Sean J Blamires
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Nicola M Pugno
- Laboratory of Bio-Inspired Bionic, Nano Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, I-38123, Trento, Italy; School of Engineering and Materials Science, Queen Mary University, Mile End Rd, London, E1 4NS, UK
| | - I-Min Tso
- Department of Life Science, Tunghai University, Taichung, 40704, Taiwan; Center for Tropical Ecology and Biodiversity, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
13
|
Mu X, Fitzpatrick V, Kaplan DL. From Silk Spinning to 3D Printing: Polymer Manufacturing using Directed Hierarchical Molecular Assembly. Adv Healthc Mater 2020; 9:e1901552. [PMID: 32109007 PMCID: PMC7415583 DOI: 10.1002/adhm.201901552] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/18/2019] [Indexed: 12/25/2022]
Abstract
Silk spinning offers an evolution-based manufacturing strategy for industrial polymer manufacturing, yet remains largely inaccessible as the manufacturing mechanisms in biological and synthetic systems, especially at the molecular level, are fundamentally different. The appealing characteristics of silk spinning include the sustainable sourcing of the protein material, the all-aqueous processing into fibers, and the unique material properties of silks in various formats. Substantial progress has been made to mimic silk spinning in artificial manufacturing processes, despite the gap between natural and artificial systems. This report emphasizes the universal spinning conditions utilized by both spiders and silkworms to generate silk fibers in nature, as a scientific and technical framework for directing molecular assembly into high-performance structures. The preparation of regenerated silk feedstocks and mimicking native spinning conditions in artificial manufacturing are discussed, as is progress and challenges in fiber spinning and 3D printing of silk-composites. Silk spinning is a biomimetic model for advanced and sustainable artificial polymer manufacturing, offering benefits in biomedical applications for tissue scaffolds and implantable devices.
Collapse
Affiliation(s)
- Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
14
|
Li S, Hang Y, Ding Z, Lu Q, Lu G, Chen H, Kaplan DL. Microfluidic Silk Fibers with Aligned Hierarchical Microstructures. ACS Biomater Sci Eng 2020; 6:2847-2854. [PMID: 33463289 DOI: 10.1021/acsbiomaterials.0c00060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hierarchical structure of the ECM provides specific niches for tissues to regulate cell behavior, yet the challenge remains to design biomaterial systems for tissue regeneration to recreate such features in vitro. Here, we achieved this goal through the use of aligned hierarchical structures of native silk fibers, generated through the integration of "bottom-up" and "top-down" strategies to generate regenerated silk fibers with aligned nano- to micro-hierarchical structures. To achieve these designs, we assembled and dispersed silk nanofibers (SNF) in formic acid and spun them into fibers using bioinspired microfluidic chips with a geometry mimicking the native silk gland. The fibers generated using this device exhibited aligned hierarchical structure with fiber mechanical properties superior to fibers derived from more traditional spinning approaches with regenerated silk solutions. Besides the improved mechanical properties, Raman spectroscopic results indicated similarly aligned structures to native fibers and active control of cell proliferation, migration, and aggregate orientation. The results indicate the feasibility of developing bioactive silk fiber materials with hierarchical structures to facilitate utility in a range of cell and tissue regeneration scenarios.
Collapse
Affiliation(s)
- Siyuan Li
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, China.,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingjie Hang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhaozhao Ding
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Qiang Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, China.,National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
15
|
Ng PF, Lee KI, Meng S, Zhang J, Wang Y, Fei B. Wet Spinning of Silk Fibroin-Based Core–Sheath Fibers. ACS Biomater Sci Eng 2019; 5:3119-3130. [DOI: 10.1021/acsbiomaterials.9b00275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Pui Fai Ng
- Institute of Textiles and Clothing, Hong Kong Polytechnic University, 11 Yuk Choi Road, Kowloon, Hong Kong, China
| | - Ka I Lee
- Institute of Textiles and Clothing, Hong Kong Polytechnic University, 11 Yuk Choi Road, Kowloon, Hong Kong, China
| | - Shengfei Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Ren Min Street, Changchun 130022, China
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Ren Min Street, Changchun 130022, China
| | - Yuhong Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Road, Kowloon, Hong Kong, China
| | - Bin Fei
- Institute of Textiles and Clothing, Hong Kong Polytechnic University, 11 Yuk Choi Road, Kowloon, Hong Kong, China
| |
Collapse
|
16
|
Pérez-Rigueiro J, Madurga R, Gañán-Calvo AM, Elices M, Guinea GV, Tasei Y, Nishimura A, Matsuda H, Asakura T. Emergence of supercontraction in regenerated silkworm (Bombyx mori) silk fibers. Sci Rep 2019; 9:2398. [PMID: 30787337 PMCID: PMC6382804 DOI: 10.1038/s41598-019-38712-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/17/2018] [Indexed: 12/01/2022] Open
Abstract
The conditions required for the emergence of supercontraction in regenerated silkworm (Bombyx mori) silk fibers are assessed through an experimental approach that combines the spinning of regenerated fibers with controlled properties and their characterization by 13C solid-state nuclear magnetic resonance (NMR). Both supercontracting and non-supercontracting regenerated fibers are produced using the straining flow spinning (SFS) technique from 13C labeled cocoons. The short-range microstructure of the fibers is assessed through 13C CP/MAS in air and 13C DD/MAS in water, and the main microstructural features are identified and quantified. The mechanical properties of the regenerated fibers and their microstructures are compared with those of natural silkworm silk. The combined analysis highlights two possible key elements as responsible for the emergence of supercontraction: (1) the existence of an upper and a lower limit of the amorphous phase compatible with supercontraction, and (2) the existence of two ordered phases, β-sheet A and B, which correspond to different packing arrangements of the protein chains.
