1
|
Bernardini G, Benigni G, Scrivo R, Valesini G, Santoni A. The Multifunctional Role of the Chemokine System in Arthritogenic Processes. Curr Rheumatol Rep 2017; 19:11. [PMID: 28265846 DOI: 10.1007/s11926-017-0635-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW The involvement of chemokines and their receptors in the genesis and perpetuation of rheumatoid arthritis, spondyloarthritis, and osteoarthritis has been clearly recognized for a long time. Nevertheless, the complexity of their contribution to these diseases is now becoming evident and this review focuses on published evidence on their mechanism of action. RECENT FINDINGS Studies performed on patients and in vivo models have identified a number of chemokine-mediated pathways involved in various aspects of arthritogenic processes. Chemokines promote leukocyte infiltration and activation, angiogenesis, osteoclast differentiation, and synoviocyte proliferation and activation and participate to the generation of pain by regulating the release of neurotransmitters. A number of chemokines are expressed in a timely controlled fashion in the joint during arthropathies, regulating all the aspects of inflammation as well as the equilibrium between damage and repair and between relief and pain. Thus, the targeting of specific chemokine/chemokine receptor interactions is considered a promising tool for therapeutic intervention.
Collapse
Affiliation(s)
- Giovanni Bernardini
- Dipartimento di Medicina Molecolare, Sapienza Universita' di Roma, 00161, Rome, Italy
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy
| | - Giorgia Benigni
- Innate Immunity Unit, Institut Pasteur, Paris, 75015, France
| | - Rossana Scrivo
- Dipartimento di Medicina Interna e Specialità Mediche, Reumatologia, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Roma, Italy
| | - Guido Valesini
- Dipartimento di Medicina Interna e Specialità Mediche, Reumatologia, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Roma, Italy.
| | - Angela Santoni
- Dipartimento di Medicina Molecolare, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Universita' di Roma, Viale Regina Elena 291, 00161, Roma, Italy.
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy.
| |
Collapse
|
2
|
van Geffen EW, van Caam APM, van Beuningen HM, Vitters EL, Schreurs W, van de Loo FA, van Lent PLEM, Koenders MI, Blaney Davidson EN, van der Kraan PM. IL37 dampens the IL1β-induced catabolic status of human OA chondrocytes. Rheumatology (Oxford) 2017; 56:351-361. [PMID: 27940589 DOI: 10.1093/rheumatology/kew411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Indexed: 01/19/2023] Open
Abstract
Objective A crucial feature of OA is cartilage degradation. This process is mediated by pro-inflammatory cytokines, among other factors, via induction of matrix-degrading enzymes. Interleukin 37 (IL37) is an anti-inflammatory cytokine and is efficient in blocking the production of pro-inflammatory cytokines during innate immune responses. We hypothesize that IL37 is therapeutic in treating the inflammatory cytokine cascade in human OA chondrocytes and can act as a counter-regulatory cytokine to reduce cartilage degradation in OA. Methods Human OA cartilage was obtained from patients undergoing total knee or hip arthroplasty. Immunohistochemistry was applied to study IL37 protein expression in cartilage biopsies from OA patients. Induction of IL37 expression by IL1β, OA synovium-conditioned medium and TNFα was investigated in human OA chondrocytes. Adenoviral overexpression of IL37 followed by IL1β stimulation was performed to investigate the anti-inflammatory potential of IL37. Results IL37 expression was detected in cartilage biopsies of OA patients and induced by IL1β. After IL1β stimulation, increased IL1β, IL6 and IL8 expression was observed in OA chondrocytes. Elevated IL37 levels diminished the IL1β-induced IL1β , IL6 and IL8 gene levels and IL1β and IL8 protein levels. In addition to the reduction in pro-inflammatory cytokine expression, IL37 reduced MMP1 , MMP3 , MMP13 and disintegrin and metalloproteinase with thrombospondin motifs 5 gene levels and MMP3 and MMP13 protein levels. Conclusion IL37 is induced by IL1β, and IL37 itself reduced IL1β, IL6 and IL8 production, indicating that IL37 is able to induce a counter-regulatory anti-inflammatory feedback loop in chondrocytes. In addition, IL37 dampens catabolic enzyme expression. This supports IL37 as a potential therapeutic target in OA.
Collapse
Affiliation(s)
| | | | | | | | - Wim Schreurs
- Department of Orthopaedics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
3
|
Zhang Y, Pizzute T, Pei M. Anti-inflammatory strategies in cartilage repair. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:655-68. [PMID: 24846478 DOI: 10.1089/ten.teb.2014.0014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cartilage defects are normally concomitant with posttraumatic inflammation and pose a major challenge in cartilage repair. Due to the avascular nature of cartilage and its inability to surmount an inflammatory response, the cartilage is easily attacked by proinflammatory factors and oxidative stress; if left untreated, osteoarthritis may develop. Suppression of inflammation has always been a crux for cartilage repair. Pharmacological drugs have been successfully applied in cartilage repair; however, they cannot optimally work alone. This review article will summarize current pharmacological drugs and their application in cartilage repair. The development of extracellular matrix-based scaffolds and preconditioned tissue-specific stem cells will be emphasized because both of these tissue engineering components could contribute to an enhanced ability not only for cartilage regeneration but also for anti-inflammation. These strategies could be combined to boost cartilage repair under inflammatory conditions.
Collapse
Affiliation(s)
- Ying Zhang
- 1 Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University , Morgantown, West Virginia
| | | | | |
Collapse
|
4
|
Yasuda T, Julovi SM, Hiramitsu T, Yoshida M, Nakamura T. Requirement of mitogen-activated protein kinase for collagenase production by the fibronectin fragment in human articular chondrocytes in culture. Mod Rheumatol 2014. [DOI: 10.3109/s10165-003-0266-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Haglund L, Tillgren V, Önnerfjord P, Heinegård D. The C-terminal peptide of chondroadherin modulates cellular activity by selectively binding to heparan sulfate chains. J Biol Chem 2012; 288:995-1008. [PMID: 23172228 DOI: 10.1074/jbc.m112.430512] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chondroadherin, a leucine-rich repeat family member, contains a very C-terminal sequence CKFPTKRSKKAGRH(359), now shown to bind to heparin with a K(D) of 13 μm. This observation led us to investigate whether chondroadherin interacts via this C-terminal heparin-binding domain with glycosaminoglycan chains of proteoglycans at the cell surface. Cells were shown to bind this heparin-binding peptide in FACS analysis, and the interaction was shown to be with glycosaminoglycans because it was abolished when sulfation was inhibited by chlorate treatment of the cells. In separate experiments, heparin and heparan sulfate inhibited the peptide interaction in a dose-dependent manner. Using a human chondrosarcoma and a murine osteoblast cell line, heparan sulfate proteoglycans were identified as the cell surface receptors involved in the binding. Different binding syndecans were identified in the two different cell lines, indicating that the same protein core of a proteoglycan may have structural and functional differences in the attached heparan sulfate chains. Upon binding to coated peptide, cells spread, demonstrating engagement of the cytoskeleton, but no focal adhesion complex was formed. The number of cells adhering via their β(1) integrin receptor to collagen type II or chondroadherin was profoundly and rapidly enhanced by the addition of the heparin-binding peptide. The peptide added to the cells caused ERK phosphorylation, showing that it triggered intracellular signaling. The results show that heparan sulfate chains differ between various members of the proteoglycan families on a given cell, but also differ between the same proteoglycan on different cells with a potential for differential regulation of cellular activities.
Collapse
Affiliation(s)
- Lisbet Haglund
- Department of Clinical Sciences, Lund, Section of Rheumatology, Molecular Skeletal Biology, Biomedical Center C12, Lund University, SE-22184 Lund, Sweden
| | | | | | | |
Collapse
|
6
|
Haglund L, Tillgren V, Addis L, Wenglén C, Recklies A, Heinegård D. Identification and characterization of the integrin alpha2beta1 binding motif in chondroadherin mediating cell attachment. J Biol Chem 2010; 286:3925-34. [PMID: 21127050 DOI: 10.1074/jbc.m110.161141] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chondroadherin is a leucine-rich repeat protein known to mediate adhesion of isolated cells via the integrin α(2)β(1) and to interact with collagen. In this work, we show that cell adhesion to chondroadherin leads to activation of MAPKs but does not result in cell spreading and division. This is in contrast to the spreading and dividing of cells grown on collagen, although the binding is mediated via the same α(2)β(1) receptor. We identified a cell binding motif, CQLRGLRRWLEAK(318) by mass spectrometry after protease digestion of chondroadherin. Cells adhering to the synthetic peptide CQLRGLRRWLEAK(318) remained round, as was observed when they bound to the intact protein. The peptide added in solution was able to inhibit cell adhesion to the intact protein in a dose-dependent manner and was also verified to bind to the α(2)β(1) integrin. A cyclic peptide, CQLRGLRRWLEAKASRPDATC(326), mimicking the structural constraints of this sequence in the intact protein, showed similar efficiency in inhibiting binding to chondroadherin. The unique peptide motif responsible for cellular binding is primarily located in the octamer sequence LRRWLEAK(318). Binding of cells to the active peptide or to chondroadherin immobilized on cell culture plates rapidly induces intracellular signaling (i.e. ERK phosphorylation). Thus, chondroadherin interaction with cells may be central for maintaining the adult chondrocyte phenotype and cartilage homeostasis. The peptides, particularly the more stable cyclic peptide, open new opportunities to modulate cell behavior in situations of tissue pathology.
