1
|
Nayar S, Turner JD, Asam S, Fennell E, Pugh M, Colafrancesco S, Berardicurti O, Smith CG, Flint J, Teodosio A, Iannizzotto V, Gardner DH, van Roon J, Korsunsky I, Howdle D, Frei AP, Lassen KG, Bowman SJ, Ng WF, Croft AP, Filer A, Fisher BA, Buckley CD, Barone F. Molecular and spatial analysis of tertiary lymphoid structures in Sjogren's syndrome. Nat Commun 2025; 16:5. [PMID: 39747819 PMCID: PMC11697438 DOI: 10.1038/s41467-024-54686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
Tertiary lymphoid structures play important roles in autoimmune and non-autoimmune conditions. While many of the molecular mechanisms involved in tertiary lymphoid structure formation have been identified, the cellular sources and temporal and spatial relationship remain unknown. Here we use combine single-cell RNA-sequencing, spatial transcriptomics and proteomics of minor salivary glands of patients with Sjogren's disease and Sicca Syndrome, with ex-vivo functional studies to construct a cellular and spatial map of key components involved in the formation and function of tertiary lymphoid structures. We confirm the presence of a fibroblast cell state and identify a pericyte/mural cell state with potential immunological functions. The identification of cellular properties associated with these structures and the molecular and functional interactions identified by this analysis may provide key therapeutic cues for tertiary lymphoid structures associated conditions in autoimmunity and cancer.
Collapse
Affiliation(s)
- Saba Nayar
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Jason D Turner
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Saba Asam
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- UCL Genomics, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Eanna Fennell
- School of Medicine & HRI & Bernal Institute, University of Limerick, Limerick, Ireland
| | - Matthew Pugh
- Department of Immunology and Immunotherapy, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | | | - Onorina Berardicurti
- Rheumatology, Immunology and Clinical Medicine Unit, Department of Medicine, Università Campus Bio-Medico, Rome, and Immunorheumatology Unit, Fondazione Policlinico Universitario Campus Bio Medico, Rome, Italy
| | - Charlotte G Smith
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Joe Flint
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Ana Teodosio
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Valentina Iannizzotto
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - David H Gardner
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Joel van Roon
- Department of Rheumatology & Clinical Immunology/Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ilya Korsunsky
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
| | - Dawn Howdle
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Andreas P Frei
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Kara G Lassen
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Simon J Bowman
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Wan-Fai Ng
- HRB Clinical Research Facility, University College Cork, Cork, Ireland
| | - Adam P Croft
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Andrew Filer
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Benjamin A Fisher
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Christopher D Buckley
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Francesca Barone
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK.
- Candel Therapeutics, Needham, MA, USA.
| |
Collapse
|
2
|
Hudson E, Yang L, Chu EK, Zhuang H, Arja RD, Betancourt BY, Bhattacharyya I, Han S, Cha S, Chan EKL, Sebastian M, Stalvey C, Fritzler MJ, Reeves WH. Evidence that autoantibody production may be driven by acute Epstein-Barr virus infection in Sjögren's disease. Ann Rheum Dis 2024:ard-2024-226226. [PMID: 39472059 DOI: 10.1136/ard-2024-226226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/15/2024] [Indexed: 01/01/2025]
Abstract
OBJECTIVES Sjögren's disease (SD) is an autoimmune disease affecting the exocrine glands that is associated with autoantibodies against Ro60/SS-A, anti-Ro52/TRIM21, La/SS-B and others. We examined the role of acute Epstein-Barr virus (EBV) infection in the pathogenesis of these autoantibodies in a previously healthy patient (patient 1) with primary EBV infection who developed SD with anti-Ro/La and anti-Smith/U1 ribonucleoprotein (Sm/U1RNP) autoantibodies and had lymphoplasmacytic foci on labial salivary gland biopsy. METHODS Immune responses to Epstein-Barr nuclear antigen-1 (EBNA1) and the Ro52/Ro60/La and Sm/U1RNP autoantigens and peptides were examined by immunoassay in patient 1, healthy and disease controls. RESULTS Anti-Ro52 and anti-Ro60 autoantibodies were present 7 days after primary infection and underwent IgM to IgG switching, suggesting that EBV infection promoted their production. More than 7 months after primary infection, new and increasing levels of antibodies against EBNA1 and the U1RNP autoantigen appeared concomitantly. These antibodies bound homologous peptide sequences shared by EBNA1, SmB' and the U1-C (U1RNP) protein, consistent with induction by molecular mimicry. Although Ro60 and EBNA1 crossreact immunologically, we found that anti-Ro60/anti-Ro52 antibody production was stimulated by acute EBV infection long before the onset of anti-EBNA1. Unexpectedly, a subset of healthy control sera had anti-SmB' peptide antibodies that were not correlated with anti-EBNA1 peptide antibodies. In contrast, anti-SmB' and EBNA1 peptide antibody levels correlated in anti-Sm/U1RNP+ lupus sera. CONCLUSIONS Primary EBV infection can promote anti-Ro60/anti-Ro52 and anti-U1RNP responses, though by different mechanisms. Some healthy individuals produce anti-SmB' peptide autoantibodies independently of a response to EBNA1.
Collapse
Affiliation(s)
- Erin Hudson
- Division of Rheumatology and Clinical Immunology, University of Florida Health Science Center, Gainesville, Florida, USA
| | - Lijun Yang
- Pathology, University of Florida Health Science Center, Gainesville, Florida, USA
| | - Elizabeth K Chu
- Division of Rheumatology and Clinical Immunology, University of Florida Health Science Center, Gainesville, Florida, USA
| | - Haoyang Zhuang
- Division of Rheumatology and Clinical Immunology, University of Florida Health Science Center, Gainesville, Florida, USA
| | - Rawad Daniel Arja
- Division of Rheumatology and Clinical Immunology, University of Florida Health Science Center, Gainesville, Florida, USA
| | - Blas Y Betancourt
- Division of Rheumatology and Clinical Immunology, University of Florida Health Science Center, Gainesville, Florida, USA
| | | | - Shuhong Han
- Division of Rheumatology and Clinical Immunology, University of Florida Health Science Center, Gainesville, Florida, USA
| | - Seunghee Cha
- Oral Medicine, University of Florida, Gainesville, Florida, USA
| | - Edward K L Chan
- Oral Biology, Anatomy and Cell Biology, University of Florida Health Science Center, Gainesville, Florida, USA
| | - Mathew Sebastian
- Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | | | - Marvin J Fritzler
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Westley H Reeves
- Division of Rheumatology and Clinical Immunology, University of Florida Health Science Center, Gainesville, Florida, USA
| |
Collapse
|
3
|
Kakan SS, Abdelhamid S, Ju Y, MacKay JA, Edman MC, Raman I, Zhu C, Raj P, Hamm-Alvarez SF. Serum and Tear Autoantibodies from NOD and NOR Mice as Potential Diagnostic Indicators of Local and Systemic Inflammation in Sjögren's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.619993. [PMID: 39553935 PMCID: PMC11565729 DOI: 10.1101/2024.10.24.619993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Background Sjögren's Disease (SjD) is an autoimmune disease characterized by lymphocytic infiltration of salivary and lacrimal glands (LG). The LG produces the protein-rich aqueous component of tears, and SjD-associated autoimmune dacryoadenitis (AD) may thus alter tear autoantibody composition. Methods The presence of tertiary lymphoid structures (TLS) in LG from two murine models of SjD-associated AD, male NOD and male NOR mice, were evaluated using immunofluorescence. IgG and IgA reactivity in serum and tears from these models were probed in three studies against a panel of 80-120 autoantigens using autoantibody microarrays relative to serum and tears from healthy male BALB/c mice. Data were analyzed by R package Limma. Results Analysis of immunofluorescence in LG sections from both SjD models showed TLS. Only one autoantibody was significantly elevated in tears and serum in both SjD models across all studies. Three autoantibodies were significantly elevated in serum but not in tears in both SjD models across all studies. Conversely, six IgG and thirteen IgA autoantibodies (6 sharing the same autoantigen) were significantly elevated in tears but not serum in both SjD models. Conclusion NOD and NOR mice with SjD-associated AD have distinct autoantibody profiles in tears and serum. Tear IgA isotype autoantibodies showed a greater diversity than tear IgG autoantibodies. TLS observed in LG are a likely source of the tear autoantibodies.
Collapse
|
4
|
Dal Pozzolo R, Cafaro G, Perricone C, Calvacchi S, Bruno L, Colangelo A, Tromby F, Gerli R, Bartoloni E. Salivary gland biopsy as a prognostic tool in Sjögren's syndrome. Expert Rev Clin Immunol 2024; 20:1139-1147. [PMID: 38881375 DOI: 10.1080/1744666x.2024.2368189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION Primary Sjögren's syndrome (pSS) is an autoimmune disorder primarily affecting salivary and lacrimal glands, although about 40% of patients experience systemic complications. In this setting, the identification of patient phenotypes characterized by increased risk of extra-glandular involvement still represents an unmet need. AREAS COVERED The aim of this paper is to review the scientific evidence on the utility of salivary gland biopsies in pSS, emphasizing their role in defining prognosis. In latest years, research focused on disease-specific clinical, serological, or histological features able to categorize patient prognosis. Among histopathological features, focus score and ectopic germinal centers exhibit associations with glandular and extraglandular manifestations, including higher rates of lymphomagenesis. EXPERT OPINION Pathological characterization of salivary glands provides information that go beyond a mere diagnostic or classification utility, providing insights for a stratification of disease severity and for predicting systemic manifestations. Thus, a salivary gland biopsy should be offered to all patients and included in routine practice, even when not strictly required for diagnostic purposes. More advanced analysis techniques of the tissue, including immunohistochemistry and 'omics' should be further explored in longitudinal studies to boost the ability to further stratify and predict disease evolution.
Collapse
Affiliation(s)
- Roberto Dal Pozzolo
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giacomo Cafaro
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Carlo Perricone
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Santina Calvacchi
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenza Bruno
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Anna Colangelo
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesco Tromby
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Roberto Gerli
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Bartoloni
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Calvanese AL, Cecconi V, Stäheli S, Schnepf D, Nater M, Pereira P, Gschwend J, Heikenwälder M, Schneider C, Ludewig B, Silina K, van den Broek M. Sustained innate interferon is an essential inducer of tertiary lymphoid structures. Eur J Immunol 2024; 54:e2451207. [PMID: 38980268 DOI: 10.1002/eji.202451207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Tertiary lymphoid structures (TLS) resemble follicles of secondary lymphoid organs and develop in nonlymphoid tissues during inflammation and cancer. Which cell types and signals drive the development of TLS is largely unknown. To investigate early events of TLS development in the lungs, we repeatedly instilled p(I:C) plus ovalbumin (Ova) intranasally. This induced TLS ranging from lymphocytic aggregates to organized and functional structures containing germinal centers. We found that TLS development is independent of FAP+ fibroblasts, alveolar macrophages, or CCL19 but crucially depends on type I interferon (IFN-I). Mechanistically, IFN-I initiates two synergistic pathways that culminate in the development of TLS. On the one hand, IFN-I induces lymphotoxin (LT)α in lymphoid cells, which stimulate stromal cells to produce the B-cell-attracting chemokine CXCL13 through LTβR-signaling. On the other hand, IFN-I is sensed by stromal cells that produce the T-cell-attracting chemokines CXCL9, CXCL10 as well as CCL19 and CCL21 independently of LTβR. Consequently, B-cell aggregates develop within a week, whereas follicular dendritic cells and germinal centers appear after 3 weeks. Thus, sustained production of IFN-I together with an antigen is essential for the induction of functional TLS in the lungs.
Collapse
Affiliation(s)
| | - Virginia Cecconi
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Severin Stäheli
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, Freiburg im Breisgau, Germany
| | - Marc Nater
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Paulo Pereira
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Julia Gschwend
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
- M3 Research Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Karina Silina
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
6
|
Cruciani C, Gatto M, Iaccarino L, Doria A, Zen M. Monoclonal antibodies targeting interleukins for systemic lupus erythematosus: updates in early clinical drug development. Expert Opin Investig Drugs 2024; 33:801-814. [PMID: 38958085 DOI: 10.1080/13543784.2024.2376566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION The advent of biological therapies has already revolutionized treatment strategies and disease course of several rheumatologic conditions, and monoclonal antibodies (mAbs) targeting cytokines and interleukins represent a considerable portion of this family of drugs. In systemic lupus erythematosus (SLE) dysregulation of different cytokine and interleukin-related pathways have been linked to disease development and perpetration, offering palatable therapeutic targets addressable via such mAbs. AREAS COVERED In this review, we provide an overview of the different biological therapies under development targeting cytokines and interleukins, with a focus on mAbs, while providing the rationale behind their choice as therapeutic targets and analyzing the scientific evidence linking them to SLE pathogenesis. EXPERT OPINION An unprecedented number of clinical trials on biological drugs targeting different immunological pathways are ongoing in SLE. Their success might allow us to tackle present challenges of SLE management, including the overuse of glucocorticoids in daily clinical practice, as well as SLE heterogenicity in treatment response among different individuals, hopefully paving the way toward precision medicine.
Collapse
Affiliation(s)
- Claudio Cruciani
- Rheumatology Unit, Department of Medicine, University of Padua, Padova, Italy
| | - Mariele Gatto
- Rheumatology Unit, Department of Clinical and Biological Sciences, University of Turin and Turin Mauriziano Hospital, Turin, Italy
| | - Luca Iaccarino
- Rheumatology Unit, Department of Medicine, University of Padua, Padova, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine, University of Padua, Padova, Italy
| | - Margherita Zen
- Rheumatology Unit, Department of Medicine, University of Padua, Padova, Italy
| |
Collapse
|
7
|
Rojas-Rivera JE, Hasegawa T, Fernandez-Juarez G, Praga M, Saruta Y, Fernandez-Fernandez B, Ortiz A. Prognostic and therapeutic monitoring value of plasma and urinary cytokine profile in primary membranous nephropathy: the STARMEN trial cohort. Clin Kidney J 2024; 17:sfae239. [PMID: 39188767 PMCID: PMC11345640 DOI: 10.1093/ckj/sfae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Indexed: 08/28/2024] Open
Abstract
Background Primary membranous nephropathy (PMN) is usually caused by anti-phospholipase A2 receptor (PLA2R) autoantibodies. There are different therapeutic options according to baseline risk. Novel biomarkers are needed to optimize risk stratification and predict and monitor the response to therapy, as proteinuria responses may be delayed. We hypothesized that plasma or urinary cytokines may provide insights into the course and response to therapy in PMN. Methods Overall, 192 data points from 34 participants in the STARMEN trial (NCT01955187), randomized to tacrolimus-rituximab (TAC-RTX) or corticosteroids-cyclophosphamide (GC-CYC), were analysed for plasma and urine cytokines using a highly sensitive chemiluminescence immunoassay providing a high-throughput multiplex analysis. Results Baseline (pretreatment) urinary C-X-C motif chemokine ligand 13 (CXCL13) predicted the therapeutic response to TAC-RTX. Cytokine levels evolved over the course of therapy. The levels of nine plasma and six urinary cytokines correlated with analytical parameters of kidney damage and disease activity, such as proteinuria, estimated glomerular filtration rate and circulating anti-PLA2R levels. The correlation with these parameters was most consistent for plasma and urinary growth differentiation factor 15 (GDF15), plasma tumour necrosis factor α and urinary TNF-like weak inducer of apoptosis. Decreasing plasma GDF15 levels were associated with response to GC-CYC. Four clusters of cytokines were associated with different stages of response to therapy in the full cohort, with the less inflammatory cluster associated with remission. Conclusion PMN displayed characteristic plasma and urine cytokine patterns that evolved over time as patients responded to therapy. Baseline urinary CXCL13 concentration could be a prognostic marker of response to TAC-RTX.