Collapse
Affiliation(s)
- José Pérez-Rigueiro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, (Madrid), Spain. .,Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain. .,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| | - Rodrigo Madurga
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, (Madrid), Spain.,Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Alfonso M Gañán-Calvo
- Escuela Técnica Superior de Ingenieros, Universidad de Sevilla, 41092, Sevilla, Spain
| | - Manuel Elices
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, (Madrid), Spain.,Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Gustavo V Guinea
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, (Madrid), Spain.,Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Yugo Tasei
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Akio Nishimura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Hironori Matsuda
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
17
|
Ling S, Chen W, Fan Y, Zheng K, Jin K, Yu H, Buehler MJ, Kaplan DL. Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci 2018; 85:1-56. [PMID: 31915410 PMCID: PMC6948189 DOI: 10.1016/j.progpolymsci.2018.06.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biopolymer nanofibrils exhibit exceptional mechanical properties with a unique combination of strength and toughness, while also presenting biological functions that interact with the surrounding environment. These features of biopolymer nanofibrils profit from their hierarchical structures that spun angstrom to hundreds of nanometer scales. To maintain these unique structural features and to directly utilize these natural supramolecular assemblies, a variety of new methods have been developed to produce biopolymer nanofibrils. In particular, cellulose nanofibrils (CNFs), chitin nanofibrils (ChNFs), silk nanofibrils (SNFs) and collagen nanofibrils (CoNFs), as the four most abundant biopolymer nanofibrils on earth, have been the focus of research in recent years due to their renewable features, wide availability, low-cost, biocompatibility, and biodegradability. A series of top-down and bottom-up strategies have been accessed to exfoliate and regenerate these nanofibrils for versatile advanced applications. In this review, we first summarize the structures of biopolymer nanofibrils in nature and outline their related computational models with the aim of disclosing fundamental structure-property relationships in biological materials. Then, we discuss the underlying methods used for the preparation of CNFs, ChNFs, SNF and CoNFs, and discuss emerging applications for these biopolymer nanofibrils.
Collapse
Affiliation(s)
- Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yimin Fan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Ke Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Kai Jin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
18
|
Aytemiz D, Fukuda Y, Higuchi A, Asano A, Nakazawa CT, Kameda T, Yoshioka T, Nakazawa Y. Compatibility Evaluation of Non-Woven Sheet Composite of Silk Fibroin and Polyurethane in the Wet State. Polymers (Basel) 2018; 10:polym10080874. [PMID: 30960799 PMCID: PMC6403721 DOI: 10.3390/polym10080874] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 01/07/2023] Open
Abstract
SF/polyurethane composite non-woven sheet was fabricated to evaluate the cardiovascular tissue engineering materials in the wet state. The compatibility and microstructure analyses were carried out on the fabricated SF/polyurethane composite non-woven sheet by thermal analysis and solid-state NMR analysis in the wet state. To evaluate the modulus of elasticity, a tensile test was performed and supported with dynamic viscoelasticity and mechanical analysis. Results showed that SF/polyurethane composites form domains within the non-woven sheet and are in a finely dispersed state while maintaining their structures at a scale of several tens of nm. Moreover, an increase of the loss tangent with low elastic modulus proved that a micromolecular interaction occurs between silk fibroin (SF) and polyurethane molecules.
Collapse
Affiliation(s)
- Derya Aytemiz
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Yasuhiro Fukuda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Akira Higuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Atsushi Asano
- Department of Applied Chemistry, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan.
| | - Chikako T Nakazawa
- Department of Applied Chemistry, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan.
| | - Tsunenori Kameda
- Silk Material Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ohwashi, Tsukuba, Ibaraki 305-8634, Japan.
| | - Taiyo Yoshioka
- Silk Material Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ohwashi, Tsukuba, Ibaraki 305-8634, Japan.