Collapse
Affiliation(s)
- Lisbet Haglund
- Department of Clinical Sciences Lund, Lund University, BMC Plan C12, SE-22184 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
7
|
Connolly M, Marrelli A, Blades M, McCormick J, Maderna P, Godson C, Mullan R, FitzGerald O, Bresnihan B, Pitzalis C, Veale DJ, Fearon U. Acute serum amyloid A induces migration, angiogenesis, and inflammation in synovial cells in vitro and in a human rheumatoid arthritis/SCID mouse chimera model. THE JOURNAL OF IMMUNOLOGY 2010; 184:6427-37. [PMID: 20435930 DOI: 10.4049/jimmunol.0902941] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Serum amyloid A (A-SAA), an acute-phase protein with cytokine-like properties, is expressed at sites of inflammation. This study investigated the effects of A-SAA on chemokine-regulated migration and angiogenesis using rheumatoid arthritis (RA) cells and whole-tissue explants in vitro, ex vivo, and in vivo. A-SAA levels were measured by real-time PCR and ELISA. IL-8 and MCP-1 expression was examined in RA synovial fibroblasts, human microvascular endothelial cells, and RA synovial explants by ELISA. Neutrophil transendothelial cell migration, cell adhesion, invasion, and migration were examined using transwell leukocyte/monocyte migration assays, invasion assays, and adhesion assays with or without anti-MCP-1/anti-IL-8. NF-kappaB was examined using a specific inhibitor and Western blotting. An RA synovial/SCID mouse chimera model was used to examine the effects of A-SAA on cell migration, proliferation, and angiogenesis in vivo. High expression of A-SAA was demonstrated in RA patients (p < 0.05). A-SAA induced chemokine expression in a time- and dose-dependent manner (p < 0.05). Blockade with anti-scavenger receptor class B member 1 and lipoxin A4 (A-SAA receptors) significantly reduced chemokine expression in RA synovial tissue explants (p < 0.05). A-SAA induced cell invasion, neutrophil-transendothelial cell migration, monocyte migration, and adhesion (all p < 0.05), effects that were blocked by anti-IL-8 or anti-MCP-1. A-SAA-induced chemokine expression was mediated through NF-kappaB in RA explants (p < 0.05). Finally, in the RA synovial/SCID mouse chimera model, we demonstrated for the first time in vivo that A-SAA directly induces monocyte migration from the murine circulation into RA synovial grafts, synovial cell proliferation, and angiogenesis (p < 0.05). A-SAA promotes cell migrational mechanisms and angiogenesis critical to RA pathogenesis.
Collapse
Affiliation(s)
- Mary Connolly
- Dublin Academic Medical Centre, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kuan WP, Tam LS, Wong CK, Ko FWS, Li T, Zhu T, Li EK. CXCL 9 and CXCL 10 as Sensitive markers of disease activity in patients with rheumatoid arthritis. J Rheumatol 2009; 37:257-64. [PMID: 20032101 DOI: 10.3899/jrheum.090769] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To assess whether serum levels of CC and CXC chemokines correlate with disease activity in patients with rheumatoid arthritis (RA), and to determine whether these effects predict clinical response. METHODS Serum levels of the chemokines CC (CCL2, CCL5) and CXC (CXCL8, CXCL9, CXCL10) were quantified at baseline and after 12 weeks of treatment with disease-modifying antirheumatic drugs or biologic agents in 28 patients using flow cytometry. Serum from 40 healthy individuals was collected for comparison at baseline. Response to treatment was classified according to the European League Against Rheumatism (EULAR) response criteria. Remission of disease was defined as a Disease Activity Score < 2.6. RESULTS The baseline serum concentrations of CC and CXC chemokines were significantly elevated in patients with active RA compared to healthy controls (p < 0.05) except for CCL2. Significant improvement in all disease activity measurements was observed after 12 weeks of treatment. Seventeen (60.7%) patients achieved good to moderate response based on the EULAR response criteria, and 5 (17.9%) patients achieved remission. The improvement in clinical activity in patients with RA was accompanied by a significant reduction in the serum concentration of CXCL9 and CXCL10 (p < 0.001). A significant reduction in the serum level of CXCL10 was also observed in the group that achieved EULAR response. Serum concentration of CCL5 remained significantly elevated in patients with RA (n = 5) who achieved remission compared to the healthy controls (p < 0.05). CONCLUSION Serum concentration of CXCL9 and CXCL10 may serve as sensitive biomarkers for disease activity in patients with RA.
Collapse
Affiliation(s)
- Woon Pang Kuan
- Department of Rheumatology, Hospital Selayang, Selangor, Malaysia
| | | | | | | | | | | | | |
Collapse
|
9
|
Iwamoto T, Okamoto H, Toyama Y, Momohara S. Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients. FEBS J 2008; 275:4448-55. [DOI: 10.1111/j.1742-4658.2008.06580.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Bobacz K, Sunk IG, Hofstaetter JG, Amoyo L, Toma CD, Akira S, Weichhart T, Saemann M, Smolen JS. Toll-like receptors and chondrocytes: The lipopolysaccharide-induced decrease in cartilage matrix synthesis is dependent on the presence of toll-like receptor 4 and antagonized by bone morphogenetic protein 7. ACTA ACUST UNITED AC 2007; 56:1880-93. [PMID: 17530716 DOI: 10.1002/art.22637] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To assess the presence of Toll-like receptors (TLRs) 1-9 in human articular cartilage, and to investigate the effects of lipopolysaccharide (LPS)-induced activation of TLR-4 on biosynthetic activity and matrix production by human articular chondrocytes. METHODS TLRs 1-9 were assessed in human articular cartilage by reverse transcription-polymerase chain reaction (RT-PCR); TLR-4 was also analyzed by Western blotting and immunohistochemistry. Articular chondrocytes were isolated from human donors and from wild-type or TLR-4(-/-) mice. Chondrocyte monolayer cultures were incubated with interleukin-1beta (IL-1beta) and LPS in the absence or presence of bone morphogenetic protein 7 (BMP-7) and IL-1 receptor antagonist (IL-1Ra). Neosynthesis of sulfated glycosaminoglycans (sGAG) was measured by (35)S-sulfate incorporation. Endogenous gene expression of cartilage markers as well as IL-1beta was examined using RT-PCR. The involvement of p38 kinase or p44/42 kinase (ERK-1/2) in LPS-mediated TLR-4 signaling was investigated by immunoblotting, RT-PCR, and sGAG synthesis. RESULTS TLRs 1-9 were found on the messenger RNA (mRNA) level in human articular chondrocytes. The presence of TLR-4 was also observed on the protein level. In murine and human articular chondrocytes, but not in chondrocytes derived from TLR-4(-/-) mice, stimulation with LPS resulted in a decrease in total proteoglycan synthesis. IL-1beta mRNA expression was increased by TLR-4 activation, whereas expression of aggrecan and type II collagen was significantly decreased. The presence of BMP-7 and IL-1Ra antagonized the anti-anabolic effects of LPS. Blocking of p38, but not ERK-1/2, resulted in inhibition of both LPS-mediated IL-1beta gene expression and the negative effects of LPS on matrix biosynthesis. CONCLUSION These data demonstrate the presence of TLRs in human articular cartilage. The suppressive effects of LPS on cartilage biosynthetic activity are dependent on the presence of TLR-4, are governed, at least in part, by an up-regulation of IL-1beta, and are mediated by p38 kinase. These in vitro data indicate an anti-anabolic effect of TLR-4 in articular chondrocytes that may hamper cartilage repair in various joint diseases.
