1
|
Pemmari A, Moilanen E. Macrophage and chondrocyte phenotypes in inflammation. Basic Clin Pharmacol Toxicol 2024; 135:537-549. [PMID: 39319534 DOI: 10.1111/bcpt.14085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Inflammation is a complex biological process protecting the body from diverse external threats. Effectively performing this task requires an intricate, well-regulated interplay of different cells and tissues. Furthermore, several cells participating in inflammation can assume diverse phenotypes. A classic and relatively well-studied example of phenotypic diversity in inflammation is macrophage polarization. Based on the TH1/TH2 phenotypes of T helper cells, this scheme has proinflammatory "classical/M1" activation contrasted with the anti-inflammatory and healing-promoting "alternative/M2" phenotype. Some authors have extended the concept into an M17 phenotype induced by the classic TH17 cytokine IL-17. Phenotypic changes in chondrocytes have also been studied especially in the context of osteoarthritis (OA), and there are indications that these cells can also assume polarized phenotypes at least partly analogous to those of TH cells and macrophages. The therapeutic success of biological agents targeting TH1/TH2/TH17 inductor and/or effector cytokines displays the utility of the concept of polarization. The aim of this focused review is to survey the internal and external factors affecting macrophage and chondrocyte phenotypes (such as inflammatory cytokines, widely used medications and natural products) and to explore the possibility of ameliorating pathological states by modulating these phenotypes.
Collapse
Affiliation(s)
- Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
2
|
Lin CY, Naruphontjirakul P, Huang TY, Wu YC, Cheng WH, Su WT. The Exosomes of Stem Cells from Human Exfoliated Deciduous Teeth Suppress Inflammation in Osteoarthritis. Int J Mol Sci 2024; 25:8560. [PMID: 39201248 PMCID: PMC11354937 DOI: 10.3390/ijms25168560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Hyaluronic acid injection is commonly used clinically to slow down the development of osteoarthritis (OA). A newly developed therapeutic method is to implant chondrocytes/stem cells to regenerate cartilage in the body. The curative effect of stem cell therapy has been proven to come from the paracrine of stem cells. In this study, exosomes secreted by stem cells from human exfoliated deciduous teeth (SHED) and hyaluronic acid were used individually to evaluate the therapeutic effect in slowing down OA. SHED was cultured in a serum-free medium for three days, and the supernatant was collected and then centrifuged with a speed difference to obtain exosomes containing CD9 and CD63 markers, with an average particle size of 154.1 nm. SW1353 cells were stimulated with IL-1β to produce the inflammatory characteristics of OA and then treated with 40 μg/mL exosomes and hyaluronic acid individually. The results showed that the exosomes successfully inhibited the pro-inflammatory factors, including TNF-α, IL-6, iNOS, NO, COX-2 and PGE2, induced by IL-1β and the degrading enzyme of the extrachondral matrix (MMP-13). Collagen II and ACAN, the main components of the extrachondral matrix, were also increased by 1.76-fold and 2.98-fold, respectively, after treatment, which were similar to that of the normal joints. The effect can be attributed to the partial mediation of SHED exosomes to the NF-κB pathway, and the ability of exosomes to inhibit OA is found not inferior to that of hyaluronic acid.
Collapse
Affiliation(s)
- Chuang-Yu Lin
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand;
| | - Te-Yang Huang
- Department of Orthopedic Surgery, Mackay Memorial Hospital, Taipei 104217, Taiwan;
| | - Yi-Chia Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
| | - Wei-Hsuan Cheng
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan;
| | - Wen-Ta Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan;
| |
Collapse
|
3
|
Kalairaj MS, Pradhan R, Saleem W, Smith MM, Gaharwar AK. Intra-Articular Injectable Biomaterials for Cartilage Repair and Regeneration. Adv Healthc Mater 2024; 13:e2303794. [PMID: 38324655 PMCID: PMC11468459 DOI: 10.1002/adhm.202303794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/29/2023] [Indexed: 02/09/2024]
Abstract
Osteoarthritis is a degenerative joint disease characterized by cartilage deterioration and subsequent inflammatory changes in the underlying bone. Injectable hydrogels have emerged as a promising approach for controlled drug delivery in cartilage therapies. This review focuses on the latest developments in utilizing injectable hydrogels as vehicles for targeted drug delivery to promote cartilage repair and regeneration. The pathogenesis of osteoarthritis is discussed to provide a comprehensive understanding of the disease progression. Subsequently, the various types of injectable hydrogels used for intra-articular delivery are discussed. Specifically, physically and chemically crosslinked injectable hydrogels are critically analyzed, with an emphasis on their fabrication strategies and their capacity to encapsulate and release therapeutic agents in a controlled manner. Furthermore, the potential of incorporating growth factors, anti-inflammatory drugs, and cells within these injectable hydrogels are discussed. Overall, this review offers a comprehensive guide to navigating the landscape of hydrogel-based therapeutics in osteoarthritis.
Collapse
Affiliation(s)
| | - Ridhi Pradhan
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Waqas Saleem
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Morgan M. Smith
- Department of Veterinary Integrative BiosciencesSchool of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTX77843USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
- Department of Material Science and EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
- Genetics and Genomics Interdisciplinary ProgramTexas A&M UniversityCollege StationTX77843USA
| |
Collapse
|
4
|
Schmidt S, Klampfleuthner FAM, Renkawitz T, Diederichs S. Cause and chondroprotective effects of prostaglandin E2 secretion during mesenchymal stromal cell chondrogenesis. Eur J Cell Biol 2024; 103:151412. [PMID: 38608422 DOI: 10.1016/j.ejcb.2024.151412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) that are promising for cartilage tissue engineering secrete high amounts of prostaglandin E2 (PGE2), an immunoactive mediator involved in endochondral bone development. This study aimed to identify drivers of PGE2 and its role in the inadvertent MSC misdifferentiation into hypertrophic chondrocytes. PGE2 release, which rose in the first three weeks of MSC chondrogenesis, was jointly stimulated by endogenous BMP, WNT, and hedgehog activity that supported the exogenous stimulation by TGF-β1 and insulin to overcome the PGE2 inhibition by dexamethasone. Experiments with PGE2 treatment or the inhibitor celecoxib or specific receptor antagonists demonstrated that PGE2, although driven by prohypertrophic signals, exerted broad autocrine antihypertrophic effects. This chondroprotective effect makes PGE2 not only a promising option for future combinatorial approaches to direct MSC tissue engineering approaches into chondral instead of endochondral development but could potentially have implications for the use of COX-2-selective inhibitors in osteoarthritis pain management.
Collapse
Affiliation(s)
- Sven Schmidt
- Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Department of Orthopaedics, Heidelberg, Germany
| | - Felicia A M Klampfleuthner
- Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Department of Orthopaedics, Heidelberg, Germany
| | - Tobias Renkawitz
- Research Centre for Molecular and Regenerative Orthopaedics, Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Solvig Diederichs
- Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Department of Orthopaedics, Heidelberg, Germany.
| |
Collapse
|
5
|
Yang D, Xu K, Xu X, Xu P. Revisiting prostaglandin E2: A promising therapeutic target for osteoarthritis. Clin Immunol 2024; 260:109904. [PMID: 38262526 DOI: 10.1016/j.clim.2024.109904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Osteoarthritis (OA) is a complex disease characterized by cartilage degeneration and persistent pain. Prostaglandin E2 (PGE2) plays a significant role in OA inflammation and pain. Recent studies have revealed the significant role of PGE2-mediated skeletal interoception in the progression of OA, providing new insights into the pathogenesis and treatment of OA. This aspect also deserves special attention in this review. Additionally, PGE2 is directly involved in pathologic processes including aberrant subchondral bone remodeling, cartilage degeneration, and synovial inflammation. Therefore, celecoxib, a commonly used drug to alleviate inflammatory pain through inhibiting PGE2, serves not only as an analgesic for OA but also as a potential disease-modifying drug. This review provides a comprehensive overview of the discovery history, synthesis and release pathways, and common physiological roles of PGE2. We discuss the roles of PGE2 and celecoxib in OA and pain from skeletal interoception and multiple perspectives. The purpose of this review is to highlight PGE2-mediated skeletal interoception and refresh our understanding of celecoxib in the pathogenesis and treatment of OA.
Collapse
Affiliation(s)
- Dinglong Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Xin Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
6
|
Mukherjee A, Das B. The role of inflammatory mediators and matrix metalloproteinases (MMPs) in the progression of osteoarthritis. BIOMATERIALS AND BIOSYSTEMS 2024; 13:100090. [PMID: 38440290 PMCID: PMC10910010 DOI: 10.1016/j.bbiosy.2024.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/04/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Osteoarthritis (OA) is a chronic musculoskeletal disorder characterized by an imbalance between (synthesis) and catabolism (degradation) in altered homeostasis of articular cartilage mediated primarily by the innate immune system. OA degenerates the joints resulting in synovial hyperplasia, degradation of articular cartilage with damage of the structural and functional integrity of the cartilage extracellular matrix, subchondral sclerosis, osteophyte formation, and is characterized by chronic pain, stiffness, and loss of function. Inflammation triggered by factors like biomechanical stress is involved in the development of osteoarthritis. In OA apart from catabolic effects, anti-inflammatory anabolic processes also occur continually. There is also an underlying chronic inflammation present, not only in cartilage tissue but also within the synovium, which perpetuates tissue destruction of the OA joint. The consideration of inflammation in OA considers synovitis and/or other cellular and molecular events in the synovium during the progression of OA. In this review, we have presented the progression of joint degradation that results in OA. The critical role of inflammation in the pathogenesis of OA is discussed in detail along with the dysregulation within the cytokine networks composed of inflammatory and anti-inflammatory cytokines that drive catabolic pathways, inhibit matrix synthesis, and promote cellular apoptosis. OA pathogenesis, fluctuation of synovitis, and its clinical impact on disease progression are presented here along with the role of synovial macrophages in promoting inflammatory and destructive responses in OA. The role of interplay between different cytokines, structure, and function of their receptors in the inter-cellular signaling pathway is further explored. The effect of cytokines in the increased synthesis and release of matrix-decomposing proteolytic enzymes, such as matrix metalloproteinase (MMPs) and a disintegrin-like and metalloproteinase with thrombospondin motif (ADAMTS), is elaborated emphasizing the potential impact of MMPs on the chondrocytes, synovial cells, articular and periarticular tissues, and other immune system cells migrating to the site of inflammation. We also shed light on the pathogenesis of OA via oxidative damage particularly due to nitric oxide (NO) via its angiogenic response to inflammation. We concluded by presenting the current knowledge about the tissue inhibitors of metalloproteinases (TIMPs). Synthetic MMP inhibitors include zinc binding group (ZBG), non-ZBG, and mechanism-based inhibitors, all of which have the potential to be therapeutically beneficial in the treatment of osteoarthritis. Improving our understanding of the signaling pathways and molecular mechanisms that regulate the MMP gene expression, may open up new avenues for the creation of therapies that can stop the joint damage associated with OA.
Collapse
Affiliation(s)
- Anwesha Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| | - Bodhisatwa Das
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| |
Collapse
|
7
|
Wu Y, Ying J, Zhu X, Xu C, Wu L. Pachymic acid suppresses the inflammatory response of chondrocytes and alleviates the progression of osteoarthritis via regulating the Sirtuin 6/NF-κB signal axis. Int Immunopharmacol 2023; 124:110854. [PMID: 37657246 DOI: 10.1016/j.intimp.2023.110854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
Articular cartilage degeneration is a characteristic pathological change of osteoarthritis (OA). Pachymic acid (PA) is an active ingredient found in Poria cocos. Previous studies have shown that PA has anti-inflammatory effects on a variety of diseases. However, the role of PA in OA and its underlying mechanisms has not been clearly elucidated. In this study, we investigated potential protective effect of PA on OA through cell experiments in vitro and animal experiments in vivo. PA inhibited interleukin-1β-induced inflammatory mediator production in chondrocytes, which includes nitric oxide, inducible nitric oxide synthase, prostaglandin E2, cyclooxygenase-2, tumor necrosis factor alpha and interleukin-6. Meanwhile, PA also reversed the up-regulation of matrix metalloproteinase-3 and thrombospondin motifs 5, and the down-regulation of collagen type II and aggrecan in IL-1β-treated chondrocytes. Mechanistically, our findings revealed that PA-mediated overexpression of SIRT6 inhibited the NF-κB signaling pathway. In vivo, PA contributes to improve cartilage damage in the mouse OA model. In summary, PA inhibited IL-1β-induced inflammation and extracellular matrix degeneration by promoting SIRT6 expression and inhibiting the NF-κB signaling pathway, which indicates that PA is beneficial for the treatment of OA.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang 325000, PR China; The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Jiahao Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang 325000, PR China; The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Xiaoyan Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang 325000, PR China; The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Chenqin Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang 325000, PR China; The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Long Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang 325000, PR China; The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang 325000, PR China.
| |
Collapse
|
8
|
Shin H, Prasad V, Lupancu T, Malik S, Achuthan A, Biondo M, Kingwell BA, Thiem M, Gottschalk M, Weighardt H, Förster I, de Steiger R, Hamilton JA, Lee KMC. The GM-CSF/CCL17 pathway in obesity-associated osteoarthritic pain and disease in mice. Osteoarthritis Cartilage 2023; 31:1327-1341. [PMID: 37225052 DOI: 10.1016/j.joca.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVES We have previously identified a granulocyte macrophage-colony stimulating factor (GM-CSF)/C-C motif ligand 17 (CCL17) pathway in monocytes/macrophages, in which GM-CSF regulates the formation of CCL17, and it is important for an experimental osteoarthritis (OA) model. We explore here additional OA models, including in the presence of obesity, such as a requirement for this pathway. DESIGN The roles of GM-CSF, CCL17, CCR4, and CCL22 in various experimental OA models, including those incorporating obesity (eight-week high-fat diet), were investigated using gene-deficient male mice. Pain-like behavior and arthritis were assessed by relative static weight distribution and histology, respectively. Cell populations (flow cytometry) and cytokine messenger RNA (mRNA) expression (qPCR) in knee infrapatellar fat pad were analyzed. Human OA sera were collected for circulating CCL17 levels (ELISA) and OA knee synovial tissue for gene expression (qPCR). RESULTS We present evidence that: i) GM-CSF, CCL17, and CCR4, but not CCL22, are required for the development of pain-like behavior and optimal disease in three experimental OA models, as well as for exacerbated OA development due to obesity, ii) obesity alone leads to spontaneous knee joint damage in a GM-CSF- and CCL17-dependent manner, and iii) in knee OA patients, early indications are that BMI correlates with a lower Oxford Knee Score (r = -0.458 and p = 0.0096), with elevated circulating CCL17 levels (r = 0.2108 and p = 0.0153) and with elevated GM-CSF and CCL17 gene expression in OA synovial tissue. CONCLUSIONS The above findings indicate that GM-CSF, CCL17, and CCR4 are involved in obesity-associated OA development, broadening their potential as targets for possible treatments for OA.
