1
|
Castañeyra-Perdomo A, Gonzalez-Mora JL, Carmona-Calero EM, Makris N, Carrasco-Juan JL. A Narrative Review on the Clinical Relevance of Imaging the Circumventricular Brain Organs and Performing Their Anatomical and Histopathological Examination in Acute and Postacute COVID-19. Am J Forensic Med Pathol 2024; 45:151-156. [PMID: 38739896 PMCID: PMC11479582 DOI: 10.1097/paf.0000000000000939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
ABSTRACT Autopsy followed by histopathological examination is foundational in clinical and forensic medicine for discovering and understanding pathological changes in disease, their underlying processes, and cause of death. Imaging technology has become increasingly important for advancing clinical research and practice, given its noninvasive, in vivo and ex vivo applicability. Medical and forensic autopsy can benefit greatly from advances in imaging technology that lead toward minimally invasive, whole-brain virtual autopsy. Brain autopsy followed by histopathological examination is still the hallmark for understanding disease and a fundamental modus operandi in forensic pathology and forensic medicine, despite the fact that its practice has become progressively less frequent in medical settings. This situation is especially relevant with respect to new diseases such as COVID-19 caused by the SARS-CoV-2 virus, for which our neuroanatomical knowledge is sparse. In this narrative review, we show that ad hoc clinical autopsies and histopathological analyses combined with neuroimaging of the principal circumventricular organs are critical to gaining insight into the reconstruction of the pathophysiological mechanisms and the explanation of cause of death (ie, atrium mortis) related to the cardiovascular effects of SARS-CoV-2 infection in forensic and clinical medicine.
Collapse
Affiliation(s)
- Agustin Castañeyra-Perdomo
- From the Universidad de La Laguna, Área de Anatomía y Fisiología, Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Santa Cruz de Tenerife, Spain
| | - Jose Luis Gonzalez-Mora
- From the Universidad de La Laguna, Área de Anatomía y Fisiología, Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Santa Cruz de Tenerife, Spain
| | - Emilia Maria Carmona-Calero
- From the Universidad de La Laguna, Área de Anatomía y Fisiología, Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Santa Cruz de Tenerife, Spain
| | - Nikos Makris
- Center for Morphometric Analysis, Departments of Psychiatry and Neurology, A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jose Luis Carrasco-Juan
- Universidad de La Laguna, Área de Histología, Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
2
|
Kikinis Z, Castañeyra-Perdomo A, González-Mora JL, Rushmore RJ, Toppa PH, Haggerty K, Papadimitriou G, Rathi Y, Kubicki M, Kikinis R, Heller C, Yeterian E, Besteher B, Pallanti S, Makris N. Investigating the structural network underlying brain-immune interactions using combined histopathology and neuroimaging: a critical review for its relevance in acute and long COVID-19. Front Psychiatry 2024; 15:1337888. [PMID: 38590789 PMCID: PMC11000670 DOI: 10.3389/fpsyt.2024.1337888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024] Open
Abstract
Current views on immunity support the idea that immunity extends beyond defense functions and is tightly intertwined with several other fields of biology such as virology, microbiology, physiology and ecology. It is also critical for our understanding of autoimmunity and cancer, two topics of great biological relevance and for critical public health considerations such as disease prevention and treatment. Central to this review, the immune system is known to interact intimately with the nervous system and has been recently hypothesized to be involved not only in autonomic and limbic bio-behaviors but also in cognitive function. Herein we review the structural architecture of the brain network involved in immune response. Furthermore, we elaborate upon the implications of inflammatory processes affecting brain-immune interactions as reported recently in pathological conditions due to SARS-Cov-2 virus infection, namely in acute and post-acute COVID-19. Moreover, we discuss how current neuroimaging techniques combined with ad hoc clinical autopsies and histopathological analyses could critically affect the validity of clinical translation in studies of human brain-immune interactions using neuroimaging. Advances in our understanding of brain-immune interactions are expected to translate into novel therapeutic avenues in a vast array of domains including cancer, autoimmune diseases or viral infections such as in acute and post-acute or Long COVID-19.
