1
|
Leopold J, Schiller J. (Chemical) Roles of HOCl in Rheumatic Diseases. Antioxidants (Basel) 2024; 13:921. [PMID: 39199167 PMCID: PMC11351306 DOI: 10.3390/antiox13080921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Chronic rheumatic diseases such as rheumatoid arthritis (RA) are characterized by a dysregulated immune response and persistent inflammation. The large number of neutrophilic granulocytes in the synovial fluid (SF) from RA patients leads to elevated enzyme activities, for example, from myeloperoxidase (MPO) and elastase. Hypochlorous acid (HOCl), as the most important MPO-derived product, is a strong reactive oxygen species (ROS) and known to be involved in the processes of cartilage destruction (particularly regarding the glycosaminoglycans). This review will discuss open questions about the contribution of HOCl in RA in order to improve the understanding of oxidative tissue damaging. First, the (chemical) composition of articular cartilage and SF and the mechanisms of cartilage degradation will be discussed. Afterwards, the products released by neutrophils during inflammation will be summarized and their effects towards the individual, most abundant cartilage compounds (collagen, proteoglycans) and selected cellular components (lipids, DNA) discussed. New developments about neutrophil extracellular traps (NETs) and the use of antioxidants as drugs will be outlined, too. Finally, we will try to estimate the effects induced by these different agents and their contributions in RA.
Collapse
Affiliation(s)
- Jenny Leopold
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, 04103 Leipzig, Germany;
| | | |
Collapse
|
2
|
Saengsiwaritt W, Jittikoon J, Chaikledkaew U, Tawonsawatruk T, Honsawek S, Udomsinprasert W. Effect of vitamin D supplementation on circulating level of autophagosome protein LC3A, inflammation, and physical performance in knee osteoarthritis. Clin Transl Sci 2023; 16:2543-2556. [PMID: 37749758 PMCID: PMC10719460 DOI: 10.1111/cts.13646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
Aberrant autophagic activity is observed in osteoarthritic joints. Vitamin D was shown to alleviate not only osteoarthritis severity, but also autophagy process. However, the influence of vitamin D on autophagy in knee osteoarthritis (KOA) remains ambiguous. This study aimed to determine the effect of vitamin D2 on serum levels of autophagosome protein LC3A in patients with KOA and whether LC3A levels were correlated with serum 25-hydroxyvitamin D (25(OH)D) and clinical outcomes of patients with KOA. A total of 165 patients with KOA and 25 healthy controls were recruited. Vitamin D2 (ergocalciferol) was administered to patients with KOA at a weekly dosage of 40,000 IU. Serum LC3A, knee pain and functional scores, muscle strength, physical performance, and biochemical parameters were examined before and after 6 months of vitamin D2 supplementation. Serum LC3A levels were significantly higher in patients with KOA than healthy controls. In patients with KOA, vitamin D2 supplementation significantly decreased serum LC3A levels. Furthermore, baseline levels of serum LC3A were significantly associated with radiographic severity, pain and functional scores, total cholesterol, hs-CRP, IL-6, protein carbonyl, and serum 25(OH)D. After adjusting for established confounders, independent relationships among serum LC3A and radiographic severity, pain and functional scores, total cholesterol, hs-CRP, IL-6, protein carbonyl, and serum 25(OH)D were also observed. Vitamin D2 supplementation was shown to not only decrease serum levels of LC3A, inflammatory markers, as well as oxidative stress, but also improve muscle strength and physical performance in patients with KOA.
Collapse
Affiliation(s)
| | - Jiraphun Jittikoon
- Department of Biochemistry, Faculty of PharmacyMahidol UniversityBangkokThailand
| | - Usa Chaikledkaew
- Social and Administrative Pharmacy Division, Department of Pharmacy, Faculty of PharmacyMahidol UniversityBangkokThailand
- Mahidol University Health Technology Assessment (MUHTA) Graduate ProgramMahidol UniversityBangkokThailand
| | - Tulyapruek Tawonsawatruk
- Department of Orthopedics, Faculty of Medicine, Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Sittisak Honsawek
- Department of Biochemistry, Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyChulalongkorn UniversityBangkokThailand
- Department of Orthopaedics, Vinai Parkpian Orthopaedic Research Center, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyChulalongkorn UniversityBangkokThailand
| | | |
Collapse
|
3
|
Saengsiwaritt W, Ngamtipakon P, Udomsinprasert W. Vitamin D and autophagy in knee osteoarthritis: A review. Int Immunopharmacol 2023; 123:110712. [PMID: 37523972 DOI: 10.1016/j.intimp.2023.110712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Knee osteoarthritis (KOA), the highly prevalent degenerative disease affecting the joint, perpetually devastates the health of the elderly. Of various mechanisms known to participate in KOA etiology, apoptosis of chondrocytes is widely regarded as the primary cause of cartilage degradation. It has been suggested that the induction of autophagy in chondrocytes could potentially prolong the progression of KOA by modulating intracellular metabolic processes, which may be helpful for ameliorating chondrocyte apoptosis and eventual cartilage degeneration. Autophagy, a physiological process characterized by intracellular self-degradation, has been reportedly implicated in various pathologic conditions including KOA. Interestingly, vitamin D has been shown to regulate autophagy in human chondrocytes through multiple pathways, specifically AMPK/mTOR signaling pathway. This observation underscores the potential of vitamin D as a novel approach for restoring the functionality and survivability of chondrocytes in KOA. Supporting vitamin D's clinical significance, previous studies have demonstrated its substantial involvement in the symptoms and irregular joint morphology observed in KOA patients, strengthening potential therapeutic efficacy of vitamin D in treatment of KOA. Herein, the purpose of this review was to determine the mechanisms underlying the multi-processes of vitamin D implicated in autophagy in several cells including chondrocytes, which would bring unique insights into KOA pathogenesis.
Collapse
Affiliation(s)
| | - Phatchana Ngamtipakon
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Wanvisa Udomsinprasert
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
4
|
Amirkhizi F, Ghoreishy SM, Baker E, Hamedi-Shahraki S, Asghari S. The association of vitamin D status with oxidative stress biomarkers and matrix metalloproteinases in patients with knee osteoarthritis. Front Nutr 2023; 10:1101516. [PMID: 36845046 PMCID: PMC9944738 DOI: 10.3389/fnut.2023.1101516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Objective The association of vitamin D status with osteoarthritis (OA) has been demonstrated previously. The current study was performed to examine the association of vitamin D status with oxidative stress markers and matrix metalloproteinases (MMPs) in patients with knee OA. Methods This case-control study was conducted on 124 subjects with mild to moderate knee OA and 65 healthy controls. Demographic data was collected from all participants at baseline. Serum levels of vitamin D as well as markers of oxidative stress including malondialdehyde (MDA), total oxidant status (TOS), superoxide dismutase (SOD), oxidative stress index (OSI), paraoxonase-1 (PON-1), glutathione peroxidase (GPX), catalase (CAT), and total antioxidant capacity (TAC) were evaluated for each participant. Furthermore, serum concentrations of MMP-1, MMP-3, MMP-13, and cartilage oligomeric matrix protein (COMP) were measured. Results The results of the present study indicated that individuals with vitamin D insufficiency had higher levels of MDA, TOS, SOD, and OSI as well as lower levels of PON-1 and TAC. Based on the linear regression analysis, serum vitamin D levels were inversely correlated with MDA, TOS, SOD, OSI, MMP-1, and MMP-13 and positively associated with TAC levels (p < 0.0001). Patients with sufficient vitamin D levels had lower MMP-1 and MMP-13 levels compared to patients with vitamin D insufficiency (p < 0.001 and p < 0.001, respectively). Conclusion Findings from this study showed a strong association between vitamin D deficiency and increased oxidative stress and MMPs activity in patients with knee OA.
Collapse
Affiliation(s)
- Farshad Amirkhizi
- Department of Nutrition, Faculty of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Seyed Mojtaba Ghoreishy
- Department of Clinical Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Emma Baker
- Cabrini Research, Malvern, VIC, Australia
| | - Soudabeh Hamedi-Shahraki
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Somayyeh Asghari
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran,*Correspondence: Somayyeh Asghari, ✉ ; ✉
| |
Collapse
|
5
|
Silva Santos Ribeiro P, Willemen HLDM, Eijkelkamp N. Mitochondria and sensory processing in inflammatory and neuropathic pain. FRONTIERS IN PAIN RESEARCH 2022; 3:1013577. [PMID: 36324872 PMCID: PMC9619239 DOI: 10.3389/fpain.2022.1013577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Rheumatic diseases, such as osteoarthritis and rheumatoid arthritis, affect over 750 million people worldwide and contribute to approximately 40% of chronic pain cases. Inflammation and tissue damage contribute to pain in rheumatic diseases, but pain often persists even when inflammation/damage is resolved. Mechanisms that cause this persistent pain are still unclear. Mitochondria are essential for a myriad of cellular processes and regulate neuronal functions. Mitochondrial dysfunction has been implicated in multiple neurological disorders, but its role in sensory processing and pain in rheumatic diseases is relatively unexplored. This review provides a comprehensive understanding of how mitochondrial dysfunction connects inflammation and damage-associated pathways to neuronal sensitization and persistent pain. To provide an overall framework on how mitochondria control pain, we explored recent evidence in inflammatory and neuropathic pain conditions. Mitochondria have intrinsic quality control mechanisms to prevent functional deficits and cellular damage. We will discuss the link between neuronal activity, mitochondrial dysfunction and chronic pain. Lastly, pharmacological strategies aimed at reestablishing mitochondrial functions or boosting mitochondrial dynamics as therapeutic interventions for chronic pain are discussed. The evidence presented in this review shows that mitochondria dysfunction may play a role in rheumatic pain. The dysfunction is not restricted to neuronal cells in the peripheral and central nervous system, but also includes blood cells and cells at the joint level that may affect pain pathways indirectly. Pre-clinical and clinical data suggest that modulation of mitochondrial functions can be used to attenuate or eliminate pain, which could be beneficial for multiple rheumatic diseases.
Collapse
Affiliation(s)
| | | | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Liu L, Luo P, Yang M, Wang J, Hou W, Xu P. The role of oxidative stress in the development of knee osteoarthritis: A comprehensive research review. Front Mol Biosci 2022; 9:1001212. [PMID: 36203877 PMCID: PMC9532006 DOI: 10.3389/fmolb.2022.1001212] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Knee osteoarthritis (KOA) is one of the most common degenerative diseases, and its core feature is the degeneration and damage of articular cartilage. The cartilage degeneration of KOA is due to the destruction of dynamic balance caused by the activation of chondrocytes by various factors, with oxidative stress playing an important role in the pathogenesis of KOA. The overproduction of reactive oxygen species (ROS) is a result of oxidative stress, which is caused by a redox process that goes awry in the inherent antioxidant defence system of the human body. Superoxide dismutase (SOD) inside and outside chondrocytes plays a key role in regulating ROS in cartilage. Additionally, synovitis is a key factor in the development of KOA. In an inflammatory environment, hypoxia in synovial cells leads to mitochondrial damage, which leads to an increase in ROS levels, which further aggravates synovitis. In addition, oxidative stress significantly accelerates the telomere shortening and ageing of chondrocytes, while ageing promotes the development of KOA, damages the regulation of redox of mitochondria in cartilage, and stimulates ROS production to further aggravate KOA. At present, there are many drugs to regulate the level of ROS, but these drugs still need to be developed and verified in animal models of KOA. We discuss mainly how oxidative stress plays a part in the development of KOA. Although the current research has achieved some results, more research is needed.