Collapse
Affiliation(s)
- Heonsu Shin
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Varun Prasad
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Tanya Lupancu
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Shveta Malik
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Adrian Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Mark Biondo
- CSL Ltd, Bio21 Institute, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Bronwyn A Kingwell
- CSL Ltd, Bio21 Institute, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Manja Thiem
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Marlene Gottschalk
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Richard de Steiger
- Department of Surgery, Epworth Healthcare, University of Melbourne, Richmond, Victoria 3121, Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Victoria 3021, Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Kevin M-C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050 Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
9
|
Biswas D, Somkuwar BG, Borah JC, Varadwaj PK, Gupta S, Khan ZA, Mondal G, Chattoraj A, Deb L. Phytochemical mediated modulation of COX-3 and NFκB for the management and treatment of arthritis. Sci Rep 2023; 13:13612. [PMID: 37604838 PMCID: PMC10442333 DOI: 10.1038/s41598-023-37729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/27/2023] [Indexed: 08/23/2023] Open
Abstract
In this study, we investigated whether zerumbone (ZBN), ellagic acid (ELA) and quercetin (QCT), the plant-derived components, can modulate the role of COX-3 or cytokines liable in arthritic disorder. Initially, the effect of ZBN, ELA, and QCT on inflammatory process was investigated using in-vitro models. In-silico docking and molecular dynamics study of these molecules with respective targets also corroborate with in-vitro studies. Further, the in-vivo anti-arthritic potential of these molecules in Complete Freund's adjuvant (CFA)-induced arthritic rats was confirmed. CFA increases in TNF-α and IL-1β levels in the arthritic control animals were significantly (***p < 0.001) attenuated in the ZBN- and ELA-treated animals. CFA-induced attenuation in IL-10 levels recovered under treatment. Moreover, ELA attenuated CFA-induced upregulation of COX-3 and ZBN downregulated CFA-triggered NFκB expression in arthritic animals. The bonding patterns of zerumbone in the catalytic sites of targets provide a useful hint in designing and developing suitable derivatives that can be used as a potential drug. To our best knowledge, the first time we are reporting the role of COX-3 in the treatment of arthritic disorders which could provide a novel therapeutic approach for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Dipak Biswas
- Natural Product Chemistry and Pharmacology Programme, Medicinal Plants and Horticulture Resources Division, Institute of Bioresources and Sustainable Development, (An Autonomous Institute of Department of Biotechnology, Government of India), Takyelpat, Imphal, 795001, Manipur, India
| | - Bharat Gopalrao Somkuwar
- Bioinformatics and Bioresources Database Division, Institute of Bioresources and Sustainable Development, (An Autonomous Institute of Department of Biotechnology, Government of India), Takyelpat, Imphal, 795001, Manipur, India
| | - Jagat Chandra Borah
- Natural Product Chemistry and Pharmacology Programme, Medicinal Plants and Horticulture Resources Division, Institute of Bioresources and Sustainable Development, (An Autonomous Institute of Department of Biotechnology, Government of India), Takyelpat, Imphal, 795001, Manipur, India
- Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under Department of Science & Technology, Govt. of India) Vigyan Path, Paschim Boragaon Garchuk, Guwahati, 781035, Assam, India
| | - Pritish Kumar Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology, Devghat, Jhalwa, Allahabad, 211015, Uttar Pradesh, India
| | - Saurabh Gupta
- Department of Applied Sciences, Indian Institute of Information Technology, Devghat, Jhalwa, Allahabad, 211015, Uttar Pradesh, India
| | - Zeeshan Ahmad Khan
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, (An Autonomous Institute of Department of Biotechnology, Government of India), Takyelpat, Imphal, 795001, Manipur, India
| | - Gopinath Mondal
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, (An Autonomous Institute of Department of Biotechnology, Government of India), Takyelpat, Imphal, 795001, Manipur, India
| | - Asamanja Chattoraj
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, (An Autonomous Institute of Department of Biotechnology, Government of India), Takyelpat, Imphal, 795001, Manipur, India
- Department of Animal Science, Kazi Nazrul University, Paschim Bardhaman, Asansol, 71330, West Bengal, India
| | - Lokesh Deb
- Natural Product Chemistry and Pharmacology Programme, Medicinal Plants and Horticulture Resources Division, Institute of Bioresources and Sustainable Development, (An Autonomous Institute of Department of Biotechnology, Government of India), Takyelpat, Imphal, 795001, Manipur, India.
- Institute of Bioresources and Sustainable Development-Regional Centre, Sikkim (Department of Biotechnology, Government of India), 5th Mile, Near Metro Point, Tadong, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
10
|
Zhang P, Jin Y, Xia W, Wang X, Zhou Z. Phillygenin inhibits inflammation in chondrocytes via the Nrf2/NF-κB axis and ameliorates osteoarthritis in mice. J Orthop Translat 2023; 41:1-11. [PMID: 37197096 PMCID: PMC10184049 DOI: 10.1016/j.jot.2023.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 05/19/2023] Open
Abstract
Objective Osteoarthritis (OA), widely seen in the elderly, is featured by cartilage degradation, subchondral bone remolding, and synovium inflammation. Currently, there is no cure for OA development. Phillygenin (PHI), an active ingredient from the Forsythiae Fructus, possesses many biological properties, such as anti-inflammation and anti-oxidative stress in several diseases. However, the potential effects and underlying mechanisms of PHI on OA remain unclear. Methods Western blotting, RT-PCR, ELISA and tissue staining were employed to explore the mechanisms by which PHI exerted a protective effect on IL-1β-induced production of pro-inflammation cytokines and extracellular matrix (ECM) degradation in primary murine chondrocytes and destabilization of the medial meniscus (DMM) mouse models. Results In this study, we found that PHI inhibited the production of pro-inflammation cytokines and ECM degradation induced by IL-1β in primary murine chondrocytes. Mechanically, PHI inhibited the NF-κB pathway via activating nuclear factor (erythrluteolind-derived 2)-like 2 (Nrf2). In vivo experiments also confirmed the chondroprotection of PHI in DMM mouse models. Conclusion PHI alleviated IL-1β-induced inflammation cytokines and ECM degradation via activating Nrf2 and inhibiting NF-κB pathway. The translational potential of this article This study provides a biological rationale for the use of PHI as a potential candidate for OA treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Yesheng Jin
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214026, China
| | - Wei Xia
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xiaotong Wang
- Department of Hepatology and Gastroenterology, The Affiliated Infectious Hospital of Soochow University, Suzhou, 215000, China
- Corresponding author.
| | - Zhiqiang Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Corresponding author. Department of Orthopedcis, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
11
|
Jyothi VGS, Veerabomma H, Kumar R, Khatri DK, Singh SB, Madan J. Meloxicam emulgel potently suppressed cartilage degradation in knee osteoarthritis: Optimization, formulation, industrial scalability and pharmacodynamic analysis. Colloids Surf B Biointerfaces 2023; 228:113399. [PMID: 37348266 DOI: 10.1016/j.colsurfb.2023.113399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND AND OBJECTIVE Meloxicam (MLX) is prescribed for the management of pain and inflammation allied with osteoarthritis (OA). However, MLX causes intestinal damage in long term administration. Hence, meloxicam loaded emulgel (MLX-emulgel) was optimized, formulated and examined under stringent parameters in monosodium-iodoacetate (MIA) induced knee OA in Wistar rats. METHODS AND RESULTS Nanoemulsion of MLX was fabricated by ultrasonication and microfluidization method with a droplet size of 66.81 ± 5.31-nm and zeta potential of -24.6 ± 0.72-mV. Further, MLX nanoemulsion was optimized with centrifugation, heating-cooling cycles and transmittance parameters in addition to scale-up feasibility with microfluidizer. Post optimization, MLX-nanoemulsion was tailored as emulgel with Carbopol Ultrez 10 NF and assessed for pH, rheology, textural properties, assay and stability features. The in-vitro release study revealed the Korsmeyer-Peppas release kinetics and ex-vivo skin permeation was improved by 6.71-folds. The skin distribution of MLX-emulgel evinced the transfollicular mode of permeation. In-vivo study indicated the protective action of MLX-emulegl expressed in terms of inflammatory cyctokines level, X-ray analysis of knee joints of rats, histopathology and OARSI (Osteoarthritis Research Society International) scoring. MLX-emulgel treated group displayed lower (P < 0.001) level of COX-2 intensity as compared to positive control group. However, it was comparable (P > 0.05) to the normal control group, MLX oral dispersion, i.v. solution and etoricoxib gel groups. MLX-emulgel showcased an alternative to the long term usage of analgesics for relieving the symptoms of knee OA. CONCLUSION MLX-emulgel may be a potential candidate for translating in to a clinically viable dosage form in the management of knee OA.
Collapse
Affiliation(s)
- Vaskuri Gs Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Harithasree Veerabomma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
12
|
Meng C, Na Y, Han C, Ren Y, Liu M, Ma P, Bai R. Exosomal miR-429 derived from adipose-derived stem cells ameliorated chondral injury in osteoarthritis via autophagy by targeting FEZ2. Int Immunopharmacol 2023; 120:110315. [PMID: 37245297 DOI: 10.1016/j.intimp.2023.110315] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/19/2023] [Accepted: 05/07/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is the most prevalent musculoskeletal disease, imposing a significant public health burden. Exosomes might be an effective means of treating OA. PURPOSE To investigate the role of exosomes from adipose tissue-derived stromal cells (ADSCs) in OA. We explored whether exosomes from ADSCs could be absorbed by OA chondrocytes, whether there were differences in miR-429 expression in the exosomes of ADSCs and chondrocytes, and whether ADSC exosomal miR-429 could enhance chondrocyte proliferation to exert therapeutic effects in OA. STUDY DESIGN Controlled laboratory study. METHODS ADSCs were isolated and cultured from 4-week-old Sprague-Dawley rats. ADSCs and chondrocytes were identified by flow cytometry assay and fluorescent staining, respectively. The exosomes were extracted and identified. Exosome transport was verified by cell staining and co-culture. Beclin 1, collagen II, LC3-II/I, miR-429, and FEZ2 mRNA and protein expression were investigated with real-time PCR and western blotting, respectively. Chondrocyte proliferation was investigated with Cell Counting Kit-8 (CCK-8) assay. The association between miR-429 and FEZ2 was verified with luciferase assay. A rat OA model was established and rat knee joint cartilage tissue was examined with hematoxylin-eosin and toluidine blue staining. RESULTS Both ADSCs and chondrocytes secreted exosomes and ADSC-derived exosomes could be absorbed by the chondrocytes. ADCS exosomes contained higher miR-429 levels than chondrocyte exosomes. The luciferase assay demonstrated that miR-429 directly targeted FEZ2. Compared with the OA group, miR-429 promoted chondrocyte proliferation while FEZ2 decreased it. miR-429 promoted autophagy by targeting FEZ2 to ameliorate cartilage injury. In vivo, miR-429 promoted autophagy to alleviate OA by targeting FEZ2. CONCLUSION ADSC exosomes could be beneficial for OA and could be absorbed by chondrocytes to promote chondrocyte proliferation through miR-429. miR-429 ameliorated cartilage injury in OA by targeting FEZ2 and promoting autophagy.