Collapse
Affiliation(s)
- Jorge Enrique Rojas-Rivera
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040Madrid, Spain
| | | | | | - Manuel Praga
- Instituto de Investigación 12 de Octubre, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Beatriz Fernandez-Fernandez
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Li XX, Maitiyaer M, Tan Q, Huang WH, Liu Y, Liu ZP, Wen YQ, Zheng Y, Chen X, Chen RL, Tao Y, Yu SL. Emerging biologic frontiers for Sjogren's syndrome: Unveiling novel approaches with emphasis on extra glandular pathology. Front Pharmacol 2024; 15:1377055. [PMID: 38828450 PMCID: PMC11140030 DOI: 10.3389/fphar.2024.1377055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Primary Sjögren's Syndrome (pSS) is a complex autoimmune disorder characterized by exocrine gland dysfunction, leading to dry eyes and mouth. Despite growing interest in biologic therapies for pSS, FDA approval has proven challenging due to trial complications. This review addresses the absence of a molecular-target-based approach to biologic therapy development and highlights novel research on drug targets and clinical trials. A literature search identified potential pSS treatment targets and recent advances in molecular understanding. Overlooking extraglandular symptoms like fatigue and depression is a notable gap in trials. Emerging biologic agents targeting cytokines, signal pathways, and immune responses have proven efficacy. These novel therapies could complement existing methods for symptom alleviation. Improved grading systems accounting for extraglandular symptoms are needed. The future of pSS treatment may involve gene, stem-cell, and tissue-engineering therapies. This narrative review offers insights into advancing pSS management through innovative biologic interventions.
Collapse
Affiliation(s)
- Xiao Xiao Li
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Maierhaba Maitiyaer
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Qing Tan
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Wen Hui Huang
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yu Liu
- Department of Clinical Medicine, The First Clinical Medical School of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhi Ping Liu
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yue Qiang Wen
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yu Zheng
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xing Chen
- Department of Geriatrics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Rui Lin Chen
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yi Tao
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shui Lian Yu
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Liao J, Yu X, Huang Z, He Q, Yang J, Zhang Y, Chen J, Song W, Luo J, Tao Q. Chemokines and lymphocyte homing in Sjögren's syndrome. Front Immunol 2024; 15:1345381. [PMID: 38736890 PMCID: PMC11082322 DOI: 10.3389/fimmu.2024.1345381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Sjögren's syndrome (SS) is a chronic systemic autoimmune disease that typically presents with lymphocyte, dendritic cell, and macrophage infiltration of exocrine gland ducts and the formation of ectopic germinal centers. The interactions of lymphocyte homing receptors and addressins and chemokines and their receptors, such as α4β7/MAdCAM-1, LFA-1/ICAM-1, CXCL13/CXCR5, CCL25/CCR9, CX3CL1/CX3CR1, play important roles in the migration of inflammatory cells to the focal glands and the promotion of ectopic germinal center formation in SS. A variety of molecules have been shown to be involved in lymphocyte homing, including tumor necrosis factor-α, interferon (IFN)-α, IFN-β, and B cell activating factor. This process mainly involves the Janus kinase-signal transducer and activator of transcription signaling pathway, lymphotoxin-β receptor pathway, and nuclear factor-κB signaling pathway. These findings have led to the development of antibodies to cell adhesion molecules, antagonists of chemokines and their receptors, compounds interfering with chemokine receptor signaling, and gene therapies targeting chemokines and their receptors, providing new targets for the treatment of SS in humans. The aim of this study was to explore the relationship between lymphocyte homing and the pathogenesis of SS, and to provide a review of recent studies addressing lymphocyte homing in targeted therapy for SS.
Collapse
Affiliation(s)
- Jiahe Liao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Xinbo Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Ziwei Huang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Qian He
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Jianying Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Yan Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Jiaqi Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Weijiang Song
- Traditional Chinese Medicine Department, Peking University Third Hospital, Beijing, China
| | - Jing Luo
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China
| | - Qingwen Tao
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
10
|
Seki N, Tsujimoto H, Tanemura S, Kojima S, Miyoshi F, Kikuchi J, Saito S, Akiyama M, Sugahara K, Yoshimoto K, Kaneko Y, Chiba K, Takeuchi T. Cytotoxic Tph subset with low B-cell helper functions and its involvement in systemic lupus erythematosus. Commun Biol 2024; 7:277. [PMID: 38448723 PMCID: PMC10918188 DOI: 10.1038/s42003-024-05989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
T peripheral helper (Tph) cells are thought to contribute to extra-follicular B cell activation and play a pathogenic role in autoimmune diseases. However, the role of Tph subsets is not fully elucidated. Here, we investigate the immunological functions of Tph subsets and their involvement in systemic lupus erythematosus (SLE). We have defined four Tph subsets (Tph1: CXCR3+CCR6-, Tph2: CXCR3-CCR6-, Tph17: CXCR3-CCR6+, and Tph1-17: CXCR3+CCR6+) and performed RNA sequencing after cell sorting. Tph1 and Tph17 subsets express substantial levels of IL21, indicating B cell helper functions. However, Tph2 and Tph1-17 subsets express low IL21. Interestingly, we have found Tph2 subset express high levels of CX3CR1, GZMB, PRF1, GLNY, S1PR5, TBX21, EOMES, ZNF863, and RUNX3, indicating a feature of CD4+ cytotoxic T lymphocytes. In SLE patients, the frequency of Tph1 and Tph2 subsets are significantly increased and positively correlated with SLE disease activity indexes. Tph1 cells expansion has been observed in patients with cutaneous and musculoskeletal manifestations. On the other hand, Tph2 cell expansion has been found in patients with lupus nephritis in addition to the above manifestations. Our findings imply that Tph1 and Tph2 subsets exert distinct immunological functions and are contributed to the complexity of clinical manifestations in SLE.
Collapse
Affiliation(s)
- Noriyasu Seki
- Research Unit Immunology & Inflammation, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Kanagawa, Japan
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Hideto Tsujimoto
- Research Unit Immunology & Inflammation, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Kanagawa, Japan
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Shuhei Tanemura
- Research Unit Immunology & Inflammation, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Kanagawa, Japan
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Shinji Kojima
- Discovery Technology Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Kanagawa, Japan
| | - Fumihiko Miyoshi
- Discovery Technology Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Kanagawa, Japan
| | - Jun Kikuchi
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Shuntaro Saito
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Mitsuhiro Akiyama
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Kunio Sugahara
- Research Unit Immunology & Inflammation, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Kanagawa, Japan
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Keiko Yoshimoto
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Kenji Chiba
- Research Unit Immunology & Inflammation, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Kanagawa, Japan.
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan.
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
- Saitama Medical University, Iruma-gun, Saitama, Japan
| |
Collapse
|
11
|
M. S. Barron A, Fabre T, De S. Distinct fibroblast functions associated with fibrotic and immune-mediated inflammatory diseases and their implications for therapeutic development. F1000Res 2024; 13:54. [PMID: 38681509 PMCID: PMC11053351 DOI: 10.12688/f1000research.143472.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts are ubiquitous cells that can adopt many functional states. As tissue-resident sentinels, they respond to acute damage signals and shape the earliest events in fibrotic and immune-mediated inflammatory diseases. Upon sensing an insult, fibroblasts produce chemokines and growth factors to organize and support the response. Depending on the size and composition of the resulting infiltrate, these activated fibroblasts may also begin to contract or relax thus changing local stiffness within the tissue. These early events likely contribute to the divergent clinical manifestations of fibrotic and immune-mediated inflammatory diseases. Further, distinct changes to the cellular composition and signaling dialogue in these diseases drive progressive fibroblasts specialization. In fibrotic diseases, fibroblasts support the survival, activation and differentiation of myeloid cells, granulocytes and innate lymphocytes, and produce most of the pathogenic extracellular matrix proteins. Whereas, in immune-mediated inflammatory diseases, sequential accumulation of dendritic cells, T cells and B cells programs fibroblasts to support local, destructive adaptive immune responses. Fibroblast specialization has clear implications for the development of effective induction and maintenance therapies for patients with these clinically distinct diseases.
Collapse
Affiliation(s)
- Alexander M. S. Barron
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Thomas Fabre
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Saurav De
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
12
|
Xiang N, Xu H, Zhou Z, Wang J, Cai P, Wang L, Tan Z, Zhou Y, Zhang T, Zhou J, Liu K, Luo S, Fang M, Wang G, Chen Z, Guo C, Li X. Single-cell transcriptome profiling reveals immune and stromal cell heterogeneity in primary Sjögren's syndrome. iScience 2023; 26:107943. [PMID: 37810210 PMCID: PMC10558796 DOI: 10.1016/j.isci.2023.107943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/13/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Primary Sjögren's syndrome (pSS) is a complex autoimmune disease characterized by lymphocytic infiltration and exocrine dysfunction, particularly affecting the salivary gland (SG). We employed single-cell RNA sequencing to investigate cellular heterogeneity in 11 patients with pSS and 5 non-SS controls. Notably, patients with pSS exhibited downregulated SOX9 in myoepithelial cells, potentially associated with impaired epithelial regeneration. An expanded ACKR1+ endothelial subpopulation in patients with pSS suggested a role in facilitating lymphocyte transendothelial migration. Our analysis of immune cells revealed expanded IGHD+ naive B cells in peripheral blood from patients with pSS. Pseudotime trajectory analysis outlined a bifurcated differentiation pathway for peripheral B cells, enriching three subtypes (VPREB3+ B, BANK1+ B, CD83+ B cells) within SGs in patients with pSS. Fibroblasts emerged as pivotal components in a stromal-immune interaction network, potentially driving extracellular matrix disruption, epithelial regeneration impairment, and inflammation. Our study illuminates immune and stromal cell heterogeneity in patients with pSS, offering insights into therapeutic strategies.
Collapse
Affiliation(s)
- Nan Xiang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Hao Xu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Zhou Zhou
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Junyu Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Pengfei Cai
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Li Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhen Tan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yingbo Zhou
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tianping Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jiayuan Zhou
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ke Liu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Songwen Luo
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Minghao Fang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Guosheng Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhuo Chen
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chuang Guo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Xiaomei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
13
|
Triantafyllias K, Bach M, Otto M, Schwarting A. Diagnostic Value of Labial Minor Salivary Gland Biopsy: Histological Findings of a Large Sicca Cohort and Clinical Associations. Diagnostics (Basel) 2023; 13:3117. [PMID: 37835860 PMCID: PMC10573002 DOI: 10.3390/diagnostics13193117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
(1) Background: The aim of this study was to analyze labial minor salivary gland biopsy (MSGB) findings of a large sicca cohort and to examine their associations with Sjogren's syndrome (SS)-associated laboratory markers, phenotypic characteristics and systemic manifestations. Moreover, we sought to explore the ability of MSGB to identify SS patients among subjects with pre-diagnosed fibromyalgia (FM). (2) Methods: Included were all patients of three rheumatology departments having undergone a diagnostic MSGB within 9 years. Next to the examination of histological and immunohistochemical findings, we focused on activity and chronicity parameters of the underlying disease, autoantibodies, presence of systemic and hematologic involvement, as well as chronic pain and SS comorbidities. (3) Results: Among the 678 included patients, 306 (45.1%) had a positive focus score (FS). The remaining patients (n = 372) served as control subjects. There were significant correlations between FS and hypergammaglobulinemia (p < 0.001), ANA and rheumatoid factor positivity (both; p < 0.001), a weak significant correlation with erythrocyte sedimentation rate (rho = 0.235; p < 0.001) and a negative correlation with nicotine use (p = 0.002). Within the primary SS subgroup, FS was associated significantly with glandular enlargement (p = 0.007) and systemic hematologic manifestations (p = 0.002). Next to FS, CD20 cell staining showed an excellent diagnostic performance in the diagnosis of SS by an area under the curve of 0.822 (95%CI 0.780-0.864; p < 0.001). Interestingly, 42.1% of all patients with fibromyalgia (FM) having received an MSGB could be diagnosed with SS. (4) Conclusion: By examining one of the largest cohorts in the literature, we could show that MSGB histological and immunohistochemical findings not only play a key role in the classification and diagnosis of SS but could also provide important information regarding SS phenotype and systemic manifestations. Furthermore, MSGB may help differentiate patients with FM from patients with subclinical SS who suffer primarily from chronic pain.
Collapse
Affiliation(s)
- Konstantinos Triantafyllias
- Department of Rheumatology, Acute Rheumatology Center, 55543 Bad Kreuznach, Germany
- Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Mirjam Bach
- Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Mike Otto
- Institute for Pathology, 54292 Trier, Germany
| | - Andreas Schwarting
- Department of Rheumatology, Acute Rheumatology Center, 55543 Bad Kreuznach, Germany
- Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany;
- Department of Rheumatology, Karl-Aschoff Clinic, 55543 Bad Kreuznach, Germany
| |
Collapse
|
14
|
Liu W, Xiong W, Liu W, Hirakawa J, Kawashima H. A novel monoclonal antibody against 6-sulfo sialyl Lewis x glycans attenuates murine allergic rhinitis by suppressing Th2 immune responses. Sci Rep 2023; 13:15740. [PMID: 37735247 PMCID: PMC10514285 DOI: 10.1038/s41598-023-43017-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/17/2023] [Indexed: 09/23/2023] Open
Abstract
Lymphocyte homing is mediated by the interaction between L-selectin on lymphocytes and its glycoprotein ligands modified with 6-sulfo sialyl Lewis x (6-sulfo sLex) glycans on high endothelial venules (HEVs) in peripheral lymph nodes (PLNs). However, the lack of specific antibodies reactive with both human and mouse 6-sulfo sLex has limited our understanding of its function in vivo. Here, we generated a novel monoclonal antibody, termed SF1, that specifically reacts with 6-sulfo sLex expressed on HEVs in both species in a manner dependent on sulfate, fucose, and sialic acid modifications. Glycan array and biolayer interferometry analyses indicated that SF1 specifically bound to 6-sulfo sLex with a dissociation constant of 6.09 × 10-9 M. SF1 specifically bound to four glycoproteins from PLNs corresponding to the molecular sizes of L-selectin ligand glycoproteins. Consistently, SF1 inhibited L-selectin-dependent lymphocyte rolling on 6-sulfo sLex-expressing cells ex vivo and lymphocyte homing to PLNs and nasal-associated lymphoid tissues in vivo. Furthermore, SF1 significantly attenuated ovalbumin-induced allergic rhinitis in mice in association with significant suppression of Th2 immune responses. Collectively, these results suggest that SF1 can be useful for the functional analysis of 6-sulfo sLex and may potentially serve as a novel therapeutic agent against immune-related diseases.
