1
|
Greitens C, Leroux JC, Burger M. The intracellular visualization of exogenous DNA in fluorescence microscopy. Drug Deliv Transl Res 2024; 14:2242-2261. [PMID: 38526634 PMCID: PMC11208204 DOI: 10.1007/s13346-024-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
In the development of non-viral gene delivery vectors, it is essential to reliably localize and quantify transfected DNA inside the cell. To track DNA, fluorescence microscopy methods are commonly applied. These mostly rely on fluorescently labeled DNA, DNA binding proteins fused to a fluorescent protein, or fluorescence in situ hybridization (FISH). In addition, co-stainings are often used to determine the colocalization of the DNA in specific cellular compartments, such as the endolysosomes or the nucleus. We provide an overview of these DNA tracking methods, advice on how they should be combined, and indicate which co-stainings or additional methods are required to draw precise conclusions from a DNA tracking experiment. Some emphasis is given to the localization of exogenous DNA inside the nucleus, which is the last step of DNA delivery. We argue that suitable tools which allow for the nuclear detection of faint signals are still missing, hampering the rational development of more efficient non-viral transfection systems.
Collapse
Affiliation(s)
- Christina Greitens
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| | - Michael Burger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
2
|
Namiot ED, Zembatov GM, Tregub PP. Insights into brain tumor diagnosis: exploring in situ hybridization techniques. Front Neurol 2024; 15:1393572. [PMID: 39022728 PMCID: PMC11252041 DOI: 10.3389/fneur.2024.1393572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024] Open
Abstract
Objectives Diagnosing brain tumors is critical due to their complex nature. This review explores the potential of in situ hybridization for diagnosing brain neoplasms, examining their attributes and applications in neurology and oncology. Methods The review surveys literature and cross-references findings with the OMIM database, examining 513 records. It pinpoints mutations suitable for in situ hybridization and identifies common chromosomal and gene anomalies in brain tumors. Emphasis is placed on mutations' clinical implications, including prognosis and drug sensitivity. Results Amplifications in EGFR, MDM2, and MDM4, along with Y chromosome loss, chromosome 7 polysomy, and deletions of PTEN, CDKN2/p16, TP53, and DMBT1, correlate with poor prognosis in glioma patients. Protective genetic changes in glioma include increased expression of ADGRB3/1, IL12B, DYRKA1, VEGFC, LRRC4, and BMP4. Elevated MMP24 expression worsens prognosis in glioma, oligodendroglioma, and meningioma patients. Meningioma exhibits common chromosomal anomalies like loss of chromosomes 1, 9, 17, and 22, with specific genes implicated in their development. Main occurrences in medulloblastoma include the formation of isochromosome 17q and SHH signaling pathway disruption. Increased expression of BARHL1 is associated with prolonged survival. Adenomas mutations were reviewed with a focus on adenoma-carcinoma transition and different subtypes, with MMP9 identified as the main metalloprotease implicated in tumor progression. Discussion Molecular-genetic diagnostics for common brain tumors involve diverse genetic anomalies. In situ hybridization shows promise for diagnosing and prognosticating tumors. Detecting tumor-specific alterations is vital for prognosis and treatment. However, many mutations require other methods, hindering in situ hybridization from becoming the primary diagnostic method.
Collapse
Affiliation(s)
- E. D. Namiot
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - G. M. Zembatov
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - P. P. Tregub
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
- Brain Research Department, Federal State Scientific Center of Neurology, Moscow, Russia
- Scientific and Educational Resource Center, Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
3
|
Kumari A, Franks NE, Li L, Audu G, Liskowicz S, Johnson JD, Mistretta CM, Allen BL. Distinct expression patterns of Hedgehog signaling components in mouse gustatory system during postnatal tongue development and adult homeostasis. PLoS One 2024; 19:e0294835. [PMID: 38848388 PMCID: PMC11161123 DOI: 10.1371/journal.pone.0294835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
The Hedgehog (HH) pathway regulates embryonic development of anterior tongue taste fungiform papilla (FP) and the posterior circumvallate (CVP) and foliate (FOP) taste papillae. HH signaling also mediates taste organ maintenance and regeneration in adults. However, there are knowledge gaps in HH pathway component expression during postnatal taste organ differentiation and maturation. Importantly, the HH transcriptional effectors GLI1, GLI2 and GLI3 have not been investigated in early postnatal stages; the HH receptors PTCH1, GAS1, CDON and HHIP, required to either drive HH pathway activation or antagonism, also remain unexplored. Using lacZ reporter mouse models, we mapped expression of the HH ligand SHH, HH receptors, and GLI transcription factors in FP, CVP and FOP in early and late postnatal and adult stages. In adults we also studied the soft palate, and the geniculate and trigeminal ganglia, which extend afferent fibers to the anterior tongue. Shh and Gas1 are the only components that were consistently expressed within taste buds of all three papillae and the soft palate. In the first postnatal week, we observed broad expression of HH signaling components in FP and adjacent, non-taste filiform (FILIF) papillae in epithelium or stroma and tongue muscles. Notably, we observed elimination of Gli1 in FILIF and Gas1 in muscles, and downregulation of Ptch1 in lingual epithelium and of Cdon, Gas1 and Hhip in stroma from late postnatal stages. Further, HH receptor expression patterns in CVP and FOP epithelium differed from anterior FP. Among all the components, only known positive regulators of HH signaling, SHH, Ptch1, Gli1 and Gli2, were expressed in the ganglia. Our studies emphasize differential regulation of HH signaling in distinct postnatal developmental periods and in anterior versus posterior taste organs, and lay the foundation for functional studies to understand the roles of numerous HH signaling components in postnatal tongue development.
Collapse
Affiliation(s)
- Archana Kumari
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nicole E. Franks
- Department of Cell and Developmental Biology, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Libo Li
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gabrielle Audu
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, New Jersey, United States of America
| | - Sarah Liskowicz
- Department of Biology, University of Scranton, Scranton, Pennsylvania, United States of America
| | - John D. Johnson
- Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, New Jersey, United States of America
| | - Charlotte M. Mistretta
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
4
|
Galaz-Montoya JG. The advent of preventive high-resolution structural histopathology by artificial-intelligence-powered cryogenic electron tomography. Front Mol Biosci 2024; 11:1390858. [PMID: 38868297 PMCID: PMC11167099 DOI: 10.3389/fmolb.2024.1390858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
Advances in cryogenic electron microscopy (cryoEM) single particle analysis have revolutionized structural biology by facilitating the in vitro determination of atomic- and near-atomic-resolution structures for fully hydrated macromolecular complexes exhibiting compositional and conformational heterogeneity across a wide range of sizes. Cryogenic electron tomography (cryoET) and subtomogram averaging are rapidly progressing toward delivering similar insights for macromolecular complexes in situ, without requiring tags or harsh biochemical purification. Furthermore, cryoET enables the visualization of cellular and tissue phenotypes directly at molecular, nanometric resolution without chemical fixation or staining artifacts. This forward-looking review covers recent developments in cryoEM/ET and related technologies such as cryogenic focused ion beam milling scanning electron microscopy and correlative light microscopy, increasingly enhanced and supported by artificial intelligence algorithms. Their potential application to emerging concepts is discussed, primarily the prospect of complementing medical histopathology analysis. Machine learning solutions are poised to address current challenges posed by "big data" in cryoET of tissues, cells, and macromolecules, offering the promise of enabling novel, quantitative insights into disease processes, which may translate into the clinic and lead to improved diagnostics and targeted therapeutics.
Collapse
Affiliation(s)
- Jesús G. Galaz-Montoya
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, United States
| |
Collapse
|
5
|
Chen Z, Luo G, Ren J, Wang Q, Zhao X, Wei L, Wang Y, Liu Y, Deng Y, Li S. Recent Advances in and Application of Fluorescent Microspheres for Multiple Nucleic Acid Detection. BIOSENSORS 2024; 14:265. [PMID: 38920569 PMCID: PMC11201543 DOI: 10.3390/bios14060265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Traditional single nucleic acid assays can only detect one target while multiple nucleic acid assays can detect multiple targets simultaneously, providing comprehensive and accurate information. Fluorescent microspheres in multiplexed nucleic acid detection offer high sensitivity, specificity, multiplexing, flexibility, and scalability advantages, enabling precise, real-time results and supporting clinical diagnosis and research. However, multiplexed assays face challenges like complexity, costs, and sample handling issues. The review explores the recent advancements and applications of fluorescent microspheres in multiple nucleic acid detection. It discusses the versatility of fluorescent microspheres in various fields, such as disease diagnosis, drug screening, and personalized medicine. The review highlights the possibility of adjusting the performance of fluorescent microspheres by modifying concentrations and carrier forms, allowing for tailored applications. It emphasizes the potential of fluorescent microsphere technology in revolutionizing nucleic acid detection and advancing health, disease treatment, and medical research.
Collapse
Affiliation(s)
- Zhu Chen
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Gaoming Luo
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jie Ren
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Qixuan Wang
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xinping Zhao
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Linyu Wei
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yue Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China;
| | - Yuan Liu
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Yan Deng
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Song Li
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| |
Collapse
|
6
|
Yang Z, Zhang Z, Qiao Z, Guo X, Wen Y, Zhou Y, Yao C, Fan H, Wang B, Han G. The RING zinc finger protein LbRZF1 promotes salt gland development and salt tolerance in Limonium bicolor. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:787-809. [PMID: 38477645 DOI: 10.1111/jipb.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The recretohalophyte Limonium bicolor thrives in high-salinity environments because salt glands on the above-ground parts of the plant help to expel excess salt. Here, we characterize a nucleus-localized C3HC4 (RING-HC)-type zinc finger protein of L. bicolor named RING ZINC FINGER PROTEIN 1 (LbRZF1). LbRZF1 was expressed in salt glands and in response to NaCl treatment. LbRZF1 showed no E3 ubiquitin ligase activity. The phenotypes of overexpression and knockout lines for LbRZF1 indicated that LbRZF1 positively regulated salt gland development and salt tolerance in L. bicolor. lbrzf1 mutants had fewer salt glands and secreted less salt than did the wild-type, whereas LbRZF1-overexpressing lines had opposite phenotypes, in keeping with the overall salt tolerance of these plants. A yeast two-hybrid screen revealed that LbRZF1 interacted with LbCATALASE2 (LbCAT2) and the transcription factor LbMYB113, leading to their stabilization. Silencing of LbCAT2 or LbMYB113 decreased salt gland density and salt tolerance. The heterologous expression of LbRZF1 in Arabidopsis thaliana conferred salt tolerance to this non-halophyte. We also identified the transcription factor LbMYB48 as an upstream regulator of LbRZF1 transcription. The study of LbRZF1 in the regulation network of salt gland development also provides a good foundation for transforming crops and improving their salt resistance.