Collapse
Affiliation(s)
- Chenyang Meng
- Orthopedics Department, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yuyan Na
- Orthopedics Department, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Changxu Han
- Orthopedics Department, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yizhong Ren
- Orthopedics Department, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ming Liu
- Orthopedics Department, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Penglei Ma
- Anesthesia Surgical Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| | - Rui Bai
- Orthopedics Department, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
13
|
Cai T, Ye H, Jiang H, Lin C, Lou C, Wang W, Yan Z, Xue X, Pan X, Lin J. Stevioside targets the NF-κB and MAPK pathways for inhibiting inflammation and apoptosis of chondrocytes and ameliorates osteoarthritis in vivo. Int Immunopharmacol 2023; 115:109683. [PMID: 36630751 DOI: 10.1016/j.intimp.2023.109683] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023]
Abstract
Osteoarthritis (OA) is a joint disease that is characterized by articular cartilage degeneration and destruction. Stevioside (SVS) is a diterpenoid glycoside extracted from Stevia rebaudiana Bertoni with some specific effects against inflammatory and apoptotic, whereas it is still unclear what function SVS has in osteoarthritis. This study focuses on the anti-inflammatory and anti-apoptosis functions of SVS on chondrocytes induced by interleukin (IL)-1beta, and the role of SVS in an osteoarthritis model for mice. We can detect the production of inflammatory factors such as nitric oxide (NO) and prostaglandin E2 (PGE2) using real-time quantitative polymerase chain reaction (RT-qPCR), the Griess reaction, and enzyme linked immunosorbent assay (ELISA). On the basis of Western blot, we have observed the protein expressions of cartilage matrix metabolism, inflammatory factors, and apoptosis of chondrocytes. Simultaneously, the pharmacological effects of SVS in mice were evaluated by hematoxylin and eosin (HE), toluidine blue, Safranin O, and immunohistochemical staining. The results show that SVS slows extracellular matrix degradation and chondrocyte apoptosis. In addition, SVS mediates its cellular effect by inhibiting the activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways. Meanwhile, molecular docking studies revealed that SVS has excellent binding capabilities to p65, extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). The study suggests that SVS can be developed as a potential osteoarthritis treatment.
Collapse
Affiliation(s)
- Tingwen Cai
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hantao Ye
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chihao Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chao Lou
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weidan Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zijian Yan
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xinghe Xue
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaoyun Pan
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Jian Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
14
|
Functional Loss of Terminal Complement Complex Protects Rabbits from Injury-Induced Osteoarthritis on Structural and Cellular Level. Biomolecules 2023; 13:biom13020216. [PMID: 36830586 PMCID: PMC9953363 DOI: 10.3390/biom13020216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
The terminal complement complex (TCC) has been described as a potential driver in the pathogenesis of posttraumatic osteoarthritis (PTOA). However, sublytic TCC deposition might also play a crucial role in bone development and regeneration. Therefore, we elucidated the effects of TCC on joint-related tissues using a rabbit PTOA model. In brief, a C6-deficient rabbit breed was characterized on genetic, protein, and functional levels. Anterior cruciate ligament transection (ACLT) was performed in C6-deficient (C6-/-) and C6-sufficient (C6+/-) rabbits. After eight weeks, the progression of PTOA was determined histologically. Moreover, the structure of the subchondral bone was evaluated by µCT analysis. C6 deficiency could be attributed to a homozygous 3.6 kb deletion within the C6 gene and subsequent loss of the C5b binding site. Serum from C6-/- animals revealed no hemolytic activity. After ACLT surgery, joints of C6-/- rabbits exhibited significantly lower OA scores, including reduced cartilage damage, hypocellularity, cluster formation, and osteophyte number, as well as lower chondrocyte apoptosis rates and synovial prostaglandin E2 levels. Moreover, ACLT surgery significantly decreased the trabecular number in the subchondral bone of C6-/- rabbits. Overall, the absence of TCC protected from injury-induced OA progression but had minor effects on the micro-structure of the subchondral bone.
Collapse
|
15
|
Singh YP, Moses JC, Bandyopadhyay A, Mandal BB. 3D Bioprinted Silk-Based In Vitro Osteochondral Model for Osteoarthritis Therapeutics. Adv Healthc Mater 2022; 11:e2200209. [PMID: 35670084 DOI: 10.1002/adhm.202200209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/17/2022] [Indexed: 01/28/2023]
Abstract
3D bioprinting of osteochondral tissue offers unique opportunities for enabling precise pharmacological interventions in osteoarthritis (OA). The current study investigates the screening potential of anti-inflammatory drugs using bioprinted inflamed human osteochondral units. The biomimetic hierarchical geometry is bioprinted using silk-based bioinks encapsulating pre-differentiated stem cells, creating an in vitro model. Inflammation is stimulated in the model, using tumor necrosis factor-alpha and Interleukin-1 beta pro-inflammatory cytokines. The resultant degeneration, akin to OA, is flagged by key markers like sulfated glycosaminoglycan, collagen, alkaline phosphatase, and downregulation of osteochondral transcript levels. In the next step, the screening of anti-inflammatory drugs is validated using celecoxib and rhein. Consequently, in the inflamed constructs, the initial upregulation of the key inflammatory mediators (nitric oxide, Prostaglandin E2), is subsequently downregulated, post-drug treatment. In addition, catabolic markers (matrix metalloproteinases and aggrecanase-1), indicative of hypertrophic and apoptosing chondrocytes, are significantly downregulated in the treatment groups; while the transcript and protein levels required for osteochondral health are attenuated. Therefore, the in vitro model mimicks the inflammation in the early stages of OA, and corroborates a potential high-throughput platform for screening novel anti-inflammatory drugs in OA therapeutics.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Joseph Christakiran Moses
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Ashutosh Bandyopadhyay
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.,Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.,School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
16
|
Qu Y, Shen Y, Teng L, Huang Y, Yang Y, Jian X, Fan S, Wu P, Fu Q. Chicoric acid attenuates tumor necrosis factor-α-induced inflammation and apoptosis via the Nrf2/HO-1, PI3K/AKT and NF-κB signaling pathways in C28/I2 cells and ameliorates the progression of osteoarthritis in a rat model. Int Immunopharmacol 2022; 111:109129. [PMID: 35961266 DOI: 10.1016/j.intimp.2022.109129] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Osteoarthritis (OA) is the most common arthritis, and is characterized by inflammation and cartilage degradation. Chicoric acid (CA), a bioactive caffeic acid derivative isolated from the root of Taraxacum mongolicumHand. - Mazz., has been reported to have anti-inflammatory effects. However, the therapeutic effects of CA on chondrocyte inflammation remain unknown. Our study aimed to explore the effect of CA on OA both in vivo and in vitro. In vitro, CA treatment significantly suppressed the overproduction of nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and IL-12 in tumor necrosis factor alpha (TNF-α)-induced human C28/I2 chondrocytes. Moreover, CA attenuated TNF-α induced degradation of the extracellular matrix (ECM) by upregulating the expression of collagen Ⅱ and aggrecan, and downregulating ADAMTS-5 and matrix metalloproteinases (MMPs). Additionally, CA treatment inhibited apoptosis in C28/I2 cells by upregulating of Bcl-2 levels, downregulating Bax and ROS levels, and activating the Nrf2/HO-1 pathway. Mechanistically, CA exerted an anti-inflammatory effect by inhibiting the PI3K/AKT and NF-κB signaling pathways, enhancing Nrf-2/HO-1 to limit the activation of NF-κB. In vivo experiments also proved the therapeutic effects of CA on OA in rats. These findings indicate that CA may become a new drug for the treatment of OA.
Collapse
Affiliation(s)
- Yuhan Qu
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yue Shen
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Li Teng
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuehui Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yuting Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xi Jian
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Shengli Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Ping Wu
- Department of Pharmacy, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu 610041, China.
| | - Qiang Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
17
|
Haartmans MJ, Timur UT, Emanuel KS, Caron MM, Jeuken RM, Welting TJ, van Osch GJ, Heeren RM, Cillero-Pastor B, Emans PJ. Evaluation of the Anti-Inflammatory and Chondroprotective Effect of Celecoxib on Cartilage Ex Vivo and in a Rat Osteoarthritis Model. Cartilage 2022; 13:19476035221115541. [PMID: 35932105 PMCID: PMC9364198 DOI: 10.1177/19476035221115541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The potential chondroprotective effect of celecoxib, a nonsteroidal anti-inflammatory drug and selective cyclooxygenase-2 inhibitor used to reduce pain and inflammation in knee osteoarthritis patients, is disputed. This study aimed at investigating the chondroprotective effects of celecoxib on (1) human articular cartilage explants and (2) in an in vivo osteoarthritis rat model. DESIGN Articular cartilage explants from 16 osteoarthritis patients were cultured for 24 hours with celecoxib or vehicle. Secreted prostaglandins (prostaglandin E2, prostaglandin F2α, prostaglandin D2) and thromboxane B2 (TXB2) concentrations were determined in medium by ELISA, and protein regulation was measured with label-free proteomics. Cartilage samples from 7 of these patients were analyzed for gene expression using real-time quantitative polymerase chain reaction. To investigate the chondroprotective effect of celecoxib in vivo, 14 rats received an intra-articular injection of celecoxib or 0.9% NaCl after osteoarthritis induction by anterior cruciate ligament transection and partial medial meniscectomy (ACLT/pMMx model). Histopathological scoring was used to evaluate osteoarthritis severity 12 weeks after injection. RESULTS Secretion of prostaglandins, target of Nesh-SH3 (ABI3BP), and osteonectin proteins decreased, whereas tissue inhibitor of metalloproteinase 2 (TIMP-2) increased significantly after celecoxib treatment in the human (ex vivo) explant culture. Gene expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 and 5 (ADAMTS4/5) and metalloproteinase 13 (MMP13) was significantly reduced after celecoxib treatment in human cartilage explants. Cartilage degeneration was reduced significantly in an in vivo osteoarthritis knee rat model. CONCLUSIONS Our data demonstrated that celecoxib acts chondroprotective on cartilage ex vivo and a single intra-articular bolus injection has a chondroprotective effect in vivo.
Collapse
Affiliation(s)
- Mirella J.J. Haartmans
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands,Maastricht MultiModal Molecular Imaging
Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University,
Maastricht, The Netherlands
| | - Ufuk Tan Timur
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands
| | - Kaj S. Emanuel
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands,Department of Orthopaedic Surgery,
Amsterdam Movement Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The
Netherlands
| | - Marjolein M.J. Caron
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands
| | - Ralph M. Jeuken
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands
| | - Tim J.M. Welting
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands
| | - Gerjo J.V.M. van Osch
- Department of Orthopaedics and Sports
Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The
Netherlands,Department of Otorhinolaryngology,
Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ron M.A. Heeren
- Maastricht MultiModal Molecular Imaging
Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University,
Maastricht, The Netherlands
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging
Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University,
Maastricht, The Netherlands,MERLN Institute for Technology-Inspired
Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering,
Maastricht University, Maastricht, The Netherlands,Dr. Berta Cillero-Pastor, Maastricht
MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass
Spectrometry, Maastricht University, Maastricht, The Netherlands; MERLN
Institute for Technology-Inspired Regenerative Medicine, Department of Cell
Biology-Inspired Tissue Engineering, Maastricht University, Universiteitssingel
40, 6229 ER, Maastricht, PO Box 616, Maastricht, 6200 MD, The Netherlands.
| | - Pieter J. Emans
- Laboratory for Experimental
Orthopedics, Joint Preserving Clinic, Department of Orthopaedic Surgery, Maastricht
University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
18
|
Yang Y, Huang JJ, Zhu GS, Hu W. Hyperoside attenuates osteoarthritis progression by targeting PI3K/Akt/NF-κB signaling pathway: In vitro and in vivo studies. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
19
|
Seahorse Protein Hydrolysate Ameliorates Proinflammatory Mediators and Cartilage Degradation on Posttraumatic Osteoarthritis with an Obesity Rat Model. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4117520. [PMID: 35509713 PMCID: PMC9060998 DOI: 10.1155/2022/4117520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 12/01/2022]
Abstract
Osteoarthritis (OA) is one of the age-related diseases and is highly present on the knees. Obesity and mechanical injuries as a risk factor of OA are attributed to cartilage disintegration, joint loading, and inflammation. This study is aimed at investigating the effects of seahorse protein hydrolysate (SH) on posttraumatic osteoarthritis in an obesity rat. The OA model was developed by anterior cruciate ligament transection with medial meniscectomy in a high-fat diet- (HFD-) induced obesity rat model. The male Sprague-Dawley rats were fed a HFD for 6 weeks before OA surgery. The OA rats were treated with oral gavage by 4, 8, or 20 mg/kg of body weight of SH for 6 weeks of treatment. The expressions of plasma proinflammatory factors, C-telopeptide of type II collagen, and matrix metalloproteinase- (MMP-) 3 and MMP-13 were reduced by SH treatment. Plasma superoxide dismutase and glutathione peroxidase activities were enhanced by SH. SH also relieved the pain of the knee joint and swelling as well as decreased proteoglycan loss in the knee articular cartilage caused by osteoarthritis. Based on these results, SH suppressed proinflammatory factors and attenuated cartilage degradation and pain in the OA model. Therefore, seahorse protein hydrolysate might be a potential opportunity for improving the development of osteoarthritis.