| | - Yasumoto Nakazawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
19
|
Comparison of the effects of post-spinning drawing and wet stretching on regenerated silk fibers produced through straining flow spinning. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.07.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Zhang W, Ye C, Zheng K, Zhong J, Tang Y, Fan Y, Buehler MJ, Ling S, Kaplan DL. Tensan Silk-Inspired Hierarchical Fibers for Smart Textile Applications. ACS NANO 2018; 12:6968-6977. [PMID: 29932636 PMCID: PMC6501189 DOI: 10.1021/acsnano.8b02430] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tensan silk, a natural fiber produced by the Japanese oak silk moth ( Antherea yamamai, abbreviated to A. yamamai), features superior characteristics, such as compressive elasticity and chemical resistance, when compared to the more common silk produced from the domesticated silkworm, Bombyx mori ( B. mori). In this study, the "structure-property" relationships within A. yamamai silk are disclosed from the different structural hierarchies, confirming the outstanding toughness as dominated by the distinct mesoscale fibrillar architectures. Inspired by this hierarchical construction, we fabricated A. yamamai silk-like regenerated B. mori silk fibers (RBSFs) with mechanical properties (extensibility and modulus) comparable to natural A. yamamai silk. These RBSFs were further functionalized to form conductive RBSFs that were sensitive to force and temperature stimuli for applications in smart textiles. This study provides a blueprint in exploiting rational designs from A. yamanmai, which is rare and expensive in comparison to the common and cost-effective B. mori silk to empower enhanced material properties.
Collapse
Affiliation(s)
- Wenwen Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuel & Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Chao Ye
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Ke Zheng
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Jiajia Zhong
- Shanghai Advanced Research Institute (Zhangjiang Lab), Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yuzhao Tang
- Shanghai Advanced Research Institute (Zhangjiang Lab), Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuel & Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
21
|
Piorkowski D, Blackledge TA, Liao C, Doran NE, Wu C, Blamires SJ, Tso I. Humidity‐dependent mechanical and adhesive properties of
Arachnocampa tasmaniensis
capture threads. J Zool (1987) 2018. [DOI: 10.1111/jzo.12562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- D. Piorkowski
- Department of Life Science Tunghai University Taichung Taiwan
| | - T. A. Blackledge
- Department of Biology Integrated Bioscience Program The University of Akron Akron OH USA
| | - C.‐P. Liao
- Department of Life Science Tunghai University Taichung Taiwan
| | | | - C.‐L. Wu
- Center for Measurement Standards Industrial Technology Research Institute Hsinchu Taiwan
| | - S. J. Blamires
- Evolution and Ecology Research Centre University of New South Wales Sydney NSW Australia
| | - I.‐M. Tso
- Department of Life Science Tunghai University Taichung Taiwan
- Center for Tropical Ecology and Biodiversity Tunghai University Taichung Taiwan
| |
Collapse
|
22
|
Dionne J, Lefèvre T, Bilodeau P, Lamarre M, Auger M. A quantitative analysis of the supercontraction-induced molecular disorientation of major ampullate spider silk. Phys Chem Chem Phys 2018; 19:31487-31498. [PMID: 29159351 DOI: 10.1039/c7cp05739c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spider silks exhibit remarkable properties, among which the so-called supercontraction, a physical phenomenon by which fibers undergo a longitudinal shrinkage and a radial swelling when exposed to water. The process is marked by a significant decrease in chain orientation resulting from plasticisation of the amorphous phase. Despite several studies that determined the Hermans orientation function, more quantitative data are required to be able to describe theoretically the macroscopic water-induced shrinkage from molecular reorganization. Here, we have examined the supercontraction of the major ampullate silk single fibers of Nephila clavipes (Nc) and Araneus diadematus (Ad) using polarized Raman spectromicroscopy. We determined the order parameters, the orientation distribution and the secondary structure content. Our data suggest that supercontraction induces a slight increase in β-sheet content, consistently with previous works. The β-sheet orientation is slightly affected by supercontraction compared to that of the amorphous phase, which becomes almost isotropic with shrinkage. Despite an initially lower orientation level, the Ad fiber shows a larger orientation decrease than Nc, consistently with its higher shrinkage amplitude. Although they share similar trends, absolute values of the orientation parameters from this work differ from those found in the literature. We took advantage of having determined the distribution of orientation to estimate the amplitude of shrinkage from changes in macromolecular size resulting from molecular disorientation. Our calculations show that more realistic models are needed to correlate molecular reorientation/refolding to macroscopic shrinkage. This work also underlines that more accurate data relative to molecular orientation are necessary.