Collapse
Affiliation(s)
- Zongran Yang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Ziwei Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Ziqi Qiao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Xueying Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Yixuan Wen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Yingxue Zhou
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Chunliang Yao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Agricultural High-tech Industrial Demonstration Area of the Yellow River Delta of Shandong Province, Dongying, 257000, China
- Dongying Institute, Shandong Normal University, Dongying, 257000, China
| |
Collapse
|
7
|
Reisbitzer A, Krauß S. The dynamic world of RNA: beyond translation to subcellular localization and function. Front Genet 2024; 15:1373899. [PMID: 38533205 PMCID: PMC10963542 DOI: 10.3389/fgene.2024.1373899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Affiliation(s)
| | - Sybille Krauß
- University of Siegen, Institute of Biology, Human Biology / Neurobiology, Siegen, Germany
| |
Collapse
|
8
|
Jiang Y, Shen L, Wang B. Non-electrophysiological techniques targeting transient receptor potential (TRP) gene of gastrointestinal tract. Int J Biol Macromol 2024; 262:129551. [PMID: 38367416 DOI: 10.1016/j.ijbiomac.2024.129551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/19/2024]
Abstract
Transient receptor potential (TRP) channels are cation channels related to a wide range of physical and chemical stimuli, they are expressed all along the gastrointestinal system, and a myriad of diseases are often associated with aberrant expression or mutation of the TRP gene, suggesting that TRPs are promising targets for drug therapy. Therefore, a better understanding of the information of TRPs in health and disease could facilitate the development of effective drugs for the treatment of gastrointestinal diseases like IBD. But there are very few generalizations about the experimental techniques studied in this field. In view of the promise of TRP as a therapeutic target, we discuss experimental methods that can be used for TRPs including their distribution, function and interaction with other proteins, as well as some promising emerging technologies to provide experimental methods for future studies.
Collapse
Affiliation(s)
- Yuting Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
9
|
Shen C, Zhan C, Tong Z, Yin H, Hui J, Qiu S, Li Q, Xu X, Ma H, Wu Z, Shi N, Mao H. Detecting EGFR gene amplification using a fluorescence in situ hybridization platform based on digital microfluidics. Talanta 2024; 269:125444. [PMID: 38042143 DOI: 10.1016/j.talanta.2023.125444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/04/2023]
Abstract
Signal transduction mediated by epidermal growth factor receptor (EGFR) gene affects the proliferation, invasion, metastasis, and angiogenesis of tumor cells. In particular, non-small cell lung cancer (NSCLC) patients with increased in copy number of EGFR gene are often sensitive to tyrosine kinase inhibitors. Despite being the standard for detecting EGFR amplification in the clinic, fluorescence in situ hybridization (FISH) traditionally involves repetitive and complex benchtop procedures that are not only time consuming but also require well-trained personnel. To address these limitations, we develop a digital microfluidics-based FISH platform (DMF-FISH) that automatically implements FISH operations. This system mainly consists of a DMF chip for reagent operation, a heating array for temperature control and a signal processing system. With the capability of automatic droplet handling and efficient temperature control, DMF-FISH performs cell digestion, gradient elution, hybridization and DAPI staining without manual intervention. In addition to operational feasibility, DMF-FISH yields comparable performance with the benchtop FISH protocol but reducing the consumption of DNA probe by 87 % when tested with cell lines and clinical samples. These results highlight unique advantages of the fully automated DMF-FISH system and thus suggest its great potential for clinical diagnosis and personalized therapy of NSCLC.
Collapse
Affiliation(s)
- Chuanjie Shen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Zhaoduo Tong
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Yin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianan Hui
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Shihui Qiu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiushi Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xin Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hui Ma
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhenhua Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Shi
- Suzhou Inst Nanotech & Nanob, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Veríssimo NVP, Mussagy CU, Bento HBS, Pereira JFB, Santos-Ebinuma VDC. Ionic liquids and deep eutectic solvents for the stabilization of biopharmaceuticals: A review. Biotechnol Adv 2024; 71:108316. [PMID: 38199490 DOI: 10.1016/j.biotechadv.2024.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Biopharmaceuticals have allowed the control of previously untreatable diseases. However, their low solubility and stability still hinder their application, transport, and storage. Hence, researchers have applied different compounds to preserve and enhance the delivery of biopharmaceuticals, such as ionic liquids (ILs) and deep eutectic solvents (DESs). Although the biopharmaceutical industry can employ various substances for enhancing formulations, their effect will change depending on the properties of the target biomolecule and environmental conditions. Hence, this review organized the current state-of-the-art on the application of ILs and DESs to stabilize biopharmaceuticals, considering the properties of the biomolecules, ILs, and DESs classes, concentration range, types of stability, and effect. We also provided a critical discussion regarding the potential utilization of ILs and DESs in pharmaceutical formulations, considering the restrictions in this field, as well as the advantages and drawbacks of these substances for medical applications. Overall, the most applied IL and DES classes for stabilizing biopharmaceuticals were cholinium-, imidazolium-, and ammonium-based, with cholinium ILs also employed to improve their delivery. Interestingly, dilute and concentrated ILs and DESs solutions presented similar results regarding the stabilization of biopharmaceuticals. With additional investigation, ILs and DESs have the potential to overcome current challenges in biopharmaceutical formulation.
Collapse
Affiliation(s)
- Nathalia Vieira Porphirio Veríssimo
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, CEP: 14801-902 Araraquara, SP, Brazil; Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, São Paulo University, CEP: 14040-020 Ribeirão Preto, SP, Brazil.
| | - Cassamo Usemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile.
| | - Heitor Buzetti Simões Bento
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, CEP: 14801-902 Araraquara, SP, Brazil.
| | | | - Valéria de Carvalho Santos-Ebinuma
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, CEP: 14801-902 Araraquara, SP, Brazil.
| |
Collapse
|
11
|
Vijayan KK, Shyne Anand PS, Balasubramanian CP, Sahaya Rajan J, Ezhil Praveena P, Aravind R, Sudheer NS, Francis B, Panigrahi A, Otta SK. Vertical transmission and prevalence of white spot syndrome virus (WSSV) in the wild spawning population of the Indian white shrimp, Penaeus indicus. J Invertebr Pathol 2024; 203:108058. [PMID: 38182102 DOI: 10.1016/j.jip.2024.108058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
White spot disease, caused by white spot syndrome virus (WSSV), has historically been the most devastating disease in shrimp aquaculture industry across the world. The mode of virus transmission is the most crucial stage in the dynamics and management of virus infection. This study explored the mechanism of vertical transmission of WSSV in Indian white shrimp, Penaeus indicus, potential native species for domestication and genetic improvement, using quantitative real time PCR (q RT PCR), light and electron microscopy, and in situ hybridization. Wild brooders of P. indicus (n = 2576) were sampled along the South east coast of India, during 2016 to 2021. Of these ∼ 58 % of the brooders were positive for WSSV, and almost 50 % of infected wild brooders were at the various stages of reproductive maturation. WSSV-PCR positive brooders (n = 200) were analysed for vertical WSSV transmission. The q RT PCR studies of reproductive tissues revealed that 61 % (n = 13) of spermatophore, 54 % (n = 28) of immature ovaries and 48 % (n = 27) of ripe ovaries were infected with WSSV. The lowest level of infection was recorded in females with ripe ovaries (6.84 × 101 ± 9.79 × 100 ng genomic DNA) followed by fertilized eggs (1.59 × 102 ± 3.69 × 101 ng genomic DNA), and larvae (nauplius and zoea). The histology of gravid females with high WSSV copies showed pyknotic and karyorrhectic germinal vesicle with degenerated cortical rods. Conversely, the gravid females with low WSSV copies showed fully developed ovary without characteristic signs of WSSV infection. Transmission electron microscopic studies clearly established the presence of WSSV particles in both ovaries and spermatophores. When subjected to in situ hybridization, WSSV-specific signals were observed in connective tissues of spermatophore, although gravid ovary and fertilized eggs were failed to produce WSSV specific signals. The present study provides the first molecular and histological evidence for trans-ovarian vertical transmission of WSSV. Development of disease-free base population being the cornerstone and first step in establishing the breeding program, the present findings could be a basis for development of such programs.
Collapse
Affiliation(s)
- K K Vijayan
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai 28, India
| | - P S Shyne Anand
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai 28, India
| | | | | | - P Ezhil Praveena
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai 28, India
| | - R Aravind
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai 28, India
| | - N S Sudheer
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai 28, India
| | - Biju Francis
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai 28, India
| | - A Panigrahi
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai 28, India
| | - S K Otta
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai 28, India
| |
Collapse
|
12
|
Díaz Del Arco C, Fernández Aceñero MJ, Ortega Medina L. Molecular Classifications in Gastric Cancer: A Call for Interdisciplinary Collaboration. Int J Mol Sci 2024; 25:2649. [PMID: 38473896 DOI: 10.3390/ijms25052649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Gastric cancer (GC) is a heterogeneous disease, often diagnosed at advanced stages, with a 5-year survival rate of approximately 20%. Despite notable technological advancements in cancer research over the past decades, their impact on GC management and outcomes has been limited. Numerous molecular alterations have been identified in GC, leading to various molecular classifications, such as those developed by The Cancer Genome Atlas (TCGA) and the Asian Cancer Research Group (ACRG). Other authors have proposed alternative perspectives, including immune, proteomic, or epigenetic-based classifications. However, molecular stratification has not yet transitioned into clinical practice for GC, and little attention has been paid to alternative molecular classifications. In this review, we explore diverse molecular classifications in GC from a practical point of view, emphasizing their relationships with clinicopathological factors, prognosis, and therapeutic approaches. We have focused on classifications beyond those of TCGA and the ACRG, which have been less extensively reviewed previously. Additionally, we discuss the challenges that must be overcome to ensure their impact on patient treatment and prognosis. This review aims to serve as a practical framework to understand the molecular landscape of GC, facilitate the development of consensus molecular categories, and guide the design of innovative molecular studies in the field.