Collapse
|
7
|
Hines MR, Goetz JE, Gomez-Contreras PC, Rodman SN, Liman S, Femino EL, Kluz PN, Wagner BA, Buettner GR, Kelley EE, Coleman MC. Extracellular biomolecular free radical formation during injury. Free Radic Biol Med 2022; 188:175-184. [PMID: 35724853 PMCID: PMC9725094 DOI: 10.1016/j.freeradbiomed.2022.06.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/15/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022]
Abstract
Determine if oxidative damage increases in articular cartilage as a result of injury and matrix failure and whether modulation of the local redox environment influences this damage. Osteoarthritis is an age associated disease with no current disease modifying approaches available. Mechanisms of cartilage damage in vitro suggest tissue free radical production could be critical to early degeneration, but these mechanisms have not been described in intact tissue. To assess free radical production as a result of traumatic injury, we measured biomolecular free radical generation via immuno-spin trapping (IST) of protein/proteoglycan/lipid free radicals after a 2 J/cm2 impact to swine articular cartilage explants. This technique allows visualization of free radical formation upon a wide variety of molecules using formalin-fixed, paraffin-embedded approaches. Scoring of extracellular staining by trained, blinded scorers demonstrated significant increases with impact injury, particularly at sites of cartilage cracking. Increases remain in the absence of live chondrocytes but are diminished; thus, they appear to be a cell-dependent and -independent feature of injury. We then modulated the extracellular environment with a pulse of heparin to demonstrate the responsiveness of the IST signal to changes in cartilage biology. Addition of heparin caused a distinct change in the distribution of protein/lipid free radicals at sites of failure alongside a variety of pertinent redox changes related to osteoarthritis. This study directly confirms the production of biomolecular free radicals from articular trauma, providing a rigorous characterization of their formation by injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Paige N Kluz
- University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | |
Collapse
|
8
|
Gui T, Luo L, Chhay B, Zhong L, Wei Y, Yao L, Yu W, Li J, Nelson CL, Tsourkas A, Qin L, Cheng Z. Superoxide dismutase-loaded porous polymersomes as highly efficient antioxidant nanoparticles targeting synovium for osteoarthritis therapy. Biomaterials 2022; 283:121437. [PMID: 35247635 PMCID: PMC8977249 DOI: 10.1016/j.biomaterials.2022.121437] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/04/2022] [Accepted: 02/20/2022] [Indexed: 12/15/2022]
Abstract
Oxidative stress and the reactive oxygen species (ROS) have important roles in osteoarthritis (OA) development and progression. Scavenging ROS by exogenous antioxidant enzymes could be a promising approach for OA treatment. However, the direct use of antioxidant enzymes, such as superoxide dismutase (SOD), is challenging due to a lack of effective drug delivery system to knee joints. This study utilized a highly efficient antioxidative nanoparticle based on SOD-loaded porous polymersome nanoparticles (SOD-NPs) for delivery of SOD to mouse knee joints. The resultant SOD-NPs had prolonged mouse joint retention time with predominant accumulation in synovium but not in articular cartilage. Examining human synovial explants revealed that SOD-NPs minimize oxidative damages induced by OA-like insults. Intra-articular injections of SOD-NPs in mice receiving OA surgery were effective in attenuating OA initiation and preventing its further progression. Mechanistically, SOD-NPs reduced ROS production and the synthesis of catabolic proteases in both articular cartilage and synovium. Hence, our work demonstrates the therapeutic potential of SOD-NPs and indicate that targeting synovium holds a great promise for OA therapy.
Collapse
Affiliation(s)
- Tao Gui
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA; Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Lijun Luo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA; School of Agricultural Engineering, Jiangsu University, Jiangsu, China
| | - Bonirath Chhay
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Leilei Zhong
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yulong Wei
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lutian Yao
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wei Yu
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jun Li
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Charles L Nelson
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Zhiliang Cheng
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Lee JY, Kim M, Oh SB, Kim HY, Kim C, Kim TY, Park YH. Superoxide dismutase 3 prevents early stage diabetic retinopathy in streptozotocin-induced diabetic rat model. PLoS One 2022; 17:e0262396. [PMID: 35015779 PMCID: PMC8751990 DOI: 10.1371/journal.pone.0262396] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose To identify the effects of superoxide dismutase (SOD)3 on diabetes mellitus (DM)-induced retinal changes in a diabetic rat model. Methods Diabetic models were established by a single intraperitoneal injection of streptozotocin (STZ) in Sprague-Dawley rats. After purification of the recombinant SOD3, intravitreal injection of SOD3 was performed at the time of STZ injection, and 1 and 2 weeks following STZ injection. Scotopic and photopic electroretinography (ERG) were recorded. Immunofluorescence staining with ɑ-smooth muscle actin (SMA), glial fibrillary acidic protein (GFAP), pigment epithelium-derived factor (PEDF), Flt1, recoverin, parvalbumin, extracellular superoxide dismutase (SOD3), 8-Hydroxy-2’deoxyguanosine (8-OHdG) and tumor necrosis factor-ɑ (TNF-ɑ) were evaluated. Results In the scotopic ERG, the diabetic group showed reduced a- and b-wave amplitudes compared with the control group. In the photopic ERG, b-wave amplitude showed significant (p < 0.0005) reduction at 8 weeks following DM induction. However, the trend of a- and b-wave reduction was not evident in the SOD3 treated group. GFAP, Flt1, 8-OHdG and TNF-ɑ immunoreactivity were increased, and ɑ-SMA, PEDF and SOD3 immunoreactivity were decreased in the diabetic retina. The immunoreactivity of these markers was partially recovered in the SOD3 treated group. Parvalbumin expression was not decreased in the SOD3 treated group. In the diabetic retinas, the immunoreactivity of recoverin was weakly detected in both of the inner nuclear layer and inner plexiform layer compared to the control group but not in the SOD3 treated group. Conclusions SOD3 treatment attenuated the loss of a/b-wave amplitudes in the diabetic rats, which was consistent with the immunohistochemical evaluation. We also suggest that in rod-dominant rodents, the use of blue on green photopic negative response (PhNR) is effective in measuring the inner retinal function in animal models of diabetic retinopathy. SOD3 treatment ameliorated the retinal Müller cell activation in diabetic rats and pericyte dysfunction. These results suggested that SOD3 exerted protective effects on the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Ji-Yeon Lee
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mirinae Kim
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Su Bin Oh
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hae-Young Kim
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chongtae Kim
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tae-Yoon Kim
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Hoon Park
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
10
|
Borodin SV, Ostapchenko DI, Korotkyi OН, Dvorshchenko KO. INDICATORS OF THE OXIDANT-ANTIOXIDANT SYSTEM IN THE SYNOVIAL FLUID OF PATIENTS WITH OSTEOARTHRITIS AFTER SARS-CoV2 INFECTION. BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2022. [DOI: 10.29254/2077-4214-2022-4-167-125-130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Li X, Wang X, Liu Q, Yan J, Pan D, Wang L, Xu Y, Wang F, Liu Y, Li X, Yang M. ROS-Responsive Boronate-Stabilized Polyphenol-Poloxamer 188 Assembled Dexamethasone Nanodrug for Macrophage Repolarization in Osteoarthritis Treatment. Adv Healthc Mater 2021; 10:e2100883. [PMID: 34137218 DOI: 10.1002/adhm.202100883] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a disabling joint disease associated with chronic inflammation. The polarization of macrophages plays the key role in inflammatory microenvironment of joint which is a therapeutic target for OA treatment. Herein, a boronate-stabilized polyphenol-poloxamer assembled dexamethasone nanodrug with reactive oxygen species (ROS)-responsive drug release behavior and ROS scavenging ability is prepared. Thanks to that, the nanodrug can efficiently inhibit the ROS and nitric oxide production in lipopolysaccharide-activated RAW264.7 macrophages and modulate macrophages M2 polarization at a much lower concentration than free drug dexamethasone. Furthermore, the monosodium iodoacetate-induced OA mice treated with this nanodrug is very similar with the normal mice with the evaluation of body weight and scores including clinical arthritis scores, claw circumference, and kinematics score. The inflammation associated angiogenesis is also reduced which revealed by 68 Ga-labeled arginine-glycine-aspartic acid peptide micro-positron emission tomography imaging. Cartilage degradation and bone erosion in the joints are also inhibited by the nanodrug, along with the inhibition of proinflammatory cytokines. In addition, the biosafety of this nanodrug is also verified. This nanodrug with excellent immunomodulation properties can be used not only for OA therapy but also for other inflammatory diseases associated with excess oxidative stress and macrophage polarization.
Collapse
Affiliation(s)
- Xinxin Li
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Qingfeng Liu
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Lizhen Wang
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Fang Wang
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Yuhang Liu
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Xiaotian Li
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
- Department of Radiopharmaceuticals School of Pharmacy Nanjing Medical University Nanjing 211166 China
| |
Collapse
|
12
|
Matthiesen CL, Hu L, Torslev AS, Poulsen ET, Larsen UG, Kjaer-Sorensen K, Thomsen JS, Brüel A, Enghild JJ, Oxvig C, Petersen SV. Superoxide dismutase 3 is expressed in bone tissue and required for normal bone homeostasis and mineralization. Free Radic Biol Med 2021; 164:399-409. [PMID: 33476796 DOI: 10.1016/j.freeradbiomed.2021.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/22/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
Superoxide dismutase 3 (SOD3) is an extracellular protein with the capacity to convert superoxide into hydrogen peroxide, an important secondary messenger in redox regulation. To investigate the utility of zebrafish in functional studies of SOD3 and its relevance for redox regulation, we have characterized the zebrafish orthologues; Sod3a and Sod3b. Our analyses show that both recombinant Sod3a and Sod3b express SOD activity, however, only Sod3b is able to bind heparin. Furthermore, RT-PCR analyses reveal that sod3a and sod3b are expressed in zebrafish embryos and are present primarily in separate organs in adult zebrafish, suggesting distinct functions in vivo. Surprisingly, both RT-PCR and whole mount in situ hybridization showed specific expression of sod3b in skeletal tissue. To further investigate this observation, we compared femoral bone obtained from wild-type and SOD3-/- mice to determine whether a functional difference was apparent in healthy adult mice. Here we report, that bone from SOD3-/- mice is less mineralized and characterized by significant reduction of cortical and trabecular thickness in addition to reduced mechanical strength. These analyses show that SOD3 plays a hitherto unappreciated role in bone development and homeostasis.
Collapse
Affiliation(s)
| | - Lili Hu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Ebbe T Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Ulrike G Larsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
13
|
Coryell PR, Diekman BO, Loeser RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat Rev Rheumatol 2021; 17:47-57. [PMID: 33208917 PMCID: PMC8035495 DOI: 10.1038/s41584-020-00533-7] [Citation(s) in RCA: 324] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
The development of osteoarthritis (OA) correlates with a rise in the number of senescent cells in joint tissues, and the senescence-associated secretory phenotype (SASP) has been implicated in cartilage degradation and OA. Age-related mitochondrial dysfunction and associated oxidative stress might induce senescence in joint tissue cells. However, senescence is not the only driver of OA, and the mechanisms by which senescent cells contribute to disease progression are not fully understood. Furthermore, it remains uncertain which joint cells and SASP-factors contribute to the OA phenotype. Research in the field has looked at developing therapeutics (namely senolytics and senomorphics) that eliminate or alter senescent cells to stop disease progression and pathogenesis. A better understanding of how senescence contributes to joint dysfunction may enhance the effectiveness of these approaches and provide relief for patients with OA.