Collapse
|
20
|
Hu W, Mao C, Sheng W. The protective effect of kirenol in osteoarthritis: an in vitro and in vivo study. J Orthop Surg Res 2022; 17:195. [PMID: 35365162 PMCID: PMC8974005 DOI: 10.1186/s13018-022-03063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic degenerative disease, its main characteristic involves articular cartilage destruction and inflammation response, absent of effective medical treatment. Our current research aimed to explore anti-inflammatory effect of kirenol, a diterpenoid natural product compound, in the development of OA and its potential molecular mechanism through in vitro and in vivo study. METHODS In vitro, chondrocytes were pretreated with kirenol for 2 h before IL-1β stimulation. Production of NO, PGE2, TNF-α, IL-6, aggrecan, collagen-II, MMP13and ADAMTS5 were evaluated by the Griess reaction and ELISAs. The mRNA (aggrecan and collagen-II) and protein expression (COX-2, iNOS, P65, IκB, PI3K, AKT) were measured by qRT-PCR and Western blot respectively. Immunofluorescence was used to assess the expression of collagen-II and P65. The in vivo effect of kirenol was evaluated in mice OA models induced by destabilization of the medial meniscus (DMM). RESULTS We found that kirenol inhibited IL-1β-induced expression of NO, PGE2, TNF-α, IL-6, COX-2, iNOS, ADAMTS-5. Besides, kirenol remarkably decreased IL-1β-induced degradation of aggrecan and collagen-II. Furthermore, kirenol significantly inhibited IL-1β-induced phosphorylation of PI3K/Akt and NF-κB signaling. In vivo, the cartilage in kirenol-treated mice exhibited less cartilage degradation and lower OARSI scores. CONCLUSIONS Taken together, the results of this study provide potent evidence that kirenol could be utilized as a potentially therapeutic agent in prevention and treatment of OA.
Collapse
Affiliation(s)
- Wei Hu
- Department of Spine Surgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China
| | - Chao Mao
- Department of Spine Surgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China
| | - Weibin Sheng
- Department of Spine Surgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China.
| |
Collapse
|
21
|
Muenzebrock KA, Kersten V, Alblas J, Garcia JP, Creemers LB. The Added Value of the “Co” in Co-Culture Systems in Research on Osteoarthritis Pathology and Treatment Development. Front Bioeng Biotechnol 2022; 10:843056. [PMID: 35309991 PMCID: PMC8927651 DOI: 10.3389/fbioe.2022.843056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a highly prevalent disease and a major health burden. Its development and progression are influenced by factors such as age, obesity or joint overuse. As a whole organ disease OA affects not only cartilage, bone and synovium but also ligaments, fatty or nervous tissue surrounding the joint. These joint tissues interact with each other and understanding this interaction is important in developing novel treatments. To incorporate and study these interactions in OA research, several co-culture models have evolved. They combine two or more cell types or tissues and investigate the influence of amongst others inflammatory or degenerative stimuli seen in OA. This review focuses on co-cultures and the differential processes occurring in a given tissue or cell as a consequence of being combined with another joint cell type or tissue, and/or the extent to which a co-culture mimics the in vivo processes. Most co-culture models depart from synovial lining and cartilage culture, but also fat pad and bone have been included. Not all of the models appear to reflect the postulated in vivo OA pathophysiology, although some of the discrepancies may indicate current assumptions on this process are not entirely valid. Systematic analysis of the mutual influence the separate compartments in a given model exert on each other and validation against in vivo or ex vivo observation is still largely lacking and would increase their added value as in vitro OA models.
Collapse
|
22
|
Luteolin Protects Chondrocytes from H2O2-Induced Oxidative Injury and Attenuates Osteoarthritis Progression by Activating AMPK-Nrf2 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5635797. [PMID: 35154568 PMCID: PMC8825676 DOI: 10.1155/2022/5635797] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) is a chronic degenerative disease featured by cartilage erosion and inflammation. Luteolin, a member of the flavonoid family, has been shown to exert anti-inflammatory and antioxidative activities. However, the potential biological effects and underlying mechanism of luteolin on chondrocytes and OA progression remain largely elusive. In this study, the potential effect and mechanism of luteolin on OA were investigated in vitro and in vivo. Our data revealed that luteolin inhibited H2O2-induced cell death, apoptosis, oxidative stress, programmed necrosis, and inflammatory mediator production in primary murine chondrocytes. In addition, luteolin could activate the AMPK and Nrf2 pathways, and AMPK serves as a positive upstream regulator of Nrf2. In vivo results demonstrated the therapeutic effects of luteolin on OA in the DMM mouse model. Collectively, our findings showed that luteolin might serve as a novel and effective treatment for OA and provided a new research direction for clinical OA therapies.
Collapse
|
23
|
Liu S, Deng Z, Chen K, Jian S, Zhou F, Yang Y, Fu Z, Xie H, Xiong J, Zhu W. Cartilage tissue engineering: From proinflammatory and anti‑inflammatory cytokines to osteoarthritis treatments (Review). Mol Med Rep 2022; 25:99. [PMID: 35088882 PMCID: PMC8809050 DOI: 10.3892/mmr.2022.12615] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
Osteoarthritis (OA), one of the most common joint diseases, is characterized by fibrosis, rhagadia, ulcers and attrition of articular cartilage due to a number of factors. The etiology of OA remains unclear, but its occurrence has been associated with age, obesity, inflammation, trauma and genetic factors. Inflammatory cytokines are crucial for the occurrence and progression of OA. The intra-articular proinflammatory and anti-inflammatory cytokines jointly maintain a dynamic balance, in accordance with the physiological metabolism of articular cartilage. However, dynamic imbalance between proinflammatory and anti-inflammatory cytokines can cause abnormal metabolism in knee articular cartilage, which leads to deformation, loss and abnormal regeneration, and ultimately destroys the normal structure of the knee joint. The ability of articular cartilage to self-repair once damaged is limited, due to its inability to obtain nutrients from blood vessels, nerves and lymphatic vessels, as well as limitations in the extracellular matrix. There are several disadvantages inherent to conventional repair methods, while cartilage tissue engineering (CTE), which combines proinflammatory and anti-inflammatory cytokines, offers a new therapeutic approach for OA. The aim of the present review was to examine the proinflammatory factors implicated in OA, including IL-1β, TNF-α, IL-6, IL-15, IL-17 and IL-18, as well as the key anti-inflammatory factors reducing OA-related articular damage, including IL-4, insulin-like growth factor and TGF-β. The predominance of proinflammatory over anti-inflammatory cytokine effects ultimately leads to the development of OA. CTE, which employs mesenchymal stem cells and scaffolding technology, may prevent OA by maintaining the homeostasis of pro- and anti-inflammatory factors.
Collapse
Affiliation(s)
- Shuyu Liu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Kang Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Shengsheng Jian
- Department of Orthopedics, Luo Hu Hospital, Shenzhen, Guangdong 518001, P.R. China
| | - Feifei Zhou
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Yuan Yang
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Zicai Fu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Huanyu Xie
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Jianyi Xiong
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Weimin Zhu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
24
|
Zhou S, Liu G, Si Z, Yu L, Hou L. Glycyrrhizin, an HMGB1 inhibitor, Suppresses Interleukin-1β-Induced Inflammatory Responses in Chondrocytes from Patients with Osteoarthritis. Cartilage 2021; 13:947S-955S. [PMID: 32602358 PMCID: PMC8804755 DOI: 10.1177/1947603520934858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND High mobility group box 1 (HMGB1) is increased in osteoarthritis (OA) tissue and chondrocytes stimulated with interleukin-1β (IL-1β). Suppression of HMGB1 expression is correlated with reduced inflammatory responses induced by IL-1β. This study aimed to investigate how inhibition of HMGB1 by glycyrrhizin might affect inflammatory responses and viability of OA patient-derived chondrocytes treated with IL-1β. DESIGN The amounts of HMGB1 in the cartilage tissue and synovial fluid in patients with OA were assessed by Western blot and enzyme-linked immunosorbent assay (ELISA). Chondrocytes were extracted from OA patients and maintained in culture. The impact of glycyrrhizin on IL-1β-induced cell toxicity and inflammatory mediators and cytokines, including prostaglandin E2 (PGE2), nitric oxide (NO), proinflammatory cytokines, and metalloproteases (MMPs), were assessed by ELISA, Western blot, quantitative real-time polymerase chain reaction, and the Griess reagent assay. RESULTS We confirmed that HMGB1 was significantly upregulated in specimens acquired from patients with OA. HMGB1 inhibition by glycyrrhizin improved cell viability of chondrocytes treated with IL-1β. Glycyrrhizin suppressed IL-1β-induced upregulation of HMGB1 and inflammatory mediators and cytokines, including PGE2, NO, proinflammatory cytokines, and MMPs. CONCLUSION Our results indicate that glycyrrhizin may be a potential therapy for OA patients and these promising findings warrant further study for clinical application.
Collapse
Affiliation(s)
- Shifeng Zhou
- Department of Emergency Surgery, the
First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang,
China
| | - Guodan Liu
- Department of Ophthalmology, the Fourth
Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhenxing Si
- Department of Emergency Surgery, the
First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang,
China
| | - Luanfei Yu
- Department of Emergency Surgery, the
First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang,
China
| | - Limin Hou
- Department of Emergency Surgery, the
First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang,
China,Limin Hou, Department of Emergency Surgery,
the First Affiliated Hospital of Harbin Medical University, No. 23 Postal
Street, Nangang District, Harbin, Heilongjiang 150000, China.
| |
Collapse
|
25
|
Arabiyat AS, Chen H, Erndt-Marino J, Burkhard K, Scola L, Fleck A, Wan LQ, Hahn MS. Hyperosmolar Ionic Solutions Modulate Inflammatory Phenotype and sGAG Loss in a Cartilage Explant Model. Cartilage 2021; 13:713S-721S. [PMID: 32975437 PMCID: PMC8804856 DOI: 10.1177/1947603520961167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The objective of this study was to compare the effects of hyperosmolar sodium (Na+), lithium (Li+) and potassium (K+) on catabolic and inflammatory osteoarthritis (OA) markers and sulfated glycosaminoglycan (sGAG) loss in TNF-α-stimulated cartilage explants. METHODS Explants from bovine stifle joints were stimulated with TNF-α for 1 day to induce cartilage degradation followed by supplementation with 50 mM potassium chloride (KCl), 50 mM lithium chloride (LiCl), 50 mM sodium chloride (NaCl), or 100 nM dexamethasone for an additional 6 days. We assessed the effect of TNF-α stimulation and hyperosmolar ionic treatment on sGAG loss and expression of OA-associated proteins: ADAMTS-5, COX-2, MMP-1, MMP-13, and VEGF. RESULTS TNF-α treatment increased sGAG loss (P < 0.001) and expression of COX-2 (P = 0.018), MMP-13 (P < 0.001), and VEGF (P = 0.017) relative to unstimulated controls. Relative to activated controls, LiCl and dexamethasone treatment attenuated sGAG loss (P = 0.008 and P = 0.042, respectively) and expression of MMP-13 (P = 0.005 and P = 0.036, respectively). In contrast, KCl treatment exacerbated sGAG loss (P = 0.032) and MMP-1 protein expression (P = 0.010). NaCl treatment, however, did not alter sGAG loss or expression of OA-related proteins. Comparing LiCl and KCl treatment shows a potent reduction (P < 0.05) in catabolic and inflammatory mediators following LiCl treatment. CONCLUSION These results suggest that these ionic species elicit varying responses in TNF-α-stimulated explants. Cumulatively, these findings support additional studies of hyperosmolar ionic solutions for potential development of novel intraarticular injections targeting OA.