Collapse
Affiliation(s)
- Cristina Díaz Del Arco
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - María Jesús Fernández Aceñero
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Luis Ortega Medina
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
13
|
Rolph MJ, Bolfa P, Cavanaugh SM, Rolph KE. Fluorescent In Situ Hybridization for the Detection of Intracellular Bacteria in Companion Animals. Vet Sci 2024; 11:52. [PMID: 38275934 PMCID: PMC10821249 DOI: 10.3390/vetsci11010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
FISH techniques have been applied for the visualization and identification of intracellular bacteria in companion animal species. Most frequently, these techniques have focused on the identification of adhesive-invasive Escherichia coli in gastrointestinal disease, although various other organisms have been identified in inflammatory or neoplastic gastrointestinal disease. Previous studies have investigated a potential role of Helicobacter spp. in inflammatory gastrointestinal and hepatic conditions. Other studies evaluating the role of infectious organisms in hepatopathies have received some attention with mixed results. FISH techniques using both eubacterial and species-specific probes have been applied in inflammatory cardiovascular, urinary, and cutaneous diseases to screen for intracellular bacteria. This review summarizes the results of these studies.
Collapse
Affiliation(s)
| | | | | | - Kerry E. Rolph
- Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| |
Collapse
|
14
|
Mathew MT, Babcock M, Hou YCC, Hunter JM, Leung ML, Mei H, Schieffer K, Akkari Y. Clinical Cytogenetics: Current Practices and Beyond. J Appl Lab Med 2024; 9:61-75. [PMID: 38167757 DOI: 10.1093/jalm/jfad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/17/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Throughout history, the field of cytogenetics has witnessed significant changes due to the constant evolution of technologies used to assess chromosome number and structure. Similar to the evolution of single nucleotide variant detection from Sanger sequencing to next-generation sequencing, the identification of chromosome alterations has progressed from banding to fluorescence in situ hybridization (FISH) to chromosomal microarrays. More recently, emerging technologies such as optical genome mapping and genome sequencing have made noteworthy contributions to clinical laboratory testing in the field of cytogenetics. CONTENT In this review, we journey through some of the most pivotal discoveries that have shaped the development of clinical cytogenetics testing. We also explore the current test offerings, their uses and limitations, and future directions in technology advancements. SUMMARY Cytogenetics methods, including banding and targeted assessments like FISH, continue to hold crucial roles in cytogenetic testing. These methods offer a rapid turnaround time, especially for conditions with a known etiology involving recognized cytogenetic aberrations. Additionally, laboratories have the flexibility to now employ higher-throughput methodologies to enhance resolution for cases with greater complexity.
Collapse
Affiliation(s)
- Mariam T Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Melanie Babcock
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Ying-Chen Claire Hou
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Jesse M Hunter
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Marco L Leung
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Hui Mei
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Kathleen Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Yassmine Akkari
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
15
|
Ramdas P, Chande A. RNA-FISH for HIV Transcription/Localization Analysis. Methods Mol Biol 2024; 2807:31-43. [PMID: 38743219 DOI: 10.1007/978-1-0716-3862-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
RNA fluorescence in situ hybridization (FISH) serves as a method for visualizing specific RNA molecules within cells. Its primary utility lies in the observation of messenger RNA (mRNA) molecules associated with particular genes of significance. This technique can also be applied to examine viral transcription and the localization of said transcripts within infected cells. In this context, we provide a comprehensive protocol for the detection, localization, and quantification of HIV-1 transcripts in mammalian cell lines. This encompasses the preparation of required reagents, cellular treatments, visualization, and the subsequent analysis of the data acquired. These parameters play a pivotal role in enhancing our comprehension of the molecular processes during infection, particularly at the crucial transcription phase of the viral life cycle.
Collapse
Affiliation(s)
- Pavitra Ramdas
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India.
| | - Ajit Chande
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
16
|
Laines-Hidalgo JI, Kú-González AF, Vázquez-Flota FA. A Novel Method for In Situ RT-PCR Based on Capsules from Centrifuge Tubes, Ideal for Transcripts Detection in Plant Tissues. Methods Mol Biol 2024; 2827:417-433. [PMID: 38985286 DOI: 10.1007/978-1-0716-3954-2_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
In situ RT-PCR presents advantages over other expression analysis methods due to its rapid processing and low-cost equipment. However, this technique is not without its challenges. A protocol based on a capsule made from centrifuge tubes that offers advantages over slides is presented. This capsule protects histological sections from drying out, and its easy assembly reduces time pauses between incubations. In addition, the container size where the sample is deposited allows the addition and withdrawal of the different solutions. The capsule does not need previous sealing after each incubation, and, above all, it is a low-cost and accessible material. A guideline for tissue sectioning using a cryostat that offers advantages over other sectioning methods is also described.
Collapse
Affiliation(s)
| | - Angela F Kú-González
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Merida, Yucatán, Mexico
| | - Felipe A Vázquez-Flota
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Merida, Yucatán, Mexico.
| |
Collapse
|
17
|
Pelayo MA, Yamaguchi N. Old school, new rules: floral meristem development revealed by 3D gene expression atlases and high-resolution transcription factor-chromatin dynamics. FRONTIERS IN PLANT SCIENCE 2023; 14:1323507. [PMID: 38155851 PMCID: PMC10753784 DOI: 10.3389/fpls.2023.1323507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 12/30/2023]
Abstract
The intricate morphology of the flower is primarily established within floral meristems in which floral organs will be defined and from where the developing flower will emerge. Floral meristem development involves multiscale-level regulation, including lineage and positional mechanisms for establishing cell-type identity, and transcriptional regulation mediated by changes in the chromatin environment. However, many key aspects of floral meristem development remain to be determined, such as: 1) the exact role of cellular location in connecting transcriptional inputs to morphological outcomes, and 2) the precise interactions between transcription factors and chromatin regulators underlying the transcriptional networks that regulate the transition from cell proliferation to differentiation during floral meristem development. Here, we highlight recent studies addressing these points through newly developed spatial reconstruction techniques and high-resolution transcription factor-chromatin environment interactions in the model plant Arabidopsis thaliana. Specifically, we feature studies that reconstructed 3D gene expression atlases of the floral meristem. We also discuss how the precise timing of floral meristem specification, floral organ patterning, and floral meristem termination is determined through temporally defined epigenetic dynamics for fine-tuning of gene expression. These studies offer fresh insights into the well-established principles of floral meristem development and outline the potential for further advances in this field in an age of integrated, powerful, multiscale resolution approaches.
Collapse
Affiliation(s)
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| |
Collapse
|
18
|
Qiu Y, Han Z, Liu N, Yu M, Zhang S, Chen H, Tang H, Zhao Z, Wang K, Lin Z, Han F, Ye X. Effects of Aegilops longissima chromosome 1S l on wheat bread-making quality in two types of translocation lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:2. [PMID: 38072878 DOI: 10.1007/s00122-023-04504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
KEY MESSAGE Two wheat-Ae. longissima translocation chromosomes (1BS·1SlL and 1SlS·1BL) were transferred into three commercial wheat varieties, and the new advanced lines showed improved bread-making quality compared to their recurrent parents. Aegilops longissima chromosome 1Sl encodes specific types of gluten subunits that may positively affect wheat bread-making quality. The most effective method of introducing 1Sl chromosomal fragments containing the target genes into wheat is chromosome translocation. Here, a wheat-Ae. longissima 1BS·1SlL translocation line was developed using molecular marker-assisted chromosome engineering. Two types of translocation chromosomes developed in a previous study, 1BS·1SlL and 1SlS·1BL, were introduced into three commercial wheat varieties (Ningchun4, Ningchun50, and Westonia) via backcrossing with marker-assisted selection. Advanced translocation lines were confirmed through chromosome in situ hybridization and genotyping by target sequencing using the wheat 40 K system. Bread-making quality was found to be improved in the two types of advanced translocation lines compared to the corresponding recurrent parents. Furthermore, 1SlS·1BL translocation lines displayed better bread-making quality than 1BS·1SlL translocation lines in each genetic background. Further analysis revealed that high molecular weight glutenin subunit (HMW-GS) contents and expression levels of genes encoding low molecular weight glutenin subunits (LMW-GSs) were increased in 1SlS·1BL translocation lines. Gliadin and gluten-related transcription factors were also upregulated in the grains of the two types of advanced translocation lines compared to the recurrent parents. This study clarifies the impacts of specific glutenin subunits on bread-making quality and provides novel germplasm resources for further improvement of wheat quality through molecular breeding.
Collapse
Affiliation(s)
- Yuliang Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Institute of Cotton Sciences, Shanxi Agricultural University, Yuncheng, 044000, China
| | - Zhiyang Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ningtao Liu
- Keshan Branch, Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161600, China
| | - Mei Yu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuangxi Zhang
- Crop Research Institute, Ningxia Academy of Agri-Forestry Sciences, Yinchuan, 750105, China
| | - Haiqiang Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huali Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiyong Zhao
- Institute of Cotton Sciences, Shanxi Agricultural University, Yuncheng, 044000, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhishan Lin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fangpu Han
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
19
|
Stilwell JM, Camus AC, Woodyard ET, Ware C, Rosser TG, Gunn MA, López-Porras A, Khoo LH, Wise DJ, Griffin MJ. Species-specific in situ hybridization confirms arrested development of Henneguya ictaluri in hybrid catfish (Channel Catfish × Blue Catfish) under experimental conditions, with notes on mixed-species infections in clinical cases of proliferative gill disease from Mississippi catfish aquaculture. JOURNAL OF AQUATIC ANIMAL HEALTH 2023; 35:223-237. [PMID: 37965694 DOI: 10.1002/aah.10196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/10/2023] [Accepted: 07/02/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVE Proliferative gill disease (PGD) in Channel Catfish Ictalurus punctatus and hybrid catfish (Channel Catfish × Blue Catfish I. furcatus) is attributed to the myxozoan Henneguya ictaluri. Despite evidence of decreased H. ictaluri transmission and impaired parasite development in hybrid catfish, PGD still occurs in hybrid production systems. Previous metagenomic assessments of clinical PGD cases revealed numerous myxozoans within affected gill tissues in addition to H. ictaluri. The objective of this study was to investigate the development and pathologic contributions of H. ictaluri and other myxozoans in naturally and experimentally induced PGD. METHODS Henneguya species-specific in situ hybridization (ISH) assays were developed using RNAscope technology. Natural infections were sourced from diagnostic case submissions in 2019. Experimental challenges involved Channel Catfish and hybrid catfish exposed to pond water from an active PGD outbreak, and the fish were sampled at 1, 7, 10, 12, 14, 16, 18, and 20 weeks postchallenge. RESULT Nine unique ISH probes were designed, targeting a diagnostic variable region of the 18S ribosomal RNA gene of select myxozoan taxa identified in clinical PGD cases. Partial validation from pure H. ictaluri, H. adiposa, H. postexilis, and H. exilis infections illustrated species-specific labeling and no cross-reactivity between different myxozoan species or the catfish hosts. After experimental challenge, mature plasmodia of H. ictaluri and H. postexilis formed in Channel Catfish but were not observed in hybrids, suggesting impaired or delayed sporogenesis in the hybridized host. These investigations also confirmed the presence of mixed infections in clinical PGD cases. CONCLUSION Although H. ictaluri appears to be the primary cause of PGD, presporogonic stages of other myxozoans were also present, which may contribute to disease pathology and exacerbate respiratory compromise by further altering normal gill morphology. This work provides molecular confirmation and more resolute developmental timelines of H. ictaluri and H. postexilis in Channel Catfish and supports previous research indicating impaired or precluded H. ictaluri sporogony in hybrid catfish.