Collapse
Affiliation(s)
- Philip R Coryell
- Division of Rheumatology, Allergy, and Immunology, Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Brian O Diekman
- Division of Rheumatology, Allergy, and Immunology, Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Richard F Loeser
- Division of Rheumatology, Allergy, and Immunology, Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Xiao S, Chen L. The emerging landscape of nanotheranostic-based diagnosis and therapy for osteoarthritis. J Control Release 2020; 328:817-833. [PMID: 33176171 DOI: 10.1016/j.jconrel.2020.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a common degenerative disease involving numerous joint tissues and cells, with a growing rate in prevalence that ultimately results in a negative social impact. Early diagnosis, OA progression monitoring and effective treatment are of significant importance in halting OA process. However, traditional imaging techniques lack sensitivity and specificity, which lead to a delay in timely clinical intervention. Additionally, current treatments only slow the progression of OA but have not meet the largely medical need for disease-modifying therapy. In order to overcome the above-mentioned problems and improve clinical efficacy, nanotheranostics has been proposed on OA remedy, which has confirmed success in animal models. In this review, different imaging targets-based nanoprobe for early and timely OA diagnosis is first discussed. Second, therapeutic strategies delivered by nanosystem are summarized as much as possible. Their advantages and the potential for clinical translation are detailed discussed. Third, nanomedicine simultaneously combined with the imaging for OA treatment is introduced. Nanotheranostics dynamically tracked the OA treatment outcomes to timely and individually adjust therapy. Finally, future prospects and challenges of nanotechnology-based OA diagnosis, imaging and treatment are concluded and predicted. It is believed that nanoprobe and nanomedicine will become prospective in OA therapeutic revolution.
Collapse
Affiliation(s)
- Shuyi Xiao
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Liang Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
15
|
Ansari MY, Ahmad N, Haqqi TM. Oxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenols. Biomed Pharmacother 2020; 129:110452. [PMID: 32768946 PMCID: PMC8404686 DOI: 10.1016/j.biopha.2020.110452] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint degenerative disease leading to irreversible structural and functional changes in the joint and is a major cause of disability and reduced life expectancy in ageing population. Despite the high prevalence of OA, there is no disease modifying drug available for the management of OA. Oxidative stress, a result of an imbalance between the production of reactive oxygen species (ROS) and their clearance by antioxidant defense system, is high in OA cartilage and is a major cause of chronic inflammation. Inflammatory mediators, such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) are highly upregulated in OA joints and induce ROS production and expression of matrix degrading proteases leading to cartilage extracellular matrix degradation and joint dysfunction. ROS and inflammation are interdependent, each being the target of other and represent ideal target/s for the treatment of OA. Plant polyphenols possess potent antioxidant and anti-inflammatory properties and can inhibit ROS production and inflammation in chondrocytes, cartilage explants and in animal models of OA. The aim of this review is to discuss the chondroprotective effects of polyphenols and modulation of different molecular pathways associated with OA pathogenesis and limitations and future prospects of polyphenols in OA treatment.
Collapse
Affiliation(s)
- Mohammad Yunus Ansari
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209, ST RT 44, Rootstown, Ohio, 44272, USA.
| | - Nashrah Ahmad
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209, ST RT 44, Rootstown, Ohio, 44272, USA; School of Biomedical Sciences, Kent State University, Kent, Ohio, USA.
| | - Tariq M Haqqi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209, ST RT 44, Rootstown, Ohio, 44272, USA.
| |
Collapse
|
16
|
Liu L, Wang J, Wang H. Hydrogen sulfide alleviates oxidative stress injury and reduces apoptosis induced by MPP + in Parkinson's disease cell model. Mol Cell Biochem 2020; 472:231-240. [PMID: 32577946 DOI: 10.1007/s11010-020-03801-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S), an endogenously produced gas, is a cardioprotective agent against neurotoxin-induced neurodegeneration in Parkinson's disease (PD). However, the roles of H2S in 1-methyl-4-phenylpyridinium ion (MPP+)-treated SH-SY5Y cells with the involvement of reactive oxygen species-nitric oxide (ROS-NO) signaling pathway in PD remain unclear. For this study, a MPP+-treated SH-SY5Y cell model was established to explore the regulatory role of H2S in oxidative stress injury and cell apoptosis. With the cell viability, apoptosis, cytotoxicity, levels of reactive oxygen species (ROS) and nitric oxide (NO), mitochondrial transmembrane potential (Δψm), contents of oxidative stress injury-related markers (glutathione, superoxide dismutase, malondialdehyde), levels of apoptosis-related proteins (Caspase 3, Bax, Bcl-2) and inducible nitric oxide synthase (iNOS) determined, this study demonstrated that NaHS (an H2S donor) treatment could alleviated the reduction of cell viability and cytotoxicity, cell apoptosis, Δψm loss, contents of ROS and NO, and oxidative stress injury induced by MPP+. The present study showed that H2S may protect SH-SY5Y cells from MPP+-induced injury in PD cell model via the inhibition of ROS-NO signaling pathway and provide insight into the potential of H2S for PD therapy.
Collapse
Affiliation(s)
- Lin Liu
- Department of Neurology, Nankai University Affiliated Nankai Hospital, Nankai District, No.6, Changjiang Dao, Tianjin, 300100, People's Republic of China
| | - Jin Wang
- Department of Neurology, Nankai University Affiliated Nankai Hospital, Nankai District, No.6, Changjiang Dao, Tianjin, 300100, People's Republic of China
| | - Heng Wang
- Department of Neurology, Nankai University Affiliated Nankai Hospital, Nankai District, No.6, Changjiang Dao, Tianjin, 300100, People's Republic of China.
| |
Collapse
|
17
|
Polyphenols as Potential Agents in the Management of Temporomandibular Disorders. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155305] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Temporomandibular disorders (TMD) consist of multifactorial musculoskeletal disorders associated with the muscles of mastication, temporomandibular joint (TMJ), and annexed structures. This clinical condition is characterized by temporomandibular pain, restricted mandibular movement, and TMJ synovial inflammation, resulting in reduced quality of life of affected people. Commonly, TMD management aims to reduce pain and inflammation by using pharmacologic therapies that show efficacy in pain relief but their long-term use is frequently associated with adverse effects. For this reason, the use of natural compounds as an effective alternative to conventional drugs appears extremely interesting. Indeed, polyphenols could represent a potential therapeutic strategy, related to their ability to modulate the inflammatory responses involved in TMD. The present work reviews the mechanisms underlying inflammation-related TMD, highlighting the potential role of polyphenols as a promising approach to develop innovative management of temporomandibular diseases.
Collapse
|
18
|
Millican AA, Leatherwood JL, Coverdale JA, Arnold CE, Bradbery AN, Larson CK, Lamprecht ED, White SH, Paulk CB, Welsh TH, Wickersham TA. Evaluation of dietary trace mineral supplementation in young horses challenged with intra-articular lipopolysaccharide. Transl Anim Sci 2020; 4:txaa006. [PMID: 32705007 PMCID: PMC7001113 DOI: 10.1093/tas/txaa006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/14/2020] [Indexed: 11/12/2022] Open
Abstract
Sixteen weanling Quarter Horses (255 ± 22 kg) were utilized in a 56-d trial to evaluate the effects of trace mineral (TM) source on intra-articular inflammation following a single acute inflammatory insult. Horses were stratified by age, sex, and BW and then randomly assigned to dietary treatment: concentrate formulated with Zn, Mn, Cu, and Co as inorganic sources (CON; n = 8) or complexed TMs (CTM; n = 8). Added TM were formulated at iso-levels across treatments and intakes met or exceeded NRC requirements. Horses were offered 1.75% BW (as-fed) of treatment concentrate and 0.75% BW (as-fed) coastal Bermudagrass hay. Growth measurements were collected on days 0, 28, and 56, and plasma was collected biweekly for determination of Mn, Cu, Zn, and Co concentrations. On day 42, carpal joints were randomly assigned to receive injections of 0.5 ng lipopolysaccharide (LPS) or sterile lactated Ringer’s solution (LRS; contralateral control). Synovial fluid was collected at preinjection hours (PIH) 0, and 6, 12, 24, 168, and 336 h post-injection and analyzed for TM concentration, prostaglandin E2 (PGE2), carboxypeptide of type II collagen (CPII), collagenase cleavage neopeptide (C2C), and aggrecan chondroitin sulfate 846 epitope (CS846). Data were analyzed using the MIXED procedure of SAS. Results showed a TM source × LPS × h effect for synovial fluid Co, Cu, and Se (P < 0.05); concentrations of TM peaked at hour 6 and decreased to preinjection values by hour 168 in both CON and CTM–LPS knees. A delayed peak was observed at hour 12 for CTM–LRS. Peak synovial fluid Cu and Se concentrations were higher in LPS knees, and Co was highest in CTM–LPS. A TM source × h interaction was observed for Zn (P < 0.05); concentrations peaked at hour 6 in CON vs. hour 12 for CTM. An LPS × h interaction was observed for Mn (P < 0.01); synovial concentration peaked at hour 6 in LPS knees compared with hour 24 in LRS. Synovial PGE2, C2C, CPII, and CS846 concentrations were greater with LPS (P ≤ 0.01), and C2C was greater (P < 0.01) in CTM compared with CON. Concentrations of CPII and PGE2 were unaffected by diet. A TM source × h × LPS interaction was observed for CS846 (P = 0.02). Concentrations of CS846 in CTM peaked at 12 h, whereas CON peaked at a lower concentration at 24 h (P < 0.05). Data indicate sufficient intake of a complexed TM source may support cartilage metabolism through increased aggrecan synthesis and type II collagen breakdown following an intra-articular LPS challenge in growing horses.
Collapse
Affiliation(s)
| | | | - Josie A Coverdale
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Carolyn E Arnold
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX
| | - Amanda N Bradbery
- Department of Animal Science, Texas A&M University, College Station, TX
| | | | | | - Sarah H White
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Chad B Paulk
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS
| | - Thomas H Welsh
- Department of Animal Science, Texas A&M University, College Station, TX
| | | |
Collapse
|
19
|
Intra-Articular Route for the System of Molecules 14G1862 from Centella Asiatica: Pain Relieving and Protective Effects in a Rat Model of Osteoarthritis. Nutrients 2020; 12:nu12061618. [PMID: 32486519 PMCID: PMC7352185 DOI: 10.3390/nu12061618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
Current pharmacological therapies for the management of chronic articular diseases are far from being satisfactory, so new strategies need to be investigated. We tested the intra-articular pain relieving properties of a system of molecules from a characterized Centella asiatica extract (14G1862) in a rat model of osteoarthritis induced by monoiodoacetate (MIA). 14G1862 (0.2–2 mg mL−1) was intra-articularly (i.a.) injected 7 days after MIA, behavioural and histological evaluations were performed 14, 30 and 60 days after treatments. Moreover, the effect of 14G1862 on nitrate production and iNOS expression in RAW 264.7 macrophages stimulated with LPS was assessed. In vitro, 14G1862 treatment attenuated LPS-induced NO production and iNOS expression in a comparable manner to celecoxib. In vivo, 14G1862 significantly reduced mechanical allodynia and hyperalgesia, spontaneous pain and motor alterations starting on day 14 up to day 60. The efficacy was higher or comparable to that evoked by triamcinolone acetonide (100 μg i.a.) used as reference drug. Histological evaluation highlighted the improvement of several morphological parameters in MIA + 14G1862-treated animals with particularly benefic effects on joint space and fibrin deposition. In conclusion, i.a. treatment with Centella asiatica is a candidate to be a novel effective approach for osteoarthritis therapy.