Collapse
Affiliation(s)
- J Dionne
- Département de chimie, Regroupement québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines (PROTEO), Centre de Recherche sur les Matériaux Avancés (CERMA), Centre Québécois sur les Matériaux Fonctionnels (CQMF), Université Laval, Pavillon Alexandre-Vachon, QC G1V 0A6, Canada.
| | | | | | | | | |
Collapse
|
23
|
Nishimura A, Matsuda H, Tasei Y, Asakura T. Effect of Water on the Structure and Dynamics of Regenerated [3- 13C] Ser, [3- 13C] , and [3- 13C] Ala-Bombyx mori Silk Fibroin Studied with 13C Solid-State Nuclear Magnetic Resonance. Biomacromolecules 2018; 19:563-575. [PMID: 29309731 DOI: 10.1021/acs.biomac.7b01665] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effects of water on the structure and dynamics of natural and regenerated silk fibroin (SF) samples were studied using 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. We prepared different types of SF materials, sponges, and fibers with different preparation methods and compared their NMR spectra in the dry and hydrated states. Three kinds of 13C NMR techniques, r-INEPT, CP/MAS, and DD/MAS, coupled with 13C isotope labeling of Ser, Tyr, and Ala residues were used. In the hydrated sponges, several conformations, that is, Silk I* and two kinds of β-sheets, A and B, random coil, and highly mobile hydrated random coil were observed, and the fractions were determined. The fractions were remarkably different among the three sponges but with only small differences among the regenerated and native fibers. The increase in the fraction of β-sheet B might be one of the structural factors for preparing stronger regenerated SF fiber.
Collapse
Affiliation(s)
- Akio Nishimura
- Department of Biotechnology, Tokyo University of Agriculture and Technology , Koganei, Tokyo 184-8588, Japan
| | - Hironori Matsuda
- Department of Biotechnology, Tokyo University of Agriculture and Technology , Koganei, Tokyo 184-8588, Japan
| | - Yugo Tasei
- Department of Biotechnology, Tokyo University of Agriculture and Technology , Koganei, Tokyo 184-8588, Japan
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology , Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
24
|
Valentini L, Bittolo Bon S, Pugno NM. Ice-regenerated flame retardant and robust film of Bombyx mori silk fibroin and POSS nano-cages. RSC Adv 2018; 8:9063-9069. [PMID: 35541884 PMCID: PMC9078597 DOI: 10.1039/c7ra13708g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/13/2018] [Indexed: 11/21/2022] Open
Abstract
In this study, we present a simple method to prepare and control the structure of regenerated hybrid silkworm silk films through icing.
Collapse
Affiliation(s)
- Luca Valentini
- Dipartimento di Ingegneria Civile e Ambientale
- Università di Perugia
- UdR INSTM
- 05100 Terni
- Italy
| | - Silvia Bittolo Bon
- Dipartimento di Ingegneria Civile e Ambientale
- Università di Perugia
- UdR INSTM
- 05100 Terni
- Italy
| | - Nicola M. Pugno
- Laboratory of Bio-Inspired and Graphene Nanomechanics
- Department of Civil
- Environmental and Mechanical Engineering
- University of Trento
- Trento
| |
Collapse
|
25
|
Ling S, Qin Z, Li C, Huang W, Kaplan DL, Buehler MJ. Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nat Commun 2017; 8:1387. [PMID: 29123097 PMCID: PMC5680232 DOI: 10.1038/s41467-017-00613-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/14/2017] [Indexed: 12/23/2022] Open
Abstract
A variety of artificial spinning methods have been applied to produce regenerated silk fibers; however, how to spin regenerated silk fibers that retain the advantages of natural silks in terms of structural hierarchy and mechanical properties remains challenging. Here, we show a bioinspired approach to spin regenerated silk fibers. First, we develop a nematic silk microfibril solution, highly viscous and stable, by partially dissolving silk fibers into microfibrils. This solution maintains the hierarchical structures in natural silks and serves as spinning dope. It is then spun into regenerated silk fibers by direct extrusion in the air, offering a useful route to generate polymorphic and hierarchical regenerated silk fibers with physical properties beyond natural fiber construction. The materials maintain the structural hierarchy and mechanical properties of natural silks, including a modulus of 11 ± 4 GPa, even higher than natural spider silk. It can further be functionalized with a conductive silk/carbon nanotube coating, responsive to changes in humidity and temperature.
Collapse
Affiliation(s)
- Shengjie Ling
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Zhao Qin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Wenwen Huang
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
26
|
Giesa T, Schuetz R, Fratzl P, Buehler MJ, Masic A. Unraveling the Molecular Requirements for Macroscopic Silk Supercontraction. ACS NANO 2017; 11:9750-9758. [PMID: 28846384 DOI: 10.1021/acsnano.7b01532] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spider dragline silk is a protein material that has evolved over millions of years to achieve finely tuned mechanical properties. A less known feature of some dragline silk fibers is that they shrink along the main axis by up to 50% when exposed to high humidity, a phenomenon called supercontraction. This contrasts the typical behavior of many other materials that swell when exposed to humidity. Molecular level details and mechanisms of the supercontraction effect are heavily debated. Here we report a molecular dynamics analysis of supercontraction in Nephila clavipes silk combined with in situ mechanical testing and Raman spectroscopy linking the reorganization of the nanostructure to the polar and charged amino acids in the sequence. We further show in our in silico approach that point mutations of these groups not only suppress the supercontraction effect, but even reverse it, while maintaining the exceptional mechanical properties of the silk material. This work has imminent impact on the design of biomimetic equivalents and recombinant silks for which supercontraction may or may not be a desirable feature. The approach applied is appropriate to explore the effect of point mutations on the overall physical properties of protein based materials.