Collapse
Affiliation(s)
- Justin M Stilwell
- Department of Pathology, University of Georgia, Athens, Georgia, USA
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Alvin C Camus
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | - Ethan T Woodyard
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Cynthia Ware
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, Mississippi, USA
- Thad Cochran National Warmwater Aquaculture Center, Aquatic Research and Diagnostic Laboratory, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, USA
| | - Thomas G Rosser
- Department of Comparative Biomedical Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Mackenzie A Gunn
- Thad Cochran National Warmwater Aquaculture Center, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Stoneville, Mississippi, USA
| | - Adrián López-Porras
- Thad Cochran National Warmwater Aquaculture Center, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Stoneville, Mississippi, USA
| | - Lester H Khoo
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, Mississippi, USA
- Thad Cochran National Warmwater Aquaculture Center, Aquatic Research and Diagnostic Laboratory, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, USA
| | - David J Wise
- Thad Cochran National Warmwater Aquaculture Center, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Stoneville, Mississippi, USA
| | - Matt J Griffin
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, Mississippi, USA
- Thad Cochran National Warmwater Aquaculture Center, Aquatic Research and Diagnostic Laboratory, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, USA
| |
Collapse
|
20
|
Herrera M, Ravasi T, Laudet V. Anemonefishes: A model system for evolutionary genomics. F1000Res 2023; 12:204. [PMID: 37928172 PMCID: PMC10624958 DOI: 10.12688/f1000research.130752.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
Anemonefishes are an iconic group of coral reef fish particularly known for their mutualistic relationship with sea anemones. This mutualism is especially intriguing as it likely prompted the rapid diversification of anemonefish. Understanding the genomic architecture underlying this process has indeed become one of the holy grails of evolutionary research in these fishes. Recently, anemonefishes have also been used as a model system to study the molecular basis of highly complex traits such as color patterning, social sex change, larval dispersal and life span. Extensive genomic resources including several high-quality reference genomes, a linkage map, and various genetic tools have indeed enabled the identification of genomic features controlling some of these fascinating attributes, but also provided insights into the molecular mechanisms underlying adaptive responses to changing environments. Here, we review the latest findings and new avenues of research that have led to this group of fish being regarded as a model for evolutionary genomics.
Collapse
Affiliation(s)
- Marcela Herrera
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Marine Research Station, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi I-Lan 262, Taiwan
| |
Collapse
|
21
|
Greenstreet L, Afanassiev A, Kijima Y, Heitz M, Ishiguro S, King S, Yachie N, Schiebinger G. DNA-GPS: A theoretical framework for optics-free spatial genomics and synthesis of current methods. Cell Syst 2023; 14:844-859.e4. [PMID: 37751737 DOI: 10.1016/j.cels.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 04/19/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
While single-cell sequencing technologies provide unprecedented insights into genomic profiles at the cellular level, they lose the spatial context of cells. Over the past decade, diverse spatial transcriptomics and multi-omics technologies have been developed to analyze molecular profiles of tissues. In this article, we categorize current spatial genomics technologies into three classes: optical imaging, positional indexing, and mathematical cartography. We discuss trade-offs in resolution and scale, identify limitations, and highlight synergies between existing single-cell and spatial genomics methods. Further, we propose DNA-GPS (global positioning system), a theoretical framework for large-scale optics-free spatial genomics that combines ideas from mathematical cartography and positional indexing. DNA-GPS has the potential to achieve scalable spatial genomics for multiple measurement modalities, and by eliminating the need for optical measurement, it has the potential to position cells in three-dimensions (3D).
Collapse
Affiliation(s)
- Laura Greenstreet
- Department of Mathematics, The University of British Columbia, Vancouver, BC, Canada
| | - Anton Afanassiev
- Department of Mathematics, The University of British Columbia, Vancouver, BC, Canada
| | - Yusuke Kijima
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada; Department of Aquatic Bioscience, The University of Tokyo, Tokyo, Japan
| | - Matthieu Heitz
- Department of Mathematics, The University of British Columbia, Vancouver, BC, Canada
| | - Soh Ishiguro
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Samuel King
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Nozomu Yachie
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, Japan; Graduate School of Media and Governance, Keio University, Fujisawa, Japan.
| | - Geoffrey Schiebinger
- Department of Mathematics, The University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
22
|
Pickard K, Stephenson E, Mitchell A, Jardine L, Bacon CM. Location, location, location: mapping the lymphoma tumor microenvironment using spatial transcriptomics. Front Oncol 2023; 13:1258245. [PMID: 37869076 PMCID: PMC10586500 DOI: 10.3389/fonc.2023.1258245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Lymphomas are a heterogenous group of lymphoid neoplasms with a wide variety of clinical presentations. Response to treatment and prognosis differs both between and within lymphoma subtypes. Improved molecular and genetic profiling has increased our understanding of the factors which drive these clinical dynamics. Immune and non-immune cells within the lymphoma tumor microenvironment (TME) can both play a key role in antitumor immune responses and conversely also support lymphoma growth and survival. A deeper understanding of the lymphoma TME would identify key lymphoma and immune cell interactions which could be disrupted for therapeutic benefit. Single cell RNA sequencing studies have provided a more comprehensive description of the TME, however these studies are limited in that they lack spatial context. Spatial transcriptomics provides a comprehensive analysis of gene expression within tissue and is an attractive technique in lymphoma to both disentangle the complex interactions between lymphoma and TME cells and improve understanding of how lymphoma cells evade the host immune response. This article summarizes current spatial transcriptomic technologies and their use in lymphoma research to date. The resulting data has already enriched our knowledge of the mechanisms and clinical impact of an immunosuppressive TME in lymphoma and the accrual of further studies will provide a fundamental step in the march towards personalized medicine.
Collapse
Affiliation(s)
- Keir Pickard
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Haematology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Emily Stephenson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alex Mitchell
- Haematology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Haematology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Chris M. Bacon
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
23
|
Higo S, Ishii H, Ozawa H. Recent Advances in High-sensitivity In Situ Hybridization and Costs and Benefits to Consider When Employing These Methods. Acta Histochem Cytochem 2023; 56:49-54. [PMID: 37425096 PMCID: PMC10323200 DOI: 10.1267/ahc.23-00024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/29/2023] [Indexed: 07/11/2023] Open
Abstract
In situ hybridization (ISH), which visualizes nucleic acids in tissues and cells, is a powerful tool in histology and pathology. Over 50 years since its invention, multiple attempts have been made to increase the sensitivity and simplicity of these methods. Therefore, several highly sensitive in situ hybridization methods have been developed that offer researchers a wide range of options. When selecting these in situ hybridization variants, their signal-amplification principles and characteristics must be understood. In addition, from a practical point of view, a method with good monetary and time-cost performance must be chosen. This review introduces recent high-sensitivity in situ hybridization variants and presents their principles, characteristics, and costs.
Collapse
Affiliation(s)
- Shimpei Higo
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1–1–5, Sendagi, Bunkyo-ku, Tokyo 113–8602, Japan
| | - Hirotaka Ishii
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1–1–5, Sendagi, Bunkyo-ku, Tokyo 113–8602, Japan
| | - Hitoshi Ozawa
- Faculty of Health Sciences, Bukkyo University, Kyoto, Japan
| |
Collapse
|
24
|
Molossi FA, Albuquerque de Almeida B, Santana de Cecco B, Pissetti C, Ventura L, Brandalise L, Simão G, Vanucci F, Negrao Watababe TT, Vaz Jr. IDS, Driemeier D. Porcine circovirus type 3: immunohistochemical detection in lesions of naturally affected piglets. Front Vet Sci 2023; 10:1174718. [PMID: 37215483 PMCID: PMC10192697 DOI: 10.3389/fvets.2023.1174718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
This study aimed to evaluate the relationship between porcine circovirus type 3 (PCV3) viral load and histopathological findings in perinatal piglet tissues and to develop an immunohistochemical method for detecting the virus in lesions. The quantitative polymerase chain reaction (qPCR) cycle threshold (Ct) when amplifying PCV3 DNA and the area of perivascular inflammatory infiltrates in different organs [central nervous system (CNS), lung, heart, liver, spleen, and lymph nodes] were compared. To develop an immunohistochemistry technique, rabbit sera were produced against PCV3-capsid protein peptides selected using bioinformatic analyses. The assay was initially implemented using a tissue sample previously tested using qPCR and in situ hybridization to optimize the procedure and reagent dilutions. To evaluate immunohistochemistry performance, tissue samples from another 17 cases were analyzed using standardized parameters. The most common microscopic lesion was multisystemic periarteritis, with associated vasculitis, as the mesenteric vascular plexus is one of the most affected organs. Other tissues, such as the heart, lung, CNS, and skeletal muscle, were also affected. Comparison of the Ct values for different tissues showed no significant difference, except in lymphoid organs (spleen and lymph nodes), which had significantly higher viral loads than the CNS tissues. There was no correlation between Ct values and perivascular inflammatory infiltrates. PCV3 immunohistochemistry revealed granular immunolabeling, mainly in the cytoplasm of cells in the vascular mesenteric plexus, heart, lung, kidney, and spleen.
Collapse
Affiliation(s)
| | | | - Bianca Santana de Cecco
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Caroline Pissetti
- Centro de Diagnóstico de Sanidade Animal (CEDISA), Concórdia, Brazil
| | - Lauren Ventura
- Centro de Diagnóstico de Sanidade Animal (CEDISA), Concórdia, Brazil
| | | | | | - Fabio Vanucci
- Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, MN, United States
| | - Tatiane Terumi Negrao Watababe
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Los Angeles, CA, United States
| | - Itabajara da Silva Vaz Jr.