Collapse
Affiliation(s)
- K Bobacz
- Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
There is an increasing body of evidence that an inflammatory process can be involved in the development and the progression of osteoarthritis. Such inflammation can be observed at both the cartilage, subchondral bone, and synovial tissue level. Of the 2 main categories of anti-inflammatory drugs [corticosteroids and nonsteroidal anti-inflammatory drugs (NSAIDs)], NSAIDs are the most commonly used oral drugs in osteoarthritis. The symptomatic short-term effect of coxibs is similar to the conventional NSAIDs one and of greater magnitude than the one of analgesics such as paracetamol (acetaminophen). On the basis of current knowledge of potential gastrointestinal and, more importantly, cardiovascular side-effects, the still remaining important question is related to the efficacy-toxicity balance of a chronic systematic daily intake of NSAIDs versus an "at request" (PRN) intake.
Collapse
Affiliation(s)
- Maxime Dougados
- Medicine Faculty, René Descartes University, and Rheumatology B Department, AP-HP Cochin Hospital, Paris, France.
| |
Collapse
|
12
|
Cecil DL, Johnson K, Rediske J, Lotz M, Schmidt AM, Terkeltaub R. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. THE JOURNAL OF IMMUNOLOGY 2006; 175:8296-302. [PMID: 16339570 DOI: 10.4049/jimmunol.175.12.8296] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The multiligand receptor for advanced glycation end products (RAGE) mediates certain chronic vascular and neurologic degenerative diseases accompanied by low-grade inflammation. RAGE ligands include S100/calgranulins, a class of low-molecular-mass, calcium-binding polypeptides, several of which are chondrocyte expressed. Here, we tested the hypothesis that S100A11 and RAGE signaling modulate osteoarthritis (OA) pathogenesis by regulating a shift in chondrocyte differentiation to hypertrophy. We analyzed human cartilages and cultured human articular chondrocytes, and used recombinant human S100A11, soluble RAGE, and previously characterized RAGE-specific blocking Abs. Normal human knee cartilages demonstrated constitutive RAGE and S100A11 expression, and RAGE and S100A11 expression were up-regulated in OA cartilages studied by immunohistochemistry. CXCL8 and TNF-alpha induced S100A11 expression and release in cultured chondrocytes. Moreover, S100A11 induced cell size increase and expression of type X collagen consistent with chondrocyte hypertrophy in vitro. CXCL8-induced, IL-8-induced, and TNF-alpha-induced but not retinoic acid-induced chondrocyte hypertrophy were suppressed by treatment with soluble RAGE or RAGE-specific blocking Abs. Last, via transfection of dominant-negative RAGE and dominant-negative MAPK kinase 3, we demonstrated that S100A11-induced chondrocyte type X collagen expression was dependent on RAGE-mediated p38 MAPK pathway activation. We conclude that up-regulated chondrocyte expression of the RAGE ligand S100A11 in OA cartilage, and RAGE signaling through the p38 MAPK pathway, promote inflammation-associated chondrocyte hypertrophy. RAGE signaling thereby has the potential to contribute to the progression of OA.
Collapse
Affiliation(s)
- Denise L Cecil
- Veterans Affairs Medical Center, Department of Medicine, University of California, San Diego, CA 92161, USA
| | | | | | | | | | | |
Collapse
|
13
|
Van Offel JF, Dombrecht EJ, Bridts CH, Schuerwegh AJ, Ebo DG, Stevens WJ, De Clerck LS. Influence of bisphosphonates on the production of pro-inflammatory cytokines by activated human articular chondrocytes. Cytokine 2005; 31:298-304. [PMID: 16009562 DOI: 10.1016/j.cyto.2005.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 02/17/2005] [Accepted: 05/19/2005] [Indexed: 10/25/2022]
Abstract
Bisphosphonates have anti-inflammatory effects in rheumatoid arthritis and chondroprotective effects in animal arthritis models but their influence on chondrocytes is not known. The aim of this study is to investigate whether bisphosphonates could influence the production of pro-inflammatory cytokines by activated chondrocytes. Therefore human articular cartilage explants were incubated at 48 h with clodronate, pamidronate or risedronate (10(-6) and 10(-8)mol/L), and dexamethasone (10(-8)mol/L). Subsequently, cultures were stimulated with IL-1, 10 ng/mL (n=6) or 1 ng/mL (n=10) for 48 h. Co-incubation was performed with or without bisphosphonates or dexamethasone. A flow cytometric microsphere-based immunoassay was used for the detection of the pro-inflammatory cytokines IL-6, IL-8, TNF-alpha, IL-1 and the regulatory cytokines IL-12p70 and IL-10 in the supernatants. Stimulation with IL-1 resulted in a dose dependent induction of IL-6 and IL-8, but no production of the other cytokines could be demonstrated. This production of IL-6 and IL-8 was neither inhibited nor enhanced by bisphosphonates. Only dexamethasone caused an inhibition of IL-6 production. In conclusion, there is no evidence on the level of articular cartilage cells that bisphosphonates would suppress or enhance IL-6 and IL-8 mediated joint destruction.
Collapse
Affiliation(s)
- Jan F Van Offel
- Department of Immunology, Allergology and Rheumatology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
14
|
Pulai JI, Chen H, Im HJ, Kumar S, Hanning C, Hegde PS, Loeser RF. NF-kappa B mediates the stimulation of cytokine and chemokine expression by human articular chondrocytes in response to fibronectin fragments. THE JOURNAL OF IMMUNOLOGY 2005; 174:5781-8. [PMID: 15843581 PMCID: PMC2903737 DOI: 10.4049/jimmunol.174.9.5781] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibronectin fragments (FN-f) that bind to the alpha(5)beta(1) integrin stimulate chondrocyte-mediated cartilage destruction and could play an important role in the progression of arthritis. The objective of this study was to identify potential cytokine mediators of cartilage inflammation and destruction induced by FN-f and to investigate the mechanism of their stimulation. Human articular chondrocytes, isolated from normal ankle cartilage obtained from tissue donors, were treated with a 110-kDa FN-f in serum-free culture, and expression of various cytokine genes was analyzed by cDNA microarray and by a cytokine protein array. Compared with untreated control cultures, stimulation by FN-f resulted in a >2-fold increase in IL-6, IL-8, MCP-1, and growth-related oncogene beta (GRO-beta). Constitutive and FN-f-inducible expression of GRO-alpha and GRO-gamma were also noted by RT-PCR and confirmed by immunoblotting. Previous reports of IL-1beta expression induced by FN-f were also confirmed, while TNF expression was found to be very low. Inhibitor studies revealed that FN-f-induced stimulation of chondrocyte chemokine expression was dependent on NF-kappaB activity, but independent of IL-1 autocrine signaling. The ability of FN-f to stimulate chondrocyte expression of multiple proinflammatory cytokines and chemokines suggests that damage to the cartilage matrix is capable of inducing a proinflammatory state responsible for further progressive matrix destruction, which also includes the chemoattraction of inflammatory cells. Targeting the signaling pathways activated by FN-f may be an effective means of inhibiting production of multiple mediators of cartilage destruction.
Collapse
Affiliation(s)
- Judit I. Pulai
- Departments of Internal Medicine, Section of Rheumatology, Rush Medical College, Chicago, IL 60612
| | - Hong Chen
- Departments of Internal Medicine, Section of Rheumatology, Rush Medical College, Chicago, IL 60612
| | - Hee-Jeong Im
- Departments of Internal Medicine, Section of Rheumatology, Rush Medical College, Chicago, IL 60612
- Department of Biochemistry, Rush Medical College, Chicago, IL 60612
| | - Sanjay Kumar
- Department of Musculoskeletal Diseases, GlaxoSmithKline, Collegeville, PA 19426
| | - Charles Hanning
- Department of Musculoskeletal Diseases, GlaxoSmithKline, Collegeville, PA 19426
| | - Priti S. Hegde
- Department of Musculoskeletal Diseases, GlaxoSmithKline, Collegeville, PA 19426
| | - Richard F. Loeser
- Departments of Internal Medicine, Section of Rheumatology, Rush Medical College, Chicago, IL 60612
- Department of Biochemistry, Rush Medical College, Chicago, IL 60612
- Address correspondence and reprint requests to Dr. Richard F. Loeser, Rheumatology, Rush University Medical Center, 1725 West Harrison, Suite 1017, Chicago, IL, 60612.