Collapse
Affiliation(s)
- Zora Kikinis
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Agustin Castañeyra-Perdomo
- Universidad de La Laguna, Área de Anatomía y Fisiología. Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
| | - José Luis González-Mora
- Universidad de La Laguna, Área de Anatomía y Fisiología. Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
- Universidad de La Laguna, Instituto Universitario de Neurosciencias, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
| | - Richard Jarrett Rushmore
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, San Cristobal de la Laguna, Spain
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Poliana Hartung Toppa
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kayley Haggerty
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - George Papadimitriou
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yogesh Rathi
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marek Kubicki
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ron Kikinis
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Carina Heller
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Edward Yeterian
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Psychology, Colby College, Waterville, ME, United States
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Stefano Pallanti
- Department of Psychiatry and Behavioural Science, Albert Einstein College of Medicine, Bronx, NY, United States
- Istituto di Neuroscienze, Florence, Italy
| | - Nikos Makris
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Universidad de La Laguna, Área de Anatomía y Fisiología. Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
- Universidad de La Laguna, Instituto Universitario de Neurosciencias, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
- Department of Anatomy and Neurobiology, Boston University School of Medicine, San Cristobal de la Laguna, Spain
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Fry WM, Ferguson AV. The subfornical organ and organum vasculosum of the lamina terminalis: Critical roles in cardiovascular regulation and the control of fluid balance. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:203-215. [PMID: 34225930 DOI: 10.1016/b978-0-12-820107-7.00013-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this chapter, we review the extensive literature describing the roles of the subfornical organ (SFO), the organum vasculosum of the terminalis (OVLT), and the median preoptic nucleus (MnPO), comprising the lamina terminalis, in cardiovascular regulation and the control of fluid balance. We present this information in the context of both historical and technological developments which can effectively be overlaid upon each other. We describe intrinsic anatomy and connectivity and then discuss early work which described how circulating angiotensin II acts at the SFO to stimulate drinking and increase blood pressure. Extensive studies using direct administration and lesion approaches to highlight the roles of all regions of the lamina terminalis are then discussed. At the cellular level we describe c-Fos and electrophysiological work, which has highlighted an extensive group of circulating hormones which appear to influence the activity of specific neurons in the SFO, OVLT, and MnPO. We highlight optogenetic studies that have begun to unravel the complexities of circuitries underlying physiological outcomes, especially those related to different components of drinking. Finally, we describe the somewhat limited human literature supporting conclusions that these structures play similar and potentially important roles in human physiology.
Collapse
Affiliation(s)
- W Mark Fry
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Alastair V Ferguson
- Department of Biomedical and Molecular Sciences and Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
4
|
Sarnat HB, Flores-Sarnat L, Boltshauser E. Area Postrema: Fetal Maturation, Tumors, Vomiting Center, Growth, Role in Neuromyelitis Optica. Pediatr Neurol 2019; 94:21-31. [PMID: 30797593 DOI: 10.1016/j.pediatrneurol.2018.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The area postrema in the caudal fourth ventricular floor is highly vascular without blood-brain or blood-cerebrospinal fluid barrier. In addition to its function as vomiting center, several others are part of the circumventricular organs for vasomotor/angiotensin II regulation, role in neuromyelitis optica related to aquaporin-4, and somatic growth and appetite regulation. Functions are immature at birth. The purpose was to demonstrate neuronal, synaptic, glial, or ependymal maturation in the area postrema of normal fetuses. We describe three area postrema tumors. METHODS Sections of caudal fourth ventricle of 12 normal human fetal brains at autopsy aged six to 40 weeks and three infants aged three to 18 months were examined. Immunocytochemical neuronal and glial markers were applied to paraffin sections. Two infants with area postrema tumors and another with neurocutaneous melanocytosis and pernicious vomiting also studied. RESULTS Area postrema neurons exhibited cytologic maturity and synaptic circuitry by 14 weeks'. Astrocytes coexpressed vimentin, glial fibrillary acidic protein, and S-100β protein. The ependyma is thin over area postrema, with fetal ependymocytic basal processes. A glial layer separates area postrema from medullary tegmentum. Melanocytes infiltrated area postrema in the toddler with pernicious vomiting; two children had primary area postrema pilocytic astrocytomas. CONCLUSIONS Although area postrema is cytologically mature by 14 weeks, growth increases and functions mature during postnatal months. We recommend neuroimaging for patients with unexplained vomiting and that area postrema neuropathology includes synaptophysin and microtubule-associated protein-2 in patients with suspected dysfunction.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Departments of Paediatrics, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Pathology (Neuropathology), University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.