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, Brazil
| | - David Driemeier
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
25
|
Monné Rodríguez JM, Frisk AL, Kreutzer R, Lemarchand T, Lezmi S, Saravanan C, Stierstorfer B, Thuilliez C, Vezzali E, Wieczorek G, Yun SW, Schaudien D. European Society of Toxicologic Pathology (Pathology 2.0 Molecular Pathology Special Interest Group): Review of In Situ Hybridization Techniques for Drug Research and Development. Toxicol Pathol 2023; 51:92-111. [PMID: 37449403 PMCID: PMC10467011 DOI: 10.1177/01926233231178282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
In situ hybridization (ISH) is used for the localization of specific nucleic acid sequences in cells or tissues by complementary binding of a nucleotide probe to a specific target nucleic acid sequence. In the last years, the specificity and sensitivity of ISH assays were improved by innovative techniques like synthetic nucleic acids and tandem oligonucleotide probes combined with signal amplification methods like branched DNA, hybridization chain reaction and tyramide signal amplification. These improvements increased the application spectrum for ISH on formalin-fixed paraffin-embedded tissues. ISH is a powerful tool to investigate DNA, mRNA transcripts, regulatory noncoding RNA, and therapeutic oligonucleotides. ISH can be used to obtain spatial information of a cell type, subcellular localization, or expression levels of targets. Since immunohistochemistry and ISH share similar workflows, their combination can address simultaneous transcriptomics and proteomics questions. The goal of this review paper is to revisit the current state of the scientific approaches in ISH and its application in drug research and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Seong-Wook Yun
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
26
|
Pérez-Santos I, García-Cabezas MÁ, Cavada C. Mapping the primate thalamus: systematic approach to analyze the distribution of subcortical neuromodulatory afferents. Brain Struct Funct 2023:10.1007/s00429-023-02619-w. [PMID: 36890350 DOI: 10.1007/s00429-023-02619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Neuromodulatory afferents to thalamic nuclei are key for information transmission and thus play critical roles in sensory, motor, and limbic processes. Over the course of the last decades, diverse attempts have been made to map and describe subcortical neuromodulatory afferents to the primate thalamus, including axons using acetylcholine, serotonin, dopamine, noradrenaline, adrenaline, and histamine. Our group has been actively involved in this endeavor. The published descriptions on neuromodulatory afferents to the primate thalamus have been made in different laboratories and are not fully comparable due to methodological divergences (for example, fixation procedures, planes of cutting, techniques used to detect the afferents, different criteria for identification of thalamic nuclei…). Such variation affects the results obtained. Therefore, systematic methodological and analytical approaches are much needed. The present article proposes reproducible methodological and terminological frameworks for primate thalamic mapping. We suggest the use of standard stereotaxic planes to produce and present maps of the primate thalamus, as well as the use of the Anglo-American school terminology (vs. the German school terminology) for identification of thalamic nuclei. Finally, a public repository of the data collected under agreed-on frameworks would be a useful tool for looking up and comparing data on the structure and connections of primate thalamic nuclei. Important and agreed-on efforts are required to create, manage, and fund a unified and homogeneous resource of data on the primate thalamus. Likewise, a firm commitment of the institutions to preserve experimental brain material is much needed because neuroscience work with non-human primates is becoming increasingly rare, making earlier material still more valuable.
Collapse
Affiliation(s)
- Isabel Pérez-Santos
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain.,PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain
| | - Miguel Ángel García-Cabezas
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain.,PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain.,Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA
| | - Carmen Cavada
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain. .,PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain.
| |
Collapse
|
27
|
Heydari AA, Sindi SS. Deep learning in spatial transcriptomics: Learning from the next next-generation sequencing. BIOPHYSICS REVIEWS 2023; 4:011306. [PMID: 38505815 PMCID: PMC10903438 DOI: 10.1063/5.0091135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 12/19/2022] [Indexed: 03/21/2024]
Abstract
Spatial transcriptomics (ST) technologies are rapidly becoming the extension of single-cell RNA sequencing (scRNAseq), holding the potential of profiling gene expression at a single-cell resolution while maintaining cellular compositions within a tissue. Having both expression profiles and tissue organization enables researchers to better understand cellular interactions and heterogeneity, providing insight into complex biological processes that would not be possible with traditional sequencing technologies. Data generated by ST technologies are inherently noisy, high-dimensional, sparse, and multi-modal (including histological images, count matrices, etc.), thus requiring specialized computational tools for accurate and robust analysis. However, many ST studies currently utilize traditional scRNAseq tools, which are inadequate for analyzing complex ST datasets. On the other hand, many of the existing ST-specific methods are built upon traditional statistical or machine learning frameworks, which have shown to be sub-optimal in many applications due to the scale, multi-modality, and limitations of spatially resolved data (such as spatial resolution, sensitivity, and gene coverage). Given these intricacies, researchers have developed deep learning (DL)-based models to alleviate ST-specific challenges. These methods include new state-of-the-art models in alignment, spatial reconstruction, and spatial clustering, among others. However, DL models for ST analysis are nascent and remain largely underexplored. In this review, we provide an overview of existing state-of-the-art tools for analyzing spatially resolved transcriptomics while delving deeper into the DL-based approaches. We discuss the new frontiers and the open questions in this field and highlight domains in which we anticipate transformational DL applications.
Collapse
|
28
|
van der Sande M, Frölich S, van Heeringen SJ. Computational approaches to understand transcription regulation in development. Biochem Soc Trans 2023; 51:1-12. [PMID: 36695505 PMCID: PMC9988001 DOI: 10.1042/bst20210145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/07/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Gene regulatory networks (GRNs) serve as useful abstractions to understand transcriptional dynamics in developmental systems. Computational prediction of GRNs has been successfully applied to genome-wide gene expression measurements with the advent of microarrays and RNA-sequencing. However, these inferred networks are inaccurate and mostly based on correlative rather than causative interactions. In this review, we highlight three approaches that significantly impact GRN inference: (1) moving from one genome-wide functional modality, gene expression, to multi-omics, (2) single cell sequencing, to measure cell type-specific signals and predict context-specific GRNs, and (3) neural networks as flexible models. Together, these experimental and computational developments have the potential to significantly impact the quality of inferred GRNs. Ultimately, accurately modeling the regulatory interactions between transcription factors and their target genes will be essential to understand the role of transcription factors in driving developmental gene expression programs and to derive testable hypotheses for validation.
Collapse
Affiliation(s)
| | | | - Simon J. van Heeringen
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
29
|
Attar S, Browning VE, Liu Y, Nichols EK, Tsue AF, Shechner DM, Shendure J, Lieberman JA, Akilesh S, Beliveau BJ. Programmable peroxidase-assisted signal amplification enables flexible detection of nucleic acid targets in cellular and histopathological specimens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526264. [PMID: 36778496 PMCID: PMC9915481 DOI: 10.1101/2023.01.30.526264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In situ hybridization (ISH) is a powerful tool for investigating the spatial arrangement of nucleic acid targets in fixed samples. ISH is typically visualized using fluorophores to allow high sensitivity and multiplexing or with colorimetric labels to facilitate co-visualization with histopathological stains. Both approaches benefit from signal amplification, which makes target detection effective, rapid, and compatible with a broad range of optical systems. Here, we introduce a unified technical platform, termed 'pSABER', for the amplification of ISH signals in cell and tissue systems. pSABER decorates the in situ target with concatemeric binding sites for a horseradish peroxidase-conjugated oligonucleotide which can then catalyze the massive localized deposition of fluorescent or colorimetric substrates. We demonstrate that pSABER effectively labels DNA and RNA targets, works robustly in cultured cells and challenging formalin fixed paraffin embedded (FFPE) specimens. Furthermore, pSABER can achieve 25-fold signal amplification over conventional signal amplification by exchange reaction (SABER) and can be serially multiplexed using solution exchange. Therefore, by linking nucleic acid detection to robust signal amplification capable of diverse readouts, pSABER will have broad utility in research and clinical settings.
Collapse
|
30
|
Alamri AM, Alkhilaiwi FA, Ullah Khan N. Era of Molecular Diagnostics Techniques before and after the COVID-19 Pandemic. Curr Issues Mol Biol 2022; 44:4769-4789. [PMID: 36286040 PMCID: PMC9601158 DOI: 10.3390/cimb44100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the growth of molecular diagnosis from the era of Hippocrates, the emergence of COVID-19 is still remarkable. The previously used molecular techniques were not rapid enough to screen a vast population at home, in offices, and in hospitals. Additionally, these techniques were only available in advanced clinical laboratories.The pandemic outbreak enhanced the urgency of researchers and research and development companies to invent more rapid, robust, and portable devices and instruments to screen a vast community in a cost-effective and short time. There has been noteworthy progress in molecular diagnosing tools before and after the pandemic. This review focuses on the advancements in molecular diagnostic techniques before and after the emergence of COVID-19 and how the pandemic accelerated the implantation of molecular diagnostic techniques in most clinical laboratories towardbecoming routine tests.
Collapse
Affiliation(s)
- Ahmad M. Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61413, Saudi Arabia
- Cancer Research Unit, King Khalid University, Abha 61413, Saudi Arabia
| | - Faris A. Alkhilaiwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture, Peshawar 25130, Pakistan
| |
Collapse
|
31
|
Kervella M, Jahier M, Meli AC, Muchir A. Genome organization in cardiomyocytes expressing mutated A-type lamins. Front Cell Dev Biol 2022; 10:1030950. [PMID: 36274847 PMCID: PMC9585167 DOI: 10.3389/fcell.2022.1030950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiomyopathy is a myocardial disorder, in which the heart muscle is structurally and functionally abnormal, often leading to heart failure. Dilated cardiomyopathy is characterized by a compromised left ventricular function and contributes significantly to the heart failure epidemic, which represents a staggering clinical and public health problem worldwide. Gene mutations have been identified in 35% of patients with dilated cardiomyopathy. Pathogenic variants in LMNA, encoding nuclear A-type lamins, are one of the major causative causes of dilated cardiomyopathy (i.e. CardioLaminopathy). A-type lamins are type V intermediate filament proteins, which are the main components of the nuclear lamina. The nuclear lamina is connected to the cytoskeleton on one side, and to the chromatin on the other side. Among the models proposed to explain how CardioLaminopathy arises, the “chromatin model” posits an effect of mutated A-type lamins on the 3D genome organization and thus on the transcription activity of tissue-specific genes. Chromatin contacts with the nuclear lamina via specific genomic regions called lamina-associated domains lamina-associated domains. These LADs play a role in the chromatin organization and gene expression regulation. This review focuses on the identification of LADs and chromatin remodeling in cardiac muscle cells expressing mutated A-type lamins and discusses the methods and relevance of these findings in disease.