| |
Collapse
|
15
|
Brittberg M, Sjögren-Jansson E, Thornemo M, Faber B, Tarkowski A, Peterson L, Lindahl A. Clonal growth of human articular cartilage and the functional role of the periosteum in chondrogenesis. Osteoarthritis Cartilage 2005; 13:146-53. [PMID: 15694576 DOI: 10.1016/j.joca.2004.10.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 10/22/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Clinical cartilage repair with transplantation of cultured chondrocytes, the first described technique introduced in 1994, includes a periosteal membrane but today cells are also implanted without the periosteal combination. The aim of this study was to see if the periosteum had more than a biomechanical function and if the periosteum had a biological effect on the seeded cells tested in an agarose system in which the clonal growth in agarose and the external growth stimulation could be analysed. METHODS Four different experiments were used to study the growth of human chondrocytes in agarose and the periosteal influence. Human chondrocytes were isolated and transferred to either primary or secondary agarose culture. After 4 weeks, the total number of clones >50 microm was counted. Cocultures of chondrocytes and periosteal tissue, cultures of chondrocytes with conditioned medium from chondrocytes, periosteal cells and fibroblast were used to study a potential stimulatory effect on growth and different cytokines and growth factors were analysed. RESULTS It was found that the human chondrocytes had different growth properties in agarose with the formation of four different types of clones: a homogenous clone without matrix production, a homogenous clone with matrix production, a differentiated clone with matrix production and finally a differentiated clone without matrix production. The periosteum exerted a paracrine effect on cultured chondrocytes in agarose resulting in a higher degree of cloning. The chondrocytes produced significant amounts of interleukin (IL)-6, IL-8, granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor (TGF)-beta. The periosteum produced significant amounts of IL-6, IL-8 and TGF-beta. Cocultures of chondrocytes and periosteum demonstrated a potentiation of IL-6 and IL-8 release but not of TGF-beta and GM-CSF. CONCLUSION Articular chondrocytes are able to form clones of different properties in agarose and the periosteum has a capacity of stimulating chondrocyte clonal growth and differentiation and secretes significant amounts of IL-6, IL-8, GM-CSF and TGF-beta. It may be that the repair of cartilage defects with seeded chondrocytes could benefit from the combination with a periosteal graft. The production of TGF-beta by implanted chondrocytes could influence the chondrogenic cells in the periosteum to start a periosteal chondrogenesis and together with the matrix from implanted chondrocyte production, a repair of cartilaginous appearance may develop; a dual chondrogenic response is possible.
Collapse
Affiliation(s)
- M Brittberg
- Department of Orthopaedics, Sahlgren's University Hospital, S-413 45 Göteborg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
16
|
Cecil DL, Rose DM, Terkeltaub R, Liu-Bryan R. Role of interleukin-8 in PiT-1 expression and CXCR1-mediated inorganic phosphate uptake in chondrocytes. ACTA ACUST UNITED AC 2005; 52:144-54. [PMID: 15641067 DOI: 10.1002/art.20748] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The proinflammatory chemokine interleukin-8 (IL-8) induces chondrocyte hypertrophy. Moreover, chondrocyte hypertrophy develops in situ in osteoarthritic (OA) articular cartilage and promotes dysregulated matrix repair and calcification. Growth plate chondrocyte hypertrophy is associated with expression of the type III sodium-dependent inorganic phosphate (Pi) cotransporter phosphate transporter/retrovirus receptor 1 (PiT-1). This study was undertaken to test the hypothesis that IL-8 promotes chondrocyte hypertrophy by modulating chondrocyte PiT-1 expression and sodium-dependent Pi uptake, and to assess differential roles in this activity. METHODS The selective IL-8 receptor CXCR1 and the promiscuous chemokine receptor CXCR2 were used. Human knee OA cartilage, cultured normal bovine knee chondrocytes, and immortalized human articular chondrocytic CH-8 cells were transfected with CXCR1/CXCR2 chimeric receptors in which the 40-amino acid C-terminal cytosolic tail domains were swapped and site mutants of a CXCR1-specific region were generated. RESULTS Up-regulated PiT-1 expression was detected in OA cartilage. IL-8, but not IL-1 or the CXCR2 ligand growth-related oncogene alpha, induced PiT-1 expression and increased sodium-dependent Pi uptake by >40% in chondrocytes. The sodium/phosphate cotransport inhibitor phosphonoformic acid blocked IL-8-induced chondrocyte hypertrophic differentiation. Signaling mediated by kinase Pyk-2 was essential for IL-8 induction of PitT-1 expression and Pi uptake. Signaling through the TSYT(346-349) region of the CXCR1 cytosolic tail, a region divergent from the CXCR2 cytosolic tail, was essential for IL-8 to induce Pi uptake. CONCLUSION Our results link low-grade IL-8-mediated cartilaginous inflammation in OA to altered chondrocyte differentiation and disease progression through PiT-1 expression and sodium-dependent Pi uptake mediated by CXCR1 signaling.
Collapse
Affiliation(s)
- Denise L Cecil
- Veterans Affairs Medical Center, University of California-San Diego, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| | | | | | | |
Collapse
|
17
|
Ling H, Recklies AD. The chitinase 3-like protein human cartilage glycoprotein 39 inhibits cellular responses to the inflammatory cytokines interleukin-1 and tumour necrosis factor-alpha. Biochem J 2004; 380:651-9. [PMID: 15015934 PMCID: PMC1224214 DOI: 10.1042/bj20040099] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 03/08/2004] [Accepted: 03/12/2004] [Indexed: 02/07/2023]
Abstract
Expression of the chitinase 3-like protein HC-gp39 (human cartilage glycoprotein 39) is associated with conditions of increased matrix turnover and tissue remodelling. High levels of this protein have been found in sera and synovial fluids of patients with inflammatory and degenerative arthritis. In order to assess the role of HC-gp39 in matrix degradation induced by inflammatory cytokines, we have examined its effect on the responses of connective tissue cells to TNF-alpha (tumour necrosis factor-alpha) and IL-1 (interleukin-1) with respect to activation of signalling pathways and production of MMPs (matrix metalloproteases) and chemokines. Stimulation of human skin fibroblasts or articular chondrocytes with IL-1 or TNF-alpha in the presence of HC-gp39 resulted in a marked reduction of both p38 mitogen-activated protein kinase and stress-activated protein kinase/Jun N-terminal kinase phosphorylation, whereas nuclear translocation of nuclear factor kappaB proceeded unimpeded. HC-gp39 suppressed the cytokine-induced secretion of MMP1, MMP3 and MMP13, as well as secretion of the chemokine IL-8. The suppressive effects of HC-gp39 were dependent on phosphoinositide 3-kinase activity, and treatment of cells with HC-gp39 resulted in AKT-mediated serine/threonine phosphorylation of apoptosis signal-regulating kinase 1. This process could therefore be responsible for the down-regulation of cytokine signalling by HC-gp39. These results suggest a physiological role for HC-gp39 in limiting the catabolic effects of inflammatory cytokines.
Collapse
Affiliation(s)
- Hua Ling
- Joint Diseases Laboratory, Shriners Hospital for Children and Department of Surgery, McGill University, Montreal, Québec H3G 1A6, Canada
| | | |
Collapse
|
18
|
De Ceuninck F, Dassencourt L, Anract P. The inflammatory side of human chondrocytes unveiled by antibody microarrays. Biochem Biophys Res Commun 2004; 323:960-9. [PMID: 15381094 DOI: 10.1016/j.bbrc.2004.08.184] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Indexed: 11/20/2022]
Abstract
Although being largely used for pathobiological models of cartilage diseases such as osteoarthritis (OA), human chondrocytes are still enigmatic cells, in as much as a large part of their secretome is unknown. We took advantage of the recent development of antibody-based microarrays to study multiple protein expression by human chondrocytes obtained from one healthy and five osteoarthritic joints, in unstimulated conditions or after stimulation by the proinflammatory cytokines interleukin-1 (IL-1) or tumour necrosis factor (TNF). The secretion media of chondrocytes were incubated with array membranes consisting of 79 antibodies directed against cytokines, chemokines, and angiogenic or growth factors. Several proteins were identified as new secretion products of chondrocytes, including the growth or angiogenic factors EGF, thrombopoietin, GDNF, NT-3 and -4, and PlGF, the chemokines ENA-78, MCP-2, IP-10, MIP-3alpha, NAP-2, PARC, and the cytokines MIF, IL-12, and IL-16. Most of the newly identified chemokines were increased intensely after stimulation by IL-1 or TNF, as for other proteins of the array, including GRO proteins, GM-CSF, IL-6, IL-8, MIP-1beta, GCP-2, and osteoprotegerin. The up-regulation by cytokines suggested that these proteins may participate in the destruction of cartilage and/or in the initiation of chemotactic events within the joint during OA. In conclusion, the microarray approach enabled to unveil part of an as yet unexplored chondrocyte secretome. Our findings demonstrated that chondrocytes were equipped with a proinflammatory arsenal of proteins which may play an important part in the pathogenesis of OA and/or its drift towards an inflammatory, rheumatoid phenotype.