Collapse
Affiliation(s)
- Ahmad S. Arabiyat
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| | - Hongyu Chen
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| | - Josh Erndt-Marino
- Department of Biomedical Engineering,
Tufts University, Medford, MA, USA
| | - Katie Burkhard
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
| | - Lisa Scola
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
| | - Allison Fleck
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| | - Leo Q. Wan
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| | - Mariah S. Hahn
- Department of Biomedical Engineering,
Rensselaer Polytechnic Institute (RPI), Troy, NY, USA
- Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, NY,
USA
| |
Collapse
|
26
|
Jeyaraman M, Muthu S, Gulati A, Jeyaraman N, G.S P, Jain R. Mesenchymal Stem Cell-Derived Exosomes: A Potential Therapeutic Avenue in Knee Osteoarthritis. Cartilage 2021; 13:1572S-1585S. [PMID: 33016114 PMCID: PMC8808857 DOI: 10.1177/1947603520962567] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Knee osteoarthritis is the leading cause of functional disability in adults. The goals of knee osteoarthritis management are directed toward symptomatic pain relief along with the attainment of the functional quality of life. The treatment strategy ranges from conservative to surgical management with reparative and restorative techniques. The emergence of cell-based therapies has paved the way for the usage of mesenchymal stem cells (MSCs) in cartilage disorders. Currently, global researchers are keen on their research on nanomedicine and targeted drug delivery. MSC-derived exosomes act as a directed therapy to halt the disease progression and to provide a pain-free range of movements with increased quality of cartilage on regeneration. International Society for Extracellular Vesicles and the European Network on Microvesicles and Exosomes in Health and Disease have formed guidelines to foster the use of the growing therapeutic potential of exosomal therapy in osteoarthritis. Although regenerative therapies with MSC are being seen to hold a future in the management of osteoarthritis, extracellular vesicle-based technology holds the key to unlock the potential toward knee preservation and regeneration. The intricate composition and uncertain functioning of exosomes are inquisitive facets warranting further exploration.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopedics, School of
Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh,
India
- Madhan Jeyaraman, Department of Orthopedics,
School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar
Pradesh, 201306, India.
| | - Sathish Muthu
- Government Hospital, Velayuthampalayam,
Karur, Tamil Nadu, India
| | - Arun Gulati
- Kalpana Chawla Government Medical
College, Karnal, Haryana, India
| | | | - Prajwal G.S
- JJM Medical College, Davangere,
Karnataka, India
| | - Rashmi Jain
- School of Medical Sciences and Research,
Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
27
|
Cho Y, Jeong S, Kim H, Kang D, Lee J, Kang SB, Kim JH. Disease-modifying therapeutic strategies in osteoarthritis: current status and future directions. Exp Mol Med 2021; 53:1689-1696. [PMID: 34848838 PMCID: PMC8640059 DOI: 10.1038/s12276-021-00710-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis. It is characterized by progressive destruction of articular cartilage and the development of chronic pain and constitutes a considerable socioeconomic burden. Currently, pharmacological treatments mostly aim to relieve the OA symptoms associated with inflammation and pain. However, with increasing understanding of OA pathology, several potential therapeutic targets have been identified, enabling the development of disease-modifying OA drugs (DMOADs). By targeting inflammatory cytokines, matrix-degrading enzymes, the Wnt pathway, and OA-associated pain, DMOADs successfully modulate the degenerative changes in osteoarthritic cartilage. Moreover, regenerative approaches aim to counterbalance the loss of cartilage matrix by stimulating chondrogenesis in endogenous stem cells and matrix anabolism in chondrocytes. Emerging strategies include the development of senolytic drugs or RNA therapeutics to eliminate the cellular or molecular sources of factors driving OA. This review describes the current developmental status of DMOADs and the corresponding results from preclinical and clinical trials and discusses the potential of emerging therapeutic approaches to treat OA.
Collapse
Affiliation(s)
- Yongsik Cho
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.410720.00000 0004 1784 4496Center for RNA Research, Institute for Basic Science, Seoul, 08826 South Korea
| | - Sumin Jeong
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.31501.360000 0004 0470 5905Department of Business Administration, Business School, Seoul National University, Seoul, 08826 South Korea
| | - Hyeonkyeong Kim
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.410720.00000 0004 1784 4496Center for RNA Research, Institute for Basic Science, Seoul, 08826 South Korea
| | - Donghyun Kang
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.410720.00000 0004 1784 4496Center for RNA Research, Institute for Basic Science, Seoul, 08826 South Korea
| | - Jeeyeon Lee
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.410720.00000 0004 1784 4496Center for RNA Research, Institute for Basic Science, Seoul, 08826 South Korea
| | - Seung-Baik Kang
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Boramae Hospital, Seoul, 07061, South Korea.
| | - Jin-Hong Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea. .,Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea. .,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
28
|
Xu Z, Shen ZH, Wu B, Gong SL, Chen B. Small molecule natural compound targets the NF-κB signaling and ameliorates the development of osteoarthritis. J Cell Physiol 2021; 236:7298-7307. [PMID: 33870507 DOI: 10.1002/jcp.30392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 03/09/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) is a multifactorial and chronic disease describing the destruction of cartilage that can lead to defects in the elderly. There is currently no practical strategy that can reverse the OA process. Here, we describe nepetin, a small natural compound with extracellular matrix (ECM) and inflammation regulating functions. In this study, we investigated the therapeutic effects of nepetin on interleukin-1β (IL-1β)-induced inflammation in mice chondrocyte and OA model. In chondrocytes, treatment with nepetin inhibited the overexpression of pro-inflammatory cytokines and mediators induced by IL-1β. Moreover, pretreatment or posttreatment with nepetin also reduced the ECM catabolism and enhanced the ECM anabolism. Mechanistically, nepetin suppressed NF-κB signaling pathway in IL-1β stimulated chondrocyte. Meanwhile, our molecular docking studies indicated nepetin had a powerful binding capacity to p65. Furthermore, nepetin showed a protective and therapeutic effect on the mouse OA model. To sum up, this study indicated nepetin had a new potential therapeutic option in OA.
Collapse
Affiliation(s)
- Zhu Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhong-Hai Shen
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Bin Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Sui-Liang Gong
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Bin Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
29
|
Pemmari A, Tuure L, Hämäläinen M, Leppänen T, Moilanen T, Moilanen E. Effects of ibuprofen on gene expression in chondrocytes from patients with osteoarthritis as determined by RNA-Seq. RMD Open 2021; 7:rmdopen-2021-001657. [PMID: 34497153 PMCID: PMC8438934 DOI: 10.1136/rmdopen-2021-001657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/30/2021] [Indexed: 11/04/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs are a widely used symptomatic treatment in osteoarthritis (OA), but their effects on cartilage remain controversial. We studied the effects of ibuprofen on gene expression in chondrocytes from patients with OA using RNA-Seq. Chondrocytes were isolated from cartilage samples of patients with OA undergoing knee replacement surgery, cultured with ibuprofen, and total mRNA was sequenced. Differentially expressed genes were identified with edgeR using pairwise comparisons. Functional analysis was performed using ingenuity pathway analysis (IPA). Ibuprofen did not induce statistically significant changes in chondrocyte transcriptome when the cells were cultured in the absence of added cytokines. In inflammatory conditions (when the cells were exposed to the OA-related cytokine interleukin (IL)-1β), 51 genes were upregulated and 42 downregulated by ibuprofen with fold change >1.5 in either direction. The upregulated genes included anti-inflammatory factors and genes associated with cell adhesion, while several mediators of inflammation were among the downregulated genes. IPA analysis revealed ibuprofen having modulating effects on inflammation-related pathways such as integrin, IL-8, ERK/MAPK and cAMP-mediated signalling pathways. In conclusion, the effects of ibuprofen on primary OA chondrocyte transcriptome appear to be neutral in normal conditions, but ibuprofen may shift chondrocyte transcriptome towards anti-inflammatory phenotype in inflammatory environments.
Collapse
Affiliation(s)
- Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Lauri Tuure
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Tiina Leppänen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Teemu Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.,Coxa Hospital for Joint Replacement, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
30
|
Zhang H, Li S, Lu J, Jin J, Zhu G, Wang L, Yan Y, He L, Wang B, Wang X, Yu H. α-Cyperone (CYP) down-regulates NF-κB and MAPKs signaling, attenuating inflammation and extracellular matrix degradation in chondrocytes, to ameliorate osteoarthritis in mice. Aging (Albany NY) 2021; 13:17690-17706. [PMID: 34237707 PMCID: PMC8312409 DOI: 10.18632/aging.203259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/19/2021] [Indexed: 01/07/2023]
Abstract
Inflammation and extracellular matrix (ECM) degradation have been implicated in the pathological process of osteoarthritis (OA). α-Cyperone is the main active component of the traditional Chinese medicine Cyperus rotundus L. In this study, we found that α-Cyperone abolished the IL-1β-induced production of inflammatory cytokines in isolated rat chondrocytes, such as cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS), in a dose-dependent manner (0.75, 1.5 or 3 μM). Also, the results showed that α-Cyperone downregulated the expression of metalloproteinases (MMPs) and thrombospondin motifs 5 (ADAMTS5), and upregulated the expression of type-2 collagen. Mechanistically, molecular docking tests revealed that α-Cyperone stably and effectively binds to p65, p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). α-Cyperone inhibited NF-κB activation by blocking its nuclear transfer, and decreasing the phosphorylation of mitogen-activated protein kinase (MAPKs). In addition, in vivo studies based on a mouse model of arthritis showed that α-Cyperone prevented the development of osteoarthritis. Therefore, α-Cyperone may be a potential anti-OA drug.
Collapse
Affiliation(s)
- Huawei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Sunlong Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Jiajie Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Jie Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Gaosheng Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Libo Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Yingzhao Yan
- Department of Orthopaedics Surgery, Zhejiang Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Linjie He
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Ben Wang
- Department of Orthopaedics Surgery, Zhongshan Hospital, Shanghai 200032, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| | - Huachen Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
31
|
Ingale D, Kulkarni P, Electricwala A, Moghe A, Kamyab S, Jagtap S, Martson A, Koks S, Harsulkar A. Synovium-Synovial Fluid Axis in Osteoarthritis Pathology: A Key Regulator of the Cartilage Degradation Process. Genes (Basel) 2021; 12:genes12070989. [PMID: 34209473 PMCID: PMC8305855 DOI: 10.3390/genes12070989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 01/15/2023] Open
Abstract
Failure of conventional anti-inflammatory therapies in osteoarthritis (OA) underlines the insufficient knowledge about inflammatory mechanisms, patterns and their relationship with cartilage degradation. Considering non-linear nature of cartilage loss in OA, a better understanding of inflammatory milieu and MMP status at different stages of OA is required to design early-stage therapies or personalized disease management. For this, an investigation based on a synovium-synovial fluid (SF) axis was planned to study OA associated changes in synovium and SF along the progressive grades of OA. Gene expressions in synovial-biopsies from different grades OA patients (N = 26) revealed a peak of IL-1β, IL-15, PGE2 and NGF in early OA (Kellgren-Lawrence (KL) grade-I and II); the highest MMP levels were found in advanced stages (KL grade-III and IV). MMPs (MMP-1, 13, 2 and 9) abundance and FALGPA activity estimated in forty SFs of progressive grades showed the maximum protein levels and activity in KL grade-II and III. In an SF challenge test, SW982 and THP1 cells were treated with progressive grade SFs to study the dynamics of MMPs modulation in inflammatory microenvironment; the test yielded a result pattern, which matched with FALGPA and the protein-levels estimation. Inflammatory mediators in SFs served as steering factor for MMP up-regulation. A correlation-matrix of IL-1β and MMPs revealed expressional negative correlation.
Collapse
Affiliation(s)
- Dhanashri Ingale
- Department of Cell and Molecular Biology, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth University, Pune 411043, India;
| | - Priya Kulkarni
- Department of Pathophysiology, Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
- Department of Traumatology and Orthopedics, Tartu University Hospital, University of Tartu, L Puusepa 8, 51014 Tartu, Estonia;
- Correspondence: (P.K.); (A.H.)
| | - Ali Electricwala
- Electricwala Hospital, A 4/1, Pleasant Park, Fatima Nagar, Wanowrie, Pune 411013, India;
| | - Alpana Moghe
- Department of Cell and Molecular Biology, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth University, Pune 411043, India; (A.M.); (S.K.)
| | - Sara Kamyab
- Department of Cell and Molecular Biology, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth University, Pune 411043, India; (A.M.); (S.K.)
| | - Suresh Jagtap
- Herbal Medicine, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth University, Pune 411043, India;
| | - Aare Martson
- Department of Traumatology and Orthopedics, Tartu University Hospital, University of Tartu, L Puusepa 8, 51014 Tartu, Estonia;
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, University of Tartu, L Puusepa 8, 51014 Tartu, Estonia
| | - Sulev Koks
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia;
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Abhay Harsulkar
- Department of Pathophysiology, Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
- Department of Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth University, Erandwane, Pune 411038, India
- Correspondence: (P.K.); (A.H.)
| |
Collapse
|
32
|
Shivnath N, Siddiqui S, Rawat V, Khan MS, Arshad M. Solanum xanthocarpum fruit extract promotes chondrocyte proliferation in vitro and protects cartilage damage in collagenase induced osteoarthritic rats (article reference number: JEP 114028). JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114028. [PMID: 33775807 DOI: 10.1016/j.jep.2021.114028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/26/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osteoarthritis (OA), a degenerative joint disease, is characterized by cartilage erosion and matrix degradation. Solanum xanthocarpum Schrad. & Wendl. fruits (SXF) and leaves have long been used as folk remedy in the treatment of pain in rheumatism. AIM OF THE STUDY This study was aimed to investigate the phytochemical components and protective benefits of SXF on in vitro chondrocytes proliferation, and in vivo suppression of collagenase-induced OA. MATERIALS AND METHODS Phytochemical components in ethanolic SXF extract were evaluated using gas chromatography-mass spectrometry (GC-MS). Effect of SXF on in vitro cell proliferation of primary chondrocytes was determined by cell proliferation assay and cell cycle analysis by flow cytometry. OA was induced in the right knees of rats through intra-articular injection of collagenase type-II. To evaluate in vivo preventive function of SXF, body weight, blood ALP, histopathological changes in the knee joint, proteoglycan, and collagen content were determined. The mRNA expression of COL-2, MMP-3 and COX-2 genes through qRT-PCR was studied. Antioxidant activities, total phenolics and flavonoid contents of SXF were also examined. RESULTS GC-MS analysis revealed that SXF constitutes 28 phytochemicals including flavonoids (3-methoxy apigenin, quercetin, luteolin), tannin (quinic acid), terpenes (oleanolic acid, lupeol, psi.psi carotene), phytosterols (campesterol, stigmasterol, β-sitosterol), and ascorbic acid. In vitro studies demonstrated that SXF enhanced the cell proliferation in a dose-dependent manner and has no cytotoxic effect on primary chondrocytes. In vivo study suggests that SXF protects the cartilage destruction induced by collagenase. The histological study revealed that SXF restored the synthesis of collagen and proteoglycan, vital factors for cartilage restoration, and reduced the arthritic score. An up-regulation in COL-2 expression and suppression of MMP-3 and COX-2 were detected by qRT-PCR analysis. Thus, in vivo study suggests the protective effects of SXF on cartilage destruction induced by collagenase. CONCLUSIONS Our results imply that SXF benefits and ameliorates OA by enhancing the chondrocytes proliferation and preventing the articular cartilage damage through the restoration of their structural molecules, arthritic score reduction, suppression of MMP-3 and COX-2 expression level and up regulation of COL-2 genes expression. These results suggest that SXF could be a promising alternative treatment candidate for osteoarthritis.