| | - Laura Flores-Sarnat
- Departments of Paediatrics, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Eugen Boltshauser
- Department of Paediatric Neurology, Children's University Hospital, Zürich, Switzerland
| |
Collapse
|
5
|
Castañeyra-Ruiz L, Hernández-Abad LG, Carmona-Calero EM, Castañeyra-Perdomo A, González-Marrero I. AQP1 Overexpression in the CSF of Obstructive Hydrocephalus and Inversion of Its Polarity in the Choroid Plexus of a Chiari Malformation Type II Case. J Neuropathol Exp Neurol 2019; 78:641-647. [DOI: 10.1093/jnen/nlz033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Leandro Castañeyra-Ruiz
- Department of Neurological Surgery, Washington University, School of Medicine and the St. Louis Children’s Hospital, St. Louis, Missouri
| | | | - Emilia M Carmona-Calero
- Departamento de Anatomía, Anatomía, Patológica e Histología, Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife, Islas Canarias, Spain
| | - Agustín Castañeyra-Perdomo
- Departamento de Anatomía, Anatomía, Patológica e Histología, Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife, Islas Canarias, Spain
| | - Ibrahim González-Marrero
- Departamento de Anatomía, Anatomía, Patológica e Histología, Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife, Islas Canarias, Spain
| |
Collapse
|
6
|
Abstract
The circumventricular organs (CVOs) are specialised neuroepithelial structures found in the midline of the brain, grouped around the third and fourth ventricles. They mediate the communication between the brain and the periphery by performing sensory and secretory roles, facilitated by increased vascularisation and the absence of a blood-brain barrier. Surprisingly little is known about the origins of the CVOs (both developmental and evolutionary), but their functional and organisational similarities raise the question of the extent of their relationship. Here, I review our current knowledge of the embryonic development of the seven major CVOs (area postrema, median eminence, neurohypophysis, organum vasculosum of the lamina terminalis, pineal organ, subcommissural organ, subfornical organ) in embryos of different vertebrate species. Although there are conspicuous similarities between subsets of CVOs, no unifying feature characteristic of their development has been identified. Cross-species comparisons suggest that CVOs also display a high degree of evolutionary flexibility. Thus, the term 'CVO' is merely a functional definition, and features shared by multiple CVOs may be the result of homoplasy rather than ontogenetic or phylogenetic relationships.