Collapse
|
19
|
Abstract
Besides the well-known activities of the prototypical inflammatory cytokines (IL-1beta, TNFalpha), a role for chemokines and their receptors in cartilage degradation in osteoarthritis has recently been reported. Human chondrocytes can produce CC and CXC chemokines and express chemokine receptors for both chemokine subfamilies. Engagement of these receptors can induce the release of matrix degrading enzymes such as matrix metalloproteinases 1, 3, and 13, and N-acetyl-beta-D-glucosaminidase. Furthermore GROalpha, a CXC chemokine acting on CXCR2, can activate an apoptotic pathway in chondrocytes that leads to chondrocyte cell death. These findings suggest that chemokines can act as an autocrine or paracrine loop on chondrocytes and can contribute to many pathophysiological patterns present in osteoarthritis. Chemokines and their downstream signaling pathways can be considered novel therapeutic targets in osteoarthritis.
Collapse
Affiliation(s)
- Rosa Maria Borzì
- Laboratorio di Immunologia e Genetica, Istituti Ortopedici Rizzoli, Bologna, Italy
| | | | | | | |
Collapse
|
20
|
Merz D, Liu R, Johnson K, Terkeltaub R. IL-8/CXCL8 and growth-related oncogene alpha/CXCL1 induce chondrocyte hypertrophic differentiation. THE JOURNAL OF IMMUNOLOGY 2004; 171:4406-15. [PMID: 14530367 DOI: 10.4049/jimmunol.171.8.4406] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Foci of chondrocyte hypertrophy that commonly develop in osteoarthritic (OA) cartilage can promote dysregulated matrix repair and pathologic calcification in OA. The closely related chemokines IL-8/CXCL8 and growth-related oncogene alpha (GROalpha)/CXCL1 and their receptors are up-regulated in OA cartilage chondrocytes. Because these chemokines regulate leukocyte activation through p38 mitogen-activated protein kinase signaling, a pathway implicated in chondrocyte hypertrophic differentiation, we tested whether IL-8 and GROalpha promote chondrocyte hypertrophy. We observed that normal human and bovine primary articular chondrocytes expressed both IL-8Rs (CXCR1, CXCR2). IL-8 and the selective CXCR2 ligand GROalpha (10 ng/ml) induced tissue inhibitor of metalloproteinase-3 expression, markers of hypertrophy (type X collagen and MMP-13 expression, alkaline phosphatase activity), as well as matrix calcification. IL-8 and the selective CXCR2 ligand GROalpha also induced increased transamidation activity of chondrocyte transglutaminases (TGs), enzymes up-regulated in chondrocyte hypertrophy that have the potential to modulate differentiation and calcification. Under these conditions, p38 mitogen-activated protein kinase pathway signaling mediated induction of both type X collagen and TG activity. Studies using mouse knee chondrocytes lacking one of the two known articular chondrocyte-expressed TG isoenzymes (TG2) demonstrated that TG2 was essential for murine GROalpha homologue KC-induced TG activity and critically mediated induction by KC of type X collagen, matrix metalloproteinase-13, alkaline phosphatase, and calcification. In conclusion, IL-8 and GROalpha induce articular chondrocyte hypertrophy and calcification through p38 and TG2. Our results suggest a novel linkage between inflammation and altered differentiation of articular chondrocytes. Furthermore, CXCR2 and TG2 may be sites for intervention in the pathogenesis of OA.
Collapse
Affiliation(s)
- Denise Merz
- Veterans Affairs Medical Center, University of California at San Diego, La Jolla 92161, USA
| | | | | | | |
Collapse
|
21
|
Recklies AD, White C, Ling H. The chitinase 3-like protein human cartilage glycoprotein 39 (HC-gp39) stimulates proliferation of human connective-tissue cells and activates both extracellular signal-regulated kinase- and protein kinase B-mediated signalling pathways. Biochem J 2002; 365:119-26. [PMID: 12071845 PMCID: PMC1222662 DOI: 10.1042/bj20020075] [Citation(s) in RCA: 304] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human cartilage glycoprotein 39 (HC-gp39) is a glycoprotein secreted by articular chondrocytes, synoviocytes and macrophages. Increased levels of HC-gp39 have been demonstrated in synovial fluids of patients with rheumatoid or osteoarthritis. The increased secretion of HC-gp39 under physiological and pathological conditions with elevated connective-tissue turnover suggests its involvement in the homoeostasis of these tissues. We report here that HC-gp39 promotes the growth of human synovial cells as well as skin and fetal lung fibroblasts. A dose-dependent growth stimulation was observed when each of the fibroblastic cell lines was exposed to HC-gp39 in a concentration range from 0.1 to 2 nM, which is similar to the effective dose of the well-characterized mitogen, insulin-like growth factor-1. At suboptimal concentrations, the two growth factors work in a synergistic fashion. The use of selective inhibitors of the mitogen-activated protein kinase and the protein kinase B (AKT) signalling pathways indicates that both are involved in mediating the mitogenic response to HC-gp39. Phosphorylation of both extracellular signal-regulated kinases 1/2 and AKT occurred in a dose- and time-dependent fashion upon addition of HC-gp39. Activation of these signalling pathways could also be demonstrated in human chondrocytes. Thus HC-gp39 initiates a signalling cascade in connective-tissue cells which leads to increased cell proliferation, suggesting that this protein could play a major role in the pathological conditions leading to tissue fibrosis.
Collapse
Affiliation(s)
- Anneliese D Recklies
- Joint Diseases Laboratory, Shriners Hospital for Children, 1529 Cedar Avenue, Montreal, QC, Canada H3G 1A6.
| | | | | |
Collapse
|
22
|
Recklies AD, White C, Melching L, Roughley PJ. Differential regulation and expression of hyaluronan synthases in human articular chondrocytes, synovial cells and osteosarcoma cells. Biochem J 2001; 354:17-24. [PMID: 11171074 PMCID: PMC1221623 DOI: 10.1042/0264-6021:3540017] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recently three isoforms of hyaluronan synthase (HAS), the enzyme responsible for hyaluronate/hyaluronan (HA) biosynthesis, have been cloned, allowing us to study their expression pattern. Our objective was to determine which of the HAS isoenzymes were expressed in human articular chondrocytes, synovial fibroblasts and osteosarcoma cells, whether their expression could be modulated by growth factors (insulin-like growth factor-1, basic fibroblast growth factor and transforming growth factor (TGF-beta1) and cytokines [interleukin 1beta1 (IL-1beta)], and whether changes in the rate of HA synthesis by the cells correlated with changes in mRNA levels for one or more of the HAS isoforms. All three HAS isoforms were found to be expressed in the cultured cells analysed in this study, although the relative proportions varied for each cell type. HAS2 mRNA was usually predominant in chondrocytes, whereas synovial cells contained increased amounts of HAS1. HAS3 was always the least abundant message. The rapidly growing osteosarcoma cells contained almost exclusively HAS2 message. HAS usage in uncultured cartilage and synovial tissues was similar to that in the cultured cells, with HAS2 message being the predominant species in cartilage and HAS1 usually being the predominant species in synovium. HA synthesis was stimulated by the growth factors, but the extent of the response was cell-type specific. Synovial cells responded particularly well to IL-1beta, and showed a unique synergistic response when IL-1beta was used in combination with TGF-beta1. This response was much reduced in articular chondrocytes and absent in the osteosarcoma cells. Analysis of changes in HAS message levels indicated that there was often no correlation with the changes in HA secretion following exposure to growth factors. Although HAS-1 mRNA was increased in synovial cells after exposure to TGF-beta1/IL-1beta, the magnitude of the change was far less than the effect on HA synthesis. Our data thus suggest that HAS gene usage is tissue specific, and the regulation by growth factors is unique for each HAS gene and is further modulated by cell-specific factors. In addition, regulation of HA biosynthesis appears to be multi-faceted, with control of HAS gene expression and mRNA levels being only one aspect of this process.