Collapse
Affiliation(s)
- Tristan Giesa
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Roman Schuetz
- Max Planck Institute of Colloids and Interfaces , Science Park Golm, 14424 Potsdam, Germany
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces , Science Park Golm, 14424 Potsdam, Germany
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Admir Masic
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Max Planck Institute of Colloids and Interfaces , Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
27
|
Tasei Y, Nishimura A, Suzuki Y, Sato TK, Sugahara J, Asakura T. NMR Investigation about Heterogeneous Structure and Dynamics of Recombinant Spider Silk in the Dry and Hydrated States. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01862] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yugo Tasei
- Department
of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Akio Nishimura
- Department
of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yu Suzuki
- Tenure-Track
Program for Innovative Research, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan
| | - Takehiro K. Sato
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Junichi Sugahara
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Tetsuo Asakura
- Department
of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
28
|
Kim Y, Lee M, Choi H, Baek I, Kim JI, Na S. Mechanical features of various silkworm crystalline considering hydration effect via molecular dynamics simulations. J Biomol Struct Dyn 2017; 36:1360-1368. [DOI: 10.1080/07391102.2017.1323015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yoonjung Kim
- Department of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Myeongsang Lee
- Institute of Advanced Machinery Design & Technology, Korea University, Seoul 02841, Republic of Korea
| | - Hyunsung Choi
- Department of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Inchul Baek
- Department of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jae in Kim
- Department of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
29
|
Study of the tensile properties of individual multicellular fibres generated by Bacillus subtilis. Sci Rep 2017; 7:46052. [PMID: 28378797 PMCID: PMC5380956 DOI: 10.1038/srep46052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 03/07/2017] [Indexed: 11/09/2022] Open
Abstract
Multicellular fibres formed by Bacillus subtilis (B. subtilis) are attracting interest because of their potential application as degradable biomaterials. However, mechanical properties of individual fibres remain unknown because of their small dimensions. Herein, a new approach is developed to investigate the tensile properties of individual fibres with an average diameter of 0.7 μm and a length range of 25.7–254.3 μm. Variations in the tensile strengths of fibres are found to be the result of variable interactions among pairs of microbial cells known as septa. Using Weibull weakest-link model to study this mechanical variability, we predict the length effect of the sample. Moreover, the mechanical properties of fibres are found to depend highly on relative humidity (RH), with a brittle–ductile transition occurring around RH = 45%. The elastic modulus is 5.8 GPa in the brittle state, while decreases to 62.2 MPa in the ductile state. The properties of fibres are investigated by using a spring model (RH < 45%) for its elastic behaviour, and the Kelvin–Voigt model (RH > 45%) for the time-dependent response. Loading-unloading experiments and numerical calculations demonstrate that necking instability comes from structural changes (septa) and viscoelasticity dominates the deformation of fibres at high RH.
Collapse
|
30
|
Madurga R, Gañán-Calvo AM, Plaza GR, Guinea GV, Elices M, Pérez-Rigueiro J. Production of High Performance Bioinspired Silk Fibers by Straining Flow Spinning. Biomacromolecules 2017; 18:1127-1133. [DOI: 10.1021/acs.biomac.6b01757] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rodrigo Madurga
- Centro
de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
- Departamento
de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | - Gustavo R. Plaza
- Centro
de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
- Departamento
de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Gustavo V. Guinea
- Centro
de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
- Departamento
de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Manuel Elices
- Centro
de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
- Departamento
de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Centro
de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
- Departamento
de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
31
|
Asakura T, Endo M, Tasei Y, Ohkubo T, Hiraoki T. Hydration of Bombyx mori silk cocoon, silk sericin and silk fibroin and their interactions with water as studied by 13C NMR and 2H NMR relaxation. J Mater Chem B 2017; 5:1624-1632. [PMID: 32263934 DOI: 10.1039/c6tb03266d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mechanical properties of Bombyx mori silk fibers, such as elasticity and tensile strength, change remarkably upon hydration. However, changes in the local conformation and dynamics of individual amino acid residues and change in the dynamics of water molecules due to hydration are not currently well understood on the molecular level. In this work, the conformations and dynamics of the hydrated Bombyx mori silk fibers, including silk cocoon (SC), silk sericin (SS) and silk fibroin (SF), were determined after sustained immersion in water by using 13C refocused insensitive nuclei enhanced by polarization transfer (INEPT) NMR, 13C cross-polarization/magic angle spinning (CP/MAS) NMR and 13C dipolar decoupled-magic angle spinning (DD/MAS) NMR. The 13C INEPT NMR spectrum reflects their mobile domain, the 13C CP/MAS NMR spectrum their rigid domain, and the 13C DD/MAS NMR spectrum both domains. The mobile domain of the hydrated SC fiber originates mainly from the hydrated SS part and the rigid domain of the hydrated SC fiber from the hydrated SF part. Moreover, the dynamics of mobile water molecules interacting with the silk fiber was studied by 2H solution NMR relaxation measurements in the silk fiber-2H2O system. Using an inverse Laplace transform algorithm, we were able to identify distinct mobile components in the relaxation times for 2H2O. Our measurements provide new insight relating to the characteristics of the hydrated structure of SC, SS and SF fibers, and the water molecules that interact with them in water. The information is relevant in light of current interest in the design of novel silk-based biomaterials which are usually in contact with blood and other body fluids.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | | | | | | | | |
Collapse
|
32
|
Severt SY, Maxwell SL, Bontrager JS, Leger JM, Murphy AR. Mimicking muscle fiber structure and function through electromechanical actuation of electrospun silk fiber bundles. J Mater Chem B 2017; 5:8105-8114. [DOI: 10.1039/c7tb01904a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fiber bundles composed of silk and conducting polymers undergo linear actuation, thus mimicking the structure and contractile function of muscles.