Collapse
Affiliation(s)
- Clemens Kiecker
- Department of Developmental NeurobiologyKing's College LondonLondonUK
| |
Collapse
|
7
|
García-Lecea M, Gasanov E, Jedrychowska J, Kondrychyn I, Teh C, You MS, Korzh V. Development of Circumventricular Organs in the Mirror of Zebrafish Enhancer-Trap Transgenics. Front Neuroanat 2017; 11:114. [PMID: 29375325 PMCID: PMC5770639 DOI: 10.3389/fnana.2017.00114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/22/2017] [Indexed: 11/18/2022] Open
Abstract
The circumventricular organs (CVOs) are small structures lining the cavities of brain ventricular system. They are associated with the semitransparent regions of the blood-brain barrier (BBB). Hence it is thought that CVOs mediate biochemical signaling and cell exchange between the brain and systemic blood. Their classification is still controversial and development not fully understood largely due to an absence of tissue-specific molecular markers. In a search for molecular determinants of CVOs we studied the green fluorescent protein (GFP) expression pattern in several zebrafish enhancer trap transgenics including Gateways (ET33-E20) that has been instrumental in defining the development of choroid plexus. In Gateways the GFP is expressed in regions of the developing brain outside the choroid plexus, which remain to be characterized. The neuroanatomical and histological analysis suggested that some previously unassigned domains of GFP expression may correspond to at least six other CVOs–the organum vasculosum laminae terminalis (OVLT), subfornical organ (SFO), paraventricular organ (PVO), pineal (epiphysis), area postrema (AP) and median eminence (ME). Two other CVOs, parapineal and subcommissural organ (SCO) were detected in other enhancer-trap transgenics. Hence enhancer-trap transgenic lines could be instrumental for developmental studies of CVOs in zebrafish and understanding of the molecular mechanism of disease such a hydrocephalus in human. Their future analysis may shed light on general and specific molecular mechanisms that regulate development of CVOs.
Collapse
Affiliation(s)
- Marta García-Lecea
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Evgeny Gasanov
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Justyna Jedrychowska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Igor Kondrychyn
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,RIKEN Center for Developmental Biology, Kobe, Japan
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - May-Su You
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Gokozan HN, Baig F, Corcoran S, Catacutan FP, Gygli PE, Takakura AC, Moreira TS, Czeisler C, Otero JJ. Area postrema undergoes dynamic postnatal changes in mice and humans. J Comp Neurol 2015; 524:1259-69. [PMID: 26400711 DOI: 10.1002/cne.23903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 12/29/2022]
Abstract
The postnatal period in mammals represents a developmental epoch of significant change in the autonomic nervous system (ANS). This study focuses on postnatal development of the area postrema, a crucial ANS structure that regulates temperature, breathing, and satiety, among other activities. We find that the human area postrema undergoes significant developmental changes during postnatal development. To characterize these changes further, we used transgenic mouse reagents to delineate neuronal circuitry. We discovered that, although a well-formed ANS scaffold exists early in embryonic development, the area postrema shows a delayed maturation. Specifically, postnatal days 0-7 in mice show no significant change in area postrema volume or synaptic input from PHOX2B-derived neurons. In contrast, postnatal days 7-20 show a significant increase in volume and synaptic input from PHOX2B-derived neurons. We conclude that key ANS structures show unexpected dynamic developmental changes during postnatal development. These data provide a basis for understanding ANS dysfunction and disease predisposition in premature and postnatal humans.
Collapse
Affiliation(s)
- Hamza Numan Gokozan
- The Ohio State University, College of Medicine, Department of Pathology, Division of Neuropathology, Columbus, Ohio, 43210
| | - Faisal Baig
- The Ohio State University, College of Medicine, Department of Pathology, Division of Neuropathology, Columbus, Ohio, 43210
| | - Sarah Corcoran
- The Ohio State University, College of Medicine, Department of Pathology, Division of Neuropathology, Columbus, Ohio, 43210
| | - Fay Patsy Catacutan
- The Ohio State University, College of Medicine, Department of Pathology, Division of Neuropathology, Columbus, Ohio, 43210
| | - Patrick Edwin Gygli
- The Ohio State University, College of Medicine, Department of Pathology, Division of Neuropathology, Columbus, Ohio, 43210
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, 05508-900, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, 05508-900, São Paulo, Brazil
| | - Catherine Czeisler
- The Ohio State University, College of Medicine, Department of Pathology, Division of Neuropathology, Columbus, Ohio, 43210
| | - José J Otero
- The Ohio State University, College of Medicine, Department of Pathology, Division of Neuropathology, Columbus, Ohio, 43210
| |
Collapse
|
9
|