Collapse
Affiliation(s)
- A D Recklies
- Joint Diseases Laboratory, Shriners Hospital for Children, 1529 Cedar Avenue, Montreal, Quebec, H3G 1A6, Canada.
| | | | | | | |
Collapse
|
23
|
Lisignoli G, Grassi F, Piacentini A, Cocchini B, Remiddi G, Bevilacqua C, Facchini A. Hyaluronan does not affect cytokine and chemokine expression in osteoarthritic chondrocytes and synoviocytes. Osteoarthritis Cartilage 2001; 9:161-8. [PMID: 11237663 DOI: 10.1053/joca.2000.0372] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Many studies have evidenced the clinical efficacy of hyaluronan (HA) in the treatment of osteoarthritis (OA). However, human and animal studies have described proinflammatory effects of HA on cells not involved in OA. We therefore investigated whether different molecular weight HA preparations can affect proinflammatory cytokine (IL1beta and TNFalpha) or chemokine (IL8, MCP-1 and RANTES) expression in human chondrocytes and synoviocytes isolated from OA patients. DESIGN Human chondrocytes and synoviocytes were cultured in vitro in the presence or absence of three different purified HA pharmaceutical preparations (1x10(6) Kd, 5x10(5) Kd and 6.5x10(4) Kd) and assessed for the production of proinflammatory cytokines and chemokines and their mRNA expression. RESULTS basal conditions, both chondrocytes and synoviocytes produce only MCP-1 and IL8, along with low quantities of IL1beta and TNFalpha, but not RANTES. IL8 production was generally about 100 times higher in chondrocytes than in synoviocytes, while MCP-1 was roughly twice as high in synoviocytes than in chondrocytes. At the mRNA level, expression of IL1beta, TNFalpha, IL8, MCP-1 and RANTES did not change in the presence of the three HA preparations either in synoviocytes or in chondrocytes with respect to basal condition. None of the three different HA preparations significantly affected production of IL8 or MCP-1. CONCLUSIONS These data demonstrate that preparations of HA of the same origin but with different MWs do not induce proinflammatory cytokines and chemokines expressed by chondrocytes and synoviocytes that are either directly or indirectly involved in OA progression.
Collapse
Affiliation(s)
- G Lisignoli
- Laboratorio di Immunologia e Genetica, Istituti Ortopedici Rizzoli, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Borzì RM, Mazzetti I, Cattini L, Uguccioni M, Baggiolini M, Facchini A. Human chondrocytes express functional chemokine receptors and release matrix-degrading enzymes in response to C-X-C and C-C chemokines. ARTHRITIS AND RHEUMATISM 2000; 43:1734-41. [PMID: 10943863 DOI: 10.1002/1529-0131(200008)43:8<1734::aid-anr9>3.0.co;2-b] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Human chondrocytes produce different C-X-C and C-C chemokines under basal conditions and upon activation with proinflammatory cytokines. We investigated whether human chondrocytes also have chemokine receptors and examined the effects of chemokines on chondrocyte activity. METHODS The expression of chemokine receptors was determined by immunochemical analysis of frozen sections from normal and osteoarthritic cartilage and by flow cytometry of isolated cells. The messenger RNA expression for chemokine receptors was studied by reverse transcriptase-polymerase chain reaction. Isolated chondrocytes were stimulated with different chemokines, and the responses were evaluated by assaying the release of matrix metalloprotease 3 (MMP-3) and of the lysosomal enzyme N-acetyl-beta-D-glucosaminidase in the supernatants. RESULTS A wide variety of chemokine receptors (CCR-1, CCR-2, CCR-3, CCR-5, CXCR-1, and CXCR-2) was detected on human chondrocytes. Interaction of these receptors with the corresponding ligands induced the release of MMP-3. This response was abrogated by pretreatment of the cells with Bordetella pertussis toxin, demonstrating involvement of G proteins of the Gi type. The response decreased in the presence of cycloheximide, indicating dependence on protein synthesis. Chemokines also induced the exocytosis of N-acetyl-beta-D-glucosaminidase, which was prevented by receptor blockage with anti-CCR-3 and by treatment with B pertussis toxin. Chondrocytes obtained from osteoarthritic tissue showed an increased expression of CCR-3 and possibly of CXCR-1, and an augmented release of matrix-degrading enzymes compared with chondrocytes from normal donors. CONCLUSION Our findings suggest the existence in human chondrocytes of a novel catabolic pathway, primed by chemokines and their receptors, that leads to the breakdown of cartilage matrix components.
Collapse
Affiliation(s)
- R M Borzì
- Istituti Ortopedici Rizzoli, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Borzi RM, Mazzetti I, Macor S, Silvestri T, Bassi A, Cattini L, Facchini A. Flow cytometric analysis of intracellular chemokines in chondrocytes in vivo: constitutive expression and enhancement in osteoarthritis and rheumatoid arthritis. FEBS Lett 1999; 455:238-42. [PMID: 10437780 DOI: 10.1016/s0014-5793(99)00886-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemokines play a key role in modulating leukocyte functions at sites of inflammation. To assess chondrocyte contribution to the chemotactic environment of inflamed joints the intracellular content of CC and CXC chemokines was investigated. IL-8, GROalpha, MCP-1, RANTES, MIP-1alpha and MIP-1beta expression was evaluated by flow cytometric analysis and RT-PCR in chondrocytes isolated from cartilage specimens obtained from patients with osteoarthritis and rheumatoid arthritis and multiorgan donors as normal controls. All the chemokines except RANTES were found in normal chondrocytes, with different degrees of staining intensity. In osteoarthritis and rheumatoid arthritis patients, an enhancement of IL-8, GROalpha, MIP-1alpha and MIP-1beta was observed.
Collapse
Affiliation(s)
- R M Borzi
- Laboratorio di Immunologia e Genetica, Istituto di Ricerca Codivilla Putti, I.O.R., Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Broxmeyer HE, Kim CH. Regulation of hematopoiesis in a sea of chemokine family members with a plethora of redundant activities. Exp Hematol 1999; 27:1113-23. [PMID: 10390186 DOI: 10.1016/s0301-472x(99)00045-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The field of chemokine biology is a rapidly advancing one, with over 50 chemokines identified that mediate their effects through one or more of 16 different chemokine receptors. Chemokines, originally identified as chemotactic cytokines, manifest a number of functions, including modulation of blood cell production at the level of hematopoietic stem/progenitor cells and the directed movement of these early blood cells. This report reviews chemokines and chemokine/receptor activities mainly in the context of hematopoietic cell regulation and the numerous chemokines that manifest suppressive activity on proliferation of stem/progenitor cells. This is contrasted with the specificity of only a few chemokines for the chemotaxis of these early cells. The large number of chemokines with suppressive activity is hypothesized to reflect the different cell, tissue, and organ sites of production of these chemokines and the need to control stem/progenitor cell proliferation in different organ sites throughout the body.
Collapse
Affiliation(s)
- H E Broxmeyer
- Department of Microbiology/Immunology, Walther Oncology Center, Indiana University School of Medicine, and the Walther Cancer Institute, Indianapolis 46202-5254, USA.
| | | |
Collapse
|
27
|
Lisignoli G, Toneguzzi S, Pozzi C, Piacentini A, Grassi F, Ferruzzi A, Gualtieri G, Facchini A. Chemokine expression by subchondral bone marrow stromal cells isolated from osteoarthritis (OA) and rheumatoid arthritis (RA) patients. Clin Exp Immunol 1999; 116:371-8. [PMID: 10337033 PMCID: PMC1905276 DOI: 10.1046/j.1365-2249.1999.00893.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analysed the spontaneous and cytokine-stimulated production and expression in vitro of IL-8, GROalpha, MCP-1, RANTES, MIP-1alpha, MIP-1beta, by subchondral bone marrow stromal cells (BMSC) isolated from RA, OA, post-traumatic (PT) patients and normal donors (ND). BMSC were cultured in vitro in the presence or absence of IL-1beta and tumour necrosis factor-alpha (TNF-alpha), and assessed for chemokine production, expression and immunolocalization. BMSC from different sources constitutively released MCP-1, GROalpha and IL-8, but not MIP-1alpha or MIP-1beta, while BMSC from ND constitutively released only IL-8 and MCP-1. IL-8, GROalpha and RANTES production in basal conditions was significantly higher in RA patients than in ND. RANTES production was also higher in OA and RA than in PT patients. The combination of TNF-alpha and IL-1beta synergistically increased the production of all chemokines tested except for RANTES. Reverse transcriptase-polymerase chain reaction (RT-PCR) demonstrated that all chemokines not detectable in the supernatants were expressed at the mRNA level. Chemokine immunostaining was localized around the nuclei. This work demonstrates that BMSC from subchondral bone produce chemokines and indicates that these cells could actively participate in the mechanisms directly or indirectly causing cartilage destruction and bone remodelling.