Collapse
Affiliation(s)
- Wei Liu
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan
| | - Wei Xiong
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan
| | - Wenxin Liu
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan
| | - Jotaro Hirakawa
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan
| | - Hiroto Kawashima
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan.
| |
Collapse
|
15
|
Meghil MM, Cutler CW. Influence of Vitamin D on Periodontal Inflammation: A Review. Pathogens 2023; 12:1180. [PMID: 37764988 PMCID: PMC10537363 DOI: 10.3390/pathogens12091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The active form of vitamin D is the hormonally active 1,25(OH)2D3 (Vit D) vitamin, which plays an important role in bone biology and host immunity. The vitamin D receptor (VDR) is a nuclear ligand-dependent transcription factor expressed by many cells. Ligation of VDR by VitD regulates a wide plethora of genes and physiologic functions through the formation of the complex Vit D-VDR signaling cascade. The influence of Vit D-VDR signaling in host immune response to microbial infection has been of interest to many researchers. This is particularly important in oral health and diseases, as oral mucosa is exposed to a complex microbiota, with certain species capable of causing disruption to immune homeostasis. In this review, we focus on the immune modulatory roles of Vit D in the bone degenerative oral disease, periodontitis.
Collapse
Affiliation(s)
- Mohamed M. Meghil
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Christopher W. Cutler
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
16
|
Hinrichs AC, Kruize AA, Lafeber FPJG, Leavis HL, van Roon JAG. CCR9/CXCR5 Co-Expressing CD4 T Cells Are Increased in Primary Sjögren's Syndrome and Are Enriched in PD-1/ICOS-Expressing Effector T Cells. Int J Mol Sci 2023; 24:11952. [PMID: 37569326 PMCID: PMC10418442 DOI: 10.3390/ijms241511952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease characterised by B cell hyperactivity. CXCR5+ follicular helper T cells (Tfh), CXCR5-PD-1hi peripheral helper T cells (Tph) and CCR9+ Tfh-like cells have been implicated in driving B cell hyperactivity in pSS; however, their potential overlap has not been evaluated. Our aim was to study the overlap between the two CXCR5- cell subsets and to study their PD-1/ICOS expression compared to "true" CXCR5/PD-1/ICOS-expressing Tfh cells. CXCR5- Tph and CCR9+ Tfh-like cell populations from peripheral blood mononuclear cells of pSS patients and healthy controls (HC) were compared using flow cytometry. PD-1/ICOS expression from these cell subsets was compared to each other and to CXCR5+ Tfh cells, taking into account their differentiation status. CXCR5- Tph cells and CCR9+ Tfh-like cells, both in pSS patients and HC, showed limited overlap. PD-1/ICOS expression was higher in memory cells expressing CXCR5 or CCR9. However, the highest expression was found in CXCR5/CCR9 co-expressing T cells, which are enriched in the circulation of pSS patients. CXCR5- Tph and CCR9+ Tfh-like cells are two distinct cell populations that both are enriched in pSS patients and can drive B cell hyperactivity in pSS. The known upregulated expression of CCL25 and CXCL13, ligands of CCR9 and CXCR5, at pSS inflammatory sites suggests concerted action to facilitate the migration of CXCR5+CCR9+ T cells, which are characterised by the highest frequencies of PD-1/ICOS-positive cells. Hence, these co-expressing effector T cells may significantly contribute to the ongoing immune responses in pSS.
Collapse
Affiliation(s)
- Anneline C. Hinrichs
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, The Netherlands
| | - Aike A. Kruize
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, The Netherlands
| | - Floris P. J. G. Lafeber
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, The Netherlands
| | - Helen L. Leavis
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, The Netherlands
| | - Joel A. G. van Roon
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, The Netherlands
| |
Collapse
|
17
|
Elsayed R, Elashiry M, Tran C, Yang T, Carroll A, Liu Y, Hamrick M, Cutler CW. Engineered Human Dendritic Cell Exosomes as Effective Delivery System for Immune Modulation. Int J Mol Sci 2023; 24:11306. [PMID: 37511064 PMCID: PMC10379002 DOI: 10.3390/ijms241411306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Exosomes (exos) contain molecular cargo of therapeutic and diagnostic value for cancers and other inflammatory diseases, but their therapeutic potential for periodontitis (PD) remains unclear. Dendritic cells (DCs) are the directors of immune response and have been extensively used in immune therapy. We previously reported in a mouse model of PD that custom murine DC-derived exo subtypes could reprogram the immune response toward a bone-sparing or bone-loss phenotype, depending on immune profile. Further advancement of this technology requires the testing of human DC-based exos with human target cells. Our main objective in this study is to test the hypothesis that human monocyte-derived dendritic cell (MoDC)-derived exos constitute a well-tolerated and effective immune therapeutic approach to modulate human target DC and T cell immune responses in vitro. MoDC subtypes were generated with TGFb/IL-10 (regulatory (reg) MoDCs, CD86lowHLA-DRlowPDL1high), E. coli LPS (stimulatory (stim) MoDCs, CD86highHLA-DRhighPDL1low) and buffer (immature (i) MoDCs, CD86lowHLA-DRmedPDL1low). Exosomes were isolated from different MoDC subtypes and characterized. Once released from the secreting cell into the surrounding environment, exosomes protect their prepackaged molecular cargo and deliver it to bystander cells. This modulates the functions of these cells, depending on the cargo content. RegMoDCexos were internalized by recipient MoDCs and induced upregulation of PDL1 and downregulation of costimulatory molecules CD86, HLADR, and CD80, while stimMoDCexos had the opposite influence. RegMoDCexos induced CD25+Foxp3+ Tregs, which expressed CTLA4 and PD1 but not IL-17A. In contrast, T cells treated with stimMoDCexos induced IL-17A+ Th17 T cells, which were negative for immunoregulatory CTLA4 and PD1. T cells and DCs treated with iMoDCexos were immune 'neutral', equivalent to controls. In conclusion, human DC exos present an effective delivery system to modulate human DC and T cell immune responses in vitro. Thus, MoDC exos may present a viable immunotherapeutic agent for modulating immune response in the gingival tissue to inhibit bone loss in periodontal disease.
Collapse
Affiliation(s)
- Ranya Elsayed
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mahmoud Elashiry
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Cathy Tran
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Tigerwin Yang
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Angelica Carroll
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mark Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Christopher W. Cutler
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
18
|
Sun R, Wang Y, Abolhassani H. Cellular mechanisms and clinical applications for phenocopies of inborn errors of immunity: infectious susceptibility due to cytokine autoantibodies. Expert Rev Clin Immunol 2023:1-14. [PMID: 37114623 DOI: 10.1080/1744666x.2023.2208863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
INTRODUCTION With a growing knowledge of Inborn error immunity (IEI), immunological profiling and genetic predisposition to IEI phenocopies have been developed in recent years. AREAS COVERED Here we summarized the correlation between various pathogen invasions, autoantibody profiles, and corresponding clinical features in the context of patients with IEI phenocopies. It has been extensively evident that patients with anti-cytokine autoantibodies underly impaired anti-pathogen immune responses and lead to broad unregulated inflammation and tissue damage. Several hypotheses of anti-cytokine autoantibodies production were summarized here, including a defective negative selection of autoreactive T cells, abnormal germinal center formation, molecular mimicry, HLA class II allele region, lack of auto-reactive lymphocyte apoptosis, and other possible hypotheses. EXPERT OPINION Phenocopies of IEI associated with anti-cytokine autoantibodies are increasingly recognized as one of the causes of acquired immunodeficiency and susceptibility to certain pathogen infections, especially facing the current challenge of the COVID-19 pandemic. By investigating clinical, genetic, and pathogenesis autoantibodies profiles associated with various pathogens' susceptibilities, we could better understand the IEI phenocopies with anti-cytokine autoantibodies, especially for those that underlie life-threatening SARS-CoV-2.
Collapse
Affiliation(s)
- Rui Sun
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Yating Wang
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
19
|
Badarinza M, Serban O, Maghear L, Pelea MA, Rosca RI, Fodor D, Stancu B. Diagnostic role of CXCL13 biomarker in primary Sjogren's syndrome patients with parotid non-Hodgkin's lymphoma complication. Med Clin (Barc) 2023:S0025-7753(23)00094-5. [PMID: 37005121 DOI: 10.1016/j.medcli.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 04/03/2023]
Abstract
INTRODUCTION Serum biomarkers are important predictive factors for development of parotid non-Hodgkin's lymphoma (NHL) complication in primary Sjogren's syndrome (pSS) patients. The aim was to evaluate the diagnostic accuracy of serum CXCL13 chemokine in pSS patients with parotid NHL complication. MATERIAL AND METHODS Serum CXCL13 chemokine was assessed in 33 patients with pSS [7 with parotid NHL complication (pSS+NHL subgroup) and 26 without NHL (pSS-NHL subgroup)] and 30 healthy subjects. RESULTS The serum CXCL13 levels in pSS+NHL subgroup [175.2 (107.9-220.4) pg/ml] were significantly higher comparing to the healthy subjects group (p=0.018) and the pSS-NHL subgroup (p=0.048). A cut-off value of 123.45pg/ml (Se=71.4%, Sp=80.8%, AUROC=0.747) was established for parotid lymphoma diagnosis. CONCLUSION The serum CXCL13 biomarker could be considered a valuable tool for the diagnosis of parotid NHL complication in pSS patients.
Collapse
|
20
|
Galletti JG, Scholand KK, Trujillo-Vargas CM, Yu Z, Mauduit O, Delcroix V, Makarenkova HP, de Paiva CS. Ectopic lymphoid structures in the aged lacrimal glands. Clin Immunol 2023; 248:109251. [PMID: 36740002 PMCID: PMC10323865 DOI: 10.1016/j.clim.2023.109251] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Aging is a complex biological process in which many organs are pathologically affected. We previously reported that aged C57BL/6J had increased lacrimal gland (LG) lymphoid infiltrates that suggest ectopic lymphoid structures. However, these ectopic lymphoid structures have not been fully investigated. Using C57BL/6J mice of different ages, we analyzed the transcriptome of aged murine LGs and characterized the B and T cell populations. Age-related changes in the LG include increased differentially expressed genes associated with B and T cell activation, germinal center formation, and infiltration by marginal zone-like B cells. We also identified an age-related increase in B1+ cells and CD19+B220+ cells. B220+CD19+ cells were GL7+ (germinal center-like) and marginal zone-like and progressively increased with age. There was an upregulation of transcripts related to T follicular helper cells, and the number of these cells also increased as mice aged. Compared to a mouse model of Sjögren syndrome, aged LGs have similar transcriptome responses but also unique ones. And lastly, the ectopic lymphoid structures in aged LGs are not exclusive to a specific mouse background as aged diverse outbred mice also have immune infiltration. Altogether, this study identifies a profound change in the immune landscape of aged LGs where B cells become predominant. Further studies are necessary to investigate the specific function of these B cells during the aged LGs.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Institute of Experimental Medicine (CONICET), National Academy of Medicine of Buenos Aires, Buenos Aires, Argentina
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX, USA.
| | - Claudia M Trujillo-Vargas
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Olivier Mauduit
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Vanessa Delcroix
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
21
|
Mariette X, Barone F, Baldini C, Bootsma H, Clark KL, De Vita S, Gardner DH, Henderson RB, Herdman M, Lerang K, Mistry P, Punwaney R, Seror R, Stone J, van Daele PL, van Maurik A, Wisniacki N, Roth DA, Tak PP. A randomized, phase II study of sequential belimumab and rituximab in primary Sjögren's syndrome. JCI Insight 2022; 7:e163030. [PMID: 36477362 PMCID: PMC9746921 DOI: 10.1172/jci.insight.163030] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUNDPrimary Sjögren's syndrome (pSS) is characterized by B cell hyperactivity and elevated B-lymphocyte stimulator (BLyS). Anti-BLyS treatment (e.g., belimumab) increases peripheral memory B cells; decreases naive, activated, and plasma B cell subsets; and increases stringency on B cell selection during reconstitution. Anti-CD20 therapeutics (e.g., rituximab) bind and deplete CD20-expressing B cells in circulation but are less effective in depleting tissue-resident CD20+ B cells. Combined, these 2 mechanisms may achieve synergistic effects.METHODSThis 68-week, phase II, double-blind study (GSK study 201842) randomized 86 adult patients with active pSS to 1 of 4 arms: placebo, s.c. belimumab, i.v. rituximab, or sequential belimumab + rituximab.RESULTSOverall, 60 patients completed treatment and follow-up until week 68. The incidence of adverse events (AEs) and drug-related AEs was similar across groups. Infections/infestations were the most common AEs, and no serious infections of special interest occurred. Near-complete depletion of minor salivary gland CD20+ B cells and a greater and more sustained depletion of peripheral CD19+ B cells were observed with belimumab + rituximab versus monotherapies. With belimumab + rituximab, reconstitution of peripheral B cells occurred, but it was delayed compared with rituximab. At week 68, mean (± standard error) total EULAR Sjögren's syndrome disease activity index scores decreased from 11.0 (1.17) at baseline to 5.0 (1.27) for belimumab + rituximab and 10.4 (1.36) to 8.6 (1.57) for placebo.CONCLUSIONThe safety profile of belimumab + rituximab in pSS was consistent with the monotherapies. Belimumab + rituximab induced enhanced salivary gland B cell depletion relative to the monotherapies, potentially leading to improved clinical outcomes.TRIAL REGISTRATIONClinicalTrials.gov NCT02631538.FUNDINGFunding was provided by GSK.