Collapse
Affiliation(s)
- Marie Kervella
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Maureen Jahier
- Sorbonne Université, INSERM U974, Institute of Myology, Center of Research in Myology, Paris, France
| | - Albano C. Meli
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Antoine Muchir
- Sorbonne Université, INSERM U974, Institute of Myology, Center of Research in Myology, Paris, France
- *Correspondence: Antoine Muchir,
| |
Collapse
|
32
|
Ponzetti M, Chinna Rao Devarapu G, Rucci N, Carlone A, Saggiomo V. HistoEnder: A 3D printer-based histological slide autostainer that retains 3D printer functions. HARDWAREX 2022; 12:e00370. [PMID: 36345434 PMCID: PMC9636191 DOI: 10.1016/j.ohx.2022.e00370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Automated microscope slide stainers are usually very expensive and unless the laboratory performs heavy histological work it is difficult to justify buying a 2000-10000€ machine. As a result, histology and pathology labs around the world lose thousands of working hours for following procedures that could be easily automated. Herein, we propose a simple modification of an open-source 3D printer, the Creality Ender-3, into an automated microscope slide autostainer, the HistoEnder. The HistoEnder is cheap (less than 200€), modular, and easy to set up, with only two 3D-printed parts needed. Additionally, the 3D printer retains its full functionality, and it can be reverted back into 3D printing in less than 1 min. The g-code associated with the procedure is extremely simple, and can be written by anyone. The HistoEnder can also be used in chemistry and material science laboratories for automating surface modifications and dip coating.
Collapse
Affiliation(s)
- Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, L’Aquila 67100, Italy
| | - Ganga Chinna Rao Devarapu
- Centre for Advanced Photonics & Process Analysis, Munster Technological University, Rossa Avenue, Bishopstown, Cork T12 P928, Ireland
- Tyndall National Institute, Lee Maltings, Prospect Row, Cork T12R5CP, Ireland
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, L’Aquila 67100, Italy
| | - Armando Carlone
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, Via Vetoio, L’Aquila 67100, Italy
| | - Vittorio Saggiomo
- Laboratory of BioNanoTechnology, Wageningen University and Research, Bornse Weilanden 9, Wageningen, The Netherlands
| |
Collapse
|
33
|
Wang R, Peng G, Tam PPL, Jing N. Integration of computational analysis and spatial transcriptomics in single-cell study. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022:S1672-0229(22)00084-5. [PMID: 35901961 PMCID: PMC10372908 DOI: 10.1016/j.gpb.2022.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 06/08/2022] [Accepted: 06/19/2022] [Indexed: 04/08/2023]
Abstract
Recent advances of single-cell transcriptomics technologies and allied computational methodologies have revolutionized molecular cell biology. Meanwhile, pioneering explorations in spatial transcriptomics have opened avenues to address fundamental biological questions in health and diseases. Here, we review the technical attributes of single-cell RNA sequencing and spatial transcriptomics, and the core concepts of computational data analysis. We further highlight the challenges in the application of data integration methodologies and the interpretation of the biological context of the findings.
Collapse
Affiliation(s)
- Ran Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangdun Peng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Sydney, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2145, Australia
| | - Naihe Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Guangzhou Laboratory, Guangzhou 510005, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
34
|
Spatially resolved transcriptomics and the kidney: Many opportunities. Kidney Int 2022; 102:482-491. [PMID: 35788360 DOI: 10.1016/j.kint.2022.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 01/31/2023]
Abstract
Defining changes in gene expression during health and disease is critical for the understanding of human physiology. In recent years, single cell/nuclei RNA sequencing (sc/snRNAseq) has revolutionized the definition and discovery of cell types and states, as well as the interpretation of organ and cell type specific signaling pathways. However, these advances require tissue dissociation to the level of the single cell or single nuclei level. Spatially resolved transcriptomics (SrT) now provides a platform to overcome this barrier in understanding the physiological contexts of gene expression and cellular microenvironment changes in development and disease. Some of these transcriptomic tools allow for high resolution mapping of hundreds of genes simultaneously in cellular and subcellular compartments. Other tools offer genome depth mapping, but at lower resolution. Here, we will review advances in SrT, considerations for using SrT in your own research, and applications for kidney biology.
Collapse
|
35
|
Vieira GV, Somera dos Santos F, Lepique AP, da Fonseca CK, Innocentini LMAR, Braz-Silva PH, Quintana SM, Sales KU. Proteases and HPV-Induced Carcinogenesis. Cancers (Basel) 2022; 14:cancers14133038. [PMID: 35804810 PMCID: PMC9264903 DOI: 10.3390/cancers14133038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Human papillomavirus (HPV) infection is a sexually transmitted disease with high prevalence worldwide. Although most HPV infections do not lead to cancer, some HPV types are correlated with the majority of cervical cancers, and with some anogenital and oropharyngeal cancers. Moreover, enzymes known as proteases play an essential role in the pathogenic process in HPV-induced carcinogenesis. This review highlights the role of proteases and recent epidemiological data regarding HPV-dependent carcinogenesis. Abstract Persistent infection with Human papillomavirus (HPV) is the main etiologic factor for pre-malignant and malignant cervical lesions. Moreover, HPV is also associated with oropharynx and other anogenital carcinomas. Cancer-causing HPV viruses classified as group 1 carcinogens include 12 HPV types, with HPV 16 and 18 being the most prevalent. High-risk HPVs express two oncoproteins, E6 and E7, the products of which are responsible for the inhibition of p53 and pRB proteins, respectively, in human keratinocytes and cellular immortalization. p53 and pRB are pleiotropic proteins that regulate the activity of several signaling pathways and gene expression. Among the important factors that are augmented in HPV-mediated carcinogenesis, proteases not only control processes involved in cellular carcinogenesis but also control the microenvironment. For instance, genetic polymorphisms of matrix metalloproteinase 1 (MMP-1) are associated with carcinoma invasiveness. Similarly, the serine protease inhibitors hepatocyte growth factor activator inhibitor-1 (HAI-1) and -2 (HAI-2) have been identified as prognostic markers for HPV-dependent cervical carcinomas. This review highlights the most crucial mechanisms involved in HPV-dependent carcinogenesis, and includes a section on the proteolytic cascades that are important for the progression of this disease and their impact on patient health, treatment, and survival.
Collapse
Affiliation(s)
- Gabriel Viliod Vieira
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.V.V.); (C.K.d.F.); (L.M.A.R.I.)
| | - Fernanda Somera dos Santos
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (F.S.d.S.); (S.M.Q.)
| | - Ana Paula Lepique
- Department of Immunology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil;
| | - Carol Kobori da Fonseca
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.V.V.); (C.K.d.F.); (L.M.A.R.I.)
| | - Lara Maria Alencar Ramos Innocentini
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.V.V.); (C.K.d.F.); (L.M.A.R.I.)
- Clinical Hospital of Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Paulo Henrique Braz-Silva
- Department of Stomatology, School of Dentistry, University of Sao Paulo, São Paulo 05508-000, SP, Brazil;
- Laboratory of Virology, Institute of Tropical Medicine of Sao Paulo, School of Medicine, University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| | - Silvana Maria Quintana
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (F.S.d.S.); (S.M.Q.)
| | - Katiuchia Uzzun Sales
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.V.V.); (C.K.d.F.); (L.M.A.R.I.)
- Correspondence: ; Tel.: +55-16-3315-9113
| |
Collapse
|
36
|
Williams J, Kostiuk M, Biron VL. Molecular Detection Methods in HPV-Related Cancers. Front Oncol 2022; 12:864820. [PMID: 35574396 PMCID: PMC9092940 DOI: 10.3389/fonc.2022.864820] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
Human papillomavirus (HPV) is responsible for most cervical cancers and some head and neck cancers, including oropharyngeal squamous cell carcinoma and sinonasal carcinoma. Cervical cancer is commonly diagnosed by liquid-based cytology, followed by HPV testing using commercially available DNA polymerase chain reaction (PCR), p16 immunohistochemistry (IHC), or DNA/RNA in situ hybridization. HPV in head and neck cancers is commonly diagnosed by p16 IHC or by RT-qPCR of HPV-16 E6 and E7 oncoproteins. Droplet digital PCR has been reported as an ultrasensitive and highly precise method of nucleic acid quantification for biomarker analysis and has been used to detect oncogenic HPV in oropharyngeal and cervical cancers.
Collapse
Affiliation(s)
- Jordana Williams
- Division of Otolaryngology-Head and Neck Surgery Research Laboratory of Alberta, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Morris Kostiuk
- Division of Otolaryngology-Head and Neck Surgery Research Laboratory of Alberta, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Vincent L Biron
- Division of Otolaryngology-Head and Neck Surgery Research Laboratory of Alberta, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
37
|
Ran X, Zhou M, Wang T, Wang W, Kumari S, Wang Y. Multidisciplinary characterization of nitrogen-removal granular sludge: A review of advances and technologies. WATER RESEARCH 2022; 214:118214. [PMID: 35240472 DOI: 10.1016/j.watres.2022.118214] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen-removal granular sludge (NRGS) is a promising technology in wastewater treatment, with advantages of efficient nitrogen removal, less footprint, lower sludge production and energy consumption, and is a way for wastewater treatment plants to achieve carbon-neutrality. Aerobic granular sludge (AGS) and anammox granular sludge (AnGS) are two typical NRGS technologies that have attracted extensive attention. Mounting evidence has shown strong associations between NRGS properties and the status of NRGS systems; however, a holistic view is still missing. The aim of this article is to provide an overview of NRGS with an emphasis on characterization. Specifically, the integrated nitrogen transformation pathways inside NRGS and the performance of NRGS treating various wastewaters are discussed. NRGS properties are categorized as physical-, chemical-, biological- and systematical ones, presenting current advances and corresponding characterization technologies. Finally, the future prospects for furthering the mechanistic understanding and engineering application of NRGS are proposed. Overall, the technological advancements in characterization have greatly contributed to understanding NRGS properties, which are potential factors for optimizing the performance and evaluating the working status of NRGS. This review will provide guidance in characterizing NRGS properties and boost the introduction of novel characterization technologies.
Collapse
Affiliation(s)
- Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China.
| |
Collapse
|
38
|
In Situ Gene Expression in Native Cryofixed Bone Tissue. Biomedicines 2022; 10:biomedicines10020484. [PMID: 35203694 PMCID: PMC8962289 DOI: 10.3390/biomedicines10020484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 01/21/2023] Open
Abstract
Bone is a very complex tissue that is constantly changing throughout the lifespan. The precise mechanism of bone regeneration remains poorly understood. Large bone defects can be caused by gunshot injury, trauma, accidents, congenital anomalies and tissue resection due to cancer. Therefore, understanding bone homeostasis and regeneration has considerable clinical and scientific importance in the development of bone therapy. Macrophages are well known innate immune cells secreting different combinations of cytokines and their role in bone regeneration during bone healing is essential. Here, we present a method to identify mRNA transcripts in cryosections of non-decalcified rat bone using in situ hybridization and hybridization chain reaction to explore gene expression in situ for better understanding the gene expression of the bone tissues.