Collapse
Affiliation(s)
- G Lisignoli
- Laboratorio di Immunologia e Genetica, Istituti Ortopedici Rizzoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Szekanecz Z, Strieter RM, Kunkel SL, Koch AE. Chemokines in rheumatoid arthritis. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1998; 20:115-32. [PMID: 9836372 DOI: 10.1007/bf00832002] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Z Szekanecz
- Department of Medicine, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
29
|
Recklies AD, Baillargeon L, White C. Regulation of cartilage oligomeric matrix protein synthesis in human synovial cells and articular chondrocytes. ARTHRITIS AND RHEUMATISM 1998; 41:997-1006. [PMID: 9627009 DOI: 10.1002/1529-0131(199806)41:6<997::aid-art6>3.0.co;2-g] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Cartilage oligomeric matrix protein (COMP) is a component of the extracellular matrix of articular cartilage. Its increased presence in synovial fluid and serum has been associated with accelerated joint damage in patients with rheumatoid arthritis (RA) and osteoarthritis. To fully understand the reasons for fluctuations of COMP levels, we studied the biosynthesis of this molecule in cells derived from joint tissues. METHODS Synovial cells were derived from synovial tissues of patients with RA, and human articular chondrocytes were prepared from normal articular cartilage. Analysis by Northern blotting was used to evaluate steady-state levels of COMP messenger RNA (mRNA), while secretion of the protein into culture media was analyzed by Western blotting. Expression of COMP in synovial tissues was studied by reverse transcriptase-polymerase chain reaction analysis and by in situ hybridization. RESULTS COMP was synthesized and secreted by synovial cells as well as by articular chondrocytes in culture. The basal rate of synthesis was very low; however, COMP biosynthesis in both cell populations was induced very strongly by transforming growth factor beta1 (TGFbeta1). Interleukin-1beta counteracted COMP induction by TGF-beta1. COMP was not detected in culture media of skin or fetal lung fibroblasts, either in the absence or the presence of TGFbeta1. COMP mRNA was also present in fresh synovial tissue specimens obtained from patients with RA. CONCLUSION COMP is synthesized and secreted not only by articular chondrocytes, but also by synovial fibroblasts. The demonstration of COMP expression in surgical specimens of synovial tissues suggests that the inflamed synovium may provide an additional source for the elevated levels of COMP observed in arthritis. Thus, increased COMP levels in body fluids may be indicative of active synovitis as well as of accelerated joint erosion.
Collapse
Affiliation(s)
- A D Recklies
- Shriners Hospital for Children and McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
30
|
Leistad L, Ostensen M, Faxvaag A. Detection of cytokine mRNA in human, articular cartilage from patients with rheumatoid arthritis and osteoarthritis by reverse transcriptase-polymerase chain reaction. Scand J Rheumatol 1998; 27:61-7. [PMID: 9506880 DOI: 10.1080/030097498441191] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytokines are signalling glycoproteins mediating acute inflammation, chronic inflammation, and connective tissue destruction. The present study was designed to characterize the profile of cytokine message in normal human articular cartilage and from patients with rheumatoid arthritis (RA) and osteoarthritis (OA), by means of the reverse transcriptase-polymerase chain reaction (RT-PCR). Message RNA (mRNA) was extracted from fresh or frozen cartilage. The results showed expression of mRNA for IL-6, IL-6R, IL-7, IL-8, IL-10, and IL-12 (p35 and p40) exclusively in the RA cartilage. Except for mRNA for IL-8 and IL-10, no other cytokine or cytokine receptor was expressed in OA and control cartilage. mRNA for IL-1beta, IL-4, TNF-alpha, and TNFR-p75, was not detected in any cartilage sample except for one RA specimen expressing IL-1beta mRNA. However, the expression of message for pro-inflammatory cytokines was far more prominent than anti-inflammatory cytokines. This may suggest a disturbed balance of pro- and anti-inflammatory activity in RA cartilage.
Collapse
Affiliation(s)
- L Leistad
- Rheumatology Research Laboratory, Norwegian University of Science and Technology, Faculty of Medicine, Trondheim
| | | | | |
Collapse
|
31
|
Langdon C, Leith J, Smith F, Richards CD. Oncostatin M stimulates monocyte chemoattractant protein-1- and interleukin-1-induced matrix metalloproteinase-1 production by human synovial fibroblasts in vitro. ARTHRITIS AND RHEUMATISM 1997; 40:2139-46. [PMID: 9416850 DOI: 10.1002/art.1780401207] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To measure levels of oncostatin M (OSM) in the synovial fluid of rheumatoid arthritis (RA) patients and to examine the activities of human OSM in the regulation of human synovial fibroblast (HSF) production of chemokines and matrix metalloproteinases (MMP-1 and MMP-3) in vitro. METHODS We examined the levels of OSM in the synovial fluids of patients with arthritis by an enzyme-linked immunosorbent assay (ELISA). ELISA of cell culture supernatants and Northern blots were used to assess responses of HSF to interleukin-1alpha (IL-1alpha), OSM, and other members of the IL-6/leukemia inhibitory factor (IL-6/LIF) family of cytokines. RESULTS We detected variable levels of OSM antigen in 9 of 10 RA patient synovial fluids, but levels were not detectable in 9 of 10 osteoarthritis (OA) patient fluids. Upon examining the responses of HSF in culture, OSM stimulated monocyte chemoattractant protein 1 (MCP-1), whereas RANTES secretion (regulated upon activation, normal T expressed and presumably secreted) was not altered by OSM alone. In IL-1alpha-induced cells, OSM costimulation further enhanced MCP-1 release, but inhibited the release of RANTES and IL-8. Other members of the IL-6/LIF family of cytokines did not show these effects. OSM induced a small elevation of MMP-1 production over 2 and 3 days of stimulation (2-fold), and acted significantly to enhance IL-1alpha-induced production of MMP-1 (to 8-fold and 9-fold at 48 and 72 hours, respectively). No effect of OSM was seen on MMP-3 secretion, either alone or in IL-1alpha-costimulated cells. CONCLUSION These results suggest that OSM has potentially important functions in the modulation of chemokine and metalloproteinase production by synovial cells of the joint.
Collapse
Affiliation(s)
- C Langdon
- McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
32
|
Wang AZ, Wang JC, Fisher GW, Diamond HS. Interleukin-1β-stimulated invasion of articular cartilage by rheumatoid synovial fibroblasts is inhibited by antibodies to specific integrin receptors and by collagenase inhibitors. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/art.1780400715] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Attur MG, Patel RN, Abramson SB, Amin AR. Interleukin-17 up-regulation of nitric oxide production in human osteoarthritis cartilage. ARTHRITIS AND RHEUMATISM 1997; 40:1050-3. [PMID: 9182915 DOI: 10.1002/art.1780400609] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To examine the effect of human interleukin-17 (IL-17) on nitric oxide (NO) production in human osteoarthritis (OA) cartilage under ex vivo conditions. METHODS OA cartilage from patients undergoing knee replacement surgery was used in explant assays to assess the effect of IL-17. NO production was measured by estimating the stable NO metabolite, nitrite, in conditioned medium. RESULTS IL-17 augmented the spontaneous production of nitric oxide. This augmentation was sensitive to cycloheximide and pyrrolidine dithiocarbamate, but not to dexamethasone or soluble IL-1 receptor. CONCLUSION IL-17 augments nitric oxide production in OA cartilage via nuclear factor kappaB activation, but independently of IL-1beta signaling.