Collapse
Affiliation(s)
- Xavier Mariette
- Department of Rheumatology, Université Paris-Saclay, Hôpital Bicêtre, Assistance Publique — Hôpitaux de Paris, INSERM UMR1184, Le Kremlin Bicêtre, Paris, France
| | - Francesca Barone
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chiara Baldini
- Centro Farmacologia Clinica AOUP, Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Salvatore De Vita
- Rheumatology Clinic, Department of Medical Area, Azienda Ospedaliera Universitaria di Udine, Udine, Italy
| | - David H. Gardner
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Robert B. Henderson
- Clinical Pharmacology and Experimental Medicine, GSK, Stevenage, Hertfordshire, United Kingdom
| | - Michael Herdman
- Clinical Pharmacology and Experimental Medicine, GSK, Stevenage, Hertfordshire, United Kingdom
| | - Karoline Lerang
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway
| | - Prafull Mistry
- R&D Biostatistics, GSK, Stevenage, Hertfordshire, United Kingdom
| | - Raj Punwaney
- Pharmaceutical Research and Development, GSK, Collegeville, Pennsylvania, USA
| | - Raphaele Seror
- Department of Rheumatology, Université Paris-Saclay, Hôpital Bicêtre, Assistance Publique — Hôpitaux de Paris, INSERM UMR1184, Le Kremlin Bicêtre, Paris, France
| | - John Stone
- R&D, GSK, Stevenage, Hertfordshire, United Kingdom
| | - Paul L.A. van Daele
- Department of Internal Medicine and Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - André van Maurik
- Clinical Pharmacology and Experimental Medicine, GSK, Stevenage, Hertfordshire, United Kingdom
| | | | | | | |
Collapse
|
22
|
Hinrichs AC, Kruize AA, Leavis HL, van Roon JAG. In patients with primary Sjögren's syndrome innate-like MAIT cells display upregulated IL-7R, IFN-γ, and IL-21 expression and have increased proportions of CCR9 and CXCR5-expressing cells. Front Immunol 2022; 13:1017157. [PMID: 36505431 PMCID: PMC9729251 DOI: 10.3389/fimmu.2022.1017157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Mucosal-associated invariant T (MAIT) cells might play a role in B cell hyperactivity and local inflammation in primary Sjögren's syndrome (pSS), just like previously studied mucosa-associated CCR9+ and CXCR5+ T helper cells. Here, we investigated expression of CCR9, CXCR5, IL-18R and IL-7R on MAIT cells in pSS, and assessed the capacity of DMARDs to inhibit the activity of MAIT cells. Methods Circulating CD161+ and IL-18Rα+ TCRVα7.2+ MAIT cells from pSS patients and healthy controls (HC) were assessed using flow cytometry, and expression of CCR9, CXCR5, and IL-7R on MAIT cells was studied. Production of IFN-γ and IL-21 by MAIT cells was measured upon IL-7 stimulation in the presence of leflunomide (LEF) and hydroxychloroquine (HCQ). Results The numbers of CD161+ and IL-18Rα+ MAIT cells were decreased in pSS patients compared to HC. Relative increased percentages of CD4 MAIT cells in pSS patients caused significantly higher CD4/CD8 ratios in MAIT cells. The numbers of CCR9 and CXCR5-expressing MAIT cells were significantly higher in pSS patients. IL-7R expression was higher in CD8 MAIT cells as compared to all CD8 T cells, and changes in IL-7R expression correlated to several clinical parameters. The elevated production of IL-21 by MAIT cells was significantly inhibited by LEF/HCQ treatment. Conclusion Circulating CD161+ and IL-18Rα+ MAIT cell numbers are decreased in pSS patients. Given their enriched CCR9/CXCR5 expression this may facilitate migration to inflamed salivary glands known to overexpress CCL25/CXCL13. Given the pivotal role of IL-7 and IL-21 in inflammation in pSS this indicates a potential role for MAIT cells in driving pSS immunopathology.
Collapse
Affiliation(s)
- Anneline C. Hinrichs
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aike A. Kruize
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Helen L. Leavis
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joel A. G. van Roon
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
23
|
Ware MB, Wolfarth AA, Goon JB, Ezeanya UI, Dhar S, Ferrando-Martinez S, Lee BH. The Role of Interleukin-7 in the Formation of Tertiary Lymphoid Structures and Their Prognostic Value in Gastrointestinal Cancers. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2022; 5:105-117. [PMID: 36483588 PMCID: PMC9714415 DOI: 10.36401/jipo-22-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 06/17/2023]
Abstract
Immunotherapies for the treatment of solid tumors continue to develop in preclinical and clinical research settings. Unfortunately, for many patients the tumor fails to respond or becomes resistant to therapies such as checkpoint inhibitors (CPIs) targeting programmed cell death protein-1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T lymphocyte antigen-4 (CTLA-4). In many cancers, failed response to CPIs can be attributed to poor T cell infiltration, dominant immunosuppression, and exhausted immune responses. In gastrointestinal (GI) cancers T cell infiltration can be dismal, with several reports finding that CD8+ T cells compose less than 2% of all cells within the tumor. Organized aggregates of lymphocytes, antigen-presenting cells, and vessels, together termed tertiary lymphoid structures (TLSs), are hypothesized to be a major source of T cells within solid tumors. The intratumoral formation of these organized immune centers appears to rely on intricate cytokine and chemokine signaling to heterogeneous cell populations such as B and T cells, innate lymphoid cells, fibroblasts, and dendritic cells. In GI cancers, the presence and density of TLSs provide prognostic value for predicting outcome and survival. Further, TLS presence and density associates with favorable responses to CPIs in many cancers. This review highlights the prognostic value of TLSs in GI cancers, the role of the homeostatic cytokine interleukin-7 (IL-7) in TLS formation, and the induction of TLSs in solid tumors by novel therapeutics.
Collapse
|
24
|
Predisposing Factors, Clinical Picture, and Outcome of B-Cell Non-Hodgkin’s Lymphoma in Sjögren’s Syndrome. IMMUNO 2022. [DOI: 10.3390/immuno2040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Among other systemic autoimmune diseases, primary Sjögren syndrome (pSS) bears the highest risk for lymphoma development. In pSS, chronic antigenic stimulation gradually drives the evolution from polyclonal B-cell expansion to oligoclonal/monoclonal B-cell predominance to malignant B-cell transformation. Thus, most pSS-related lymphomas are B-cell non-Hodgkin lymphomas (NHLs), with mucosa-associated lymphoid tissue (MALT) lymphomas predominating, followed by diffuse large B-cell lymphomas (DLBCLs) and nodal marginal zone lymphomas (NMZLs). Since lymphomagenesis is one of the most serious complications of pSS, affecting patients’ survival, a plethora of possible predisposing factors has been studied over the years, ranging from classical clinical, serological, hematological, and histological, to the more recently proposed genetic and molecular, allowing clinicians to timely detect and to closely follow-up the subgroup of pSS patients with increased risk for lymphoma development. Overall predisposing factors for pSS-related lymphomagenesis reflect the status of B-cell hyperactivity. Different clinical features have been described for each of the distinct pSS-related B-cell NHL subtypes. While generally pSS patients developing B-cell NHLs display a fairly good prognosis, outcomes in terms of treatment response and survival rates seem to differ depending on the lymphoma subtype, with MALT lymphomas being characterized by a rather indolent course and DLBCLs gravely affecting patients’ survival.
Collapse
|
25
|
Stergiou IE, Bakasis AD, Giannouli S, Voulgarelis M. Biomarkers of lymphoma in Sjögren's syndrome: what's the latest? Expert Rev Clin Immunol 2022; 18:1155-1171. [PMID: 36097855 DOI: 10.1080/1744666x.2022.2123794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease standing in the crossroads of autoimmunity and lymphomagenesis, characterized by chronic B-cell hyperactivity and ectopic lymphoid tissue neoformation, potentially driving lymphoid malignant transformation. Lymphoma development is considered the most serious complication of pSS. AREAS COVERED: “ Old-classical" biomarkers (clinical, serological, hematological, and histological) validated in the past are analyzed under the perspective of recently published research. Biomarkers that have emerged during the last decade are subdivided to "old-new" and "newly proposed-novel" ones, including biomarkers pathophysiologically related to B-cell differentiation, lymphoid organization, and immune responses, identified in serum and tissue, both at genetic and protein level. Upcoming new imaging biomarkers, promising for further patient stratification, are also analyzed. EXPERT OPINION Salivary gland enlargement and cryoglobulinemia still remain the best validated "classical-old" biomarkers for lymphoma development. Though new biomarkers still need to be validated, some can be used for the identification of high-risk patients long before lymphoma diagnosis, some might be more relevant in distinct age subgroups, while others have an added value in the assessment of lymphoma remission or relapse. Future development of composite indices integrating old and recently proposed biomarkers could contribute to a more precise lymphoma prediction model.
Collapse
Affiliation(s)
- Ioanna E Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios-Dimitrios Bakasis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula Giannouli
- Hematology Unit, Second Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Voulgarelis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
26
|
Kelly AL, Nelson RJ, Sara R, Alberto S. Sjögren Syndrome: New Insights in the Pathogenesis and Role of Nuclear Medicine. J Clin Med 2022; 11:5227. [PMID: 36079157 PMCID: PMC9456759 DOI: 10.3390/jcm11175227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/18/2022] Open
Abstract
In the last years, new insights into the molecular basis of rheumatic conditions have been described, which have generated particular interest in understanding the pathophysiology of these diseases, in which lies the explanation of the diversity of clinical presentation and the difficulty in diagnostic and therapeutic approaches. In this review, we focus on the new pathophysiological findings for Sjögren syndrome and on the derived new SPECT and PET radiopharmaceuticals to detect inflammation of immunological origin, focusing on their role in diagnosis, prognosis, and the evaluation of therapeutic efficacy.
Collapse
Affiliation(s)
- Anzola Luz Kelly
- Nuclear Medicine Unit, Clinica Universitaria Colombia, Bogotá 111321, Colombia
- Nuclear Medicine Unit, Clinica Reina Sofia, Bogotá 110121, Colombia
- Fundacion Universitaria Sanitas, Bogotá 110111, Colombia
| | - Rivera Jose Nelson
- Internal Medicine Department Clinica Reina Sofia, Bogotá 110121, Colombia
| | - Ramírez Sara
- Fundacion Universitaria Sanitas, Bogotá 110111, Colombia
| | - Signore Alberto
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University, 00185 Rome, Italy
| |
Collapse
|
27
|
Role of tertiary lymphoid organs in the regulation of immune responses in the periphery. Cell Mol Life Sci 2022; 79:359. [PMID: 35689679 PMCID: PMC9188279 DOI: 10.1007/s00018-022-04388-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022]
Abstract
Tertiary lymphoid organs (TLOs) are collections of immune cells resembling secondary lymphoid organs (SLOs) that form in peripheral, non-lymphoid tissues in response to local chronic inflammation. While their formation mimics embryologic lymphoid organogenesis, TLOs form after birth at ectopic sites in response to local inflammation resulting in their ability to mount diverse immune responses. The structure of TLOs can vary from clusters of B and T lymphocytes to highly organized structures with B and T lymphocyte compartments, germinal centers, and lymphatic vessels (LVs) and high endothelial venules (HEVs), allowing them to generate robust immune responses at sites of tissue injury. Although our understanding of the formation and function of these structures has improved greatly over the last 30 years, their role as mediators of protective or pathologic immune responses in certain chronic inflammatory diseases remains enigmatic and may differ based on the local tissue microenvironment in which they form. In this review, we highlight the role of TLOs in the regulation of immune responses in chronic infection, chronic inflammatory and autoimmune diseases, cancer, and solid organ transplantation.
Collapse
|
28
|
Zandonella Callegher S, Giovannini I, Zenz S, Manfrè V, Stradner MH, Hocevar A, Gutierrez M, Quartuccio L, De Vita S, Zabotti A. Sjögren syndrome: looking forward to the future. Ther Adv Musculoskelet Dis 2022; 14:1759720X221100295. [PMID: 35634352 PMCID: PMC9131387 DOI: 10.1177/1759720x221100295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/26/2022] [Indexed: 12/25/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a heterogeneous disease characterised by a wide spectrum of manifestations that vary according to the different stages of the disease and among different subsets of patients. The aim of this qualitative literature review is to summarise the recent advances that have been reported in pSS, ranging from the early phases to the established disease and its complications. We analysed the diagnostic, prognostic, and management aspects of pSS, with a look into future clinical and research developments. The early phases of pSS, usually antedating diagnosis, allow us to investigate the pathophysiology and risk factors of the overt disease, thus allowing better and timely patient stratification. Salivary gland ultrasound (SGUS) is emerging as a valid complementary, or even alternative, tool for histopathology in the diagnosis of pSS, due to a standardised scoring system with good agreement and performance. Other promising innovations include the application of artificial intelligence to SGUS, ultrasound-guided core needle biopsy, and a wide array of novel diagnostic and prognostic biomarkers. Stratifying pSS patients through the integration of clinical, laboratory, imaging, and histopathological data; differentiating between activity-related and damage-related manifestations; and identifying patients at higher risk of lymphoma development are essential steps for an optimal management and individualised treatment approach. As new treatment options are emerging for both glandular and systemic manifestations, there is a need for a more reliable treatment response evaluation. pSS is a complex and heterogeneous disease, and many distinct aspects should be considered in the different stages of the disease and subsets of patients. In recent years, efforts have been made to improve our understanding of the disease, and certainly in the coming years, some of these novelties will become part of our routine clinical practice, thus improving the management of pSS patients.
Collapse
Affiliation(s)
| | - Ivan Giovannini
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Sabine Zenz
- Division of Rheumatology and Immunology, Medical University Graz, Graz, Austria
| | - Valeria Manfrè
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Martin H. Stradner
- Division of Rheumatology and Immunology, Medical University Graz, Graz, Austria
| | - Alojzija Hocevar
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Marwin Gutierrez
- Division of Musculoskeletal and Rheumatic Diseases, Instituto Nacional de Rehabilitacion, Mexico City, Mexico
- Rheumatology Center of Excellence, Mexico City, Mexico
| | - Luca Quartuccio
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Salvatore De Vita
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Alen Zabotti
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
29
|
Nayar S, Pontarini E, Campos J, Berardicurti O, Smith CG, Asam S, Gardner DH, Colafrancesco S, Lucchesi D, Coleby R, Chung MM, Iannizzotto V, Hunter K, Bowman SJ, Carlesso G, Herbst R, McGettrick HM, Browning J, Buckley CD, Fisher BA, Bombardieri M, Barone F. Immunofibroblasts regulate LTα3 expression in tertiary lymphoid structures in a pathway dependent on ICOS/ICOSL interaction. Commun Biol 2022; 5:413. [PMID: 35508704 PMCID: PMC9068764 DOI: 10.1038/s42003-022-03344-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 04/10/2022] [Indexed: 01/15/2023] Open
Abstract
Immunofibroblasts have been described within tertiary lymphoid structures (TLS) that regulate lymphocyte aggregation at sites of chronic inflammation. Here we report, for the first time, an immunoregulatory property of this population, dependent on inducible T-cell co-stimulator ligand and its ligand (ICOS/ICOS-L). During inflammation, immunofibroblasts, alongside other antigen presenting cells, like dendritic cells (DCs), upregulate ICOSL, binding incoming ICOS + T cells and inducing LTα3 production that, in turn, drives the chemokine production required for TLS assembly via TNFRI/II engagement. Pharmacological or genetic blocking of ICOS/ICOS-L interaction results in defective LTα expression, abrogating both lymphoid chemokine production and TLS formation. These data provide evidence of a previously unknown function for ICOSL-ICOS interaction, unveil a novel immunomodulatory function for immunofibroblasts, and reveal a key regulatory function of LTα3, both as biomarker of TLS establishment and as first driver of TLS formation and maintenance in mice and humans.
Collapse
Affiliation(s)
- Saba Nayar
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre and Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Elena Pontarini
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Joana Campos
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Onorina Berardicurti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Science, University of L'Aquila, L'Aquila, Italy
| | - Charlotte G Smith
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Saba Asam
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - David H Gardner
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | | | - Davide Lucchesi
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Rachel Coleby
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Ming-May Chung
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Valentina Iannizzotto
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Kelly Hunter
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Simon J Bowman
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre and Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Gianluca Carlesso
- Early Oncology ICA, AstraZeneca, One Medimmune Way, Gaithersburg, MD 20878, MD, USA
| | - Ronald Herbst
- Early Oncology ICA, AstraZeneca, One Medimmune Way, Gaithersburg, MD 20878, MD, USA
| | - Helen M McGettrick
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Jeff Browning
- Departments of Microbiology and Rheumatology, Boston University School of Medicine, Boston, MA, USA
| | - Christopher D Buckley
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Benjamin A Fisher
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre and Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Francesca Barone
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK.