Castañeyra-Ruiz L, González-Marrero I, Castañeyra-Ruiz A, González-Toledo JM, Castañeyra-Ruiz M, de Paz-Carmona H, Castañeyra-Perdomo A, Carmona-Calero EM. Luteinizing hormone-releasing hormone distribution in the anterior hypothalamus of the female rats. ISRN ANATOMY 2013; 2013:870721. [PMID: 25938107 PMCID: PMC4392965 DOI: 10.5402/2013/870721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/17/2013] [Indexed: 02/05/2023]
Abstract
Luteinizing hormone-releasing hormone (LHRH) neurons and fibers are located in the anteroventral hypothalamus, specifically in the preoptic medial area and the organum vasculosum of the lamina terminalis. Most luteinizing hormone-releasing hormone neurons project to the median eminence where they are secreted in the pituitary portal system in order to control the release of gonadotropin. The aim of this study is to provide, using immunohistochemistry and female brain rats, a new description of the luteinizing hormone-releasing hormone fibers and neuron localization in the anterior hypothalamus. The greatest amount of the LHRH immunoreactive material was found in the organum vasculosum of the lamina terminalis that is located around the anterior region of the third ventricle. The intensity of the reaction of LHRH immunoreactive material decreases from cephalic to caudal localization; therefore, the greatest immunoreaction is in the organum vasculosum of the lamina terminalis, followed by the dorsomedial preoptic area, the ventromedial preoptic area, and finally the ventrolateral medial preoptic area, and in fibers surrounding the suprachiasmatic nucleus and subependymal layer on the floor of the third ventricle where the least amount immunoreactive material is found.
Collapse
Affiliation(s)
- Leandro Castañeyra-Ruiz
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, Ofra s/n, 38071 La Laguna, Tenerife, Spain ; Departamento de Farmacología, Facultad de Medicina, Universidad de La Laguna, Ofra s/n, 38071 La Laguna, Tenerife, Islas Canarias, Spain
| | - Ibrahim González-Marrero
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, Ofra s/n, 38071 La Laguna, Tenerife, Spain
| | - Agustín Castañeyra-Ruiz
- Departamento de Biotecnología, Instituto de Investigación y Ciencias de Puerto del Rosario, c/Tenerife 35, 35600 Puerto del Rosario, Fuerteventura, Isla Canarias, Spain
| | - Juan M González-Toledo
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, Ofra s/n, 38071 La Laguna, Tenerife, Spain
| | - María Castañeyra-Ruiz
- Departamento de Biotecnología, Instituto de Investigación y Ciencias de Puerto del Rosario, c/Tenerife 35, 35600 Puerto del Rosario, Fuerteventura, Isla Canarias, Spain
| | - Héctor de Paz-Carmona
- Departamento de Biotecnología, Instituto de Investigación y Ciencias de Puerto del Rosario, c/Tenerife 35, 35600 Puerto del Rosario, Fuerteventura, Isla Canarias, Spain
| | - Agustín Castañeyra-Perdomo
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, Ofra s/n, 38071 La Laguna, Tenerife, Spain ; Departamento de Biotecnología, Instituto de Investigación y Ciencias de Puerto del Rosario, c/Tenerife 35, 35600 Puerto del Rosario, Fuerteventura, Isla Canarias, Spain
| | - Emilia M Carmona-Calero
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, Ofra s/n, 38071 La Laguna, Tenerife, Spain ; Departamento de Biotecnología, Instituto de Investigación y Ciencias de Puerto del Rosario, c/Tenerife 35, 35600 Puerto del Rosario, Fuerteventura, Isla Canarias, Spain
| |
Collapse
|
10
|
Pangestiningsih TW, Hendrickson A, Sigit K, Sajuthi D, Nurhidayat, Bowden DM. Development of the area postrema: an immunohistochemical study in the macaque. Brain Res 2009; 1280:23-32. [PMID: 19460361 PMCID: PMC8850980 DOI: 10.1016/j.brainres.2009.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 05/05/2009] [Accepted: 05/07/2009] [Indexed: 01/16/2023]
Abstract
The organization and chemical development of the area postrema (AP) in the macaque monkey was studied by immunohistochemistry imaged with conventional and confocal microscopy from day 40 of gestation to adulthood. The thin ependyma of the adult was found to develop from a thick continuous structure beginning in the second trimester. It was later invaded by tyrosine hydroxylase immunoreactive (TH+) and dopamine beta-hydroxylase immunoreactive (DBH+) cells and fibers, suggesting a possible route for release of neurotransmitter directly into ventricular cerebrospinal fluid. Other TH+ and/or DBH+ fibers were found in close approximation to blood vessels. Prominent vascularity of the parenchyma of AP was present late in the first trimester (fetal day (Fd)57 in the macaque) and increased further until birth. By contrast, the underlying solitary nucleus was hypervascular at Fd57, but its vascularity rapidly declined by late in the second trimester. TH+ neurons first appeared late in the first trimester, and DBH+ neurons appeared in the second trimester; these findings are consistent with the view that catecholaminergic cells in AP are the earliest members of the A2 noradrenergic group. Catecholaminergic cells or fibers in AP contained little labeling for synaptic vesicular proteins, suggesting that the release of neurotransmitter there may not involve a synaptic mechanism. Synapses were first observed in mid-second trimester, and most were associated with GABA+ fibers.