Collapse
|
39
|
García-Pérez I, Molsosa-Solanas A, Perelló-Amorós M, Sarropoulou E, Blasco J, Gutiérrez J, Garcia de la serrana D. The Emerging Role of Long Non-Coding RNAs in Development and Function of Gilthead Sea Bream ( Sparus aurata) Fast Skeletal Muscle. Cells 2022; 11:428. [PMID: 35159240 PMCID: PMC8834446 DOI: 10.3390/cells11030428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are an emerging group of ncRNAs that can modulate gene expression at the transcriptional or translational levels. In the present work, previously published transcriptomic data were used to identify lncRNAs expressed in gilthead sea bream skeletal muscle, and their transcription levels were studied under different physiological conditions. Two hundred and ninety lncRNAs were identified and, based on transcriptomic differences between juveniles and adults, a total of seven lncRNAs showed potential to be important for muscle development. Our data suggest that the downregulation of most of the studied lncRNAs might be linked to increased myoblast proliferation, while their upregulation might be necessary for differentiation. However, with these data, as it is not possible to propose a formal mechanism to explain their effect, bioinformatic analysis suggests two possible mechanisms. First, the lncRNAs may act as sponges of myoblast proliferation inducers microRNAs (miRNAs) such as miR-206, miR-208, and miR-133 (binding energy MEF < -25.0 kcal). Secondly, lncRNA20194 had a strong predicted interaction towards the myod1 mRNA (ndG = -0.17) that, based on the positive correlation between the two genes, might promote its function. Our study represents the first characterization of lncRNAs in gilthead sea bream fast skeletal muscle and provides evidence regarding their involvement in muscle development.
Collapse
Affiliation(s)
- Isabel García-Pérez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (I.G.-P.); (A.M.-S.); (M.P.-A.); (J.B.); (J.G.)
| | - Anna Molsosa-Solanas
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (I.G.-P.); (A.M.-S.); (M.P.-A.); (J.B.); (J.G.)
| | - Miquel Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (I.G.-P.); (A.M.-S.); (M.P.-A.); (J.B.); (J.G.)
| | - Elena Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71003 Crete, Greece;
| | - Josefina Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (I.G.-P.); (A.M.-S.); (M.P.-A.); (J.B.); (J.G.)
| | - Joaquim Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (I.G.-P.); (A.M.-S.); (M.P.-A.); (J.B.); (J.G.)
| | - Daniel Garcia de la serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (I.G.-P.); (A.M.-S.); (M.P.-A.); (J.B.); (J.G.)
| |
Collapse
|
40
|
Egloff S, Melnychuk N, Cruz Da Silva E, Reisch A, Martin S, Klymchenko AS. Amplified Fluorescence in Situ Hybridization by Small and Bright Dye-Loaded Polymeric Nanoparticles. ACS NANO 2022; 16:1381-1394. [PMID: 34928570 DOI: 10.1021/acsnano.1c09409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Detection and imaging of RNA at the single-cell level is of utmost importance for fundamental research and clinical diagnostics. Current techniques of RNA analysis, including fluorescence in situ hybridization (FISH), are long, complex, and expensive. Here, we report a methodology of amplified FISH (AmpliFISH) that enables simpler and faster RNA imaging using small and ultrabright dye-loaded polymeric nanoparticles (NPs) functionalized with DNA. We found that the small size of NPs (below 20 nm) was essential for their access to the intracellular mRNA targets in fixed permeabilized cells. Moreover, proper selection of the polymer matrix of DNA-NPs minimized nonspecific intracellular interactions. Optimized DNA-NPs enabled sequence-specific imaging of different mRNA targets (survivin, actin, and polyA tails), using a simple 1 h staining protocol. Encapsulation of cyanine and rhodamine dyes with bulky counterions yielded green-, red-, and far-red-emitting NPs that were 2-100-fold brighter than corresponding quantum dots. These NPs enabled multiplexed detection of three mRNA targets simultaneously, showing distinctive mRNA expression profiles in three cancer cell lines. Image analysis confirmed the single-particle nature of the intracellular signal, suggesting single-molecule sensitivity of the method. AmpliFISH was found to be semiquantitative, correlating with RT-qPCR. In comparison with the commercial locked nucleic acid (LNA)-based FISH technique, AmpliFISH provides 8-200-fold stronger signal (dependent on the NP color) and requires only three steps vs ∼20 steps together with a much shorter time. Thus, combination of bright fluorescent polymeric NPs with FISH yields a fast and sensitive single-cell transcriptomic analysis method for RNA research and clinical diagnostics.
Collapse
Affiliation(s)
- Sylvie Egloff
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Nina Melnychuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Elisabete Cruz Da Silva
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Andreas Reisch
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Sophie Martin
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| |
Collapse
|
41
|
Aghanoori MR, Burns KM, Subha M, Williams L, Hua M, Nobakht F, Krawec T, Yang G. Immunohistochemical analysis of the developing mouse cortex. Methods Cell Biol 2022; 170:31-46. [DOI: 10.1016/bs.mcb.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Steimel JP, Hu X. Visualization of RNA Transcripts in Western Corn Rootworm (Diabrotica virgifera virgifera) and Plants by In Situ Hybridization. Methods Mol Biol 2022; 2360:59-74. [PMID: 34495507 DOI: 10.1007/978-1-0716-1633-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In situ hybridization (ISH) is a methodology by which nucleic acids are detected within fixed tissue samples. Recent advances in detection technology and target recovery have greatly enhanced the technique's ability to detect single mRNA molecules. Here we detail the fixation, paraffin embedding, sectioning, target recovery, and chromogenic detection of an mRNA (DvSSJ1), encoding for a membrane protein associated with the smooth septate junction (SSJ) in Western corn rootworm [Diabrotica virgifera (Dv)]. Further, we demonstrate, the expression of dsRNA of DvSSJ1 in maize root tissues using signal amplification and background suppression technology.
Collapse
Affiliation(s)
| | - Xu Hu
- Corteva Agriscience, Johnston, IA, USA.
| |
Collapse
|
43
|
Hickey SM, Ung B, Bader C, Brooks R, Lazniewska J, Johnson IRD, Sorvina A, Logan J, Martini C, Moore CR, Karageorgos L, Sweetman MJ, Brooks DA. Fluorescence Microscopy-An Outline of Hardware, Biological Handling, and Fluorophore Considerations. Cells 2021; 11:35. [PMID: 35011596 PMCID: PMC8750338 DOI: 10.3390/cells11010035] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Fluorescence microscopy has become a critical tool for researchers to understand biological processes at the cellular level. Micrographs from fixed and live-cell imaging procedures feature in a plethora of scientific articles for the field of cell biology, but the complexities of fluorescence microscopy as an imaging tool can sometimes be overlooked or misunderstood. This review seeks to cover the three fundamental considerations when designing fluorescence microscopy experiments: (1) hardware availability; (2) amenability of biological models to fluorescence microscopy; and (3) suitability of imaging agents for intended applications. This review will help equip the reader to make judicious decisions when designing fluorescence microscopy experiments that deliver high-resolution and informative images for cell biology.
Collapse
Affiliation(s)
- Shane M. Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | - Ben Ung
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Corchuelo S, Gómez CY, Rosales AA, Santamaria G, Rivera JA, Saad EP, Torres-Fernández O, Rengifo AC. CISH and IHC for the Simultaneous Detection of ZIKV RNA and Antigens in Formalin-Fixed Paraffin-Embedded Cell Blocks and Tissues. Curr Protoc 2021; 1:e319. [PMID: 34936226 DOI: 10.1002/cpz1.319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Zika virus is an arthropod-borne virus that has recently emerged as a significant public health emergency due to its association with congenital malformations. Serological and molecular tests are typically used to confirm Zika virus infection. These methods, however, have limitations when the interest is in localizing the virus within the tissue and identifying the specific cell types involved in viral dissemination. Chromogenic in situ hybridization (CISH) and immunohistochemistry (IHC) are common histological techniques used for intracellular localization of RNA and protein expression, respectively. The combined use of CISH and IHC is important to obtain information about RNA replication and the location of infected target cells involved in Zika virus neuropathogenesis. There are no reports, however, of detailed procedures for the simultaneous detection of Zika virus RNA and proteins in formalin-fixed paraffin-embedded (FFPE) samples. Furthermore, the chromogenic detection methods for Zika virus RNA published thus far use expensive commercial kits, limiting their widespread use. As an alternative, we describe here a detailed and cost-effective step-by-step procedure for the simultaneous detection of Zika virus RNA and proteins in FFPE samples. First, we describe how to synthesize and purify homemade RNA probes conjugated with digoxygenin. Then, we outline the steps to perform the chromogenic detection of Zika virus RNA using these probes, and how to combine this technique with the immunodetection of viral antigens. To illustrate the entire workflow, we use FFPE samples derived from infected Vero cells as well as from human and mouse brain tissues. These methods are highly adaptable and can be used to study Zika virus or even other viruses of public health relevance, providing an optimal and economical alternative for laboratories with limited resources. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of RNA probes conjugated with digoxigenin (DIG) Basic Protocol 2: Simultaneous detection of ZIKV RNA and proteins in FFPE cell blocks and tissues.
Collapse
Affiliation(s)
- Sheryll Corchuelo
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
| | - Claudia Y Gómez
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
| | - Alicia A Rosales
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
| | - Gerardo Santamaria
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
| | - Jorge Alonso Rivera
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
| | - Edgar Parra Saad
- Grupo de Patología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
| | - Orlando Torres-Fernández
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
| | - Aura Caterine Rengifo
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
- Doctorado en Ciencias Biomédicas, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| |
Collapse
|
45
|
Leung HY, Yeung MHY, Leung WT, Wong KH, Tang WY, Cho WCS, Wong HT, Tsang HF, Wong YKE, Pei XM, Cheng HYL, Chan AKC, Wong SCC. The current and future applications of in situ hybridization technologies in anatomical pathology. Expert Rev Mol Diagn 2021; 22:5-18. [PMID: 34779317 DOI: 10.1080/14737159.2022.2007076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION In situ hybridization (ISH) plays an important role in the field of molecular diagnostics, especially in an anatomical pathology laboratory. ISH is a technique that can detect the targeted DNA or RNA sequences in tissue sections from frozen or fixed materials with labeled DNA or RNA probes. Radioactive and non-radioactive probes are the two major probes that can be used to label the targeted nucleic acids. AREAS COVERED Two decades after the Human Genome Project, ISH has not only simply been applied to identify the chromosomal location of a human gene but has also been extensively applied to gene expressions studies and utilized for clinical diagnosis, especially for the determination of biomarkers for breast and ovarian cancers - human epidermal growth factor receptor 2. Duchenne muscular dystrophy, Cri-du-chat syndrome, Angelman syndrome, PraderWilli syndrome, cystic fibrosis, and trisomy are diseases that can also be detected by ISH. In this review, the basic principles, historical development, advantages and disadvantages, enhancement in reporting molecules and probes, advancement in detection methods, in situ PCR, clinical applications and novel applications of ISH will be discussed. EXPERT OPINION With the advancement in ISH technologies and appropriate training, diagnosis can be improved in Anatomical Pathology.