Collapse
Affiliation(s)
- S. Y. Severt
- Department of Chemistry
- Western Washington University
- Bellingham
- USA
| | - S. L. Maxwell
- Department of Chemistry
- Western Washington University
- Bellingham
- USA
| | - J. S. Bontrager
- Department of Chemistry
- Western Washington University
- Bellingham
- USA
| | - J. M. Leger
- Department of Chemistry
- Western Washington University
- Bellingham
- USA
- Department of Physics and Astronomy
| | - A. R. Murphy
- Department of Chemistry
- Western Washington University
- Bellingham
- USA
| |
Collapse
|
33
|
Silk Spinning in Silkworms and Spiders. Int J Mol Sci 2016; 17:ijms17081290. [PMID: 27517908 PMCID: PMC5000687 DOI: 10.3390/ijms17081290] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/31/2016] [Accepted: 08/02/2016] [Indexed: 01/08/2023] Open
Abstract
Spiders and silkworms spin silks that outcompete the toughness of all natural and manmade fibers. Herein, we compare and contrast the spinning of silk in silkworms and spiders, with the aim of identifying features that are important for fiber formation. Although spiders and silkworms are very distantly related, some features of spinning silk seem to be universal. Both spiders and silkworms produce large silk proteins that are highly repetitive and extremely soluble at high pH, likely due to the globular terminal domains that flank an intermediate repetitive region. The silk proteins are produced and stored at a very high concentration in glands, and then transported along a narrowing tube in which they change conformation in response primarily to a pH gradient generated by carbonic anhydrase and proton pumps, as well as to ions and shear forces. The silk proteins thereby convert from random coil and alpha helical soluble conformations to beta sheet fibers. We suggest that factors that need to be optimized for successful production of artificial silk proteins capable of forming tough fibers include protein solubility, pH sensitivity, and preservation of natively folded proteins throughout the purification and initial spinning processes.
Collapse
|
34
|
Zhou J, Zhang B, Liu X, Shi L, Zhu J, Wei D, Zhong J, Sun G, He D. Facile method to prepare silk fibroin/hyaluronic acid films for vascular endothelial growth factor release. Carbohydr Polym 2016; 143:301-9. [DOI: 10.1016/j.carbpol.2016.01.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 12/18/2015] [Accepted: 01/08/2016] [Indexed: 02/01/2023]
|
35
|
|
36
|
Xu F, Bao M, Rui L, Liu J, Li J, Dou Y, Yang K, Yuan B, Ma Y. Self-assembly of monolayered lipid membranes for surface-coating of a nanoconfined Bombyx mori silk fibroin film. RSC Adv 2015. [DOI: 10.1039/c5ra09683a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A self-assembled lipid membrane provides a smooth, hydrophilic and biocompatible surface coating film for materials.