Collapse
|
20
|
Yan Z, Spaulding HR. Extracellular superoxide dismutase, a molecular transducer of health benefits of exercise. Redox Biol 2020; 32:101508. [PMID: 32220789 PMCID: PMC7109453 DOI: 10.1016/j.redox.2020.101508] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular superoxide dismutase (EcSOD) is the only extracellular scavenger of superoxide anion (O2.-) with unique binding capacity to cell surface and extracellular matrix through its heparin-binding domain. Enhanced EcSOD activity prevents oxidative stress and damage, which are fundamental in a variety of disease pathologies. In this review we will discuss the findings in humans and animal studies supporting the benefits of EcSOD induced by exercise training in reducing oxidative stress in various tissues. In particularly, we will highlight the importance of skeletal muscle EcSOD, which is induced by endurance exercise and redistributed through the circulation to the peripheral tissues, as a molecular transducer of exercise training to confer protection against oxidative stress and damage in various disease conditions.
Collapse
Affiliation(s)
- Zhen Yan
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| | - Hannah R Spaulding
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
21
|
Bourebaba L, Michalak I, Baouche M, Kucharczyk K, Marycz K. Cladophora glomerata methanolic extract promotes chondrogenic gene expression and cartilage phenotype differentiation in equine adipose-derived mesenchymal stromal stem cells affected by metabolic syndrome. Stem Cell Res Ther 2019; 10:392. [PMID: 31847882 PMCID: PMC6916455 DOI: 10.1186/s13287-019-1499-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/01/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chondrogenesis represents a highly dynamic cellular process that leads to the establishment of various types of cartilage. However, when stress-related injuries occur, a rapid and efficient regeneration of the tissues is necessary to maintain cartilage integrity. Mesenchymal stem cells (MSCs) are known to exhibit high capacity for self-renewal and pluripotency effects, and thus play a pivotal role in the repair and regeneration of damaged cartilage. On the other hand, the influence of certain pathological conditions such as metabolic disorders on MSCs can seriously impair their regenerative properties and thus reduce their therapeutic potential. OBJECTIVES In this investigation, we attempted to improve and potentiate the in vitro chondrogenic ability of adipose-derived mesenchymal stromal stem cells (ASCs) isolated from horses suffering from metabolic syndrome. METHODS Cultured cells in chondrogenic-inductive medium supplemented with Cladophora glomerata methanolic extract were experimented for expression of the main genes and microRNAs involved in the differentiation process using RT-PCR, for their morphological changes through confocal and scanning electron microscopy and for their physiological homeostasis. RESULTS The different added concentrations of C. glomerata extract to the basic chondrogenic inductive culture medium promoted the proliferation of equine metabolic syndrome ASCs (ASCsEMS) and resulted in chondrogenic phenotype differentiation and higher mRNA expression of collagen type II, aggrecan, cartilage oligomeric matrix protein, and Sox9 among others. The results reveal an obvious inhibitory effect of hypertrophy and a strong repression of miR-145-5p, miR-146-3p, and miR-34a and miR-449a largely involved in cartilage degradation. Treated cells additionally exhibited significant reduced apoptosis and oxidative stress, as well as promoted viability and mitochondrial potentiation. CONCLUSION Chondrogenesis in EqASCsEMS was found to be prominent after chondrogenic induction in conditions containing C. glomerata extract, suggesting that the macroalgae could be considered for the enhancement of ASC cultures and their reparative properties.
Collapse
Affiliation(s)
- Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
- International Institute of Translational Medicine, Jesionowa, 11, Wisznia Mała, 55-114, Malin, Poland
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Meriem Baouche
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
- International Institute of Translational Medicine, Jesionowa, 11, Wisznia Mała, 55-114, Malin, Poland
| | - Katarzyna Kucharczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland.
- International Institute of Translational Medicine, Jesionowa, 11, Wisznia Mała, 55-114, Malin, Poland.
- Collegium Medicum, Institute of Medical Science, Cardinal Stefan Wyszyński University (UKSW), Wóycickiego 1/3, 01-938, Warsaw, Poland.
| |
Collapse
|
22
|
Kumar S, Adjei IM, Brown SB, Liseth O, Sharma B. Manganese dioxide nanoparticles protect cartilage from inflammation-induced oxidative stress. Biomaterials 2019; 224:119467. [PMID: 31557589 PMCID: PMC7025913 DOI: 10.1016/j.biomaterials.2019.119467] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/25/2019] [Accepted: 08/31/2019] [Indexed: 01/10/2023]
Abstract
Oxidative stress has been implicated in the pathogenesis of osteoarthritis and has become an important therapeutic target. Investigations of various antioxidant supplements, reactive oxidative species (ROS) pathway mediators, and free radical scavengers for treating osteoarthritis have demonstrated common disadvantages including poor bioavailability and stability, as well as rapid joint clearance or release profiles from delivery vehicles. Moreover, these therapies do not target cartilage, which irreversibly degenerates in the presence of oxidative stress. The goal of this study was to engineer a nanoparticle system capable of sustained retention in the joint space, localization to cartilage, and mitigation of oxidative stress. Towards this goal, ROS scavenging manganese dioxide nanoparticles with physicochemical properties (less than 20 nm and cationic) that facilitate their uptake into cartilage were developed and characterized. These particles penetrated through the depth of cartilage explants and were found both in the extracellular matrix as well as intracellularly within the resident chondrocytes. Furthermore, the particles demonstrated chondroprotection of cytokine-challenged cartilage explants by reducing the loss of glycosaminoglycans and release of nitric oxide. Quantitative PCR analysis revealed that the particles mitigated impacts of oxidative stress related genes in cytokine-challenged chondrocytes. When injected intra-articularly into rats, the particles persisted in the joint space over one week, with 75% of the initial signal remaining in the joint. Biodistribution and histological analysis revealed accumulation of particles at the chondral surfaces and colocalization of the particles with the lacunae of chondrocytes. The results suggest that the manganese dioxide nanoparticles could be a promising approach for the chondroprotection of osteoarthritic cartilage.
Collapse
Affiliation(s)
- Shreedevi Kumar
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville, FL 32611-6131, USA
| | - Isaac M Adjei
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville, FL 32611-6131, USA
| | - Shannon B Brown
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville, FL 32611-6131, USA
| | - Olivia Liseth
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville, FL 32611-6131, USA
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville, FL 32611-6131, USA.
| |
Collapse
|
23
|
Garrido-Suárez BB, Garrido G, Piñeros O, Delgado-Hernández R. Mangiferin: Possible uses in the prevention and treatment of mixed osteoarthritic pain. Phytother Res 2019; 34:505-525. [PMID: 31755173 DOI: 10.1002/ptr.6546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) pain has been proposed to be a mixed pain state, because in some patients, central nervous system factors are superimposed upon the more traditional peripheral factors. In addition, a considerable amount of preclinical and clinical evidence has shown that, accompanying the central neuroplasticity changes and partially driven by a peripheral nociceptive input, a real neuropathic component occurs that are particularly linked to disease severity and progression. Hence, innovative strategies targeting neuroprotection and particularly neuroinflammation to prevent and treat OA pain could be introduced. Mangiferin (MG) is a glucosylxanthone that is broadly distributed in higher plants, such as Mangifera indica L. Previous studies have documented its analgesic, anti-inflammatory, antioxidant, neuroprotective, and immunomodulatory properties. In this paper, we propose its potential utility as a multitargeted compound for mixed OA pain, even in the context of multimodal pharmacotherapy. This hypothesis is supported by three main aspects: the cumulus of preclinical evidence around this xanthone, some preliminary clinical results using formulations containing MG in clinical musculoskeletal or neuropathic pain, and by speculations regarding its possible mechanism of action according to recent advances in OA pain knowledge.
Collapse
Affiliation(s)
- Bárbara B Garrido-Suárez
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
| | - Gabino Garrido
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Octavio Piñeros
- Departamento de Investigaciones, Universidad de Santiago de Cali, Cali, Colombia
| | - René Delgado-Hernández
- Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, Havana, Cuba
| |
Collapse
|
24
|
Anti-oxidative effects of superoxide dismutase 3 on inflammatory diseases. J Mol Med (Berl) 2019; 98:59-69. [PMID: 31724066 DOI: 10.1007/s00109-019-01845-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/16/2019] [Accepted: 10/16/2019] [Indexed: 01/16/2023]
Abstract
Free radicals and other oxidants are critical determinants of the cellular signaling pathways involved in the pathogenesis of several human diseases including inflammatory diseases. Numerous studies have demonstrated the protective effects of antioxidant enzymes during inflammation by elimination of free radicals. The superoxide dismutase (SOD), an antioxidant enzyme, plays an essential pathogenic role in the inflammatory diseases by not only catalyzing the conversion of the superoxide to hydrogen peroxide and oxygen but also affecting immune responses. There are three distinct isoforms of SOD, which distribute in different cellular compartments such as cytosolic SOD1, mitochondrial SOD2, and extracellular SOD3. Many studies have investigated the anti-oxidative effects of SOD3 in the inflammatory diseases. Herein, in this review, we focus on the current understanding of SOD3 as a therapeutic protein in inflammatory diseases such as skin, autoimmune, lung, and cardiovascular inflammatory diseases. Moreover, the mechanism(s) by which SOD3 modulates immune responses and signal initiation in the pathogenesis of the diseases will be further discussed.
Collapse
|
25
|
Martins JB, Mendonça VA, Aguiar GC, da Fonseca SF, Dos Santos JM, Tossige-Gomes R, Melo DDS, Oliveira MX, Leite HR, Camargos ACR, Ferreira AJ, Coimbra CC, Poortmans J, Oliveira VC, Silva SB, Domingues TE, Bernardo-Filho M, Lacerda ACR. Effect of a Moderate-Intensity Aerobic Training on Joint Biomarkers and Functional Adaptations in Rats Subjected to Induced Knee Osteoarthritis. Front Physiol 2019; 10:1168. [PMID: 31620012 PMCID: PMC6759700 DOI: 10.3389/fphys.2019.01168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/29/2019] [Indexed: 01/06/2023] Open
Abstract
Background Knee osteoarthritis (kOA) is a common chronic disease that induces changes in redox status and inflammatory biomarkers, cell death, and motor impairment. Aerobic training can be a non-pharmacological alternative to prevent the progression of the disease. Objective To evaluate the effects of an 8 weeks moderate-intensity treadmill aerobic training program on redox status and inflammatory biomarkers and motor performance in kOA-like changes induced by monosodium iodoacetate (MIA) in rats. Methods Twenty-seven rats were randomly divided into three groups: SHAM; induced kOA (OA); and induced kOA + aerobic training (OAE). Motor performance was evaluated by the number of falls on rotarod test, the total time of displacement and the number of failures on a 100 cm footbridge. Data for cytokines and histology were investigated locally, whereas plasma was used for redox status biomarkers. Results The OA group, compared to the SHAM group, increased 1.13 times the total time of displacement, 6.05 times the number of failures, 2.40 times the number of falls. There was also an increase in cytokine and in thiobarbituric acid reactive substances (TBARS) (IL1β: 5.55-fold, TNF: 2.84-fold, IL10: 1.27-fold, IL6: 1.50-fold, TBARS: 1.14-fold), and a reduction of 6.83% in the total antioxidant capacity (FRAP), and of 35% in the number of chondrocytes. The aerobic training improved the motor performance in all joint function tests matching to SHAM scores. Also, it reduced inflammatory biomarkers and TBARS level at values close to those of the SHAM group, with no change in FRAP level. The number of falls was explained by IL1β and TNF (58%), and the number of failures and the total time of displacement were also explained by TNF (29 and 21%, respectively). Conclusion All findings indicate the efficacy of moderate-intensity aerobic training to regulate inflammatory biomarkers associated with improved motor performance in induced kOA-like changes, thus preventing the loss of chondrocytes.