Collapse
|
11
|
Krstic R, Nicolas D, Novier A. Nitric oxide synthase in the subfornical organ of Mongolian gerbil (Meriones unguiculatus), mouse and rat. Acta Histochem 1995; 97:429-34. [PMID: 8607293 DOI: 10.1016/s0065-1281(11)80068-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The present paper aims to contribute to the knowledge of the histophysiologic role of the subfornical organ. Using nicotinamide adenine dinucleotide phosphate diaphorase histochemistry (NADPH-diaporase) and nitric oxide synthase immunocytochemistry, we detected a high concentration of the neuronal isoform of nitric oxide synthase in neurons of the subfornical organ of the adult Mongolian gerbil (Meriones unguiculatus), mouse and rat. Our results suggest that neurons of the subfornical organ produce a considerable amount of nitric oxide which acts, not only as a neurotransmitter, but could also diffuse into cerebral blood vessels and cerebrospinal fluid.
Collapse
Affiliation(s)
- R Krstic
- Institute of Histology and Embryology, University of Lausanne, Switzerland
| | | | | |
Collapse
|
12
|
Higuchi M, Kiyama H, Hayakawa T, Hamada Y, Tsujimoto Y. Differential expression of Notch1 and Notch2 in developing and adult mouse brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 29:263-72. [PMID: 7609614 DOI: 10.1016/0169-328x(94)00257-f] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Notch gene encodes a large transmembrane protein, and is required for the correct differentiation of both neural and non-neural tissues in Drosophila. Mammals have more than one Notch gene homolog, e.g. Notch1 and Notch2. Here, in order to determine the role of Notch genes in the mouse nervous system, we used in situ hybridization to study the expression of the Notch1 and -2 genes through mouse embryogenesis and into adulthood. The expression of Notch1 and Notch2 differed throughout development. Notch2 was expressed in the embryonic ventricular zone, the postnatal ependymal cells, and the choroid plexus throughout embryonic and postnatal development. Notch1 was also expressed in the ventricular zone between embryonic days 10 and 14, but its expression decreased gradually as embryos developed. The postnatal mouse brain strongly expressed Notch2, but not Notch1, in the granular cell layer of hippocampal dentate gyrus, where neurogenesis continues even in adult rodents. The most remarkable finding was the detection of a strong signal for Notch2 mRNA in two circumventricular organs: the subfornical organ and the area postrema. The receptor encoded by the Notch2 gene, which is located in these areas, may respond to unknown ligands in CSF. This putative receptor may participate in signal transduction by way of both neural and humoral links. These data suggest that Notch2, rather than Notch1, is related not only to development, but also to some postnatal functions of mouse central nervous system.
Collapse
Affiliation(s)
- M Higuchi
- Department of Medical Genetics, Osaka University Medical School, Japan
| | | | | | | | | |
Collapse
|