Collapse
Affiliation(s)
- Fan Xu
- National Laboratory of Solid State Microstructures and Department of Physics
- Nanjing University
- Nanjing
- P. R. China
| | - Meimei Bao
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou
- P. R. China
- College of Physics
| | - Longfei Rui
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou
- P. R. China
- College of Physics
| | - Jiaojiao Liu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou
- P. R. China
- College of Physics
| | - Jingliang Li
- Institute for Frontier Materials
- Deakin University
- Waurn Ponds
- Australia
| | - Yujiang Dou
- School of Electronic and Information Engineering
- Soochow University
- Suzhou
- P. R. China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou
- P. R. China
- College of Physics
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou
- P. R. China
- College of Physics
| | - Yuqiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics
- Nanjing University
- Nanjing
- P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
| |
Collapse
|
37
|
Zhou J, Zhang B, Shi L, Zhong J, Zhu J, Yan J, Wang P, Cao C, He D. Regenerated silk fibroin films with controllable nanostructure size and secondary structure for drug delivery. ACS APPLIED MATERIALS & INTERFACES 2014; 6:21813-21821. [PMID: 25536875 DOI: 10.1021/am502278b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ability of drug release from SF materials was governed largely by their secondary structure. It is known that the breakage degree of the peptide chain during the silk fibroin (SF) dissolution can affect the structure, property, and applications of SF materials. To deeply understand this effect, we designed a reaction system based on CaCl2/H2O/C2H5OH ternary solvent with different ethanol content to obtain the regenerated SF films with different morphologies and secondary structures. The results showed that the globule-like nanostructure was observed in all regenerated SF films, and their size decreased significantly with reducing the ethanol content in the solvent. Correspondingly, the β-sheet structure content of the SF films increased. In addition, the contact angle and the elongation ratio increased, and water absorption decreased significantly with decreasing the ethanol content in the solvent. The accumulated release percents of doxorubicin from these SF films were significantly different with increasing the time. With smaller nanostructure size and more β-sheet content, the SF films had a slower drug release at the beginning. This study indicated the importance of the ethanol content in the solvent in controlling the structure and properties of the regenerated SF films, which would improve the application of SF in drug delivery.
Collapse
Affiliation(s)
- Juan Zhou
- National Engineering Research Center for Nanotechnology, Shanghai 200241, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Addis KT, Raina SK. Dissolution properties of silk cocoon shells and degummed fibers from African wild silkmoths. Pak J Biol Sci 2013; 16:1199-1203. [PMID: 24506023 DOI: 10.3923/pjbs.2013.1199.1203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Silk cocoon shells and degummed fibers from four African wild silkmoth species were studied and compared with the industrial standard, Bombyx mori, for their dissolution properties. Nine M aqueous Lithium bromide, Calcium chloride and Sodium thiocyanate solution systems were used. Efficiency of the solvent systems was determined by the percentage of dissolved silk cocoon shells and degummed fibers after three hours of treatment. Degummed fibers were more readily soluble than the cocoon shells. B. mori cocoon shells (51.5%) and fibers (59.3%) had higher solubility than their wild counterparts. Among the wild species, Gonometa postica cocoon shells and degummed fibers had the highest solubility (37.3 and 51.7%, respectively). Lithium bromide was the most effective dissolving agent for both the cocoon shells and fibers (41.2 and 84.5%, respectively). Argema mimosae, Anaphe panda and Epiphora bauhiniae showed lower solubility across the solution systems used. The Scanning Electron micrographs showed A. panda fibers exhibited gelling property after dissolution while E. bauhiniae and A. mimosae had cracked and broken fibers exposing the fibriliar structures. The difference in the chemical orientation and composition of the fibers might have contributed to the variability in the dissolution behaviour.
Collapse
Affiliation(s)
- K T Addis
- Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - S K Raina
- Commercial Insects Program, ICIPE, African Insects Science for Food and Health, P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
39
|
de Moraes MA, Beppu MM. Biocomposite membranes of sodium alginate and silk fibroin fibers for biomedical applications. J Appl Polym Sci 2013. [DOI: 10.1002/app.39598] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Marisa Masumi Beppu
- School of Chemical Engineering; University of Campinas; 13083-852 Campinas-SP; Brazil
| |
Collapse
|
40
|
Plaza GR, Corsini P, Marsano E, Pérez-Rigueiro J, Elices M, Riekel C, Vendrely C, Guinea GV. Correlation between processing conditions, microstructure and mechanical behavior in regenerated silkworm silk fibers. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/polb.23025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Guan J, Vollrath F, Porter D. Two Mechanisms for Supercontraction in Nephila Spider Dragline Silk. Biomacromolecules 2011; 12:4030-5. [DOI: 10.1021/bm201032v] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juan Guan
- Department
of Zoology, University of Oxford, Oxford
OX1 3PS, U.K
| | - Fritz Vollrath
- Department
of Zoology, University of Oxford, Oxford
OX1 3PS, U.K
| | - David Porter
- Department
of Zoology, University of Oxford, Oxford
OX1 3PS, U.K
| |
Collapse
|
42
|