Collapse
Affiliation(s)
- Jeanne Brenda Martins
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Vanessa Amaral Mendonça
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil.,Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Grazielle Cordeiro Aguiar
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sueli Ferreira da Fonseca
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Jousielle Márcia Dos Santos
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Rosalina Tossige-Gomes
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Dirceu de Sousa Melo
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Murilo Xavier Oliveira
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Hércules Ribeiro Leite
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | | | - Anderson José Ferreira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Cândido Celso Coimbra
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Jacques Poortmans
- Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Vinícius Cunha Oliveira
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Sara Barros Silva
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Talita Emanuela Domingues
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Mário Bernardo-Filho
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil.,Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| |
Collapse
|
26
|
Chen T, Zou H, Wu X, Chen Y, Situ B, Zheng L, Yang G. Fullerene-like MoS 2 Nanoparticles as Cascade Catalysts Improving Lubricant and Antioxidant Abilities of Artificial Synovial Fluid. ACS Biomater Sci Eng 2019; 5:3079-3088. [PMID: 33405540 DOI: 10.1021/acsbiomaterials.9b00372] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Intraarticular injection of hyaluronic acid (HA) for viscosupplementation is a nonsurgical therapy for osteoarthritis (OA). However, HA fails to lubricate under a significant load and tends to be depolymerized by the overproduction of reactive oxygen species (ROS) in inflammation. Here, we for the first time reported that fullerene-like MoS2 (F-MoS2) nanoparticles are efficient lubricants and antioxidants for artificial synovial fluid. A model of arthrosis was built, to evaluate the tribological behavior of F-MoS2 nanoparticles. The tests showed that they significantly improve the antiwear and friction-reducing abilities of the artificial synovial fluid. More importantly, the F-MoS2 nanoparticles possess intrinsic dual-enzyme-like activity, mimicking superoxide dismutases (SOD) and catalases (CAT) under physiological conditions (pH 7.4, 25 °C). By coupling of these unique properties, a self-organized cascade catalytic system was constructed, which includes the disproportionation of superoxide radicals (O2•-) to hydrogen peroxide (H2O2) and subsequently the disproportionation of H2O2 into oxygen (O2). The effectiveness of the detox system was evaluated by human umbilical vein endothelial cells (HUVEC) models exposed to oxidative stress. After that, F-MoS2 nanoparticles were used to regulate the ROS level in artificial synovial fluid containing HA. Relative viscosity measurements showed the excellent protective effect of F-MoS2 nanoparticles against HA oxidative damage offered by O2•-. These results indicate that F-MoS2 nanoparticles are promising candidates for treatment of OA and other diseases caused by lubrication deficiency or oxidative stress.
Collapse
Affiliation(s)
- Tongming Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, School of Physics, Sun Yat-sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - Hang Zou
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Xiaoju Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, School of Physics, Sun Yat-sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - Yuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, School of Physics, Sun Yat-sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, School of Physics, Sun Yat-sen University, Guangzhou 510275, Guangdong, People's Republic of China
| |
Collapse
|
27
|
Shi Y, Hu X, Cheng J, Zhang X, Zhao F, Shi W, Ren B, Yu H, Yang P, Li Z, Liu Q, Liu Z, Duan X, Fu X, Zhang J, Wang J, Ao Y. A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development. Nat Commun 2019; 10:1914. [PMID: 31015473 PMCID: PMC6478911 DOI: 10.1038/s41467-019-09839-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 04/03/2019] [Indexed: 01/08/2023] Open
Abstract
Degradation of extracellular matrix (ECM) underlies loss of cartilage tissue in osteoarthritis, a common disease for which no effective disease-modifying therapy currently exists. Here we describe BNTA, a small molecule with ECM modulatory properties. BNTA promotes generation of ECM components in cultured chondrocytes isolated from individuals with osteoarthritis. In human osteoarthritic cartilage explants, BNTA treatment stimulates expression of ECM components while suppressing inflammatory mediators. Intra-articular injection of BNTA delays the disease progression in a trauma-induced rat model of osteoarthritis. Furthermore, we identify superoxide dismutase 3 (SOD3) as a mediator of BNTA activity. BNTA induces SOD3 expression and superoxide anion elimination in osteoarthritic chondrocyte culture, and ectopic SOD3 expression recapitulates the effect of BNTA on ECM biosynthesis. These observations identify SOD3 as a relevant drug target, and BNTA as a potential therapeutic agent in osteoarthritis.
Collapse
Affiliation(s)
- Yuanyuan Shi
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 100191, Beijing, China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 100191, Beijing, China
| | - Jin Cheng
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 100191, Beijing, China
| | - Xin Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 100191, Beijing, China
| | - Fengyuan Zhao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 100191, Beijing, China
| | - Weili Shi
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 100191, Beijing, China
| | - Bo Ren
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 100191, Beijing, China
| | - Huilei Yu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 100191, Beijing, China
| | - Peng Yang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 100191, Beijing, China
| | - Zong Li
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 100191, Beijing, China
| | - Qiang Liu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 100191, Beijing, China
| | - Zhenlong Liu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 100191, Beijing, China
| | - Xiaoning Duan
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 100191, Beijing, China
| | - Xin Fu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 100191, Beijing, China
| | - Jiying Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 100191, Beijing, China
| | - Jianquan Wang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 100191, Beijing, China.
| | - Yingfang Ao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 100191, Beijing, China.
| |
Collapse
|
28
|
Rossaneis AC, Longhi-Balbinot DT, Bertozzi MM, Fattori V, Segato-Vendrameto CZ, Badaro-Garcia S, Zaninelli TH, Staurengo-Ferrari L, Borghi SM, Carvalho TT, Bussmann AJC, Gouveia FS, Lopes LGF, Casagrande R, Verri WA. [Ru(bpy) 2(NO)SO 3](PF 6), a Nitric Oxide Donating Ruthenium Complex, Reduces Gout Arthritis in Mice. Front Pharmacol 2019; 10:229. [PMID: 30914954 PMCID: PMC6423075 DOI: 10.3389/fphar.2019.00229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/22/2019] [Indexed: 12/15/2022] Open
Abstract
Monosodium urate crystals (MSU) deposition induces articular inflammation known as gout. This disease is characterized by intense articular inflammation and pain by mechanisms involving the activation of the transcription factor NFκB and inflammasome resulting in the production of cytokines and oxidative stress. Despite evidence that MSU induces iNOS expression, there is no evidence on the effect of nitric oxide (NO) donors in gout. Thus, the present study evaluated the effect of the ruthenium complex donor of NO {[Ru(bpy)2(NO)SO3](PF6)} (complex I) in gout arthritis. Complex I inhibited in a dose-dependent manner MSU-induced hypersensitivity to mechanical stimulation, edema and leukocyte recruitment. These effects were corroborated by a decrease of histological inflammation score and recruitment of Lysm-eGFP+ cells. Mechanistically, complex I inhibited MSU-induced mechanical hypersensitivity and joint edema by triggering the cGMP/PKG/ATP-sensitive K (+) channels signaling pathway. Complex I inhibited MSU-induced oxidative stress and pro-inflammatory cytokine production in the knee joint. These data were supported by the observation that complex I inhibited MSU-induced NFκB activation, and IL-1β expression and production. Complex I also inhibited MSU-induced activation of pro-IL-1β processing. Concluding, the present data, to our knowledge, is the first evidence that a NO donating ruthenium complex inhibits MSU-induced articular inflammation and pain. Further, complex I targets the main physiopathological mechanisms of gout arthritis. Therefore, it is envisaged that complex I and other NO donors have therapeutic potential that deserves further investigation.
Collapse
Affiliation(s)
- Ana C Rossaneis
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Daniela T Longhi-Balbinot
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Mariana M Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Carina Z Segato-Vendrameto
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Stephanie Badaro-Garcia
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Larissa Staurengo-Ferrari
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Sergio M Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Thacyana T Carvalho
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Allan J C Bussmann
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Florêncio S Gouveia
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
| | - Luiz G F Lopes
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, University Hospital (Health Science Centre), Londrina State University, Londrina, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| |
Collapse
|
29
|
Lepetsos P, Papavassiliou KA, Papavassiliou AG. Redox and NF-κB signaling in osteoarthritis. Free Radic Biol Med 2019; 132:90-100. [PMID: 30236789 DOI: 10.1016/j.freeradbiomed.2018.09.025] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 02/07/2023]
Abstract
Human cells have to deal with the constant production of reactive oxygen species (ROS). Although ROS overproduction might be harmful to cell biology, there are plenty of data showing that moderate levels of ROS control gene expression by maintaining redox signaling. Osteoarthritis (OA) is the most common joint disorder with a multi-factorial etiology including overproduction of ROS. ROS overproduction in OA modifies intracellular signaling, chondrocyte life cycle, metabolism of cartilage matrix and contributes to synovial inflammation and dysfunction of the subchondral bone. In arthritic tissues, the NF-κB signaling pathway can be activated by pro-inflammatory cytokines, mechanical stress, and extracellular matrix degradation products. This activation results in regulation of expression of many cytokines, inflammatory mediators, transcription factors, and several matrix-degrading enzymes. Overall, NF-κB signaling affects cartilage matrix remodeling, chondrocyte apoptosis, synovial inflammation, and has indirect stimulatory effects on downstream regulators of terminal chondrocyte differentiation. Interaction between redox signaling and NF-κB transcription factors seems to play a distinctive role in OA pathogenesis.
Collapse
Affiliation(s)
- Panagiotis Lepetsos
- Fourth Department of Orthopaedics & Trauma, 'KAT' General Hospital, Kifissia, 14561 Athens, Greece
| | - Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece.
| |
Collapse
|
30
|
Bolduc JA, Collins JA, Loeser RF. Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic Biol Med 2019; 132:73-82. [PMID: 30176344 PMCID: PMC6342625 DOI: 10.1016/j.freeradbiomed.2018.08.038] [Citation(s) in RCA: 361] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/07/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
Chondrocytes are responsible for the maintenance of the articular cartilage. A loss of homeostasis in cartilage contributes to the development of osteoarthritis (OA) when the synthetic capacity of chondrocytes is overwhelmed by processes that promote matrix degradation. There is evidence for an age-related imbalance in reactive oxygen species (ROS) production relative to the anti-oxidant capacity of chondrocytes that plays a role in cartilage degradation as well as chondrocyte cell death. The ROS produced by chondrocytes that have received the most attention include superoxide, hydrogen peroxide, the reactive nitrogen species nitric oxide, and the nitric oxide derived product peroxynitrite. Excess levels of these ROS not only cause oxidative-damage but, perhaps more importantly, cause a disruption in cell signaling pathways that are redox-regulated, including Akt and MAP kinase signaling. Age-related mitochondrial dysfunction and reduced activity of the mitochondrial superoxide dismutase (SOD2) are associated with an increase in mitochondrial-derived ROS and are in part responsible for the increase in chondrocyte ROS with age. Peroxiredoxins (Prxs) are a key family of peroxidases responsible for removal of H2O2, as well as for regulating redox-signaling events. Prxs are inactivated by hyperoxidation. An age-related increase in chondrocyte Prx hyperoxidation and an increase in OA cartilage has been noted. The finding in mice that deletion of SOD2 or the anti-oxidant gene transcriptional regulator nuclear factor-erythroid 2- related factor (Nrf2) result in more severe OA, while overexpression or treatment with mitochondrial targeted anti-oxidants reduces OA, further support a role for excessive ROS in the pathogenesis of OA. Therefore, new therapeutic strategies targeting specific anti-oxidant systems including mitochondrial ROS may be of value in reducing the progression of age-related OA.