Collapse
Affiliation(s)
- Hoi Yi Leung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Martin Ho Yin Yeung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Wai Tung Leung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - King Hin Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Wai Yan Tang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region, China
| | - Heong Ting Wong
- Department of Pathology, Kiang Wu Hospital, Santo António, Macau Special Administrative Region, China
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Yin Kwan Evelyn Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Xiao Meng Pei
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Hennie Yuk Lin Cheng
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Amanda Kit Ching Chan
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region, China
| | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| |
Collapse
|
46
|
Abstract
Bitter taste-sensing type 2 receptors (TAS2Rs or T2Rs), belonging to the subgroup of family A G-protein coupled receptors (GPCRs), are of crucial importance in the perception of bitterness. Although in the first instance, TAS2Rs were considered to be exclusively distributed in the apical microvilli of taste bud cells, numerous studies have detected these sensory receptor proteins in several extra-oral tissues, such as in pancreatic or ovarian tissues, as well as in their corresponding malignancies. Critical points of extra-oral TAS2Rs biology, such as their structure, roles, signaling transduction pathways, extensive mutational polymorphism, and molecular evolution, have been currently broadly studied. The TAS2R cascade, for instance, has been recently considered to be a pivotal modulator of a number of (patho)physiological processes, including adipogenesis or carcinogenesis. The latest advances in taste receptor biology further raise the possibility of utilizing TAS2Rs as a therapeutic target or as an informative index to predict treatment responses in various disorders. Thus, the focus of this review is to provide an update on the expression and molecular basis of TAS2Rs functions in distinct extra-oral tissues in health and disease. We shall also discuss the therapeutic potential of novel TAS2Rs targets, which are appealing due to their ligand selectivity, expression pattern, or pharmacological profiles.
Collapse
Affiliation(s)
- Kamila Tuzim
- Department of Clinical Pathomorphology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland.
| | - Agnieszka Korolczuk
- Department of Clinical Pathomorphology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| |
Collapse
|
47
|
Nikovics K, Favier AL. Macrophage Identification In Situ. Biomedicines 2021; 9:1393. [PMID: 34680510 PMCID: PMC8533306 DOI: 10.3390/biomedicines9101393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022] Open
Abstract
Understanding the processes of inflammation and tissue regeneration after injury is of great importance. For a long time, macrophages have been known to play a central role during different stages of inflammation and tissue regeneration. However, the molecular and cellular mechanisms by which they exert their effects are as yet mostly unknown. While in vitro macrophages have been characterized, recent progress in macrophage biology studies revealed that macrophages in vivo exhibited distinctive features. Actually, the precise characterization of the macrophages in vivo is essential to develop new healing treatments and can be approached via in situ analyses. Nowadays, the characterization of macrophages in situ has improved significantly using antigen surface markers and cytokine secretion identification resulting in specific patterns. This review aims for a comprehensive overview of different tools used for in situ macrophage identification, reporter genes, immunolabeling and in situ hybridization, discussing their advantages and limitations.
Collapse
Affiliation(s)
- Krisztina Nikovics
- Imagery Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France;
| | | |
Collapse
|
48
|
Pattan V, Kashyap R, Bansal V, Candula N, Koritala T, Surani S. Genomics in medicine: A new era in medicine. World J Methodol 2021; 11:231-242. [PMID: 34631481 PMCID: PMC8472545 DOI: 10.5662/wjm.v11.i5.231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
The sequencing of complete human genome revolutionized the genomic medicine. However, the complex interplay of gene-environment-lifestyle and influence of non-coding genomic regions on human health remain largely unexplored. Genomic medicine has great potential for diagnoses or disease prediction, disease prevention and, targeted treatment. However, many of the promising tools of genomic medicine are still in their infancy and their application may be limited because of the limited knowledge we have that precludes its use in many clinical settings. In this review article, we have reviewed the evolution of genomic methodologies/tools, their limitations, and scope, for current and future clinical application.
Collapse
Affiliation(s)
- Vishwanath Pattan
- Division of Endocrinology, Wyoming Medical Center, Casper, WY 82601, United States
| | - Rahul Kashyap
- Department of Anesthesiology and Peri-operative Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Vikas Bansal
- Department of Anesthesiology and Peri-operative Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Narsimha Candula
- Hospital Medicine, University Florida Health, Jacksonville, FL 32209, United States
| | - Thoyaja Koritala
- Hospital Medicine, Mayo Clinic Health System, Mankato, MN 56001, United States
| | - Salim Surani
- Department of Internal Medicine, Texas A&M University, Corpus Christi, TX 78405, United States
| |
Collapse
|
49
|
Piewbang C, Tattiyapong P, Techangamsuwan S, Surachetpong W. Tilapia lake virus immunoglobulin G (TiLV IgG) antibody: Immunohistochemistry application reveals cellular tropism of TiLV infection. FISH & SHELLFISH IMMUNOLOGY 2021; 116:115-123. [PMID: 34186182 DOI: 10.1016/j.fsi.2021.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Tilapia lake virus (TiLV) is a notable contagious agent that causes massive economic losses in the tilapia industry globally. Evaluations of the histological changes associated with TiLV infection are not only crucial for diagnosis, but also to gain an understanding of the disease. We therefore synthesized a rabbit polyclonal immunoglobulin G antibody against TiLV and developed an immunohistochemical (IHC) procedure to detect TiLV localization in the tissues of infected fish for comparison with in situ hybridization (ISH) testing. A total of four different sample cohorts derived from TiLV-infected fish was used to validate the IHC procedure. The TiLV IHC application was successfully developed and facilitated nuclear and cytoplasmic immunolabelling in the intestines, gills, brain, liver, pancreas, spleen, and kidneys that corresponded with the ISH results. Apart from the ISH results, TiLV-IHC signals were clearly evident in the endothelial cells of various organs, the circulating leukocytes in the blood vessels, and the areas of tissue inflammation. Among the tested sample cohorts, the intestines, gills, and brain had IHC-positive signals, highlighting the possibility of these organs as common TiLV targets. Immunological staining pattern and distribution corresponded with the TiLV viral load but not the inoculation route. The TiLV IHC was also capable of detecting TiLV infection in the experimentally challenged ornamental cichlids, Mozambique tilapia, giant gourami, and naturally infected tilapia, indicating the dynamic range of IHC for TiLV detection. Overall, our study delivers the first IHC platform to detect TiLV infection and provides novel evidence of cellular tropism during TiLV infection. Our findings also reveal the TiLV distribution pattern of infected fish and propose the endotheliotropism and lymphotropism of this virus, which requires further elaboration. Importantly, this new IHC procedure could be applied to study the pathogenesis and interaction of TiLV in future research.
Collapse
Affiliation(s)
- Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
50
|
Piewbang C, Wardhani SW, Dankaona W, Lacharoje S, Chai-in P, Yostawonkul J, Chanseanroj J, Boonrungsiman S, Kasantikul T, Poovorawan Y, Techangamsuwan S. Canine bocavirus-2 infection and its possible association with encephalopathy in domestic dogs. PLoS One 2021; 16:e0255425. [PMID: 34383794 PMCID: PMC8360608 DOI: 10.1371/journal.pone.0255425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 11/19/2022] Open
Abstract
Canine bocaviruses (CBoVs) have been recognized as pathogens associated with intestinal diseases. Hematogenous spreading caused by CBoV has been documented and may potentiate the virus entry across the blood-brain barrier to initiate a brain infection. This study focused attention on CBoV detection in cases of encepahlopathy and attempted to determine its viral localization. A total of 107 dog brains that histologically exhibited encephalopathy (ED) were investigated for the presence of CBoVs using polymerase chain reaction (PCR). Thirty-three histologically normal brain samples from dogs were used as a control group (CD). CBoV-2 was detected in 15 ED dogs (14.02%) but not in CD dogs (p = 0.02), while no CBoV-1 and -3 were detected. Among the CBoV-2 positive dogs, brain histological changes were characterized by nonsuppurative encephalitis, with inclusion body-like materials in some brains. In situ hybridization (ISH) and transmission electron microscopy (TEM) confirmed the presence of CBoV-2 viral particles in glial cells, supporting neurotropism of this virus. ISH signals were also detected in the intestines, lymphoid organs, and the heart, suggesting both enteral and parenteral infections of this virus. Whole genome characterization and evolutionary analysis revealed genetic diversity of CBoV-2 sequences and it was varying among the different countries where the virus was detected. This study points to a possible association of CBoV-2 with encephalopathy in dogs. It also highlights the genetic diversity and cellular tropism of this virus.
Collapse
Affiliation(s)
- Chutchai Piewbang
- Faculty of Veterinary Science, Department of Pathology, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Animal Virome and Diagnostic Development Research Group, Chulalongkorn University, Bangkok, Thailand
| | - Sabrina Wahyu Wardhani
- Faculty of Veterinary Science, Animal Virome and Diagnostic Development Research Group, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, The International Graduate course of Veterinary Science and Technology (VST), Chulalongkorn University, Bangkok, Thailand
| | - Wichan Dankaona
- Faculty of Veterinary Science, Department of Pathology, Chulalongkorn University, Bangkok, Thailand
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani, Thailand
| | - Sitthichok Lacharoje
- Faculty of Veterinary Science, Department of Pathology, Chulalongkorn University, Bangkok, Thailand
| | - Poowadon Chai-in
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani, Thailand
| | - Jakarwan Yostawonkul
- Faculty of Veterinary Science, The International Graduate course of Veterinary Science and Technology (VST), Chulalongkorn University, Bangkok, Thailand
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani, Thailand
| | - Jira Chanseanroj
- Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Suwimon Boonrungsiman
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani, Thailand
| | - Tanit Kasantikul
- Clemson Veterinary Diagnostic Center, Clemson University, Columbia, South Carolina, United States of America
| | - Yong Poovorawan
- Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Somporn Techangamsuwan
- Faculty of Veterinary Science, Department of Pathology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|