Collapse
Affiliation(s)
- Neelam Shivnath
- Molecular Endocrinology Lab, Department of Zoology, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India.
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, Uttar Pradesh, India
| | - Vineeta Rawat
- Molecular Endocrinology Lab, Department of Zoology, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| | - Mohd Sajid Khan
- Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India; Department of Biochemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Md Arshad
- Molecular Endocrinology Lab, Department of Zoology, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India; Department of Zoology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| |
Collapse
|
33
|
Zhu DC, Wang YH, Lin JH, Miao ZM, Xu JJ, Wu YS. Maltol inhibits the progression of osteoarthritis via the nuclear factor-erythroid 2-related factor-2/heme oxygenase-1 signal pathway in vitro and in vivo. Food Funct 2021; 12:1327-1337. [PMID: 33443518 DOI: 10.1039/d0fo02325f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Osteoarthritis (OA) is a common degenerative joint disease characterized by articular cartilage degeneration and inflammation. Currently, there is hardly any effective treatment for OA due to its complicated pathology and the severe side effects of the treatment drugs used. It has been reported that maltol, a Maillard reaction product derived from ginseng, inhibits inflammation and oxidative stress in several animal models. However, the potential anti-inflammatory effects of maltol in OA treatment are unknown. This study aimed to evaluate the anti-inflammatory effects of maltol on interleukin (IL)-1β-induced mouse chondrocytes and protective effects of maltol on these chondrocytes in medial meniscus destabilization (DMM) OA mouse models. Mice, randomly divided into maltol (n = 15), vehicle (n = 15) and control (n = 15) groups were treated with the same dose of maltol or saline, respectively. The cartilage tissues were extracted for histological analysis 8 weeks postoperative. For the in vitro studies, chondrocytes were treated with 10 ng mL-1 IL-1β combined with maltol at different concentrations. In vitro assays showed that the maltol pre-treatment significantly inhibited the expressions of multiple inflammatory factors induced by IL-1β, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), nitric oxide (NO), interleukin-6 (IL-6) and tumor necrosis factor (TNF-α). In addition, maltol alleviated the degradation of the extracellular matrix (ECM) by inhibiting the expressions of matrix metalloproteinase-13 (MMP13) and thrombospondin motif 5 (ADAMTS5), as well as reversing the degradation of aggrecan and collagen II. Moreover, maltol suppressed nuclear factor kappa B (NF-κB) signaling by activating the nuclear factor-erythroid 2-related factor-2 (Nrf2) in in vitro and in vivo studies. These findings indicate that maltol reduces the inflammation induced by IL-1β in chondrocytes. Therefore, the results of this study indicated that maltol may be a potential drug for the effective treatment of OA.
Collapse
Affiliation(s)
- Ding-Chao Zhu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yi-Han Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jia-Hao Lin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhi-Min Miao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jia-Jing Xu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yao-Sen Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China. and Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China and The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Wang B, Shao Z, Gu M, Ni L, Shi Y, Yan Y, Wu A, Jin H, Chen J, Pan X, Xu D. Hydrogen sulfide protects against IL-1β-induced inflammation and mitochondrial dysfunction-related apoptosis in chondrocytes and ameliorates osteoarthritis. J Cell Physiol 2021; 236:4369-4386. [PMID: 33164235 DOI: 10.1002/jcp.30154] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/26/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022]
Abstract
The inflammatory environment and excessive chondrocyte apoptosis have been demonstrated to play crucial roles in the onset of osteoarthritis (OA). Hydrogen sulfide (H2 S), a gaseous signalling molecule, exerts an inhibitory effect on inflammation and apoptosis in several degenerative diseases. However, the protective effect of H2 S against OA has not been fully clarified, and its underlying mechanism should be examined further. In the current study, the role of endogenous H2 S in the pathogenesis of OA and its protective effects on interleukin (IL)-1β-induced chondrocytes were identified. Our data revealed decreased H2 S expression in both human degenerative OA cartilage tissue and IL-1β-induced chondrocytes. Pretreatment with the H2 S donor sodium hydrosulfide (NaHS) dramatically attenuated IL-1β-induced overproduction of inflammatory cytokines and improved the balance between anabolic and catabolic chondrocyte capacities, and these effects were dependent on PI3K/AKT pathway-mediated inhibition of nuclear factor kappa B (NF-κB). Moreover, mitochondrial dysfunction-related apoptosis was significantly reversed by NaHS in IL-1β-stimulated chondrocytes. Mechanistically, NaHS partially suppressed IL-1β-induced phosphorylation of the mitogen-activated protein kinase (MAPK) cascades. Furthermore, in the destabilization of the medial meniscus mouse model, OA progression was ameliorated by NaHS administration. Taken together, these results suggest that H2 S may antagonize IL-1β-induced inflammation and mitochondrial dysfunction-related apoptosis via selective suppression of the PI3K/Akt/NF-κB and MAPK signalling pathways, respectively, in chondrocytes and may be a potential therapeutic agent for the treatment of OA.
Collapse
Affiliation(s)
- Ben Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- Department of Orthopedic, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Mingbao Gu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Libin Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yingzhao Yan
- Department of Orthopaedic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Aimin Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xiaoyun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Daoliang Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| |
Collapse
|
35
|
Rodríguez Mesa XM, Moreno Vergara AF, Contreras Bolaños LA, Guevara Moriones N, Mejía Piñeros AL, Santander González SP. Therapeutic Prospects of Cannabinoids in the Immunomodulation of Prevalent Autoimmune Diseases. Cannabis Cannabinoid Res 2021; 6:196-210. [PMID: 34030476 PMCID: PMC8266560 DOI: 10.1089/can.2020.0183] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Cannabinoids such as ▵-9-THC and CBD can downregulate the immune response by modulating the endocannabinoid system. This modulation is relevant for the treatment of prevalent autoimmune diseases (ADs), such as multiple sclerosis (MS), systemic lupus erythematosus (SLE), diabetes mellitus type 1 (DMT1), and rheumatoid arthritis (RA). These conditions require new therapeutic options with fewer side effects for the control of the autoimmune response. Objective: to conduct a literature review of preclinical scientific evidence that supports further clinical investigations for the use of cannabinoids (natural or synthetic) as potential immunomodulators of the immune response in ADs. Methodology: A systematic search was carried out in different databases using different MeSH terms, such as Cannabis sativa L., cannabinoids, immunomodulation, and ADs. Initially, 677 journal articles were found. After filtering by publication date (from 2000 to 2020 for SLE, DMT1, and RA; and 2010 to 2020 for MS) and removing the duplicate items, 200 articles were selected and analyzed by title and summary associated with the use of cannabinoids as immunomodulatory treatment for those diseases. Results: Evidence of the immunomodulatory effect of cannabinoids in the diseases previously mentioned, but SLE that did not meet the search criteria, was summarized from 24 journal articles. CBD was found to be one of the main modulators of the immune response. This molecule decreased the number of Th1 and Th17 proinflammatory cells and the production of the proinflammatory cytokines, interleukin (IL)-1, IL-12, IL-17, interferon (IFN)-γ, and tumor necrosis factor alpha, in mouse models of MS and DMT1. Additionally, new synthetic cannabinoid-like molecules, with agonist or antagonist activity on CB1, CB2, TRPV1, PPAR-α, and PPAR-γ receptors, have shown anti-inflammatory properties in MS, DMT1, and RA. Conclusion: Data from experimental animal models of AD showed that natural and synthetic cannabinoids downregulate inflammatory responses mediated by immune cells responsible for AD chronicity and progression. Although synthetic cannabinoid-like molecules were evaluated in just two clinical trials, they corroborated the potential use of cannabinoids to treat some ADs. Notwithstanding, new cannabinoid-based approaches are required to provide alternative treatments to patients affected by the large group of ADs.
Collapse
Affiliation(s)
- Xandy Melissa Rodríguez Mesa
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá, Colombia
- Group of Plant Pharmacology and Alternative Therapeutics, Juan N. Corpas University Foundation, Bogotá, Colombia
| | - Andrés Felipe Moreno Vergara
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá, Colombia
- Faculty of Medicine, Juan N. Corpas University Foundation, Bogotá, Colombia
| | - Leonardo Andrés Contreras Bolaños
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá, Colombia
- Group of Plant Pharmacology and Alternative Therapeutics, Juan N. Corpas University Foundation, Bogotá, Colombia
| | - Natalia Guevara Moriones
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá, Colombia
- Faculty of Medicine, Juan N. Corpas University Foundation, Bogotá, Colombia
| | - Antonio Luis Mejía Piñeros
- Group of Plant Pharmacology and Alternative Therapeutics, Juan N. Corpas University Foundation, Bogotá, Colombia
| | - Sandra Paola Santander González
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá, Colombia
- Group of Plant Pharmacology and Alternative Therapeutics, Juan N. Corpas University Foundation, Bogotá, Colombia
| |
Collapse
|
36
|
Ungur RA, Ciortea VM, Irsay L, Ciubean AD, Năsui BA, Codea RA, Singurean VE, Groza OB, Căinap S, Martiș (Petruț) GS, Borda C, Borda IM. Can Ultrasound Therapy Be an Environmental-Friendly Alternative to Non-Steroidal Anti-Inflammatory Drugs in Knee Osteoarthritis Treatment? MATERIALS (BASEL, SWITZERLAND) 2021; 14:2715. [PMID: 34064094 PMCID: PMC8196736 DOI: 10.3390/ma14112715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
The non-steroidal anti-inflammatory drugs (NSAIDs) are the most used drugs in knee OA (osteoarthritis) treatment. Despite their efficiency in pain and inflammation alleviation, NSAIDs accumulate in the environment as chemical pollutants and have numerous genetic, morphologic, and functional negative effects on plants and animals. Ultrasound (US) therapy can improve pain, inflammation, and function in knee OA, without impact on environment, and with supplementary metabolic beneficial effects on cartilage compared to NSAIDs. These features recommend US therapy as alternative for NSAIDs use in knee OA treatment.
Collapse
Affiliation(s)
- Rodica Ana Ungur
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.A.U.); (L.I.); (A.D.C.); (V.E.S.); (O.B.G.); (I.M.B.)
| | - Viorela Mihaela Ciortea
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.A.U.); (L.I.); (A.D.C.); (V.E.S.); (O.B.G.); (I.M.B.)
| | - Laszlo Irsay
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.A.U.); (L.I.); (A.D.C.); (V.E.S.); (O.B.G.); (I.M.B.)
| | - Alina Deniza Ciubean
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.A.U.); (L.I.); (A.D.C.); (V.E.S.); (O.B.G.); (I.M.B.)
| | - Bogdana Adriana Năsui
- Department of Community Health, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Răzvan Andrei Codea
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (R.A.C.); (C.B.)
| | - Victoria Emilia Singurean
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.A.U.); (L.I.); (A.D.C.); (V.E.S.); (O.B.G.); (I.M.B.)
| | - Oana Bianca Groza
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.A.U.); (L.I.); (A.D.C.); (V.E.S.); (O.B.G.); (I.M.B.)
| | - Simona Căinap
- Department of Mother and Child, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | | | - Cristin Borda
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (R.A.C.); (C.B.)
| | - Ileana Monica Borda
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.A.U.); (L.I.); (A.D.C.); (V.E.S.); (O.B.G.); (I.M.B.)
| |
Collapse
|
37
|
Vasconcelos CC, Lopes AJO, de Jesus Garcia Ataide E, Carvalho KWP, de Brito MFF, Rodrigues MS, de Morais SV, Silva GEB, da Rocha CQ, Garcia JBS, de Sousa Cartágenes MDS. Arrabidaea chica Verlot fractions reduce MIA-induced osteoarthritis progression in rat knees. Inflammopharmacology 2021; 29:735-752. [PMID: 33881683 DOI: 10.1007/s10787-021-00803-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
This study aims to investigate the activity of n-hexane, ethyl acetate and butanol fractions obtained from Arrabidaea chica Verlot against MIA-induced osteoarthritis (OA). The antinociceptive potentials of each fraction were evaluated through a cyclooxygenase (COX) 1 and 2 inhibition test and an in vivo OA-model. In addition, toxicity assessments in the liver, spleen and kidney, as well as radiographic and histopathological knee analyses, were performed. The chemical composition of the n-hexane fraction was elucidated, and a molecular docking protocol was carried out to identify which compounds are associated with the detected bioactivity. The n-hexane A. chica fraction preferentially inhibits COX-2, with 90% inhibition observed at 10 µg/mL. The fractions also produced significant improvements in OA incapacity, motor activity and hyperalgesia parameters and in radiological knee conditions. However, concerning the histopathological evaluations, these improvements were only significant in the hexane and ethyl acetate fraction treatments, which resulted in better average scores, suggesting that these fractions slow OA-promoted joint injury progression. Histopathological organ analyses indicate that the fractions are not toxic to animals. Twenty compounds were identified in the n-hexane fraction, comprising fatty acids, terpenes and phytosterols. In silico analyses indicate the presence of favourable interactions between some of the identified compounds and the COX-2 enzyme, mainly concerning alpha-tocopherol (Vitamin E), squalene and beta-sitosterol. The findings indicate that A. chica fractions display analgesic, anti-inflammatory properties, are non-toxic and are able to slow OA progression, and may, therefore, be prioritized as natural products in OA human clinical trials.