Collapse
Affiliation(s)
- Jesalyn A Bolduc
- Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - John A Collins
- Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Richard F Loeser
- Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
31
|
Shi Y, Hu X, Zhang X, Cheng J, Duan X, Fu X, Zhang J, Ao Y. Superoxide dismutase 3 facilitates the chondrogenesis of bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 2019; 509:983-987. [PMID: 30654942 DOI: 10.1016/j.bbrc.2019.01.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 01/27/2023]
Abstract
Articular cartilage defects are considered a major clinical problem because they cannot heal by themselves. To date, bone marrow-derived mesenchymal stem cells (BMSCs)-based therapy has been widely applied for cartilage repair. However, fibrocartilage was often generated after BMSC therapy; therefore, there is an urgent need to stimulate and maintain BMSCs chondrogenic differentiation. The specific role of superoxide dismutase 3 (SOD3) in chondrogenesis is unknown; therefore, the present study aimed to clarify whether SOD3 could facilitate the chondrogenic differentiation of BMSCs. We first evaluated SOD3 protein levels during chondrogenesis of BMSCs using plate cultures. We then tested whether SOD3 could facilitate chondrogenesis of BMSCs using knockdown or overexpression experiments. Increased SOD3 protein levels were observed during BMSCs chondrogenesis. SOD3 knockdown inhibited collagen type II alpha 1 chain (COL2A1), aggrecan (ACAN), and SRY-box 9 (SOX9) expression. Overexpression of SOD3 increased the levels of chondrogenesis markers (COL2A1, ACAN, and SOX9). Elevated superoxide anions were observed when SOD3 was knocked down. We concluded that SOD3 could facilitate chondrogenesis of BMSCs to improve cartilage regeneration.
Collapse
Affiliation(s)
- Yuanyuan Shi
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Xin Zhang
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Jin Cheng
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Xiaoning Duan
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Xin Fu
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Jiying Zhang
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Yingfang Ao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.
| |
Collapse
|
32
|
Yamada EF, Salgueiro AF, Goulart ADS, Mendes VP, Anjos BL, Folmer V, da Silva MD. Evaluation of monosodium iodoacetate dosage to induce knee osteoarthritis: Relation with oxidative stress and pain. Int J Rheum Dis 2018; 22:399-410. [PMID: 30585422 DOI: 10.1111/1756-185x.13450] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/23/2018] [Accepted: 11/08/2018] [Indexed: 12/25/2022]
Abstract
AIM To determine the dose of monosodium iodoacetate (MIA) required to induce oxidative stress, as well as pain and edema; to confirm the induction of knee osteoarthritis (OA) symptoms in rats by the presence of reactive oxygen species (ROS) and reduction of antioxidant agents; and to verify the presence of histopathological injury in these affected joints. METHOD Biological markers of oxidative stress, pain, knee edema, and cartilage degeneration provided by different doses of MIA (0.5; 1.0 or 1.5 mg) in rat knee joints were analyzed. The animal evaluations were conducted during 15 days for mechanical and cold hypersensitivity, spontaneous pain and edema. After that, blood serum, intra-articular lavage and structures of knee, spinal cord and brainstem were collected for biochemical analysis; moreover, the knees were removed for histological evaluation. RESULTS This study demonstrates that the highest dose of MIA (1.5 mg) increased the oxidative stress markers and reduced the antioxidant reactions, both in the focus of the lesion and in distant sites. MIA also induced the inflammatory process, characterized by pain, edema, increase in neutrophil count and articular damage. CONCLUSION This model provides a basis for the exploration of underlying mechanisms in OA and the identification of mechanisms that may guide therapy and the discovery of OA signals and symptoms.
Collapse
Affiliation(s)
- Eloá Ferreira Yamada
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa (Unipampa), Uruguaiana, Brazil
| | | | - Aline da Silva Goulart
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa (Unipampa), Uruguaiana, Brazil
| | - Vanessa Pereira Mendes
- Veterinary Pathology Laboratory, Universidade Federal do Pampa (Unipampa), Uruguaiana, Brazil
| | - Bruno Leite Anjos
- Veterinary Pathology Laboratory, Universidade Federal do Pampa (Unipampa), Uruguaiana, Brazil
| | - Vanderlei Folmer
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa (Unipampa), Uruguaiana, Brazil
| | - Morgana Duarte da Silva
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa (Unipampa), Uruguaiana, Brazil
| |
Collapse
|
33
|
Rieder B, Weihs AM, Weidinger A, Szwarc D, Nürnberger S, Redl H, Rünzler D, Huber-Gries C, Teuschl AH. Hydrostatic pressure-generated reactive oxygen species induce osteoarthritic conditions in cartilage pellet cultures. Sci Rep 2018; 8:17010. [PMID: 30451865 PMCID: PMC6242959 DOI: 10.1038/s41598-018-34718-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/22/2018] [Indexed: 11/24/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common causes of disability and represents a major socio-economic burden. Despite intensive research, the molecular mechanisms responsible for the initiation and progression of OA remain inconclusive. In recent years experimental findings revealed elevated levels of reactive oxygen species (ROS) as a major factor contributing to the onset and progression of OA. Hence, we designed a hydrostatic pressure bioreactor system that is capable of stimulating cartilage cell cultures with elevated ROS levels. Increased ROS levels in the media did not only lead to an inhibition of glycosaminoglycans and collagen II formation but also to a reduction of already formed glycosaminoglycans and collagen II in chondrogenic mesenchymal stem cell pellet cultures. These effects were associated with the elevated activity of matrix metalloproteinases as well as the increased expression of several inflammatory cytokines. ROS activated different signaling pathways including PI3K/Akt and MAPK/ERK which are known to be involved in OA initiation and progression. Utilizing the presented bioreactor system, an OA in vitro model based on the generation of ROS was developed that enables the further investigation of ROS effects on cartilage degradation but can also be used as a versatile tool for anti-oxidative drug testing.
Collapse
Affiliation(s)
- Bernhard Rieder
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria
| | - Anna M Weihs
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria
| | - Dorota Szwarc
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria
| | - Sylvia Nürnberger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200, Vienna, Austria.,Department of Orthopedics and Trauma-Surgery, Division of Trauma-Surgery, Medical University of Vienna, 1090, Vienna, Austria.,University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria
| | - Dominik Rünzler
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria
| | - Carina Huber-Gries
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria
| | - Andreas H Teuschl
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200, Vienna, Austria. .,Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria.
| |
Collapse
|
34
|
Koike M, Nojiri H, Kanazawa H, Yamaguchi H, Miyagawa K, Nagura N, Banno S, Iwase Y, Kurosawa H, Kaneko K. Superoxide dismutase activity is significantly lower in end-stage osteoarthritic cartilage than non-osteoarthritic cartilage. PLoS One 2018; 13:e0203944. [PMID: 30222787 PMCID: PMC6141073 DOI: 10.1371/journal.pone.0203944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
Abstract
Recent studies have shown that superoxide dismutase 1 (SOD1), SOD2, and SOD3 are significantly decreased in human osteoarthritic cartilage. SOD activity is a marker that can be used to comprehensively evaluate the enzymatic capacities of SOD1, SOD2, and SOD3; however, the trend of SOD activity in end-stage osteoarthritic tissues remains unknown. In the present study, we found that SOD activity in end-stage osteoarthritic synovium of the knee was significantly lower than that in control synovium without the influence of age. The SOD activity was significantly lower in the end-stage knee osteoarthritic cartilage than in the control, but a weak negative correlation was observed between aging and SOD activity. However, SOD activity in end-stage hip osteoarthritic cartilage was significantly lower than that in control cartilage without the influence of aging. The relationship between osteoarthritis and SOD activity was stronger than the relationship between aging and SOD activity. These results indicate that direct regulation of SOD activity in joint tissues may lead to suppression of osteoarthritis progression.
Collapse
Affiliation(s)
- Masato Koike
- Department of Orthopaedic Surgery, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | - Hidetoshi Nojiri
- Department of Orthopaedic Surgery, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
- * E-mail:
| | - Hiroaki Kanazawa
- Department of Orthopaedic Surgery, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | - Hiroto Yamaguchi
- Department of Orthopaedic Surgery, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | - Kei Miyagawa
- Department of Orthopaedic Surgery, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | - Nana Nagura
- Department of Orthopaedic Surgery, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | - Sammy Banno
- Department of Orthopaedic Surgery, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | - Yoshiyuki Iwase
- Department of Orthopaedic Surgery, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | - Hisashi Kurosawa
- Department of Orthopaedic Surgery, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | - Kazuo Kaneko
- Department of Orthopaedic Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Kuyumcu F, Aycan A. Evaluation of Oxidative Stress Levels and Antioxidant Enzyme Activities in Burst Fractures. Med Sci Monit 2018; 24:225-234. [PMID: 29324724 PMCID: PMC5772452 DOI: 10.12659/msm.908312] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Spinal burst fractures are pathologies that occur in spinal injuries and cause significant mortality and morbidity as a result. Burst fractures in spinal cord injuries can result in rapid and significant oxidative stress. In addition to the primary injury in severe spinal cord injuries, subsequent secondary lesions are mainly due to inflammatory cascade activation and excessive production of free radicals. This study evaluated oxidative stress and antioxidant enzyme levels in burst fractures. MATERIAL AND METHODS Twenty patients with burst fractures were diagnosed and underwent surgery and 20 healthy control subjects were included in the study. Neurological status was evaluated using the American Spine Injury Association Impairment Scale (ASIA) before and after surgery. Neurological function was scored as ASIA A: complete deficits, ASIA B-D: incomplete deficits, and ASIA E: neurologically intact. Spectrophotometry was performed to measure malondialdehyde (MDA) and low glutathione (GSH), glutathione peroxidase (GPx) levels, which represent lipid peroxide content. Evaluations were performed within 2 days after injury in the patients. RESULTS MDA levels were higher in the burst fracture group (p<0.001), whereas GSH and SOD activities were higher in the control group (both p<0.001). There was no statistically significant difference in GPx levels between the groups (p=0.482). CONCLUSIONS Oxidative stress appears to be related to burst fractures. Considering the importance of burst fractures in spinal cord injuries, a better understanding of these mechanisms may help in defining the role of oxidative stress after burst fractures. Prospective, randomized, controlled trials may reveal new therapeutic approaches that include antioxidants for explosive fractures focusing on oxidative stress.
Collapse
|
36
|
Coleman MC, Brouillette MJ, Andresen NS, Oberley-Deegan RE, Martin JM. Differential Effects of Superoxide Dismutase Mimetics after Mechanical Overload of Articular Cartilage. Antioxidants (Basel) 2017; 6:E98. [PMID: 29189731 PMCID: PMC5745508 DOI: 10.3390/antiox6040098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 01/17/2023] Open
Abstract
Post-traumatic osteoarthritis can develop as a result of the initial mechanical impact causing the injury and also as a result of chronic changes in mechanical loading of the joint. Aberrant mechanical loading initiates excessive production of reactive oxygen species, oxidative damage, and stress that appears to damage mitochondria in the surviving chondrocytes. To probe the benefits of increasing superoxide removal with small molecular weight superoxide dismutase mimetics under severe loads, we applied both impact and overload injury scenarios to bovine osteochondral explants using characterized mechanical platforms with and without GC4403, MnTE-2-PyP, and MnTnBuOE-2-PyP. In impact scenarios, each of these mimetics provides some dose-dependent protection from cell death and loss of mitochondrial content while in repeated overloading scenarios only MnTnBuOE-2-PyP provided a clear benefit to chondrocytes. These results support the hypothesis that superoxide is generated in excess after impact injuries and suggest that superoxide production within the lipid compartment may be a critical mediator of responses to chronic overload. This is an important nuance distinguishing roles of superoxide, and thus superoxide dismutases, in mediating damage to cellular machinery in hyper-acute impact scenarios compared to chronic scenarios.