- Candel Therapeutics, Needham, Boston, MA, USA.
| |
Collapse
|
30
|
Pan Z, Zhu T, Liu Y, Zhang N. Role of the CXCL13/CXCR5 Axis in Autoimmune Diseases. Front Immunol 2022; 13:850998. [PMID: 35309354 PMCID: PMC8931035 DOI: 10.3389/fimmu.2022.850998] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
CXCL13 is a B-cell chemokine produced mainly by mesenchymal lymphoid tissue organizer cells, follicular dendritic cells, and human T follicular helper cells. By binding to its receptor, CXCR5, CXCL13 plays an important role in lymphoid neogenesis, lymphoid organization, and immune responses. Recent studies have found that CXCL13 and its receptor CXCR5 are implicated in the pathogenesis of several autoimmune diseases, such as rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, primary Sjögren’s syndrome, myasthenia gravis, and inflammatory bowel disease. In this review, we discuss the biological features of CXCL13 and CXCR5 and the recent findings on the pathogenic roles of the CXCL13/CXCR5 axis in autoimmune diseases. Furthermore, we discuss the potential role of CXCL13 as a disease biomarker and therapeutic target in autoimmune diseases.
Collapse
Affiliation(s)
- Zijian Pan
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, and State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tong Zhu
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, and State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanjun Liu
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, and State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Nannan Zhang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, and State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- *Correspondence: Nannan Zhang,
| |
Collapse
|
31
|
Horeth E, Oyelakin A, Song EAC, Che M, Bard J, Min S, Kiripolsky J, Kramer JM, Sinha S, Romano RA. Transcriptomic and Single-Cell Analysis Reveals Regulatory Networks and Cellular Heterogeneity in Mouse Primary Sjögren's Syndrome Salivary Glands. Front Immunol 2021; 12:729040. [PMID: 34912329 PMCID: PMC8666453 DOI: 10.3389/fimmu.2021.729040] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Sjögren’s Syndrome (SS) is a chronic autoimmune disease of unknown etiology which primarily affects the salivary and lacrimal glands resulting in the loss of secretory function. Treatment options for SS have been hampered due to the lack of a better understanding of the underlying gene regulatory circuitry and the interplay between the myriad pathological cellular states that contribute to salivary gland dysfunction. To better elucidate the molecular nature of SS, we have performed RNA-sequencing analysis of the submandibular glands (SMG) of a well-established primary Sjögren’s Syndrome (pSS) mouse model. Our comprehensive examination of global gene expression and comparative analyses with additional SS mouse models and human datasets, have identified a number of important pathways and regulatory networks that are relevant in SS pathobiology. To complement these studies, we have performed single-cell RNA sequencing to examine and identify the molecular and cellular heterogeneity of the diseased cell populations of the mouse SMG. Interrogation of the single-cell transcriptomes has shed light on the diversity of immune cells that are dysregulated in SS and importantly, revealed an activated state of the salivary gland epithelial cells that contribute to the global immune mediated responses. Overall, our broad studies have not only revealed key pathways, mediators and new biomarkers, but have also uncovered the complex nature of the cellular populations in the SMG that are likely to drive the progression of SS. These newly discovered insights into the underlying molecular mechanisms and cellular states of SS will better inform targeted therapeutic discoveries.
Collapse
Affiliation(s)
- Erich Horeth
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Akinsola Oyelakin
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Eun-Ah Christine Song
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Monika Che
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jonathan Bard
- Genomics and Bioinformatics Core, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Sangwon Min
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jeremy Kiripolsky
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jill M Kramer
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Rose-Anne Romano
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
32
|
Manou-Stathopoulou S, Lewis MJ. Diversity of NF-κB signalling and inflammatory heterogeneity in Rheumatic Autoimmune Disease. Semin Immunol 2021; 58:101649. [PMID: 36064646 DOI: 10.1016/j.smim.2022.101649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic Autoimmune Rheumatic Diseases, including Rheumatoid Arthritis, Systemic Lupus Erythematosus and Sjogren's syndrome, are characterised by a loss of immune tolerance and chronic inflammation. There is marked heterogeneity in clinical and molecular phenotypes in each condition, and the aetiology of these is unclear. NF-κB is an inducible transcription factor that is critical in the physiological inflammatory response, and which has been implicated in chronic inflammation. Genome-wide association studies have linked risk alleles related to the NF-κB pathway to the pathogenesis of multiple Systemic Autoimmune Rheumatic Diseases. This review describes how cell- and pathway-specific NF-κB activation contribute to the spectrum of clinical phenotypes and molecular pathotypes in rheumatic disease. Potential clinical applications are explored, including therapeutic interventions and utilisation of NF-κB as a biomarker of disease subtypes and treatment response.
Collapse
Affiliation(s)
- Sotiria Manou-Stathopoulou
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
33
|
Pontarini E, Coleby R, Bombardieri M. Cellular and molecular diversity in Sjogren's syndrome salivary glands: Towards a better definition of disease subsets. Semin Immunol 2021; 58:101547. [PMID: 34876330 DOI: 10.1016/j.smim.2021.101547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Primary Sjögren's syndrome (pSS) is a highly heterogeneous disease in terms of clinical presentation ranging from a mild disease localised to the salivary and lacrimal glands, to multiorgan complications of various degrees of severity, finishing with the evolution, in around 5% of pSS patients, to B cell lymphomas most commonly arising in the inflamed salivary glands. Currently, there are poor positive or negative predictors of disease evolution able to guide patient management and treatment at early stages of the diseases. Recent understanding of the pathogenic mechanisms driving immunopathology in pSS, particularly through histological and transcriptomic analysis of minor and parotid salivary gland (SG) biopsies, has highlighted a high degree of cellular and molecular heterogeneity of the inflammatory lesions but also allowed the identification of clusters of patients with similar underlying SG immunopathology. In particular, patients presenting with high degrees of B/T cell infiltration and the formation of ectopic lymphoid structures (ELS) in the SG have been associated, albeit with conflicting results, with higher degree of disease severity and enhanced risk of lymphoma evolution, suggesting that a dysregulated adaptive immune response plays a key role in driving disease manifestations in pSS. Recent data from randomised clinical trials with novel biological therapies in pSS have also highlighted the potential role of SG immunopathology and molecular pathology in stratifying patients for trial inclusion as well as assessing proof of mechanisms in longitudinal SG biopsies before and after treatment. Although significant progress has been made in the understanding of disease pathogenesis and heterogeneity through cellular and molecular SG pathology, further work is needed to validate their clinical utility in routine clinical settings and in randomised clinical trials.
Collapse
Affiliation(s)
- Elena Pontarini
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Rachel Coleby
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
34
|
Abstract
Sjögren's syndrome (SjS) is a systemic autoimmune disease marked by xerostomia (dry mouth), keratoconjunctivitis sicca (eye dryness), and other systematic disorders. Its pathogenesis involves an inflammatory process that is characterized by lymphocytic infiltration into exocrine glands and other tissues. Although the development of ectopic lymphoid tissue and overproduction of autoantibodies by hyperactive B cells suggest that they may promote SjS development, treatment directed towards them fails to induce significant laboratory or clinical improvement. T cells are overwhelming infiltrators in most phases of the disease, and the involvement of multiple T cell subsets of suggests the extraordinary complexity of SjS pathogenesis. The factors, including various cellular subtypes and molecules, regulate the activation and suppression of T cells. T cell activation induces inflammatory cell infiltration, B cell activation, tissue damage, and metabolic changes in SjS. Knowledge of the pathways that link these T cell subtypes and regulation of their activities are not completely understood. This review comprehensively summarizes the research progress and our understanding of T cells in SjS, including CD4+ T cells, CD8+ TRM cells, and innate T cells, to provide insights into for clinical treatment.
Collapse
|
35
|
Chatzis L, Goules AV, Stergiou IE, Voulgarelis M, Tzioufas AG, Kapsogeorgou EK. Serum, but Not Saliva, CXCL13 Levels Associate With Infiltrating CXCL13+ Cells in the Minor Salivary Gland Lesions and Other Histologic Parameters in Patients With Sjögren's Syndrome. Front Immunol 2021; 12:705079. [PMID: 34484201 PMCID: PMC8416055 DOI: 10.3389/fimmu.2021.705079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/03/2021] [Indexed: 11/23/2022] Open
Abstract
Recent studies suggest that elevated CXCL13 serum levels in patients with primary Sjögren’s syndrome (pSS) associate with minor salivary gland (MSG) histologic features, disease severity, as well as high-risk status for non-Hodgkin lymphoma (NHL) development and NHL itself. In contrast, limited discriminative value of CXCL13 saliva levels has been reported. Prompt by these reports, we sought to validate the clinical utility of CXCL13 by investigating potential correlations of serum and saliva levels with MSG histopathologic [including CXCL13+-cell number, severity of infiltrates and germinal center (GC) formation], serologic and clinical parameters, as well as NHL. CXCL13 levels were evaluated in paired serum and saliva specimens of 45 pSS patients (15 with NHL; pSS-associated NHL: SSL), 11 sicca-controls (sicca-complaining individuals with negative MSG biopsy and negative autoantibody profile), 10 healthy individuals (healthy-controls) and 6 non-SS-NHLs. CXCL13+-cells were measured in paired MSG-tissues of 22 of pSS patients studied (including 7 SSLs) and all sicca-controls. CXCL13 serum levels were significantly increased in pSS and SSL patients compared to sicca- and healthy-controls and were positively correlated with the CXCL13+-cell number and biopsy focus-score. Serum CXCL13 was significantly higher in pSS patients with GCs, rheumatoid factor, hypocomplementemia, high disease activity, NHL and in high-risk patients for NHL development. CXCL13 saliva levels were significantly increased in SSL patients (compared to non-SS-NHLs), patients with GCs and in high-risk for NHL patients. Univariate analysis revealed that CXCL13 serum, but not saliva, levels were associated with lymphoma, an association that did not survive multivariate analysis. Conclusively, our findings confirm that serum, but not saliva, levels of CXCL13 are associated with histologic, serologic and clinical features indicative of more severe pSS.
Collapse
Affiliation(s)
- Loukas Chatzis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Institute for Autoimmune Systemic and Neurological Diseases, Athens, Greece
| | - Andreas V Goules
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Institute for Autoimmune Systemic and Neurological Diseases, Athens, Greece
| | - Ioanna E Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Institute for Autoimmune Systemic and Neurological Diseases, Athens, Greece
| | - Michael Voulgarelis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Institute for Autoimmune Systemic and Neurological Diseases, Athens, Greece
| | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Institute for Autoimmune Systemic and Neurological Diseases, Athens, Greece
| | - Efstathia K Kapsogeorgou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Institute for Autoimmune Systemic and Neurological Diseases, Athens, Greece
| |
Collapse
|
36
|
Ma Q, Chen Y, Qin Q, Guo F, Wang YS, Li D. CXCL13 expression in mouse 4T1 breast cancer microenvironment elicits antitumor immune response by regulating immune cell infiltration. PRECISION CLINICAL MEDICINE 2021; 4:155-167. [PMID: 35693216 PMCID: PMC8982548 DOI: 10.1093/pcmedi/pbab020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer type and the leading cause of cancer-related deaths among women worldwide. Previous studies have reported contradictory performance of chemokine CXC motif ligand 13 (CXCL13) in breast cancer. In this study, The Cancer Genome Atlas database analysis revealed that CXCL13 was overexpressed in various human cancers including breast carcinoma, and associated with good clinical prognosis in breast cancer. Flow cytometry detection also found upregulated intracellular CXCL13 expression in human breast cancer cell lines. To explore the possible role of CXCL13 in the breast cancer microenvironment, mouse triple negative breast cancer (TNBC) was lentivirally transfected to stably overexpress mouse CXCL13 (4T1-CXCL13). Both parental 4T1 and 4T1-CXCL13 strains showed no in vitro or in vivo endogenous cell surface CXCR5 expression. In immune-competent BALB/c mice, the in vivo tumor growth of 4T1-CXCL13 was significantly inhibited and even completely eradicated, accompanied with increased infiltrations of CD4+, CD8+ T lymphocytes and CD11b+CD11c+ DCs. Further investigations showed that CXCL13 expression in the 4T1 tumor microenvironment elicited long-term antitumor immune memory, and rejection of distal parental tumor. The antitumor activity of CXCL13 was remarkedly impaired in BALB/cA-nu nude mice, or in BALB/c mice with CD8+ T lymphocyte or NK cell depletion. Our investigation indicated that CXCL13 expression in TNBC triggered effective antitumor immunity by chemoattracting immune cell infiltrations and could be considered as a novel prognostic marker for TNBC.
Collapse
Affiliation(s)
- Qizhi Ma
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yue Chen
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Qin
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fuchun Guo
- Institute of Drug Clinical Trial, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong-sheng Wang
- Institute of Drug Clinical Trial, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, and Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
37
|
Lopes AP, Bekker CPJ, Hillen MR, Blokland SLM, Hinrichs AC, Pandit A, Kruize AA, Radstake TRDJ, van Roon JAG. The Transcriptomic Profile of Monocytes from Patients With Sjögren's Syndrome Is Associated With Inflammatory Parameters and Is Mimicked by Circulating Mediators. Front Immunol 2021; 12:701656. [PMID: 34413853 PMCID: PMC8368727 DOI: 10.3389/fimmu.2021.701656] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease characterized by infiltration of the exocrine glands and prominent B cell hyperactivity. Considering the key role of monocytes in promoting B cell hyperactivity, we performed RNA-sequencing analysis of CD14+ monocytes from patients with pSS, non-Sjögren's sicca (nSS), and healthy controls (HC). We demonstrated that the transcriptomic profile of pSS patients is enriched in intermediate and non-classical monocyte profiles, and confirmed the increased frequency of non-classical monocytes in pSS patients by flow-cytometry analysis. Weighted gene co-expression network analysis identified four molecular signatures in monocytes from pSS patients, functionally annotated for processes related with translation, IFN-signaling, and toll-like receptor signaling. Systemic and local inflammatory features significantly correlated with the expression of these signatures. Furthermore, genes highly associated with clinical features in pSS were identified as hub-genes for each signature. Unsupervised hierarchical cluster analysis of the hub-genes identified four clusters of nSS and pSS patients, each with distinct inflammatory and transcriptomic profiles. One cluster showed a significantly higher percentage of pSS patients with higher prevalence of anti-SSA autoantibodies, interferon-score, and erythrocyte sedimentation rate compared to the other clusters. Finally, we showed that the identified transcriptomic differences in pSS monocytes were induced in monocytes of healthy controls by exposure to serum of pSS patients. Representative hub-genes of all four signatures were partially inhibited by interferon-α/β receptor blockade, indicating that the circulating inflammatory mediators, including type I interferons have a significant contribution to the altered transcriptional profile of pSS-monocytes. Our study suggests that targeting key circulating inflammatory mediators, such as type I interferons, could offer new insights into the important pathways and mechanisms driving pSS, and holds promise for halting immunopathology in Sjögren's Syndrome.