Yoshioka T, Kawahara Y, Schaper AK. Cyclic or Permanent? Structure Control of the Contraction Behavior of Regenerated Bombyx mori Silk Nanofibers. Macromolecules 2011. [DOI: 10.1021/ma2014172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Taiyo Yoshioka
- Materials Science Center, EM&Mlab, Philipps University of Marburg, Hans-Meerwein-Str., 35032 Marburg, Germany
| | - Yutaka Kawahara
- Department of Biological and Chemical Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Andreas K. Schaper
- Materials Science Center, EM&Mlab, Philipps University of Marburg, Hans-Meerwein-Str., 35032 Marburg, Germany
| |
Collapse
|
43
|
Elices M, Guinea G, Pérez-Rigueiro J, Plaza G. Polymeric fibers with tunable properties: Lessons from spider silk. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2010.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Elices M, Plaza GR, Pérez-Rigueiro J, Guinea GV. The hidden link between supercontraction and mechanical behavior of spider silks. J Mech Behav Biomed Mater 2011; 4:658-69. [DOI: 10.1016/j.jmbbm.2010.09.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/16/2010] [Accepted: 09/17/2010] [Indexed: 10/19/2022]
|
45
|
Elices M, Guinea GV, Plaza GR, Karatzas C, Riekel C, Agulló-Rueda F, Daza R, Pérez-Rigueiro J. Bioinspired Fibers Follow the Track of Natural Spider Silk. Macromolecules 2011. [DOI: 10.1021/ma102291m er] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Elices
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - G. V. Guinea
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - G. R. Plaza
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - C. Karatzas
- Nexia Biotechnologies Inc., Vaudreuil-Dorion, QC J7V 8P5Canada
| | - C. Riekel
- European Synchroton Radiation Facility, B.P. 220, F-38043, Grenoble Cedex, France
| | - F. Agulló-Rueda
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - R. Daza
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - J. Pérez-Rigueiro
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
46
|
Elices M, Guinea GV, Plaza GR, Karatzas C, Riekel C, Agulló-Rueda F, Daza R, Pérez-Rigueiro J. Bioinspired Fibers Follow the Track of Natural Spider Silk. Macromolecules 2011. [DOI: 10.1021/ma102291m] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Elices
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - G. V. Guinea
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - G. R. Plaza
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - C. Karatzas
- Nexia Biotechnologies Inc., Vaudreuil-Dorion, QC J7V 8P5Canada
| | - C. Riekel
- European Synchroton Radiation Facility, B.P. 220, F-38043, Grenoble Cedex, France
| | - F. Agulló-Rueda
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - R. Daza
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - J. Pérez-Rigueiro
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
47
|
Yan J, Zhou G, Knight DP, Shao Z, Chen X. Wet-Spinning of Regenerated Silk Fiber from Aqueous Silk Fibroin Solution: Discussion of Spinning Parameters. Biomacromolecules 2009; 11:1-5. [DOI: 10.1021/bm900840h] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiaping Yan
- The Key Laboratory of Molecular Engineering of Polymers of MOE, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People’s Republic of China, and Oxford Biomaterials Ltd., Unit 4 Galaxy House, New Greenham Park, Newbury, RG19 6HR, United Kingdom
| | - Guanqiang Zhou
- The Key Laboratory of Molecular Engineering of Polymers of MOE, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People’s Republic of China, and Oxford Biomaterials Ltd., Unit 4 Galaxy House, New Greenham Park, Newbury, RG19 6HR, United Kingdom
| | - David P. Knight
- The Key Laboratory of Molecular Engineering of Polymers of MOE, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People’s Republic of China, and Oxford Biomaterials Ltd., Unit 4 Galaxy House, New Greenham Park, Newbury, RG19 6HR, United Kingdom
| | - Zhengzhong Shao
- The Key Laboratory of Molecular Engineering of Polymers of MOE, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People’s Republic of China, and Oxford Biomaterials Ltd., Unit 4 Galaxy House, New Greenham Park, Newbury, RG19 6HR, United Kingdom
| | - Xin Chen
- The Key Laboratory of Molecular Engineering of Polymers of MOE, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People’s Republic of China, and Oxford Biomaterials Ltd., Unit 4 Galaxy House, New Greenham Park, Newbury, RG19 6HR, United Kingdom
| |
Collapse
|
48
|
Plaza GR, Corsini P, Marsano E, Pérez-Rigueiro J, Biancotto L, Elices M, Riekel C, Agulló-Rueda F, Gallardo E, Calleja JM, Guinea GV. Old Silks Endowed with New Properties. Macromolecules 2009. [DOI: 10.1021/ma9017235] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gustavo R. Plaza
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Paola Corsini
- Dipartimento di Chimica e Chimica Industriale, Università di Genova, Via Dodecaneso 31-16146 Genova, Italy
| | - Enrico Marsano
- Dipartimento di Chimica e Chimica Industriale, Università di Genova, Via Dodecaneso 31-16146 Genova, Italy
| | - José Pérez-Rigueiro
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Lautaro Biancotto
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Manuel Elices
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Christian Riekel
- European Synchroton Radiation Facility, B.P. 220, F-38043, Grenoble Cedex, France
| | | | - Eva Gallardo
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José M. Calleja
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gustavo V. Guinea
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
49
|
Affiliation(s)
- Sungkyun Sohn
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003
| | - Samuel P. Gido
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
50
|
Supramolecular organization of regenerated silkworm silk fibers. Int J Biol Macromol 2009; 44:195-202. [DOI: 10.1016/j.ijbiomac.2008.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/13/2008] [Accepted: 12/09/2008] [Indexed: 11/21/2022]
|