Collapse
Affiliation(s)
- Cleydlenne Costa Vasconcelos
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA, 65085-580, Brazil.
| | - Alberto Jorge Oliveira Lopes
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA, 65085-580, Brazil
| | - Emilly de Jesus Garcia Ataide
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA, 65085-580, Brazil
| | - Kevin Waquim Pessoa Carvalho
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA, 65085-580, Brazil
| | | | - Marineide Sodré Rodrigues
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA, 65085-580, Brazil
| | - Sebastião Vieira de Morais
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA, 65085-580, Brazil
| | - Gyl Eanes Barros Silva
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA, 65085-580, Brazil.,Hospital Universitário Presidente Dutra, HUPD, Federal University of Maranhão, São Luís, MA, Brazil
| | | | - João Batista Santos Garcia
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA, 65085-580, Brazil
| | | |
Collapse
|
38
|
Decursin alleviates the aggravation of osteoarthritis via inhibiting PI3K-Akt and NF-kB signal pathway. Int Immunopharmacol 2021; 97:107657. [PMID: 33878544 DOI: 10.1016/j.intimp.2021.107657] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/13/2021] [Accepted: 04/03/2021] [Indexed: 01/08/2023]
Abstract
Osteoarthritis (OA) is a common joint disease that takes joint degeneration or aging as its pathological basis, and joint swelling, pain or dysfunction as its main clinical manifestations. Decursin (DE), the major active component isolated from Angelica gigas Nakai, has been demonstrated to possess anti-inflammatory effect in many diseases. But, the specific physiological mechanism of DE on OA is not clear yet. Therefore, the object of this study was to assess the therapeutic effect of DE on OA, and to explore its potential anti-inflammatory mechanisms. In vitro cell experiments, the inflammatory response in chondrocytes is mediated via interleukin-1β (IL-1β), which led to abnormal secretion of pro-inflammatory factors, such as prostaglandin E2 (PGE2), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), cyclooxygenase-2 (COX-2), nitric oxide (NO) and inducible nitric oxide synthase (iNOS). These cytokines were all decreased by the preconditioning of DE in a dose-dependent form of 1, 5, and 10 µM. Moreover, DE could restrain IL-1β-mediated inflammatory reaction and the collapse of extracellular matrix (ECM) via reducing the secretion of ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) and MMPs (matrix metalloproteinases). In short, DE restrained IL-1β-mediated abnormal excitation of PI3K/AKT/NF-κB axis. Furthermore, molecular docking analysis showed that DE has a strong binding affinity with the inhibitory targets of PI3K. In vivo animal studies, DE treatment could helped to improve destruction of articular cartilage and decreased the serum inflammatory factor levels in an operationally induced mouse OA model. To sum up, these data obtained from the experiment indicate that DE has good prospects for the treatment of osteoarthritis.
Collapse
|
39
|
Intra-Articular Slow-Release Triamcinolone Acetonide from Polyesteramide Microspheres as a Treatment for Osteoarthritis. Pharmaceutics 2021; 13:pharmaceutics13030372. [PMID: 33799665 PMCID: PMC7999265 DOI: 10.3390/pharmaceutics13030372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 01/07/2023] Open
Abstract
Osteoarthritis (OA) is a common cause of pain and disability. Local corticosteroid injections are effective in treating OA pain and inflammation but are short-acting. Prolonged intra-articular (IA) corticosteroid exposure may even lead to cartilage deterioration. The aim of this prospective study was to assess safety and provide proof-of-concept of IA-applied biodegradable polyesteramide-based microspheres (PEAMs) gradually releasing triamcinolone acetonide (TA). Mimicking continuous exposure associated with local drug delivery in canine articular chondrocytes cultured in the continuous presence of TA tissue regeneration was not affected, whereas intermittent exposure reduced proteoglycan production. In this respect, TA-PEAMs administered IA in a proof-of-concept study in 12 client-owned dogs with established OA also showed safety by radiographic examination, without changes in OA severity and in glycosaminoglycan synovial fluid levels. Treatment also resulted in clinical improvement in 10 out of 11 dogs during the two-month follow-up period, which persisted in 6 out of 10 dogs after 6 months, based on objective gait analysis and owner questionnaires. Synovial prostaglandin E2, a pro-inflammatory marker, was decreased two months after treatment. This study showed safety and proof-of-concept of IA-administered TA-PEAMs in dogs with OA, as a first step towards translation into the veterinary and human clinic.
Collapse
|
40
|
Zhan J, Yan Z, Kong X, Liu J, Lin Z, Qi W, Wu Y, Lin J, Pan X, Xue X. Lycopene inhibits IL-1β-induced inflammation in mouse chondrocytes and mediates murine osteoarthritis. J Cell Mol Med 2021; 25:3573-3584. [PMID: 33751809 PMCID: PMC8034440 DOI: 10.1111/jcmm.16443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/23/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative condition in the elderly, in which inflammation plays a key role in disease pathology. Lycopene (Lye), a member of the carotenoid family, has been reported to have anti‐inflammatory effects. The purpose of this study was to investigate the effect of Lye on the inflammation of chondrocytes and the mouse OA model. Chondrocytes were treated with interleukin (IL)‐1β, and the mouse OA model was induced by the surgical destabilization of the medial meniscus (DMM). The results showed that Lye could inhibit the expression of inflammatory factors and alleviate the degradation of extracellular matrix (ECM). Additionally, Lye could activate the Nrf2/HO‐1 pathway and reverse the activations of NF‐κB and STAT3 signal pathway induced by IL‐1β, suggesting that its anti‐inflammatory effect may be mediated via these pathways. The animal experiments showed that Lye could decrease the Osteoarthritis Research Society International (OARSI) scores of the knee, indicating that it could inhibit the occurrence and development of OA in mouse. Overall, our results indicated that Lye might be used as a novel drug for OA treatment.
Collapse
Affiliation(s)
- Jingdi Zhan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zijian Yan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaojiang Kong
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Junling Liu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zeng Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weihui Qi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yifan Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jian Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinghe Xue
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
41
|
Han SJ, Jun J, Eyun SI, Lee CG, Jeon J, Pan CH. Schisandrol A Suppresses Catabolic Factor Expression by Blocking NF-κB Signaling in Osteoarthritis. Pharmaceuticals (Basel) 2021; 14:ph14030241. [PMID: 33800441 PMCID: PMC7999623 DOI: 10.3390/ph14030241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/23/2022] Open
Abstract
Schisandrol A possesses pharmacological properties and is used to treat various diseases; however, its effects on osteoarthritis (OA) progression remain unclear. Here, we investigated Schisandrol A as a potential therapeutic agent for OA. In vitro, Schisandrol A effects were confirmed based on the levels of expression of catabolic factors (MMPs, ADAMTS5, and Cox2) induced by IL-1β or Schisandrol A treatment in chondrocytes. In vivo, experimental OA in mice was induced using a destabilized medial meniscus (DMM) surgical model or oral gavage of Schisandrol A in a dose-dependent manner, and demonstrated using histological analysis. In vitro and in vivo analyses demonstrated that Schisandrol A inhibition attenuated osteoarthritic cartilage destruction via the regulation of Mmp3, Mmp13, Adamts5, and Cox2 expression. In the NF-κB signaling pathway, Schisandrol A suppressed the degradation of IκB and the phosphorylation of p65 induced by IL-1β. Overall, and Schisandrol A reduced the expression of catabolic factors by blocking NF-κB signaling and prevented cartilage destruction. Therefore, Schisandrol A attenuated OA progression, and can be used to develop novel OA drug therapies.
Collapse
Affiliation(s)
- Seong Jae Han
- Department of Biomedical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Korea;
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Korea
- Degenerative InterDiseases Research Center, School of Medicine, Ajou University, Suwon 16499, Korea
| | - Jimoon Jun
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea;
| | - Seong-il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea;
- Correspondence: (S.-i.E.); (C.-G.L.); (J.J.); (C.-H.P.); Tel.: +82-28-205-163 (S.-i.E.); +82-33-650-3512 (C.-G.L.); +82-219-5065 (J.J.); +82-33-350-3652 (C.-H.P.)
| | - Choong-Gu Lee
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea
- Correspondence: (S.-i.E.); (C.-G.L.); (J.J.); (C.-H.P.); Tel.: +82-28-205-163 (S.-i.E.); +82-33-650-3512 (C.-G.L.); +82-219-5065 (J.J.); +82-33-350-3652 (C.-H.P.)
| | - Jimin Jeon
- Department of Biomedical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Korea;
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Korea
- Degenerative InterDiseases Research Center, School of Medicine, Ajou University, Suwon 16499, Korea
- Correspondence: (S.-i.E.); (C.-G.L.); (J.J.); (C.-H.P.); Tel.: +82-28-205-163 (S.-i.E.); +82-33-650-3512 (C.-G.L.); +82-219-5065 (J.J.); +82-33-350-3652 (C.-H.P.)
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Gangneung 02792, Korea
- Correspondence: (S.-i.E.); (C.-G.L.); (J.J.); (C.-H.P.); Tel.: +82-28-205-163 (S.-i.E.); +82-33-650-3512 (C.-G.L.); +82-219-5065 (J.J.); +82-33-350-3652 (C.-H.P.)
| |
Collapse
|
42
|
Orally Administered NSAIDs-General Characteristics and Usage in the Treatment of Temporomandibular Joint Osteoarthritis-A Narrative Review. Pharmaceuticals (Basel) 2021; 14:ph14030219. [PMID: 33807930 PMCID: PMC7998670 DOI: 10.3390/ph14030219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Temporomandibular joint osteoarthritis (TMJ OA) is a degenerative joint disease. The aim of this review was to present the general characteristics of orally administered nonsteroidal anti-inflammatory drugs (NSAIDs) and to present the efficacy of NSAIDs in the treatment of TMJ OA. Methods: PubMed database was analyzed with the keywords: "(temporomandibular joint) AND ((disorders) OR (osteoarthritis) AND (treatment)) AND (nonsteroidal anti-inflammatory drug)". After screening of 180 results, 6 studies have been included in this narrative review. Results and Conclusions: Nonsteroidal anti-inflammatory drugs are one of the most commonly used drugs for alleviation of pain localized in the orofacial area. The majority of articles predominantly examined and described diclofenac sodium in the treatment of pain in the course of TMJ OA. Because of the limited number of randomized studies evaluating the efficacy of NSAIDs in the treatment of TMJ OA, as well as high heterogeneity of published researches, it seems impossible to draw up unequivocal recommendations for the usage of NSAIDs in the treatment of TMJ OA. However, it is highly recommended to use the lowest effective dose of NSAIDs for the shortest possible time. Moreover, in patients with increased risk of gastrointestinal complications, supplementary gastroprotective agents should be prescribed.
Collapse
|
43
|
Casati S, Giannasi C, Niada S, Bergamaschi RF, Orioli M, Brini AT. Bioactive Lipids in MSCs Biology: State of the Art and Role in Inflammation. Int J Mol Sci 2021; 22:1481. [PMID: 33540695 PMCID: PMC7867257 DOI: 10.3390/ijms22031481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Lipidomics is a lipid-targeted metabolomics approach that aims to the comprehensive analysis of lipids in biological systems in order to highlight the specific functions of lipid species in health and disease. Lipids play pivotal roles as they are major structural components of the cellular membranes and energy storage molecules but also, as most recently shown, they act as functional and regulatory components of intra- and intercellular signaling. Herein, emphasis is given to the recently highlighted roles of specific bioactive lipids species, as polyunsaturated fatty acids (PUFA)-derived mediators (generally known as eicosanoids), endocannabinoids (eCBs), and lysophospholipids (LPLs), and their involvement in the mesenchymal stem cells (MSCs)-related inflammatory scenario. Indeed, MSCs are a heterogenous population of multipotent cells that have attracted much attention for their potential in regulating inflammation, immunomodulatory capabilities, and reparative roles. The lipidomics of the inflammatory disease osteoarthritis (OA) and the influence of MSCs-derived lipids have also been addressed.
Collapse
Affiliation(s)
- Sara Casati
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, 20133 Milan, Italy; (C.G.); (R.F.B.); (M.O.); (A.T.B.)
| | - Chiara Giannasi
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, 20133 Milan, Italy; (C.G.); (R.F.B.); (M.O.); (A.T.B.)