Collapse
Affiliation(s)
- Ana P Lopes
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Cornelis P J Bekker
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Maarten R Hillen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sofie L M Blokland
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Anneline C Hinrichs
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aridaman Pandit
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aike A Kruize
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Timothy R D J Radstake
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joel A G van Roon
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
38
|
Juarez M, Diaz N, Johnston GI, Nayar S, Payne A, Helmer E, Cain D, Williams P, Devauchelle-Pensec V, Fisher BA, Giacomelli R, Gottenberg JE, Guggino G, Kvarnström M, Mariette X, Ng WF, Rosas J, Sánchez Bursón J, Triolo G, Barone F, Bowman SJ. A phase 2 randomized, double-blind, placebo-controlled, proof-of-concept study of oral seletalisib in primary Sjögren's syndrome. Rheumatology (Oxford) 2021; 60:1364-1375. [PMID: 32949140 DOI: 10.1093/rheumatology/keaa410] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/08/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES This phase 2 proof-of-concept study (NCT02610543) assessed efficacy, safety and effects on salivary gland inflammation of seletalisib, a potent and selective PI3Kδ inhibitor, in patients with moderate-to-severe primary Sjögren's syndrome (PSS). METHODS Adults with PSS were randomized 1:1 to seletalisib 45 mg/day or placebo, in addition to current PSS therapy. Primary end points were safety and tolerability and change from baseline in EULAR Sjögren's Syndrome Disease Activity Index (ESSDAI) score at week 12. Secondary end points included change from baseline at week 12 in EULAR Sjögren's Syndrome Patient Reported Index (ESSPRI) score and histological features in salivary gland biopsies. RESULTS Twenty-seven patients were randomized (seletalisib n = 13, placebo n = 14); 20 completed the study. Enrolment challenges led to early study termination with loss of statistical power (36% vs 80% planned). Nonetheless, a trend for improvement in ESSDAI and ESSPRI [difference vs placebo: -2.59 (95% CI: -7.30, 2.11; P=0.266) and -1.55 (95% CI: -3.39, 0.28), respectively] was observed at week 12. No significant changes were seen in saliva and tear flow. Serious adverse events (AEs) were reported in 3/13 of patients receiving seletalisib vs 1/14 for placebo and 5/13 vs 1/14 discontinued due to AEs, respectively. Serum IgM and IgG concentrations decreased in the seletalisib group vs placebo. Seletalisib demonstrated efficacy in reducing size and organisation of salivary gland inflammatory foci and in target engagement, thus reducing PI3K-mTOR signalling compared with placebo. CONCLUSION Despite enrolment challenges, seletalisib demonstrated a trend towards clinical improvement in patients with PSS. Histological analyses demonstrated encouraging effects of seletalisib on salivary gland inflammation and organisation. TRIAL REGISTRATION https://clinicaltrials.gov, NCT02610543.
Collapse
Affiliation(s)
| | - Nieves Diaz
- Translational Medicine, UCB Pharma, Slough, UK
| | | | - Saba Nayar
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | - Eric Helmer
- Quantitative Clinical Pharmacology, Slough, UK
| | - Dionne Cain
- Global Clinical Sciences and Operations, UCB Pharma, Slough, UK
| | | | | | - Benjamin A Fisher
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Roberto Giacomelli
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Jacques-Eric Gottenberg
- Department of Rheumatology, National Reference Centre For Rare Systemic Auto-Immune Diseases, Strasbourg University Hospital, University of Strasbourg, IBMC, CNRS UPR 3572, Strasbourg, France
| | - Giuliana Guggino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Palermo, Italy
| | - Marika Kvarnström
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Xavier Mariette
- Université Paris-Saclay, INSERM, CEA, Centre de recherche en Immunologie des Infections Virales et des Maladies auto-Immunes, AP-HP.Université Paris-Saclay, Hôpital Bicêtre, Rheumatology Department, Le Kremlin Bicêtre, France
| | - Wan Fai Ng
- Translational and Clinical Research Institute, Newcastle University & NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - José Rosas
- Department of Rheumatology, Hospital Marina Baixa, Villajoyosa, Spain
| | | | - Giovanni Triolo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Palermo, Italy
| | - Francesca Barone
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Simon J Bowman
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
39
|
Asam S, Nayar S, Gardner D, Barone F. Stromal cells in tertiary lymphoid structures: Architects of autoimmunity. Immunol Rev 2021; 302:184-195. [PMID: 34060101 DOI: 10.1111/imr.12987] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
The molecular mediators present within the inflammatory microenvironment are able, in certain conditions, to favor the initiation of tertiary lymphoid structure (TLS) development. TLS is organized lymphocyte clusters able to support antigen-specific immune response in non-immune organs. Importantly, chronic inflammation does not always result in TLS formation; instead, TLS has been observed to develop specifically in permissive organs, suggesting the presence of tissue-specific cues that are able to imprint the immune responses and form TLS hubs. Fibroblasts are tissue-resident cells that define the anatomy and function of a specific tissue. Fibroblast plasticity and specialization in inflammatory conditions have recently been unraveled in both immune and non-immune organs revealing a critical role for these structural cells in human physiology. Here, we describe the role of fibroblasts in the context of TLS formation and its functional maintenance in the tissue, highlighting their potential role as therapeutic disease targets in TLS-associated diseases.
Collapse
Affiliation(s)
- Saba Asam
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Saba Nayar
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,bNIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK
| | - David Gardner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Francesca Barone
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
40
|
Wang Y, Roussel-Queval A, Chasson L, Hanna Kazazian N, Marcadet L, Nezos A, Sieweke MH, Mavragani C, Alexopoulou L. TLR7 Signaling Drives the Development of Sjögren's Syndrome. Front Immunol 2021; 12:676010. [PMID: 34108972 PMCID: PMC8183380 DOI: 10.3389/fimmu.2021.676010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Sjögren's syndrome (SS) is a chronic systemic autoimmune disease that affects predominately salivary and lacrimal glands. SS can occur alone or in combination with another autoimmune disease like systemic lupus erythematosus (SLE). Here we report that TLR7 signaling drives the development of SS since TLR8-deficient (TLR8ko) mice that develop lupus due to increased TLR7 signaling by dendritic cells, also develop an age-dependent secondary pathology similar to associated SS. The SS phenotype in TLR8ko mice is manifested by sialadenitis, increased anti-SSA and anti-SSB autoantibody production, immune complex deposition and increased cytokine production in salivary glands, as well as lung inflammation. Moreover, ectopic lymphoid structures characterized by B/T aggregates, formation of high endothelial venules and the presence of dendritic cells are formed in the salivary glands of TLR8ko mice. Interestingly, all these phenotypes are abrogated in double TLR7/8-deficient mice, suggesting that the SS phenotype in TLR8-deficient mice is TLR7-dependent. In addition, evaluation of TLR7 and inflammatory markers in the salivary glands of primary SS patients revealed significantly increased TLR7 expression levels compared to healthy individuals, that were positively correlated to TNF, LT-α, CXCL13 and CXCR5 expression. These findings establish an important role of TLR7 signaling for local and systemic SS disease manifestations, and inhibition of such will likely have therapeutic value.
Collapse
Affiliation(s)
- Yawen Wang
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | - Lionel Chasson
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | | | - Andrianos Nezos
- Departments of Physiology and Pathophysiology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Michael H. Sieweke
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), Berlin, Germany
| | - Clio Mavragani
- Departments of Physiology and Pathophysiology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | | |
Collapse
|
41
|
Blanchard L, Girard JP. High endothelial venules (HEVs) in immunity, inflammation and cancer. Angiogenesis 2021; 24:719-753. [PMID: 33956259 PMCID: PMC8487881 DOI: 10.1007/s10456-021-09792-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
High endothelial venules (HEVs) are specialized blood vessels mediating lymphocyte trafficking to lymph nodes (LNs) and other secondary lymphoid organs. By supporting high levels of lymphocyte extravasation from the blood, HEVs play an essential role in lymphocyte recirculation and immune surveillance for foreign invaders (bacterial and viral infections) and alterations in the body’s own cells (neoantigens in cancer). The HEV network expands during inflammation in immune-stimulated LNs and is profoundly remodeled in metastatic and tumor-draining LNs. HEV-like blood vessels expressing high levels of the HEV-specific sulfated MECA-79 antigens are induced in non-lymphoid tissues at sites of chronic inflammation in many human inflammatory and allergic diseases, including rheumatoid arthritis, Crohn’s disease, allergic rhinitis and asthma. Such vessels are believed to contribute to the amplification and maintenance of chronic inflammation. MECA-79+ tumor-associated HEVs (TA-HEVs) are frequently found in human tumors in CD3+ T cell-rich areas or CD20+ B-cell rich tertiary lymphoid structures (TLSs). TA-HEVs have been proposed to play important roles in lymphocyte entry into tumors, a process essential for successful antitumor immunity and lymphocyte-mediated cancer immunotherapy with immune checkpoint inhibitors, vaccines or adoptive T cell therapy. In this review, we highlight the phenotype and function of HEVs in homeostatic, inflamed and tumor-draining lymph nodes, and those of HEV-like blood vessels in chronic inflammatory diseases. Furthermore, we discuss the role and regulation of TA-HEVs in human cancer and mouse tumor models.
Collapse
Affiliation(s)
- Lucas Blanchard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
42
|
Cheng C, Zhou J, Chen R, Shibata Y, Tanaka R, Wang J, Zhang J. Predicted Disease-Specific Immune Infiltration Patterns Decode the Potential Mechanisms of Long Non-Coding RNAs in Primary Sjogren's Syndrome. Front Immunol 2021; 12:624614. [PMID: 33936039 PMCID: PMC8079748 DOI: 10.3389/fimmu.2021.624614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/17/2021] [Indexed: 02/05/2023] Open
Abstract
Primary Sjogren’s syndrome (pSS) is a chronic progressive autoimmune disease with clinical phenotypic “Sicca symptoms”. In some cases, the diagnosis of pSS is delayed by 6–7 years due to the inefficient differential diagnosis of pSS and non-SS “Sicca”. This study aimed to investigate the difference between these two diseases, and in particular, their immunopathogenesis. Based on their gene expression profiles, we systematically defined for the first time the predicted disease-specific immune infiltration pattern of patients with pSS differentiated from normal donors and patients with non-SS “Sicca”. We found that it was characterized by the aberrant abundance and interaction of tissue-infiltrated immune cells, such as a notable shift in the subpopulation of six immune cells and the perturbed abundance of nine subpopulations, such as CD4+ memory, CD8+ T-cells and gamma delta T-cells. In addition, we identified essential genes, particularly long non-coding RNAs (lncRNAs), as the potential mechanisms linked to this predicted pattern reprogramming. Fourteen lncRNAs were identified as the potential regulators associated with the pSS-specific immune infiltration pattern in a synergistic manner, among which the CTA-250D10.23 lncRNA was highly relevant to chemokine signaling pathways. In conclusion, aberrant predicted disease-specific immune infiltration patterns and relevant genes revealed the immunopathogenesis of pSS and provided some clues for the immunotherapy by targeting specific immune cells and genes.
Collapse
Affiliation(s)
- Caiqi Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Zhou
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan.,School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Ruiying Chen
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yo Shibata
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Reina Tanaka
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiaming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Felten R, Devauchelle-Pensec V, Seror R, Duffau P, Saadoun D, Hachulla E, Pierre Yves H, Salliot C, Perdriger A, Morel J, Mékinian A, Vittecoq O, Berthelot JM, Dernis E, Le Guern V, Dieudé P, Larroche C, Richez C, Martin T, Zarnitsky C, Blaison G, Kieffer P, Maurier F, Dellal A, Rist S, Andres E, Contis A, Chatelus E, Sordet C, Sibilia J, Arnold C, Tawk MY, Aberkane O, Holterbach L, Cacoub P, Saraux A, Mariette X, Meyer N, Gottenberg JE. Interleukin 6 receptor inhibition in primary Sjögren syndrome: a multicentre double-blind randomised placebo-controlled trial. Ann Rheum Dis 2021; 80:329-338. [PMID: 33208345 DOI: 10.1136/annrheumdis-2020-218467] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES No immunomodulatory drug has been approved for primary Sjögren's syndrome, a systemic autoimmune disease affecting 0.1% of the population. To demonstrate the efficacy of targeting interleukin 6 receptor in patients with Sjögren's syndrome-related systemic complications. METHODS Multicentre double-blind randomised placebo-controlled trial between 24 July 2013 and 16 July 2018, with a follow-up of 44 weeks, involving 17 referral centres. Inclusion criteria were primary Sjögren's syndrome according to American European Consensus Group criteria and score ≥5 for the EULAR Sjögren's Syndrome Disease activity Index (ESSDAI, score of systemic complications). Patients were randomised to receive either 6 monthly infusions of tocilizumab or placebo. The primary endpoint was response to treatment at week 24. Response to treatment was defined by the combination of (1) a decrease of at least 3 points in the ESSDAI, (2) no occurrence of moderate or severe activity in any new domain of the ESSDAI and (3) lack of worsening in physician's global assessment on a Visual Numeric Scale ≥1/10, all as compared with enrolment. RESULTS 110 patients were randomised, 55 patients to tocilizumab (mean (SD) age: 50.9 (12.4) years; women: 98.2%) and 55 patients to placebo (54.8 (10.7) years; 90.9%). At 24 weeks, the proportion of patients meeting the primary endpoint was 52.7% (29/55) in the tocilizumab group and 63.6% (35/55) in the placebo group, for a difference of -11.4% (95% credible interval -30.6 to 9.0) (Pr[Toc >Pla]=0.14). CONCLUSION Among patients with primary Sjögren's syndrome, the use of tocilizumab did not improve systemic involvement and symptoms over 24 weeks of treatment compared with placebo. TRIAL REGISTRATION NUMBER NCT01782235.