Collapse
Affiliation(s)
- M G Attur
- Hospital for Joint Diseases, New York, New York 10003, USA
| | | | | | | |
Collapse
|
34
|
Hoch RC, Schraufstätter IU, Cochrane CG. In vivo, in vitro, and molecular aspects of interleukin-8 and the interleukin-8 receptors. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1996; 128:134-45. [PMID: 8765209 DOI: 10.1016/s0022-2143(96)90005-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R C Hoch
- Department of Immunology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
35
|
Tanabe BK, Abe LM, Kimura LH, Reinker KA, Yamaga KM. Cytokine mRNA repertoire of articular chondrocytes from arthritic patients, infants, and neonatal mice. Rheumatol Int 1996; 16:67-76. [PMID: 8853228 DOI: 10.1007/bf01816438] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Articular chondrocytes from nine arthritic patients, five infants, and Balb/c neonatal mice were analyzed for the presence of various cytokine mRNAs by a reverse transcriptase polymerase chain reaction (RT-PCR). Four cytokine mRNAs, interleukin (IL)-6, IL-8, IL-11, and macrophage colony stimulating factor (M-CSF), were detected in all human chondrocytes, regardless of source. IL-10, IL-12p35, and tumor necrosis factor alpha (TNF-alpha) transcripts were found in at least 12 of the 14 human samples. IL-13, granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), and TNF-beta mRNAs were found more predominantly in infant samples and in samples from patients with rheumatoid arthritis (RA) compared with samples from patients with osteoarthritis (OA). Another group of cytokine mRNAs, IL-1 (alpha, beta), IL-4, IL-5, and IL-7, were only weakly expressed in some human samples. The cytokine transcripts that were not found were IL-2, IL3, and interferon gamma (IFN-gamma). Because of the large array of cytokine transcripts detected, human chondrocyte preparations were further purified by reacting them with a monoclonal antibody specific to chondrocyte differentiation antigen and subjecting them to fluorescent-activated cell sorting. A similar array of cytokines was found between the sorted and unsorted chondrocytes, although TNF-alpha, G-CSF and GM-CSF transcripts appeared to be upregulated during the sorting process. Human chondrocytes that dedifferentiated into fibroblasts (a 40-day and a 77-day culture) no longer expressed mRNAs for IL-1, G-CSF, GM-CSF, and TNF-alpha, but all other cytokine mRNAs remained detectable. Although certain phenotypic characteristics were lost, including reactivity to chondrocyte-specific monoclonal antibodies and morphological features, chondrocytes in long-term culture still expressed cytokine mRNAs. As expected, more consistent results were obtained when seven preparations of chondrocytes from neonatal Balb/c mice were examined using available cytokine primers. They contained IL-1, IL-5, IL-6, IL-7, IL-12, GM-CSF, M-CSF, transforming growth factor beta (TGF-beta), TNF-alpha, and TNF-beta mRNAs but lacked IL-2, IL-3, IL-4, IL-10, and IFN-gamma mRNAs. Future experiments to define conditions by which these cytokine protein products are expressed are needed to help assess their roles in chondrocyte biology and in disease states.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Animals, Newborn
- Antibodies, Monoclonal
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Cells, Cultured
- Child, Preschool
- Cytokines/genetics
- Cytokines/metabolism
- Female
- Fluorescent Antibody Technique, Indirect
- Humans
- Infant
- Male
- Mice
- Mice, Inbred BALB C
- Middle Aged
- Osteoarthritis/metabolism
- Osteoarthritis/pathology
- Polymerase Chain Reaction
- RNA, Messenger/metabolism
- Spectrophotometry
Collapse
Affiliation(s)
- B K Tanabe
- Department of Tropical Medicine and Medical Microbiology, John A. Burns School of Medicine, University of Hawaii, Honolulu 96816, USA
| | | | | | | | | |
Collapse
|
36
|
Lum ZP, Hakala BE, Mort JS, Recklies AD. Modulation of the catabolic effects of interleukin-1 beta on human articular chondrocytes by transforming growth factor-beta. J Cell Physiol 1996; 166:351-9. [PMID: 8591995 DOI: 10.1002/(sici)1097-4652(199602)166:2<351::aid-jcp13>3.0.co;2-e] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of IL-1 beta and TGF-beta on the biosynthesis of extracellular matrix structural components relative to the metalloproteinases and their inhibitor TIMP1 in human articular chondrocytes were investigated. It has been proposed that TGF-beta, acting as a positive regulator of matrix accretion, can counteract the increased loss of cartilage matrix induced by IL-1 beta. To allow a comparison of their effects on mRNA levels for these different components, quantitation by competitive RT/PCR was employed. This method was found to give reproducible estimates of mRNA levels and the observed effects of IL-1 beta and TGF-beta on individual components of this system agree with qualitative data obtained by northern blotting. IL-1 beta had a more pronounced effect on aggrecan mRNA levels than on those for type II collagen. Similar quantitative differences were observed between collagenase and stromelysin mRNA levels. TGF-beta generally counteracted the effects of IL-1 beta, and new steady state levels were attained within 24 h. However, the reversal of IL-1 beta induced suppression of matrix protein mRNA levels appeared more effective than its suppression of the increase in stromelysin and collagenase mRNA levels. Similarly TGF-beta did not reduce the extent of IL-1 beta induced secretion of stromelysin at the protein level. TIMP1 mRNA levels were only slightly reduced by IL-1 beta; however this cytokine effectively suppressed its induction by TGF-beta. The higher concentrations of TGF-beta and longer exposure times required to overcome the suppressive effects of IL-1 beta suggest that the interaction between IL-1 beta and TGF-beta in the regulation of TIMP1 expression follows a different mechanism to that operating for the metalloproteinases and matrix proteins. Thus the overall potential of TGF-beta to inhibit proteolysis is attenuated by its much slower effect on TIMP1 mRNA levels.
Collapse
Affiliation(s)
- Z P Lum
- Department of Surgery, McGill University, Montreal, Québec, Canada
| | | | | | | |
Collapse
|
37
|
|
38
|
Minnerly JC, Baganoff MP, Deppeler CL, Keller BT, Rapp SR, Widomski DL, Fretland DJ, Bolanowski MA. Identification and characterization of rhesus macaque interleukin-8. Inflammation 1995; 19:313-31. [PMID: 7628861 DOI: 10.1007/bf01534390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To establish a direct link between IL-8 and inflammation in vivo, we first isolated the gene encoding rhesus macaque IL-8. The open reading frame directs the translation of a 101 amino acid (aa) precursor, which is 94% identical to human IL-8. Rhesus IL-8 was expressed in bacteria and purified to homogeneity with ion-exchange chromatography. Pure rhesus IL-8 was biologically active as measured by its ability to bind specifically to either rhesus (Kd = 0.5 nM) or human (Kd = 2 nM) IL-8 receptors and to promote in vitro chemotaxis of rhesus (EC50 = 2 nM) or human neutrophils (EC50 = 4 nM). Moreover, a mouse monoclonal antibody, DM/C7, which neutralizes human IL-8 activity, also recognized and neutralized (IC50 = 0.5-3.0 microgram/ml) rhesus IL-8 in vitro. Systemic administration of DM/C7 completely inhibited the dermal inflammation of rhesus ears induced by the external application of phorbol myristoyl acetate. These observations reveal that rhesus IL-8 is structurally and functionally similar to human IL-8 and suggests that IL-8 plays a prominent role in a primate model of inflammation.
Collapse
Affiliation(s)
- J C Minnerly
- Searle Research & Development, St. Louis, Missouri 63198, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
IL-1 and related cytokines have multiple biologic activities relevant to the rheumatic diseases. In addition to mediating inflammatory and immune responses, these proteins regulate many aspects of connective tissue metabolism. The cytokines interact in complex cascades: because of this, and various technical reasons, the exact role of cytokines in the pathogenesis of rheumatic diseases remains uncertain. However, considerable experimental data suggest that the abnormal regulation of cytokines contributes to such siseases as inflammatory arthritis, systemic lupus erythematosus, scleroderma, and dermatomyositis. Animal models of these diseases have contributed to understanding the role of cytokines in pathogenesis. Furthermore, drugs useful in treating these diseases affect cytokine pathways; some cytokines, their antagonists, or related substances have been used therapeutically to treat rheumatic diseases. The therapeutic use of these agents will likely increase as knowledge about the role of cytokines in the pathogenesis of rheumatic diseases expands.
Collapse
Affiliation(s)
- L C Miller
- Division of Pediatric Rheumatology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
40
|
Hakala BE, White C, Recklies AD. Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74461-5] [Citation(s) in RCA: 425] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
41
|
Serretti R, Core P, Muti S, Salaffi F. Influence of dichloromethylene diphosphonate on reactive oxygen species production by human neutrophils. Rheumatol Int 1993; 13:135-8. [PMID: 8310204 DOI: 10.1007/bf00301259] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Biphosphonates suppress bone destruction in various diseases. Several studies have demonstrated the potential use of biphosphonate in arthritis. The results of these studies indicate that the effectiveness of the biphosphonates, for inhibiting the arthritic process, is related to their antiresorptive properties. It has been shown that the generation of reactive oxygen species is associated with the formation of new osteoclasts and enhanced bone resorption. We studied the effects of the dichloromethylene diphosphonate on the reactive oxygen species production by activated polymorphonuclear leucocytes, measured by chemiluminescence. Our results indicate a dose-dependent inhibitory effect of dichloromethylene diphosphonate on reactive oxygen species production by polymorphonuclear leucocytes stimulated with N-formil-methionyl-leucyl-phenylalanine, the calcium ionophore A23187 and phorbol myristate acetate. The mechanisms by which this biphosphonate inhibits the reactive oxygen species production by activated polymorphonuclear leucocytes are discussed.
Collapse
Affiliation(s)
- R Serretti
- Department of Rheumatology, University of Ancona, Italy
| | | | | | | |
Collapse
|
42
|
Baggiolini M. Novel aspects of inflammation: interleukin-8 and related chemotactic cytokines. THE CLINICAL INVESTIGATOR 1993; 71:812-4. [PMID: 8305839 DOI: 10.1007/bf00190326] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
43
|
Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic cytokines--CXC and CC chemokines. Adv Immunol 1993. [PMID: 8304236 DOI: 10.1016/s0065-2776(08)60509-x] [Citation(s) in RCA: 1477] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- M Baggiolini
- Theodor Kocher Institute, University of Bern, Switzerland
| | | | | |
Collapse
|