Collapse
Affiliation(s)
- Mitchell C Coleman
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA 52242, USA.
| | - Marc J Brouillette
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA 52242, USA.
| | - Nicholas S Andresen
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA 52242, USA.
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - James M Martin
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
37
|
Morales-Prieto N, Abril N. REDOX proteomics reveals energy metabolism alterations in the liver of M. spretus mice exposed to p, p'-DDE. CHEMOSPHERE 2017; 186:848-863. [PMID: 28826133 DOI: 10.1016/j.chemosphere.2017.08.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/27/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
The toxicity induced by the pesticide 2,2-bis(p-chlorophenyl)-1,1,1,-trichloroethane (DDT) and its derivative 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE) has been associated with mitochondrial dysfunction, uncoupling of oxidative phosphorylation and respiratory chain electron transport, intracellular ion imbalance, generation of reactive oxygen species and impairment of the antioxidant defense system. A disruption in the cellular redox status causes protein Cys-based regulatory shifts that influence the activity of many proteins and trigger signal transduction alterations. Here, we analyzed the ability of p,p'-DDE to alter the activities of hepatic antioxidants and glycolytic enzymes to investigate the oxidative stress generation in the liver of p,p'-DDE-fed M. spretus mice. We also determined the consequences of the treatment on the redox status in the thiol Cys groups. The data indicate that the liver of p,p'-DDE exposed mice lacks certain protective enzymes, and p,p'-DDE caused a metabolic reprogramming that increased the glycolytic rate and disturbed the metabolism of lipids. Our results suggested that the overall metabolism of the liver was altered because important signaling pathways are controlled by p,p'-DDE-deregulated proteins. The histological data support the proposed metabolic consequences of the p,p'-DDE exposure.
Collapse
Affiliation(s)
- Noelia Morales-Prieto
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, España, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, España, Spain.
| |
Collapse
|
38
|
Therapeutic Effects of Olive and Its Derivatives on Osteoarthritis: From Bench to Bedside. Nutrients 2017; 9:nu9101060. [PMID: 28954409 PMCID: PMC5691677 DOI: 10.3390/nu9101060] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/11/2017] [Accepted: 09/20/2017] [Indexed: 01/11/2023] Open
Abstract
Osteoarthritis is a major cause of morbidity among the elderly worldwide. It is a disease characterized by localized inflammation of the joint and destruction of cartilage, leading to loss of function. Impaired chondrocyte repair mechanisms, due to inflammation, oxidative stress and autophagy, play important roles in the pathogenesis of osteoarthritis. Olive and its derivatives, which possess anti-inflammatory, antioxidant and autophagy-enhancing activities, are suitable candidates for therapeutic interventions for osteoarthritis. This review aimed to summarize the current evidence on the effects of olive and its derivatives, on osteoarthritis and chondrocytes. The literature on animal and human studies has demonstrated a beneficial effect of olive and its derivatives on the progression of osteoarthritis. In vitro studies have suggested that the augmentation of autophagy (though sirtuin-1) and suppression of inflammation by olive polyphenols could contribute to the chondroprotective effects of olive polyphenols. More research and well-planned clinical trials are required to justify the use of olive-based treatment in osteoarthritis.
Collapse
|
39
|
Schell J, Scofield RH, Barrett JR, Kurien BT, Betts N, Lyons TJ, Zhao YD, Basu A. Strawberries Improve Pain and Inflammation in Obese Adults with Radiographic Evidence of Knee Osteoarthritis. Nutrients 2017; 9:nu9090949. [PMID: 28846633 PMCID: PMC5622709 DOI: 10.3390/nu9090949] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/20/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA), the most common form of arthritis, is a significant public health burden in U.S. adults. Among its many risk factors, obesity is a key player, causing inflammation, pain, impaired joint function, and reduced quality of life. Dietary polyphenols and other bioactive compounds in berries, curcumin, and tea have shown effects in ameliorating pain and inflammation in OA, but few clinical studies have been reported. The purpose of the present study was to examine the effects of dietary strawberries on pain, markers of inflammation, and quality of life indicators in obese adults with OA of the knee. In a randomized, double-blind cross-over trial, adults with radiographic evidence of knee OA (n = 17; body mass index (BMI): (mean ± SD) 39.1 ± 1.5; age (years): 57 ± 7) were randomized to a reconstituted freeze-dried strawberry beverage (50 g/day) or control beverage daily, each for 12 weeks, separated by a 2-week washout phase (total duration, 26 weeks). Blood draws and assessments of pain and quality of life indicators were conducted using the Visual Analog Scale for Pain (VAS Pain), Measures of Intermittent and Constant Osteoarthritis Pain (ICOAP), and Health Assessment Questionnaire-Disability Index (HAQ-DI) questionnaires, which were completed at baseline and at weeks 12, 14, and 26 of the study. Among the serum biomarkers of inflammation and cartilage degradation, interleukin (IL)-6, IL-1β, and matrix metalloproteinase (MMP)-3 were significantly decreased after strawberry vs. control treatment (all p < 0.05). Strawberry supplementation also significantly reduced constant, intermittent, and total pain as evaluated by the ICOAP questionnaire as well as the HAQ-DI scores (all p < 0.05). No effects of treatment were noted on serum C-reactive protein (CRP), nitrite, glucose, and lipid profiles. Dietary strawberries may have significant analgesic and anti-inflammatory effects in obese adults with established knee OA.
Collapse
Affiliation(s)
- Jace Schell
- Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | - R Hal Scofield
- Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
- Medical Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK 73102, USA.
| | - James R Barrett
- Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Biji T Kurien
- Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Nancy Betts
- Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Timothy J Lyons
- Division of Endocrinology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Yan Daniel Zhao
- Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Arpita Basu
- Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
- Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA.
| |
Collapse
|
40
|
Staines K, Poulet B, Wentworth D, Pitsillides A. The STR/ort mouse model of spontaneous osteoarthritis - an update. Osteoarthritis Cartilage 2017; 25:802-808. [PMID: 27965138 PMCID: PMC5446355 DOI: 10.1016/j.joca.2016.12.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 02/02/2023]
Abstract
Osteoarthritis is a degenerative joint disease and a world-wide healthcare burden. Characterized by cartilage degradation, subchondral bone thickening and osteophyte formation, osteoarthritis inflicts much pain and suffering, for which there are currently no disease-modifying treatments available. Mouse models of osteoarthritis are proving critical in advancing our understanding of the underpinning molecular mechanisms. The STR/ort mouse is a well-recognized model which develops a natural form of osteoarthritis very similar to the human disease. In this Review we discuss the use of the STR/ort mouse in understanding this multifactorial disease with an emphasis on recent advances in its genetics and its bone, endochondral and immune phenotypes.
Collapse
Affiliation(s)
- K.A. Staines
- Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK,School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK,Address correspondence and reprint requests to: K.A. Staines, School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK.Edinburgh Napier UniversitySchool of Applied SciencesSighthill CampusEdinburghEH11 4BNUK
| | - B. Poulet
- Institute of Ageing and Chronic Diseases, Musculoskeletal Biology 1, University of Liverpool, Room 286, Second Floor, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - D.N. Wentworth
- The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - A.A. Pitsillides
- The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| |
Collapse
|
41
|
Al-Hashem F, El Karib AO, Bin-Jaliah I, Dallak M, Sakr HF, Eid RA, Zaki MSA, Al-Shamsi M, Haidara MA, Al-Ani B. Exercise protects against insulin-dependent diabetes-induced osteoarthritis in rats: A scanning electron microscopy study. Ultrastruct Pathol 2017; 41:252-257. [PMID: 28463061 DOI: 10.1080/01913123.2017.1313346] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We tested the hypothesis that swim exercise can protect the articular cartilage from damages induced secondary to insulin-dependent diabetes mellitus in rats using the scanning electron microscopy and to monitor the blood levels of oxidative and antioxidative stress biomarkers that are known to be modulated in osteoarthritis (OA). A profound damage to the cartilage was observed in the diabetic rats. Our findings also show that swim exercise protects the knee joints from damage induced by diabetes as well as significantly inhibiting OA-induced upregulation of thiobarbituric acid reactive substances (TBARS) and tumor necrosis factor alpha (TNF-α) and augmented superoxide dismutase (SOD) inhibition by OA. Thus, we demonstrated an effective protection by swim exercise against diabetes-induced OA in a rat model of the disease.
Collapse
Affiliation(s)
- Fahaid Al-Hashem
- a Department of Physiology , College of Medicine, King Khalid University , Abha , Saudi Arabia
| | - Abbas O El Karib
- a Department of Physiology , College of Medicine, King Khalid University , Abha , Saudi Arabia
| | - Ismaeel Bin-Jaliah
- a Department of Physiology , College of Medicine, King Khalid University , Abha , Saudi Arabia
| | - Mohammad Dallak
- a Department of Physiology , College of Medicine, King Khalid University , Abha , Saudi Arabia
| | - Hussein F Sakr
- d Department of Physiology , College of Medicine and Health Sciences, Sultan Qaboos University , Muscat , Oman
| | - Refaat A Eid
- b Department of Pathology , College of Medicine, King Khalid University , Abha , Saudi Arabia
| | - Mohamed Samir A Zaki
- c Department of Anatomy, College of Medicine , King Khalid University , Abha , Saudi Arabia
| | - Mariam Al-Shamsi
- e Department of Immunology , College of Medicine and Health Sciences, UAEU , Al Ain , UAE
| | - Mohamed A Haidara
- a Department of Physiology , College of Medicine, King Khalid University , Abha , Saudi Arabia.,f Department of Physiology, Kasr al-Aini Faculty of Medicine , Cairo University , Cairo , Egypt
| | - Bahjat Al-Ani
- a Department of Physiology , College of Medicine, King Khalid University , Abha , Saudi Arabia
| |
Collapse
|
42
|
Farnaghi S, Crawford R, Xiao Y, Prasadam I. Cholesterol metabolism in pathogenesis of osteoarthritis disease. Int J Rheum Dis 2017; 20:131-140. [DOI: 10.1111/1756-185x.13061] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Saba Farnaghi
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| | - Indira Prasadam
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| |
Collapse
|
43
|
Farnaghi S, Prasadam I, Cai G, Friis T, Du Z, Crawford R, Mao X, Xiao Y. Protective effects of mitochondria-targeted antioxidants and statins on cholesterol-induced osteoarthritis. FASEB J 2016; 31:356-367. [PMID: 27737897 DOI: 10.1096/fj.201600600r] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/28/2016] [Indexed: 01/24/2023]
Abstract
The contribution of metabolic factors on the severity of osteoarthritis (OA) is not fully appreciated. This study aimed to define the effects of hypercholesterolemia on the progression of OA. Apolipoprotein E-deficient (ApoE-/-) mice and rats with diet-induced hypercholesterolemia (DIHC) rats were used to explore the effects of hypercholesterolemia on the progression of OA. Both models exhibited OA-like changes, characterized primarily by a loss of proteoglycans, collagen and aggrecan degradation, osteophyte formation, changes to subchondral bone architecture, and cartilage degradation. Surgical destabilization of the knees resulted in a dramatic increase of degradative OA symptoms in animals fed a high-cholesterol diet compared with controls. Clinically relevant doses of free cholesterol resulted in mitochondrial dysfunction, overproduction of reactive oxygen species (ROS), and increased expression of degenerative and hypertrophic markers in chondrocytes and breakdown of the cartilage matrix. We showed that the severity of diet-induced OA changes could be attenuated by treatment with both atorvastatin and a mitochondrial targeting antioxidant. The protective effects of the mitochondrial targeting antioxidant were associated with suppression of oxidative damage to chondrocytes and restoration of extracellular matrix homeostasis of the articular chondrocytes. In summary, our data show that hypercholesterolemia precipitates OA progression by mitochondrial dysfunction in chondrocytes, in part by increasing ROS production and apoptosis. By addressing the mitochondrial dysfunction using antioxidants, we were able attenuate the OA progression in our animal models. This approach may form the basis for novel treatment options for this OA risk group in humans.-Farnaghi, S., Prasadam, I., Cai, G., Friis, T., Du, Z., Crawford, R., Mao, X., Xiao, Y. Protective effects of mitochondria-targeted antioxidants and statins on cholesterol-induced osteoarthritis.