Collapse
Affiliation(s)
- Renaud Felten
- Rheumatology, CHU Strasbourg, Centre National de Référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), Strasbourg, Alsace, France
| | | | - Raphaèle Seror
- Rheumatology, Université Paris-Sud BU Kremlin-Bicêtre, Le Kremlin-Bicetre, Île-de-France, France
| | - Pierre Duffau
- Internal Medicine, CHU de Bordeaux, Bordeaux, Aquitaine, France
| | - David Saadoun
- University Hospital Pitié Salpêtrière, Paris, Île-de-France, France
| | - Eric Hachulla
- Internal Medicine, Regional and University Hospital Centre Lille Internal Medicine Service, Lille, Hauts-de-France, France
| | - Hatron Pierre Yves
- Internal Medicine, Regional and University Hospital Centre Lille Internal Medicine Service, Lille, Hauts-de-France, France
| | - Carine Salliot
- Rheumatology, Regional Hospital Centre Orleans La Source Hospital, Orleans, Centre, France
| | - Aleth Perdriger
- Rheumatology, University Hospital Centre Rennes, Rennes, Bretagne, France
| | - Jacques Morel
- CHU Lapeyronie, Montpellier, Languedoc-Roussillon, France
| | - Arsène Mékinian
- Internal Medicine, Hospital Saint-Antoine, Paris, Île-de-France, France
| | - Olivier Vittecoq
- Rheumatology, University Hospital Centre Rouen, Rouen, Normandie, France
| | | | | | | | - Philippe Dieudé
- Rheumatology, Hôpital Bichat Claude-Bernard, Paris, Île-de-France, France
| | - Claire Larroche
- Internal Medicine, Hospital Avicenne, Bobigny, Île-de-France, France
| | - Christophe Richez
- Rheumatology, CHU Bordeaux GH Pellegrin, Bordeaux, Aquitaine, France
| | - Thierry Martin
- Internal Medicine, CHU Strasbourg, Strasbourg, Alsace, France
| | - Charles Zarnitsky
- Rheumatology, Hôpital Jacques Monod, Montivilliers, Normandy, France
| | | | - Pierre Kieffer
- Internal Medicine, CH Mulhouse, Mulhouse, Grand Est, France
| | - François Maurier
- Internal Medicine, Sainte Blandine Hospital, Metz, Lorraine, France
| | - Azeddine Dellal
- Rheumatology, GHI Le Raincy-Montfermeil, Montfermeil, Île-de-France, France
| | - Stephanie Rist
- Rheumatology, Regional Hospital Centre Orleans La Source Hospital, Orleans, Centre, France
| | - Emmanuel Andres
- Internal Medicine, CHU Strasbourg, Strasbourg, Alsace, France
| | - Anne Contis
- Internal Medicine, CHU de Bordeaux, Bordeaux, Aquitaine, France
| | - Emmanuel Chatelus
- Rheumatology, CHU Strasbourg, Centre National de Référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), Strasbourg, Alsace, France
| | - Christelle Sordet
- Rheumatology, CHU Strasbourg, Centre National de Référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), Strasbourg, Alsace, France
| | - Jean Sibilia
- Rheumatology, CHU Strasbourg, Centre National de Référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), Strasbourg, Alsace, France
| | | | - Mira Y Tawk
- DRCI, CHU Strasbourg, Strasbourg, Alsace, France
| | | | - Lise Holterbach
- Public Health, Methods in Clinical Research Team, Hopitaux universitaires de Strasbourg, Strasbourg, Alsace, France
| | - Patrice Cacoub
- University Hospital Pitié Salpêtrière, Paris, Île-de-France, France
| | - Alain Saraux
- Rheumatology, Hospital Cavale-Blanche, Brest, Bretagne, France
| | - Xavier Mariette
- Rheumatology, Université Paris-Sud BU Kremlin-Bicêtre, Le Kremlin-Bicetre, Île-de-France, France
| | - Nicolas Meyer
- Public Health, Methods in Clinical Research Team, Hopitaux universitaires de Strasbourg, Strasbourg, Alsace, France
| | - Jacques-Eric Gottenberg
- Rheumatology, CHU Strasbourg, Centre National de Référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), Strasbourg, Alsace, France
| |
Collapse
|
44
|
Oyelakin A, Horeth E, Song EAC, Min S, Che M, Marzullo B, Lessard CJ, Rasmussen A, Radfar L, Scofield RH, Lewis DM, Stone DU, Grundahl K, De Rossi SS, Kurago Z, Farris AD, Sivils KL, Sinha S, Kramer JM, Romano RA. Transcriptomic and Network Analysis of Minor Salivary Glands of Patients With Primary Sjögren's Syndrome. Front Immunol 2021; 11:606268. [PMID: 33488608 PMCID: PMC7821166 DOI: 10.3389/fimmu.2020.606268] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease characterized primarily by immune-mediated destruction of exocrine tissues, such as those of the salivary and lacrimal glands, resulting in the loss of saliva and tear production, respectively. This disease predominantly affects middle-aged women, often in an insidious manner with the accumulation of subtle changes in glandular function occurring over many years. Patients commonly suffer from pSS symptoms for years before receiving a diagnosis. Currently, there is no effective cure for pSS and treatment options and targeted therapy approaches are limited due to a lack of our overall understanding of the disease etiology and its underlying pathology. To better elucidate the underlying molecular nature of this disease, we have performed RNA-sequencing to generate a comprehensive global gene expression profile of minor salivary glands from an ethnically diverse cohort of patients with pSS. Gene expression analysis has identified a number of pathways and networks that are relevant in pSS pathogenesis. Moreover, our detailed integrative analysis has revealed a primary Sjögren’s syndrome molecular signature that may represent important players acting as potential drivers of this disease. Finally, we have established that the global transcriptomic changes in pSS are likely to be attributed not only to various immune cell types within the salivary gland but also epithelial cells which are likely playing a contributing role. Overall, our comprehensive studies provide a database-enriched framework and resource for the identification and examination of key pathways, mediators, and new biomarkers important in the pathogenesis of this disease with the long-term goals of facilitating earlier diagnosis of pSS and to mitigate or abrogate the progression of this debilitating disease.
Collapse
Affiliation(s)
- Akinsola Oyelakin
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Erich Horeth
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Eun-Ah Christine Song
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Sangwon Min
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Monika Che
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Brandon Marzullo
- Genomics and Bioinformatics Core, State University of New York at Buffalo, Buffalo, NY, United States
| | - Christopher J Lessard
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Astrid Rasmussen
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Lida Radfar
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - R Hal Scofield
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Veteran's Affairs Medical Center, Oklahoma City, OK, United States
| | - David M Lewis
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Donald U Stone
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kiely Grundahl
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Scott S De Rossi
- Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Zoya Kurago
- Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - A Darise Farris
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Kathy L Sivils
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jill M Kramer
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Rose-Anne Romano
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
45
|
Pontarini E, Murray-Brown WJ, Croia C, Lucchesi D, Conway J, Rivellese F, Fossati-Jimack L, Astorri E, Prediletto E, Corsiero E, Romana Delvecchio F, Coleby R, Gelbhardt E, Bono A, Baldini C, Puxeddu I, Ruscitti P, Giacomelli R, Barone F, Fisher B, Bowman SJ, Colafrancesco S, Priori R, Sutcliffe N, Challacombe S, Carlesso G, Tappuni A, Pitzalis C, Bombardieri M. Unique expansion of IL-21+ Tfh and Tph cells under control of ICOS identifies Sjögren's syndrome with ectopic germinal centres and MALT lymphoma. Ann Rheum Dis 2020; 79:1588-1599. [PMID: 32963045 PMCID: PMC7677495 DOI: 10.1136/annrheumdis-2020-217646] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To explore the relevance of T-follicular-helper (Tfh) and pathogenic peripheral-helper T-cells (Tph) in promoting ectopic lymphoid structures (ELS) and B-cell mucosa-associated lymphoid tissue (MALT) lymphomas (MALT-L) in Sjögren's syndrome (SS) patients. METHODS Salivary gland (SG) biopsies with matched peripheral blood were collected from four centres across the European Union. Transcriptomic (microarray and quantitative PCR) analysis, FACS T-cell immunophenotyping with intracellular cytokine detection, multicolor immune-fluorescence microscopy and in situ hybridisation were performed to characterise lesional and circulating Tfh and Tph-cells. SG-organ cultures were used to investigate functionally the blockade of T-cell costimulatory pathways on key proinflammatory cytokine production. RESULTS Transcriptomic analysis in SG identified Tfh-signature, interleukin-21 (IL-21) and the inducible T-cell co-stimulator (ICOS) costimulatory pathway as the most upregulated genes in ELS+SS patients, with parotid MALT-L displaying a 400-folds increase in IL-21 mRNA. Peripheral CD4+CXC-motif chemokine receptor 5 (CXCR5)+programmed cell death protein 1 (PD1)+ICOS+ Tfh-like cells were significantly expanded in ELS+SS patients, were the main producers of IL-21, and closely correlated with circulating IgG and reduced complement C4. In the SG, lesional CD4+CD45RO+ICOS+PD1+ cells selectively infiltrated ELS+ tissues and were aberrantly expanded in parotid MALT-L. In ELS+SG and MALT-L parotids, conventional CXCR5+CD4+PD1+ICOS+Foxp3- Tfh-cells and a uniquely expanded population of CXCR5-CD4+PD1hiICOS+Foxp3- Tph-cells displayed frequent IL-21/interferon-γ double-production but poor IL-17 expression. Finally, ICOS blockade in ex vivo SG-organ cultures significantly reduced the production of IL-21 and inflammatory cytokines IL-6, IL-8 and tumour necrosis factor-α (TNF-α). CONCLUSIONS Overall, these findings highlight Tfh and Tph-cells, IL-21 and the ICOS costimulatory pathway as key pathogenic players in SS immunopathology and exploitable therapeutic targets in SS.
Collapse
Affiliation(s)
- Elena Pontarini
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | - William James Murray-Brown
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | - Cristina Croia
- Immuno-Allergology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Davide Lucchesi
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | - James Conway
- Oncology R&D, Astrazeneca, Gaithersburg, Maryland, USA
| | - Felice Rivellese
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | - Liliane Fossati-Jimack
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | - Elisa Astorri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | - Edoardo Prediletto
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | - Elisa Corsiero
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | | | - Rachel Coleby
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | - Eva Gelbhardt
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | - Aurora Bono
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | | | - Ilaria Puxeddu
- Immuno-Allergology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Ruscitti
- Department of Clinical Sciences and Applied Biotechnology, University of L'Aquila, L'Aquila, Abruzzo, Italy
| | - Roberto Giacomelli
- Department of Clinical Sciences and Applied Biotechnology, University of L'Aquila, L'Aquila, Abruzzo, Italy
| | - Francesca Barone
- RRG, Institute of Inflamation and Ageing, University of Birmingham, Birmingham, UK, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Benjamin Fisher
- RRG, Institute of Inflamation and Ageing, University of Birmingham, Birmingham, UK, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Simon J Bowman
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Serena Colafrancesco
- Dipartimento di Medicina Interna e Specilità Mediche, UOC Reumatologia, Universita degli Studi di Roma La Sapienza Facolta di Medicina e Odontoiatria, Roma, Lazio, Italy
| | - Roberta Priori
- Dipartimento di Medicina Interna e Specilità Mediche, UOC Reumatologia, Universita degli Studi di Roma La Sapienza Facolta di Medicina e Odontoiatria, Roma, Lazio, Italy
| | | | | | - Gianluca Carlesso
- Early ICA Discovery, Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Anwar Tappuni
- Institute of Dentistry, Barts and The London School of Medicine and Dentistry, London, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| |
Collapse
|
46
|
Qu P, Wuest T, Min Y, Alevizos I, Young HA, Lin PC. Natural Killer Cell Transcript 4 promotes the development of Sjӧgren's syndrome via activation of Rap1 on B cells. J Autoimmun 2020; 116:102559. [PMID: 33087256 DOI: 10.1016/j.jaut.2020.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/03/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
Autoimmune disorders are the third most common diseases in the United States, and affect the daily lives of millions of people. In this study, we analyzed patient samples, utilized a transgenic mouse model and human B cells to reveal Natural Killer Cell Transcript 4 (NK4) as a novel regulator that promotes the development of autoimmune disorders. NK4 was significantly elevated in samples from patients with Sjӧgren's Syndrome (SS). SS patients show elevated NK4 levels. There is a strong and positive correlation between the increased levels of NK4 and the duration of SS. Interestingly, transgenic expression of NK4 in a mouse model led to the development of autoantibodies and lymphocytic infiltration in salivary glands similar to those in SS patients. Those phenotypes were associated with increased B1a cells in the peritoneum, plasma cells in the spleen, and increased IgM, IgA, and IgG2a in serum of the NK4 transgenic mice. The autoimmune phenotypes became more severe in older mice. Moreover, after NK4 transfection, human naïve B cells were activated and memory B cells differentiation into IgG and IgA-plasmablasts, resulting in an increased production of autoantibodies.NK4 regulated the differentiation and activation of B cells through activating Rap1 activity. NK4 also promoted B cell migration in a paracrine fashion through an induction of CXCL13 in endothelial cells. Collectively, these findings identify NK4 as a promoter of the development of autoimmune disorders through its roles on B cells. Therefore, NK4 may be a novel therapeutic target for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Peng Qu
- Center for Cancer Research, National Cancer Institute, USA.
| | - Todd Wuest
- Center for Cancer Research, National Cancer Institute, USA
| | - Yongfen Min
- Center for Cancer Research, National Cancer Institute, USA
| | - Ilias Alevizos
- Sjӧgren's Syndrome Clinic, National Institute of Dental and Craniofacial Research, National Institute of Health, USA
| | - Howard A Young
- Center for Cancer Research, National Cancer Institute, USA
| | - P Charles Lin
- Center for Cancer Research, National Cancer Institute, USA.
| |
Collapse
|
47
|
Sánchez-Alonso S, Setti-Jerez G, Arroyo M, Hernández T, Martos MI, Sánchez-Torres JM, Colomer R, Ramiro AR, Alfranca A. A new role for circulating T follicular helper cells in humoral response to anti-PD-1 therapy. J Immunother Cancer 2020; 8:jitc-2020-001187. [PMID: 32900863 PMCID: PMC7478024 DOI: 10.1136/jitc-2020-001187] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Background Lung cancer is one of the most frequent malignancies in humans and is a major cause of death. A number of therapies aimed at reinforcing antitumor immune response, including antiprogrammed cell death protein 1 (anti-PD-1) antibodies, are successfully used to treat several neoplasias as non-small cell lung cancer (NSCLC). However, host immune mechanisms that participate in response to anti-PD-1 therapy are not completely understood. Methods We used a syngeneic immunocompetent mouse model of NSCLC to analyze host immune response to anti-PD-1 treatment in secondary lymphoid organs, peripheral blood and tumors, by flow cytometry, immunohistochemistry and quantitative real-time PCR (qRT-PCR). In addition, we also studied specific characteristics of selected immune subpopulations in ex vivo functional assays. Results We show that anti-PD-1 therapy induces a population of circulating T follicular helper cells (cTfh) with enhanced B activation capacity, which participates in tumor response to treatment. Anti-PD-1 increases the number of tertiary lymphoid structures (TLS), which correlates with impaired tumor growth. Of note, TLS support cTfh-associated local antibody production, which participates in host immune response against tumor. Conclusion These findings unveil a novel mechanism of action for anti-PD-1 therapy and provide new targets for optimization of current therapies against lung cancer.