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
| | | | - Roberta F. Bergamaschi
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, 20133 Milan, Italy; (C.G.); (R.F.B.); (M.O.); (A.T.B.)
| | - Marica Orioli
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, 20133 Milan, Italy; (C.G.); (R.F.B.); (M.O.); (A.T.B.)
| | - Anna T. Brini
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, 20133 Milan, Italy; (C.G.); (R.F.B.); (M.O.); (A.T.B.)
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
| |
Collapse
|
44
|
Makarczyk MJ, Gao Q, He Y, Li Z, Gold MS, Hochberg MC, Bunnell BA, Tuan RS, Goodman SB, Lin H. Current Models for Development of Disease-Modifying Osteoarthritis Drugs. Tissue Eng Part C Methods 2021; 27:124-138. [PMID: 33403944 PMCID: PMC8098772 DOI: 10.1089/ten.tec.2020.0309] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a painful and disabling disease that affects millions of people worldwide. Symptom-alleviating treatments exist, although none with long-term efficacy. Furthermore, there are currently no disease-modifying OA drugs (DMOADs) with demonstrated efficacy in OA patients, which is, in part, attributed to a lack of full understanding of the pathogenesis of OA. The inability to translate findings from basic research to clinical applications also highlights the deficiencies in the available OA models at simulating the clinically relevant pathologies and responses to treatments in humans. In this review, the current status in the development of DMOADs will be first presented, with special attention to those in Phase II-IV clinical trials. Next, current in vitro, ex vivo, and in vivo OA models are summarized and the respective advantages and disadvantages of each are highlighted. Of note, the development and application of microphysiological or tissue-on-a-chip systems for modeling OA in humans are presented and the issues that need to be addressed in the future are discussed. Microphysiological systems should be given serious consideration for their inclusion in the DMOAD development pipeline, both for their ability to predict drug safety and efficacy in human clinical trials at present, as well as for their potential to serve as a test platform for personalized medicine. Impact statement At present, no disease-modifying osteoarthritis (OA) drugs (DMOADs) have been approved for widespread clinical use by regulatory bodies. The failure of developing effective DMOADs is likely owing to multiple factors, not the least of which are the intrinsic differences between the intact human knee joint and the preclinical models. This work summarizes the current OA models for the development of DMOADs, discusses the advantages/disadvantages of each, and then proposes future model development to aid in the discovery of effective and personalized DMOADs. The review also highlights the microphysiological systems, which are emerging as a new platform for drug development.
Collapse
Affiliation(s)
- Meagan J. Makarczyk
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University, California, USA
| | - Yuchen He
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zhong Li
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael S. Gold
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark C. Hochberg
- Department of Medicine and Epidemiology and Public Health, University of Maryland, Baltimore, Maryland, USA
| | - Bruce A. Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, California, USA
- Department of Bioengineering, Stanford University, California, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
45
|
Lu H, Fu C, Kong S, Wang X, Sun L, Lin Z, Luo P, Jin H. Maltol prevents the progression of osteoarthritis by targeting PI3K/Akt/NF-κB pathway: In vitro and in vivo studies. J Cell Mol Med 2021; 25:499-509. [PMID: 33211383 PMCID: PMC7810946 DOI: 10.1111/jcmm.16104] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/15/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA), a prevalent degenerative arthritis disease, principle characterized by the destruction of cartilage and associated with the inflammatory response. Maltol, a product formed during the processing of red ginseng (Panax ginseng, CA Meyer), has been reported to have the potential effect of anti-inflammatory. However, its specific mechanisms are not demonstrated. We investigated the protective effect of maltol in the progression of OA both in vitro and in vivo experiments. Human chondrocytes were pre-treated with maltol (0, 20, 40, 60 μM, 24 hours) and incubated with IL-1β (10 ng/mL, 24 hours) in vitro. Expression of PGE2, TNF-α and NO was measured by the ELISA and Griess reaction. The expression of iNOs, COX-2, aggrecan, ADAMTS-5, MMP-13, IκB-α, p65, P-AKT, AKT, PI3K and P-PI3K was analysed by Western blotting. The expression of collagen II and p65-active protein was detected by immunofluorescence. Moreover, the serious level of OA was evaluated by histological analysis in vivo. We identified that maltol could suppress the IL-1β-stimulated generation of PGE2 and NO. Besides, maltol not only suppressed the production of COX-2, iNOs, TNF-α, IL-6, ADAMTS-5, MMP-13, but also attenuated the degradation of collagen II and aggrecan. Furthermore, maltol remarkably suppressed the phosphorylation of PI3K/AKT and NF-κB induced by IL-1β in human OA chondrocytes. Moreover, maltol could block the cartilage destroy in OA mice in vivo. To date, all data indicate maltol is a potential therapeutic agent by inhibiting inflammatory response via the regulation of NF-κB signalling for OA.
Collapse
Affiliation(s)
- Hongwei Lu
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
- The Key Orthopaedic Laboratory of Zhejiang ProvinceBone Research InstituteWenzhouChina
| | - Changchang Fu
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
- The Key Orthopaedic Laboratory of Zhejiang ProvinceBone Research InstituteWenzhouChina
- Department of NeonatologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Suyan Kong
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
- The Key Orthopaedic Laboratory of Zhejiang ProvinceBone Research InstituteWenzhouChina
| | - Xudong Wang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
- The Key Orthopaedic Laboratory of Zhejiang ProvinceBone Research InstituteWenzhouChina
| | - Lin Sun
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
- The Key Orthopaedic Laboratory of Zhejiang ProvinceBone Research InstituteWenzhouChina
| | - Zeng Lin
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
- The Key Orthopaedic Laboratory of Zhejiang ProvinceBone Research InstituteWenzhouChina
| | - Peng Luo
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
- The Key Orthopaedic Laboratory of Zhejiang ProvinceBone Research InstituteWenzhouChina
| | - Haidong Jin
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
- The Key Orthopaedic Laboratory of Zhejiang ProvinceBone Research InstituteWenzhouChina
| |
Collapse
|
46
|
Pathophysiological Perspective of Osteoarthritis. ACTA ACUST UNITED AC 2020; 56:medicina56110614. [PMID: 33207632 PMCID: PMC7696673 DOI: 10.3390/medicina56110614] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is the most well-known degenerative disease among the geriatric and is a main cause of significant disability in daily living. It has a multifactorial etiology and is characterized by pathological changes in the knee joint structure including cartilage erosion, synovial inflammation, and subchondral sclerosis with osteophyte formation. To date, no efficient treatment is capable of altering the pathological progression of OA, and current therapy is broadly divided into pharmacological and nonpharmacological measures prior to surgical intervention. In this review, the significant risk factors and mediators, such as cytokines, proteolytic enzymes, and nitric oxide, that trigger the loss of the normal homeostasis and structural changes in the articular cartilage during the progression of OA are described. As the understanding of the mechanisms underlying OA improves, treatments are being developed that target specific mediators thought to promote the cartilage destruction that results from imbalanced catabolic and anabolic activity in the joint.
Collapse
|
47
|
Xue X, Xue J, Hu W, Shi F, Yang Y. Nomilin targets the Keap1-Nrf2 signalling and ameliorates the development of osteoarthritis. J Cell Mol Med 2020; 24:8579-8588. [PMID: 32564468 PMCID: PMC7412705 DOI: 10.1111/jcmm.15484] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/02/2020] [Accepted: 05/24/2020] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is a long-term and inflammatory disorder featured by cartilage erosion. Here, we describe nomilin (NOM), a triterpenoid with inflammation modulatory properties in variety of disorders. In this study, we demonstrated the latent mechanism of NOM in alleviating the progress of OA both in vitro and in vivo studies. The results showed that NOM pre-treatment suppressed the IL-1β-induced over-regulation of pro-inflammation factors, such as NO, IL-6, PGE2 , iNOS, TNF-α and COX-2. Moreover, NOM also down-regulates the degradation of ECM induced by IL-1β. Mechanistically, the NOM suppressed NF-κB signalling via disassociation of Keap1-Nrf2 in chondrocytes. Furthermore, NOM delays the disease progression in the mouse OA model. To sum up, this research indicated NOM possessed a new potential therapeutic option in osteoarthritis.
Collapse
Affiliation(s)
- Xing‐He Xue
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Ji‐Xin Xue
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Wei Hu
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Fang‐Ling Shi
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Yang Yang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
48
|
Kim YG, Choi J, Kim K. Mesenchymal Stem Cell‐Derived Exosomes for Effective Cartilage Tissue Repair and Treatment of Osteoarthritis. Biotechnol J 2020; 15:e2000082. [DOI: 10.1002/biot.202000082] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/25/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Young Guk Kim
- Department of Chemical and Biochemical Engineering Dongguk University 30 Pildong‐ro 1‐gil Seoul 04620 Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering Chung‐Ang University 47 Heukseok‐ro Seoul 06911 Republic of Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering Dongguk University 30 Pildong‐ro 1‐gil Seoul 04620 Republic of Korea
| |
Collapse
|
49
|
Yu X, Zheng G, Hu Z, Tang S, Xu J, Shang P, Tang Q, Liu H. Asiatic acid ameliorates obesity-related osteoarthritis by inhibiting myeloid differentiation protein-2. Food Funct 2020; 11:5513-5524. [PMID: 32514515 DOI: 10.1039/d0fo00571a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Obesity is related to osteoarthritis (OA). Aberrant lipid metabolism results in increased levels of free fatty acids, such as palmitate (PA), leading to inflammatory responses and excess catabolism of chondrocytes. Asiatic acid (AA), a plant anti-inflammatory compound, has been reported to exert protective effects for several diseases, but its effect on obesity-related OA is still unclear. The aim of this study is to evaluate the chondro-protective effect of AA on PA-induced human chondrocytes and a high fat diet (HFD)-fed mouse cartilage degeneration model. In vitro, the levels of the inflammatory and extracellular matrix (ECM) markers of chondrocytes after being treated with PA (500 μM) and AA (2.5-10 μM) were determined using western blotting and immunofluorescence enzyme-linked immunosorbent assay (ELISA). In vivo, after the oral administration of HFD and AA, X-ray examination, safranin O staining, and ELISA assay were conducted to evaluate cartilage calcification and degeneration and cytokine and adipokine levels in the serum of mice. AA treatment eliminated the inflammation caused by PA and extracellular matrix degradation. Mechanistically, AA blocked the stimulation of the NF-κB pathway. Analysis with co-immunoprecipitation and molecular docking indicated that the MD-2/TLR4 complex was a target of AA. In vivo, AA treatment not only prevented HFD-induced OA changes but also reduced proinflammatory cytokine and adipokine production in obese mice. AA exerted a chondroprotective effect by inhibiting the TLR4/MD-2 axis, thus showing promise for treating obesity-related OA.
Collapse
Affiliation(s)
- Xingfang Yu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China. and The Second School of Medicine, Wenzhou Medical University, China
| | - Gang Zheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China. and The Second School of Medicine, Wenzhou Medical University, China
| | - Zhichao Hu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China. and The Second School of Medicine, Wenzhou Medical University, China
| | - Shangkun Tang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China. and The Second School of Medicine, Wenzhou Medical University, China
| | - Jianchen Xu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China. and The Second School of Medicine, Wenzhou Medical University, China
| | - Ping Shang
- Department of Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China
| | - Qian Tang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Haixiao Liu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi road, 325027 Wenzhou, China.
| |
Collapse
|
50
|
Yang M, Chen C, Wang K, Chen Y, Xia J. Astilbin influences the progression of osteoarthritis in rats by down-regulation of PGE-2 expression via the NF-κB pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:766. [PMID: 32647691 PMCID: PMC7333102 DOI: 10.21037/atm-20-4485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Osteoarthritis (OA) is the most common joint disease, affecting most middle-aged and elderly people. Astilin (AST) is the main active ingredient isolated from the traditional Chinese medicine Astilbe chinensis and has anti-inflammatory and anti-arthritis effects. The purpose of this study was to investigate the effect and mechanism of AST on OA in rats mediated by papain. Methods In this study, in vivo experiments were conducted to investigate the protective effect and potential mechanism of Astilbin (AST) when it inhibited the development of osteoarthritis (OA). Results A rat model of OA is constructed. Through HE staining, it is found that AST can protect the articular surface and reduce damage. The results of immunohistochemical staining also prove that AST can inhibit the expression of prostaglandin E2 (PGE2) and has an excellent inhibitory effect on inflammatory factors. It is found that AST can significantly inhibit the protein expression of interleukin 1 beta (IL-1β), TNF-α, and NF-κB. Polymerase Chain Reaction (PCR) assay shows that the mRNA of IL-1β, TNF-α, and NF-κB is down-regulated, which also proves that the protective mechanism of AST is related to the NF-κB pathway. Conclusions In general, this study proves that AST can be a potential therapy for degenerative joint diseases, including OA.
Collapse
Affiliation(s)
- Mao Yang
- Department of Pathology, the First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chunlin Chen
- Department of Pathology, the First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Kun Wang
- Department of Pathology, the First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yujiang Chen
- Department of Pathology, the First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jingfu Xia
- Department of Miao Medicine, the First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|