Collapse
Affiliation(s)
- Saba Farnaghi
- Institute of Health and Biomedical Innovation, School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Indira Prasadam
- Institute of Health and Biomedical Innovation, School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Guangping Cai
- Department of Orthopaedic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Thor Friis
- Institute of Health and Biomedical Innovation, School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Zhibin Du
- Institute of Health and Biomedical Innovation, School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.,Department of Orthopedics, Prince Charles Hospital, Brisbane, Queensland, Australia; and
| | - Xinzhan Mao
- Department of Orthopaedic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland, Australia; .,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
44
|
Pomegranate (Punica Granatum L.) Peel Hydroalcoholic Extract Supplementation Reduces Pain and Improves Clinical Symptoms of Knee Osteoarthritis: A Randomized Double-Blind Placebo Controlled Study. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016. [DOI: 10.5812/ircmj.38577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Ghoochani N, Karandish M, Mowla K, Haghighizadeh MH, Jalali MT. The effect of pomegranate juice on clinical signs, matrix metalloproteinases and antioxidant status in patients with knee osteoarthritis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4377-4381. [PMID: 26804926 DOI: 10.1002/jsfa.7647] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is one of the commonest forms of musculoskeletal disorders that leads to joint degeneration and has a major impact on patients' quality of life. Experimental and in vitro studies have suggested the protective roles of pomegranate juice (PJ) as a rich antioxidant source for mitigating cartilage inflammation. In this interventional study, 38 patients with knee OA were randomly divided into two groups: PJ or control for 6 weeks to evaluate the effect of this intervention on clinical signs, inflammation and antioxidant status. RESULTS Significant decreases in Western Ontario and McMaster Universities Osteoarthritis index (WOMAC) total score (P = 0.01), stiffness score (P = 0.00) and physical function score (P = 0.01) were observed in PJ group after the intervention. The means of serum levels of matrix metalloproteinase (MMP)-13 was significantly decreased (P = 0.02) and glutathione peroxidase was increased in the intervention group compared with the control group after the study period (P = 0.02). CONCLUSIONS According to the findings of this clinical trial, PJ consumption can improve physical function and stiffness, decrease breakdown cartilage enzymes and increase antioxidant status in patients with knee OA. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nasrin Ghoochani
- Nutrition and Metabolic Diseases Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Karandish
- Nutrition and Metabolic Diseases Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Karim Mowla
- Department of Internal Medicine, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hossein Haghighizadeh
- Department of Biostatics and Epidemiology, Faculty of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Taha Jalali
- Hyperlipidemia Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
46
|
The Overexpression of NALP3 Inflammasome in Knee Osteoarthritis Is Associated with Synovial Membrane Prolidase and NADPH Oxidase 2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1472567. [PMID: 27777643 PMCID: PMC5061982 DOI: 10.1155/2016/1472567] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/11/2016] [Accepted: 08/29/2016] [Indexed: 12/18/2022]
Abstract
Osteoarthritis is characterized by the presence of proinflammatory cytokines and reactive oxygen species. We aimed to clarify the role of prooxidant enzyme content at the synovial membrane level and how it correlates with the inflammatory process in patients with knee osteoarthritis (KOA). In synovial membranes from KOA patients and control group, we analyzed the protein content of prooxidant enzymes such as Nox2, xanthine oxidase (XO), and prolidase as well as the proinflammatory NALP3. Results show that protein content of prolidase and Nox2 increased 4.8- and 8.4-fold, respectively, and XO showed an increasing trend, while the NALP3 inflammasome increased 5.4-fold with respect to control group. Levels of prolidase and XO had a positive correlation between the levels of NALP3 and Nox2. By principal component analysis the protein expression pattern by study groups was evaluated. Three clusters were identified; protein expression patterns were higher for clusters two (prolidase) and three (XO and Nox2) between KOA patients and controls. Data suggest that prooxidant enzymes increase in synovial membrane of KOA patients and may contribute to the inflammatory state and degradation of the articular cartilage.
Collapse
|
47
|
Coleman MC, Ramakrishnan PS, Brouillette MJ, Martin JA. Injurious Loading of Articular Cartilage Compromises Chondrocyte Respiratory Function. Arthritis Rheumatol 2016; 68:662-71. [PMID: 26473613 DOI: 10.1002/art.39460] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/29/2015] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To determine whether repeatedly overloading healthy cartilage disrupts mitochondrial function in a manner similar to that associated with osteoarthritis (OA) pathogenesis. METHODS We exposed normal articular cartilage on bovine osteochondral explants to 1 day or 7 consecutive days of cyclic axial compression (0.25 MPa or 1.0 MPa at 0.5 Hz for 3 hours) and evaluated the effects on chondrocyte viability, ATP concentration, reactive oxygen species (ROS) production, indicators of oxidative stress, respiration, and mitochondrial membrane potential. RESULTS Neither 0.25 MPa nor 1.0 MPa of cyclic compression caused extensive chondrocyte death, macroscopic tissue damage, or overt changes in stress-strain behavior. After 1 day of loading, differences in respiratory activities between the 0.25 MPa and 1.0 MPa groups were minimal; however, after 7 days of loading, respiratory activity and ATP levels were suppressed in the 1.0 MPa group relative to the 0.25 MPa group, an effect prevented by pretreatment with 10 mM N-acetylcysteine. These changes were accompanied by increased proton leakage and decreased mitochondrial membrane potential, as well as by increased ROS formation, as indicated by dihydroethidium staining and glutathione oxidation. CONCLUSION Repeated overloading leads to chondrocyte oxidant-dependent mitochondrial dysfunction. This mitochondrial dysfunction may contribute to destabilization of cartilage during various stages of OA in distinct ways by disrupting chondrocyte anabolic responses to mechanical stimuli.
Collapse
|
48
|
Tiku ML, Madhan B. Preserving the longevity of long-lived type II collagen and its implication for cartilage therapeutics. Ageing Res Rev 2016; 28:62-71. [PMID: 27133944 DOI: 10.1016/j.arr.2016.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/26/2016] [Indexed: 11/30/2022]
Abstract
Human life expectancy has been steadily increasing at a rapid rate, but this increasing life span also brings about increases in diseases, dementia, and disability. A global burden of disease 2010 study revealed that hip and knee osteoarthritis ranked the 11th highest in terms of years lived with disability. Wear and tear can greatly influence the quality of life during ageing. In particular, wear and tear of the articular cartilage have adverse effects on joints and result in osteoarthritis. The articular cartilage uses longevity of type II collagen as the foundation around which turnover of proteoglycans and the homeostatic activity of chondrocytes play central roles thereby maintaining the function of articular cartilage in the ageing. The longevity of type II collagen involves a complex interaction of the scaffolding needs of the cartilage and its biochemical, structural and mechanical characteristics. The covalent cross-linking of heterotypic polymers of collagens type II, type IX and type XI hold together cartilage, allowing it to withstand ageing stresses. Discerning the biological clues in the armamentarium for preserving cartilage appears to be collagen cross-linking. Therapeutic methods to crosslink in in-vivo are non-existent. However intra-articular injections of polyphenols in vivo stabilize the cartilage and make it resistant to degradation, opening a new therapeutic possibility for prevention and intervention of cartilage degradation in osteoarthritis of aging.
Collapse
Affiliation(s)
- Moti L Tiku
- Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| | - Balaraman Madhan
- Council of Scientific and Industrial Research - Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, India
| |
Collapse
|
49
|
Lu Z, Wu H, Lin X, Liu B, Lin C, Zheng L, Zhao J. Chondro-Protective and Antiarthritic Effects of Sulfonamido-Based Gallate-ZXHA-TC in Vitro and in Vivo. ACS Chem Biol 2016; 11:1613-23. [PMID: 27017891 DOI: 10.1021/acschembio.6b00051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effects of gallic acid (GA) on arthritis are limited by weak antioxidant effects and inferior biological properties of GA. We recently described a new series of synthesized GA derivatives by coupling with sulfonamides. Among these analogs, a novel compound synthesized from GA and sulfadimoxine (SDM) named ZXHA-TC exhibited the most robust anti-inflammatory potential. In this current study, the chondro-protective and antiarthritic effects of ZXHA-TC were investigated both in vitro and in vivo. In the in vitro study, ZXHA-TC exerted chondro-protective effects as evidenced by promoting cell proliferation and the maintaining of the phenotype of articular chondrocytes treated with interleukin-1-beta (IL-1β). The potential of ZXHA-TC to slow the progress of osteoarthritis (OA) was suggested by a reduction in matrix metalloproteinases (MMPs) and the up-regulation of the tissue inhibitor of metalloproteinase-1 (TIMP-1). In a rabbit anterior cruciate ligament transaction (ACLT) model of OA, ZXHA-TC exerted a protective effect on arthritis as assessed by macroscopic scores, histological, qRT-PCR, and immunohistochemical analyses. The effects of ZXHA-TC on inhibiting the production of inflammatory mediators in OA may be mediated partly by the suppression of the PI3K/AKT pathway or MAPK cascades, leading to NF-κB inactivation. Thus, this study indicates that ZXHA-TC may be developed as a potential therapeutic agent for OA.
Collapse
Affiliation(s)
- Zhenhui Lu
- Guangxi
Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, 530021, China
- Guangxi
Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi
Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Huayu Wu
- Department of Cell Biology & Genetics, School of Premedical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiao Lin
- Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, 530022, China
- School of
Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Buming Liu
- Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, 530022, China
| | - Cuiwu Lin
- School of
Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Li Zheng
- Guangxi
Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, 530021, China
- Guangxi
Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi
Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- The
Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi
Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, 530021, China
- Guangxi
Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi
Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
50
|
Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta Mol Basis Dis 2016; 1862:576-591. [PMID: 26769361 DOI: 10.1016/j.bbadis.2016.01.003] [Citation(s) in RCA: 488] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 12/11/2022]
Abstract
Osteoarthritis is the most common joint disorder with increasing prevalence due to aging of the population. Its multi-factorial etiology includes oxidative stress and the overproduction of reactive oxygen species, which regulate intracellular signaling processes, chondrocyte senescence and apoptosis, extracellular matrix synthesis and degradation along with synovial inflammation and dysfunction of the subchondral bone. As disease-modifying drugs for osteoarthritis are rare, targeting the complex oxidative stress signaling pathways would offer a valuable perspective for exploration of potential therapeutic strategies in the treatment of this devastating disease.
Collapse
Affiliation(s)
- Panagiotis Lepetsos
- Fourth Department of Trauma and Orthopaedics, Medical School, National and Kapodistrian University of Athens, 'KAT' Hospital, 14561, Kifissia, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|