Collapse
Affiliation(s)
- Santiago Sánchez-Alonso
- Immunology Department, Hospital Universitario de la Princesa. Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Giulia Setti-Jerez
- Immunology Department, Hospital Universitario de la Princesa. Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Montserrat Arroyo
- Immunology Department, Hospital Universitario de la Princesa. Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Tathiana Hernández
- Immunology Department, Hospital Universitario de la Princesa. Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Mª Inmaculada Martos
- B Lymphocyte Lab, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Ramon Colomer
- Medical Oncology Department, Hospital Universitario de la Princesa, Madrid, Spain
| | - Almudena R Ramiro
- B Lymphocyte Lab, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Department, Hospital Universitario de la Princesa. Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
48
|
Lucchesi D, Coleby R, Pontarini E, Prediletto E, Rivellese F, Hill DG, Derrac Soria A, Jones SA, Humphreys IR, Sutcliffe N, Tappuni AR, Pitzalis C, Jones GW, Bombardieri M. Impaired Interleukin-27-Mediated Control of CD4+ T Cell Function Impact on Ectopic Lymphoid Structure Formation in Patients With Sjögren's Syndrome. Arthritis Rheumatol 2020; 72:1559-1570. [PMID: 32307922 DOI: 10.1002/art.41289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Ectopic lymphoid structures (ELS) develop at sites of infection, autoimmunity, and cancer. In patients with Sjögren's syndrome (SS), ELS support autoreactive B cell activation and lymphomagenesis. Interleukin-27 (IL-27) is a key regulator of adaptive immunity and limits Th17 cell-driven pathology. We undertook this study to elucidate the role of IL-27 in ELS formation and function in autoimmunity using a murine model of sialadenitis and in patients with SS. METHODS ELS formation was induced in wild-type and Il27ra-/- mice via salivary gland (SG) cannulation of a replication-deficient adenovirus in the presence or absence of IL-17A neutralization. In SG biopsy samples, IL-27-producing cells were identified by multicolor immunofluorescence microscopy. Lesional and circulating IL-27 levels were determined by gene expression and enzyme-linked immunosorbent assay. The in vitro effect of IL-27 on T cells was assessed using fluorescence-activated cell sorting and cytokine release. RESULTS In experimental sialadenitis, Il27ra-/- mice had larger and more hyperactive ELS (focus score; P < 0.001), increased autoimmunity, and an expanded Th17 response (P < 0.001), compared to wild-type mice. IL-17 blockade in Il27ra-/- mice suppressed the aberrant ELS response (B and T cell reduction against control; P < 0.01). SS patients displayed increased circulating IL-27 levels (P < 0.01), and in SG biopsy samples, IL-27 was expressed by DC-LAMP+ dendritic cells in association with CD3+ T cells. Remarkably, in SS T cells (but not in T cells from patients with rheumatoid arthritis or healthy controls), IL-27-mediated suppression of IL-17 secretion was severely impaired and associated with an aberrant interferon-γ release upon IL-27 stimulation. CONCLUSION Our data indicate that the physiologic ability of IL-27 to limit the magnitude and function of ELS through control of Th17 cell expansion is severely impaired in SS patients, highlighting a defective immunoregulatory checkpoint in this condition.
Collapse
Affiliation(s)
| | | | | | | | | | - David G Hill
- Cardiff University, Cardiff, UK, and University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Elashiry M, Elashiry MM, Elsayed R, Rajendran M, Auersvald C, Zeitoun R, Rashid MH, Ara R, Meghil MM, Liu Y, Arbab AS, Arce RM, Hamrick M, Elsalanty M, Brendan M, Pacholczyk R, Cutler CW. Dendritic cell derived exosomes loaded with immunoregulatory cargo reprogram local immune responses and inhibit degenerative bone disease in vivo. J Extracell Vesicles 2020; 9:1795362. [PMID: 32944183 PMCID: PMC7480413 DOI: 10.1080/20013078.2020.1795362] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chronic bone degenerative diseases represent a major threat to the health and well-being of the population, particularly those with advanced age. This study isolated exosomes (EXO), natural nano-particles, from dendritic cells, the “directors” of the immune response, to examine the immunobiology of DC EXO in mice, and their ability to reprogram immune cells responsible for experimental alveolar bone loss in vivo. Distinct DC EXO subtypes including immune-regulatory (regDC EXO), loaded with TGFB1 and IL10 after purification, along with immune stimulatory (stimDC EXO) and immune “null” immature (iDCs EXO) unmodified after purification, were delivered via I.V. route or locally into the soft tissues overlying the alveolar bone. Locally administrated regDC EXO showed high affinity for inflamed sites, and were taken up by both DCs and T cells in situ. RegDC EXO-encapsulated immunoregulatory cargo (TGFB1 and IL10) was protected from proteolytic degradation. Moreover, maturation of recipient DCs and induction of Th17 effectors was suppressed by regDC EXO, while T-regulatory cell recruitment was promoted, resulting in inhibition of bone resorptive cytokines and reduction in osteoclastic bone loss. This work is the first demonstration of DC exosome-based therapy for a degenerative alveolar bone disease and provides the basis for a novel treatment strategy.
Collapse
Affiliation(s)
- Mahmoud Elashiry
- Department of Periodontics, Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Augusta, GA, USA
| | - Mohamed M Elashiry
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA, Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Ranya Elsayed
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA
| | - Mythily Rajendran
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA
| | - Carol Auersvald
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA
| | - Rana Zeitoun
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Department of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Mohammad H Rashid
- Department of Biochemistry & Molecular Biology, Georgia Cancer Center, Augusta, GA, USA
| | - Roxan Ara
- Department of Biochemistry & Molecular Biology, Georgia Cancer Center, Augusta, GA, USA
| | - Mohamed M Meghil
- Department of Periodontics, Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Augusta, GA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, GA, USA
| | - Ali S Arbab
- Department of Biochemistry & Molecular Biology, Georgia Cancer Center, Augusta, GA, USA
| | - Roger M Arce
- Department of Periodontics and Oral Hygiene, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mark Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, GA, USA
| | - Mohammed Elsalanty
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA
| | - Marshall Brendan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, GA, USA
| | - Rafal Pacholczyk
- Georgia Cancer Center, Augusta, GA, USA.,Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, GA, USA
| | - Christopher W Cutler
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA
| |
Collapse
|
50
|
Joachims ML, Leehan KM, Dozmorov MG, Georgescu C, Pan Z, Lawrence C, Marlin MC, Macwana S, Rasmussen A, Radfar L, Lewis DM, Stone DU, Grundahl K, Scofield RH, Lessard CJ, Wren JD, Thompson LF, Guthridge JM, Sivils KL, Moore JS, Farris AD. Sjögren's Syndrome Minor Salivary Gland CD4 + Memory T Cells Associate with Glandular Disease Features and have a Germinal Center T Follicular Helper Transcriptional Profile. J Clin Med 2020; 9:E2164. [PMID: 32650575 PMCID: PMC7408878 DOI: 10.3390/jcm9072164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
To assess the types of salivary gland (SG) T cells contributing to Sjögren's syndrome (SS), we evaluated SG T cell subtypes for association with disease features and compared the SG CD4+ memory T cell transcriptomes of subjects with either primary SS (pSS) or non-SS sicca (nSS). SG biopsies were evaluated for proportions and absolute numbers of CD4+ and CD8+ T cells. SG memory CD4+ T cells were evaluated for gene expression by microarray. Differentially-expressed genes were identified, and gene set enrichment and pathways analyses were performed. CD4+CD45RA- T cells were increased in pSS compared to nSS subjects (33.2% vs. 22.2%, p < 0.0001), while CD8+CD45RA- T cells were decreased (38.5% vs. 46.0%, p = 0.0014). SG fibrosis positively correlated with numbers of memory T cells. Proportions of SG CD4+CD45RA- T cells correlated with focus score (r = 0.43, p < 0.0001), corneal damage (r = 0.43, p < 0.0001), and serum Ro antibodies (r = 0.40, p < 0.0001). Differentially-expressed genes in CD4+CD45RA- cells indicated a T follicular helper (Tfh) profile, increased homing and increased cellular interactions. Predicted upstream drivers of the Tfh signature included TCR, TNF, TGF-β1, IL-4, and IL-21. In conclusion, the proportions and numbers of SG memory CD4+ T cells associate with key SS features, consistent with a central role in disease pathogenesis.
Collapse
Affiliation(s)
- Michelle L. Joachims
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Oklahoma City, OK 73104, USA; (M.L.J.); (K.M.L.); (M.G.D.); (C.G.); (Z.P.); (C.L.); (M.C.M.); (S.M.); (A.R.); (K.G.); (R.H.S.); (C.J.L.); (J.D.W.); (L.F.T.); (J.M.G.); (K.L.S.); (J.S.M.)
| | - Kerry M. Leehan
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Oklahoma City, OK 73104, USA; (M.L.J.); (K.M.L.); (M.G.D.); (C.G.); (Z.P.); (C.L.); (M.C.M.); (S.M.); (A.R.); (K.G.); (R.H.S.); (C.J.L.); (J.D.W.); (L.F.T.); (J.M.G.); (K.L.S.); (J.S.M.)
| | - Mikhail G. Dozmorov
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Oklahoma City, OK 73104, USA; (M.L.J.); (K.M.L.); (M.G.D.); (C.G.); (Z.P.); (C.L.); (M.C.M.); (S.M.); (A.R.); (K.G.); (R.H.S.); (C.J.L.); (J.D.W.); (L.F.T.); (J.M.G.); (K.L.S.); (J.S.M.)
| | - Constantin Georgescu
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Oklahoma City, OK 73104, USA; (M.L.J.); (K.M.L.); (M.G.D.); (C.G.); (Z.P.); (C.L.); (M.C.M.); (S.M.); (A.R.); (K.G.); (R.H.S.); (C.J.L.); (J.D.W.); (L.F.T.); (J.M.G.); (K.L.S.); (J.S.M.)
| | - Zijian Pan
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Oklahoma City, OK 73104, USA; (M.L.J.); (K.M.L.); (M.G.D.); (C.G.); (Z.P.); (C.L.); (M.C.M.); (S.M.); (A.R.); (K.G.); (R.H.S.); (C.J.L.); (J.D.W.); (L.F.T.); (J.M.G.); (K.L.S.); (J.S.M.)
| | - Christina Lawrence
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Oklahoma City, OK 73104, USA; (M.L.J.); (K.M.L.); (M.G.D.); (C.G.); (Z.P.); (C.L.); (M.C.M.); (S.M.); (A.R.); (K.G.); (R.H.S.); (C.J.L.); (J.D.W.); (L.F.T.); (J.M.G.); (K.L.S.); (J.S.M.)
| | - M. Caleb Marlin
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Oklahoma City, OK 73104, USA; (M.L.J.); (K.M.L.); (M.G.D.); (C.G.); (Z.P.); (C.L.); (M.C.M.); (S.M.); (A.R.); (K.G.); (R.H.S.); (C.J.L.); (J.D.W.); (L.F.T.); (J.M.G.); (K.L.S.); (J.S.M.)
| | - Susan Macwana
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Oklahoma City, OK 73104, USA; (M.L.J.); (K.M.L.); (M.G.D.); (C.G.); (Z.P.); (C.L.); (M.C.M.); (S.M.); (A.R.); (K.G.); (R.H.S.); (C.J.L.); (J.D.W.); (L.F.T.); (J.M.G.); (K.L.S.); (J.S.M.)
| | - Astrid Rasmussen
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Oklahoma City, OK 73104, USA; (M.L.J.); (K.M.L.); (M.G.D.); (C.G.); (Z.P.); (C.L.); (M.C.M.); (S.M.); (A.R.); (K.G.); (R.H.S.); (C.J.L.); (J.D.W.); (L.F.T.); (J.M.G.); (K.L.S.); (J.S.M.)
| | - Lida Radfar
- College of Dentistry, University of Oklahoma Health Sciences Center, 1201 N Stonewall Avenue, Oklahoma City, OK 73117, USA; (L.R.); (D.M.L.)
| | - David M. Lewis
- College of Dentistry, University of Oklahoma Health Sciences Center, 1201 N Stonewall Avenue, Oklahoma City, OK 73117, USA; (L.R.); (D.M.L.)
| | - Donald U. Stone
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA;
| | - Kiely Grundahl
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Oklahoma City, OK 73104, USA; (M.L.J.); (K.M.L.); (M.G.D.); (C.G.); (Z.P.); (C.L.); (M.C.M.); (S.M.); (A.R.); (K.G.); (R.H.S.); (C.J.L.); (J.D.W.); (L.F.T.); (J.M.G.); (K.L.S.); (J.S.M.)
| | - R. Hal Scofield
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Oklahoma City, OK 73104, USA; (M.L.J.); (K.M.L.); (M.G.D.); (C.G.); (Z.P.); (C.L.); (M.C.M.); (S.M.); (A.R.); (K.G.); (R.H.S.); (C.J.L.); (J.D.W.); (L.F.T.); (J.M.G.); (K.L.S.); (J.S.M.)
- Department of Medicine, University of Oklahoma Health Sciences Center, 1100 N Lindsay Avenue, Oklahoma City, OK 73104, USA
- Department of Veteran’s Affairs Medical Center, 931 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Christopher J. Lessard
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Oklahoma City, OK 73104, USA; (M.L.J.); (K.M.L.); (M.G.D.); (C.G.); (Z.P.); (C.L.); (M.C.M.); (S.M.); (A.R.); (K.G.); (R.H.S.); (C.J.L.); (J.D.W.); (L.F.T.); (J.M.G.); (K.L.S.); (J.S.M.)
| | - Jonathan D. Wren
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Oklahoma City, OK 73104, USA; (M.L.J.); (K.M.L.); (M.G.D.); (C.G.); (Z.P.); (C.L.); (M.C.M.); (S.M.); (A.R.); (K.G.); (R.H.S.); (C.J.L.); (J.D.W.); (L.F.T.); (J.M.G.); (K.L.S.); (J.S.M.)
| | - Linda F. Thompson
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Oklahoma City, OK 73104, USA; (M.L.J.); (K.M.L.); (M.G.D.); (C.G.); (Z.P.); (C.L.); (M.C.M.); (S.M.); (A.R.); (K.G.); (R.H.S.); (C.J.L.); (J.D.W.); (L.F.T.); (J.M.G.); (K.L.S.); (J.S.M.)
| | - Joel M. Guthridge
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Oklahoma City, OK 73104, USA; (M.L.J.); (K.M.L.); (M.G.D.); (C.G.); (Z.P.); (C.L.); (M.C.M.); (S.M.); (A.R.); (K.G.); (R.H.S.); (C.J.L.); (J.D.W.); (L.F.T.); (J.M.G.); (K.L.S.); (J.S.M.)
| | - Kathy L. Sivils
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Oklahoma City, OK 73104, USA; (M.L.J.); (K.M.L.); (M.G.D.); (C.G.); (Z.P.); (C.L.); (M.C.M.); (S.M.); (A.R.); (K.G.); (R.H.S.); (C.J.L.); (J.D.W.); (L.F.T.); (J.M.G.); (K.L.S.); (J.S.M.)
| | - Jacen S. Moore
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Oklahoma City, OK 73104, USA; (M.L.J.); (K.M.L.); (M.G.D.); (C.G.); (Z.P.); (C.L.); (M.C.M.); (S.M.); (A.R.); (K.G.); (R.H.S.); (C.J.L.); (J.D.W.); (L.F.T.); (J.M.G.); (K.L.S.); (J.S.M.)
| | - A. Darise Farris
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Oklahoma City, OK 73104, USA; (M.L.J.); (K.M.L.); (M.G.D.); (C.G.); (Z.P.); (C.L.); (M.C.M.); (S.M.); (A.R.); (K.G.); (R.H.S.); (C.J.L.); (J.D.W.); (L.F.T.); (J.M.G.); (K.L.S.); (J.S.M.)
| |
Collapse
|